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ABSTRACT

We present a novel approach to the
Metagenomic Geolocation Challenge based
on random projection of the sample reads
from each location. This approach explores
the direct use of k-mer composition to
characterise samples so that we can avoid
the computationally demanding step of
aligning reads to available microbial reference
sequences.

Each variable-length read is converted into
a fixed-length, k-mer-based read signature.
Read signatures are then clustered into
location signatures which provide a more
compact characterisation of the reads at each
location. Classification is then treated as a
problem in ranked retrieval of locations, where
signature similarity is used as a measure of
similarity in microbial composition.

We evaluate our approach using the
CAMDA 2020 Challenge dataset and obtain
promising results based on nearest neighbour
classification. The main findings of this study
are that k-mer representations carry sufficient
information to reveal the origin of many of
the CAMDA 2020 Challenge metagenomic
samples, and that this reference-free approach
can be achieved with much less computation
than methods that need reads to be assigned

to operational taxonomic units—advantages
which become clear through comparison to
previously published work on the CAMDA 2019
Challenge data.

1 BACKGROUND
The CAMDA Metagenomic Geolocation Challenge
concerns the “global genetic cartography of urban
spaces”, based on “extensive sampling of mass-
transit systems and other public areas across the
globe.” In the 2020 Challenge, participants received
1065 metagenomic fastq sample files collected from
sites in 23 cities across six continents. The challenge
is to determine—ideally with high confidence—the
location of 121 Mystery samples. We took this
opportunity to apply, extend and evaluate the k-mer-
based signature methods that were used by Chappell
et al. (2018) to classify wound microbiome data,
motivated by the potential of these methods to
scale to the volume of metagenomic data that the
scientific community is accumulating.

This approach to analysing CAMDA Challenge
data is novel because it obviates the need to
align sequences to reference genomes of organisms
thought to be present at sampled locations. Analyses
of previous Challenge datasets have relied on this
initial alignment step to provide information about
the relative abundance of different species or OTUs
(e.g, Casimiro-Soriguer et al. (2019), Walker and
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Datta (2019)). This is a computationally demanding
and time consuming process—Zhang et al. (2021)
report “OTU calling with QIIME required on an
average approximately 500 CPU hours” with the
CAMDA 2019 Challenge data. We wanted to
explore the extent to which k-mer composition
alone could be informative of geolocation, and
whether a suitable analysis pipeline could be
developed to extract that information in a reasonable
time. This work does not therefore present a
systematic benchmarking study of a tightly defined
task, although we do highlight the computational
advantages of our approach in the performance
comparisons of section 3.3.

After filtering out reads likely to be of human
origin, we characterise samples by embedding
them within a real-valued vector space of moderate
dimension. This allows us to create a library of
compact representations of each sample at a variety
of resolutions. Mystery samples may be processed
in a similar fashion and rapidly compared with
entries in the library to facilitate classification.

Our approach encodes reads from each sample
into signatures (Geva and De Vries, 2011), as
illustrated in Figure 1. Each read is decomposed into
its constituent k-mers, each of which corresponds
to a unique random unit vector in RN . We sum
the k-mer signature vectors from a given read,
then divide by the magnitude of the sum to
produce a unit-length read signature. This fixed-
length signature vector representation affords more
efficient comparison and clustering than the original
sequences.

We apply hierarchical k-means clustering to the
read signatures derived from each sample. This
approach generates a tree of clusters, with the
number of clusters increasing at each level. This
allows us to represent the sample at a resolution
of our choice. Each cluster may be represented
by its mean and level – yielding a set of cluster-
signatures which may be used for classification of
novel samples. We evaluate the performance of our
methods on samples and city labels from the 2020
Challenge dataset.

In the following sections, we describe the
read datasets, and the process of read merging,
filtering and transformation to the read signature
representation (Sections 2.1–2.4). We explain how
read signatures are clustered to produce location
signatures for each city (Section 2.5) and outline
our approach to classifying the Mystery samples
(Section 2.6). Experiments with the Challenge
datasets and the results obtained are described
(Section 3) followed by discussion (Section 4), and
conclusions (Section 5).

2 MATERIALS AND METHODS
Source code to convert reads to read signatures,
and to geolocate clustered signatures is available at
github.com/tchappell/camda2020-code.

2.1 CAMDA Challenge datasets
The main dataset used in this study combines the

CAMDA Challenge collections CSD16 and CSD17.
We refer to this full collection as the CAMDA 2020
dataset.

2.2 Initial read processing
CAMDA 2020 provided Illumina paired-end

reads from 1065 location samples as training
data. Some of the compressed files were partially
corrupted, but 8.71 billion read pairs were
successfully extracted. Read pairs were merged
using PEAR v0.9.11 (Zhang et al., 2014) with
default settings, except -p 1.0 to retain as much
data as possible for analysis. PEAR merged 32.4%
of the reads into 2.82 billion merged sequences.
This collection was used in all further processing
and analysis.

We decided to retain only the merged reads
in this study to make the volume of data more
manageable and because “By merging paired-end
reads, the overlapping region between them can
also be deployed for correcting sequencing errors
and potentially yield sequences of higher quality”
(Zhang et al., 2014).

2.3 Read filtering
All CAMDA samples were specifically collected

from locations where large numbers of people
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aggregate, such as mass transit systems and places
of public gathering. With that in mind, we took the
opportunity to explore the extent to which removing
reads of human origin might improve our ability to
discriminate locations, an approach used also by
Walker and Datta (2019). We analysed three sets of
sequence reads to explore the impact of eliminating
human-related bacteria:

• all reads
• all non-human reads
• all non-human and non-Cutibacterium acnes

reads.

We used Bowtie2 v2.4.1 (Langmead and
Salzberg, 2012) to map the 2.82 billion merged
sequences to the human genome, using the
--sensitive-local settings and the H. sapiens,
NCBI GRCh38 with 1KGenomes major SNPs
pre-built index.

Approximately 15.2% of CAMDA 2020 reads
mapped to the human genome. The remaining 2.39
billion unmapped sequences were retained — this
dataset is referred to as ‘nH’ (for ‘non-human’).
Figure 2 shows that the proportion of reads that
mapped to the human genome varied markedly
across cities.

We also decided to filter out Cutibacterium acnes
reads, as these bacteria are common to human
skin, relatively abundant, and therefore potentially
unlikely to provide information discriminative of
location. We used Bowtie2 as before, eliminating
reads that mapped to the representative genome
(C. acnes KPA171202) from NCBI. Approximately
1.4% of the nH sequences could also be mapped
to the C. acnes genome. The remaining 2.36
billion unmapped sequences were retained, and
this data is referred to as ‘nHnC’ (for non-human
and non-cutibacterium). Again, the proportion of
reads mapping to this genome varied across cities
(Figure 2).

2.4 Read signature transformation
Each of the 1065 CAMDA 2020 location

samples is represented by a real-valued vector

called a signature (Geva and De Vries, 2011)
using the process described below. Signatures
support compact representation, rapid clustering
and comparison, allowing the creation of a library
of signatures from known locations. Signature
representations are obtained in the same way for
each unseen or Mystery sample, and their origin
is characterised—at least in principle—through
comparison with known entries in the signature
library.

We start by considering the representation of reads
in a sample collection. A Collection of M variable-
length DNA reads is available, and we represent
them as a matrix of M fixed length signature
vectors in RN using random projection (Johnson
and Lindenstrauss, 1984).

As illustrated in Figure 1, we begin by extracting
from each read its constituent k-mers. For each k-
mer, we create a random signature in RN , and then
combine these k-mer level signatures to yield the
read signature. The value of N is arbitrary, and
the desire for dimensionality reduction must be
tempered by the need for representation capacity.
For simplicity in the feature set, we work with the
pure nucleotide alphabet {A,C,G, T}, discarding
any k-mers which contain degenerate base symbols.
If k is the chosen k-mer length, the cardinality
of the set of all possible k-mers is then 4k, and
for low values of k we will expect to see each
of these k-mers appear in the collection. In these
experiments we have opted to work with 2 ≤
k ≤ 6, based on earlier experience with large
collections. There is a trade-off between storage
requirements, representational capacity and speed
of processing. It is likely that longer k-mers will
prove more discriminative in small sets (Bernard
et al. (2017)), but these advantages come with
significant computational and storage overheads.

The k-mer signatures can in general be chosen at
random. For large N , random vectors x ∈ RN tend
to be nearly orthogonal. Here it is desirable to have
k-mer-signatures that are mutually orthogonal, or
at least approximately mutually orthogonal if the
number of distinct k-mers is larger than N .
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As noted above, read-signatures are generated
by combining the underlying k-mer-signatures. For
instance, with k = 4, we begin by initialising a
matrix of k-mer-signatures of dimension 4k × N ,
in this case 256 × 136, where 136 is the number
of canonical 4-mers. The canonical kmers and
the choice of N , the signature dimensionality, are
explained below. Each read-signature is initialised
to a vector of N zeros and we successively include
k-mer-signatures by sliding a window of length
k over the read, extracting the k-mer, looking
up its signature, and summing with the current
read-signature vector.

After applying this process to all of the reads in the
sample, we obtain a matrix of M rows (the number
of read-signatures) by N columns (the dimension of
the vectors). The matrix is further processed to take
account of the statistical properties of the collection.
We control for k-mer frequency by subtracting the
matrix column-wise mean from each row and we
normalise so that each signature becomes a unit
vector, removing the effect of variations in read
length.

In the end we obtain the desired representation of
the reads as a matrix of normalised read-signatures
in RN . The process relies on a well-known property
of random projections (Johnson and Lindenstrauss,
1984). Put simply, the random projection preserves
mutual distance relationships between objects in
the original space – if two objects are proximal,
then their associated signature vectors will, with
high probability, lie proximal in the projected
space. A rigorous treatment of this property, and its
validity in this context, is outside the scope of this
paper. However, the experimental results here and
elsewhere demonstrate its utility in text processing
and bioinformatics domains (Chappell et al., 2018).

Since the reads are not aligned to a reference, we
choose to work with canonical k-mers, regarding
each k-mer and its reverse complement as identical
entries. For instance, when using 4-mers, there
are 136 canonical k-mers, and each k-mer and
its reverse complement are assigned the same
signature. This ensures that the projection is also

canonical – a read and its reverse complement will
be transformed to the same signature vector under
this projection. In this case we project the reads
onto R136, thus converting the collection of reads
of variable length—ranging from around 125 to 300
base-pairs, with a mean of about 240—to a fixed
dimensional space. The treatment is analogous for
other choices of k.

2.5 Sample clustering
Working with a sample represented as a matrix of

read-signatures remains computationally expensive
even if dimensionality reduction is applied. The
number of reads is not reduced at all by the random
projection process and each CAMDA sample may
include millions of reads. Moreover, we have 1065
such samples. Using our pipeline, after assembling
paired reads (with significant reduction and some
loss as described above), there were 2.82 billion
reads remaining. Even after filtering to remove
reads likely of human origin, there are nearly 2.4
billion reads available. We thus use clustering over
the read-signatures at the sample level to reduce the
size of the representation and allow more efficient
classification.

Tree-structured Vector Quantisation (TSVQ) is a
recursive hierarchical k-means clustering approach
based on the Euclidean distance between the
vectors (Gersho and Gray, 1992). We apply it to
each of the 1065 samples in turn. The process
begins with the application of k-means clustering to
the entire sample, and proceeds with the recursive
application of k-means to each of the resulting k
partitions. The process terminates when a specified
tree depth is reached or the data are exhausted.

It is useful here to explore our intuitions of cluster
membership and the relationship between cluster-
signatures – the mean of the read-signatures within
a cluster – and the original reads in the sample.

Clusters obtained via TSVQ are groups of nearby
points in signature space. As the projections are
locality-preserving, we expect that similar reads
will share similar DNA. But unlike individual read-
signatures, the resulting cluster-signatures cannot
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be traced back to any particular read (they represent
a collection of similar reads). Clusters and their
more compact cluster-signature vectors provide a
sketch of the reads that are indirectly referenced by
cluster membership. Of course the root is a sketch
of the entire sample, in essence a sketch of the
sketches below it, and so on. Since TSVQ cluster
membership diminishes as we descend through
tree branches, the sketches become more specific
toward the leaves, and less specific towards the root.
Working at a particular tree level allows us to choose
a more specific or less specific representation of a
sample, and indeed the entire CAMDA collection,
depending upon the desired resolution.

2.6 Sample classification
In order to classify each Mystery sample we apply

simple Nearest Neighbour classification. Clusters
obtained from the Mystery sample are compared
with clusters from the labelled samples in order to
make a prediction. The process is as follows:

1. Pre-process the mystery sample - paired read
assembly, additional human-origin filtering,
signature generation.

2. Use TSVQ to cluster the Mystery sample.
3. Find the nearest neighbour (NN) cluster of each

Mystery cluster in the labelled collection.
4. Predict the location of each Mystery cluster as

that of its NN cluster in the labelled collection.
5. Accumulate the cluster predictions. The final

classification is the city associated with the
location having the most clusters appearing as
NN of clusters in the Mystery sample.

An extension of this basic approach is to use
KNN (k nearest neighbours) in step 3, and in steps
4 and 5 to use all of the KNN clusters. We have
experimented with this variation, using KNN, and
accumulating the weighted vote of the KNN - each
neighbour contributes a vote of 1/rank towards the
classification, where rank is the neighbourhood rank
position of each of the nearest neighbours.

3 EXPERIMENTS AND RESULTS
3.1 CAMDA Challenge Training Data

To evaluate the performance of the classifier we
performed leave-one-out cross-validation (LOOXV)
over the samples. Each of the 1065 location samples
is left out in turn, and a City prediction is made
for that sample based on the most similar location
sample. We thus score the classifier according to
the accuracy of these predictions over the set of
samples:

A =
Number of correctly classified samples

Number of samples
(1)

The results below consider the 2020 collection
in its merged (Section 2.2) and its merged and
filtered (Section 2.3) forms. In each case, we run the
LOOXV test over the entire collection. After paired-
read assembly, the collection size was reduced
from about 8.7 billion pairs to about 2.8 billion
merged reads, a reduction of nearly 68%. Additional
filtering reduces the size to 2.4 billion reads, an
overall reduction of around 72%. We then converted
1 million reads from each sample into signatures (if
the sample contained fewer than 1 million reads, all
reads were used), resulting in a collection of 920
million signatures.

The signatures in each of the samples were then
clustered by TSVQ using a tree order of 10, and tree
depth of 4. We consider classification as described
in section 2.6 at 3 levels of depth in the tree.

In the case of the 2020 dataset, Level 1 or the root
level consists of 1065 sample cluster-signatures;
each sample is represented by a single signature.
Level 2 represents each of the samples by 10
cluster-signatures, for a collection total of 10650
signatures, and Level 3 represents each sample
by 100 cluster-signatures, for a collection total of
100650 signatures.

Figure 3 shows the results of these experiments
over the 2020 collection (23 cities and 1065
locations). We experimented with 4-mers and 3
levels in the cluster tree, having 1 cluster, 10
clusters, and 100 clusters as described above. The
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best performance was obtained in both cases for the
third level of 100 cluster-signatures. Surprisingly,
a figure of 43% is obtained even when working
with a single cluster per location, notwithstanding
the 23 alternatives available. Even a single cluster-
signature may capture the broader characteristics of
a location sample.

Filtering to remove reads identifiable as of
human origin yields a noticeable improvement in
classification performance, with accuracy as much
as 12% higher than that obtained prior to filtering
(Figure 3).

To evaluate the impact of k-mer length, we
experimented with 2 ≤ k ≤ 6. Figure 4 depicts
the results for the 2020 dataset. The accuracy of the
classifiers generally improves with k-mer length.

In Section 2.6 we describe a modification to the
algorithm, using KNN (k-nearest neighbours) to
determine the class of a mystery sample. We worked
with 10 clusters per sample, and varied the k-mer
size and the number of neighbours. The results are
depicted in Figure 5. The performance improves as
more neighbours are considered, but improvements
saturate at 3-NN. The performance improvement
is highly significant across all k-mer size choices,
with increases ranging between 8% and 11%.

It is useful to further assess the quality of
prediction, taking into account that not all incorrect
predictions are equal. If a ranked list of location
predictions is produced, in a manner similar to a
search engine, then it is useful to consider S@N

(success at N ), the frequency of a correct prediction
appearing up to a given rank position N . For
instance, S@1 = A (eq. 1), and S@3 is the fraction
of correct predictions appearing in any position
from 1 to 3.

Here we are focused on the prediction of the city
associated with the individual sample, rather than
the identification of the city from a set of samples.
This is a higher resolution view than the city view.
Our approach is to rank all samples in the collection
based on the number of cluster matches with the
left-out sample.

As we classify each left-out sample, we keep track
of the position at which the highest ranked ‘correct’
location—from the same city as the left out sample—
appears. The fraction of times that the first-ranked
location matches the city of the left-out sample is
the overall accuracy A in equation 1, the fraction of
true positive predictions at rank 1. We also calculate
S@2, the fraction of times that either the first or
the second ranked location is from the correct city.
This is done for all ranks; there are 1065 locations,
and the desired behaviour is that, by analogy with
a search engine, the correct locations—the same
city as the left-out sample—are ranked as highly as
possible: a location from the same city as the left
out sample should preferably be ranked at or near
the top of the list.

The results shown in Figure 7 correspond to a
classifier with 1 cluster per location. Results are
reported for the unfiltered reads, the non-human
reads and the non-human, non-C.acnes reads. The
figure reports the precision obtained up to a given
rank in the prediction list. In 84% of cases for the
nHnC samples, a location from the same city is
found in the 10 highest ranked location samples
(from 1065 available). In an application involving
further analysis of potential sources for a Mystery
sample, this may prove useful.
3.2 CAMDA Challenge Mystery Samples

The prediction of the Mystery samples followed
exactly the same process as we have used with
cross-validation, and as described in Section 2.6.
The results were compared with the ground truth
mystery sample locations. There were 5 locations
that were previously used and for which other
samples appear in the CAMDA 2020 data set: HKG,
IEV, TPE, TYO and ZRH. Another 5 new locations
were added: Bogota, Krakow, Marseilles,Naples,
and Vienna. However there is no reasonable way
to distinguish those locations without additional
information beyond the DNA samples. Therefore,
we can only verify that our cross-validation
predictions over the CAMDA 2020 training data
are not a result of over-fitting.
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The prediction accuracies over the set of 5
previously used cities appear in Figure 6. These
results are in line with those obtained in the cross-
validation studies over these same 5 cities, also
being 30% with 4-mers.

3.3 Classification performance
comparison

We compared our approach to the results of Zhang
et al. (2021) who tackled a CAMDA challenge task
of sample-based geolocation and gave the most
detailed evaluation and performance information
of the papers using recent challenge datasets.

To ensure fair and meaningful comparison, we re-
ran our approach on the 2019 CAMDA challenge
data that Zhang et al. used, applied the same leave-
one-out cross-validation performance estimates,
and used all of the non-mystery samples except for
two samples where only forward reads were present,
resulting in a total of 300 samples, the same number
reported by Zhang et al.

Our system was treated as a ‘black box’ for the
purposes of this comparison; we used the same
filtering (removal of non-human non-Cutibacterium
acnes reads) and the same approach for clustering
and nearest neighbour classification. We used 10
clusters per signature and a k-mer length of 5. The
approach was not tuned any further. Table 2 contains
the raw confusion matrix from this run.

Figure 8 visually compares the performance of
our method with the linear discriminant analysis,
random forest, and support vector machine methods
evaluated by Zhang et al. on the same 2019
CAMDA challenge data. These plots use the
visualisation methods described by Lovell et al.
(2021) to present the positive predictive values
(true positives/(true positives + false positives),
a.k.a. precision) and likelihood ratios of positive
outcomes (true positive rate/false positive rate)
obtained for each class versus all others. Positive
predictive values indicate the probability that an
example predicted by classifier to belong to class
X actually belongs to class X . The likelihood ratio
of a positive outcome reflects the ability of the

classifier to correctly classify an instance of a given
class.

For most classes, our method performs favourably
in comparison to the methods evaluated by
Zhang et al. (2021). Figure 8(b) shows a direct
comparison to the random forest method in which
our classification pipeline achieves better results
in 11 out of 16 classes. While this study is not
meant to benchmark the performance of different
analysis strategies, these findings suggest that the
read signature approach is a useful representation
that yields information sufficient to support a
competitive classification pipeline.

3.4 Run time performance
Part of the appeal of k-mer representations is that

they are computationally efficient. As the volume of
metagenomic data grows, we need analysis methods
that can return results in a reasonable time.

Table 1 gives a synopsis of the run times for
the most detailed (100 cluster) representation of
samples, for k-mers of length 2-5, using an
Intel Xeon 8160 with 48 cores. These results
demonstrate the computational savings that k-mer
representations afford, enabling a new sample of
around 1 million reads to be compared against 1065
samples from 23 cities in under 3 minutes, of which
2 minutes and 50 seconds is for paired end merging
and filtering out uninformative reads.

As Zhang et al. (2021) point out, assigning
reads to OTUs is a time consuming step, involving
many hundreds of CPU hours for the (smaller)
2019 CAMDA Challenge dataset. Coupled with the
classification performances described above, the
run times we achieved suggest that k-mer based
representations could, at the very least, be useful
as a pre-processing filter for more computationally
intensive analyses.

4 DISCUSSION
The results reported above highlight the effectiveness
even of root-level cluster-signatures in characterising
the samples, and the utility of ranked retrieval
as a lens with which to examine the variations
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across cluster levels. Moreover, our methods allow
very rapid comparison of samples and clustering
at scale, making the approach useful even as a
preprocessing step prior to more intensive analysis.
Nevertheless, there remains some significant work
to do in resolving the more complex variations in
the misclassified samples. The results obtained with
a single cluster per location are both interesting
and surprising, achieving accuracy of 49% with
the exhaustive 1065-fold LOOXV, and 52% after
filtering (Figure 7). This suggests significantly
different microbiomes between cities, but sufficient
similarity within cities to facilitate comparison even
with a single signature.

The approach that we took is based on the
conjecture that samples from within the same city
will tend to have some shared microbial footprint,
while those from different cities will tend to have
less in common with one other. This approach relies
on the availability of representative samples of the
microbiome from each city. However, this does not
seem to hold true in all cases. We observed that
some cities were a lot easier to identify than others.
In particular, Barcelona was easy to identify as
most samples taken there shared similar signatures,
implying a similar microbiome. Hence, left-out
samples were easily identified by others left in the
collection.

Lisbon on the other hand proved quite difficult
to classify and left-out samples did not seem to
share the microbial structure of those that remained.
Some cities may exhibit a much more diverse
microbiome within their boundaries, and many
more samples may be required to characterise it
properly. Alternatively, there may be different
protocols or selections in the samples obtained. This
will require further investigation, but for now we
cannot assume uniform representation for each city.

Other than in filtering out reads likely to be of
human origin, our approach does not attempt to use
a reference database, and as such it does not require
a comprehensive reference lookup to provide utility.

5 CONCLUSIONS
We have introduced a novel approach to the
Metagenomic Geolocation Challenge based on
random projection of the sample reads, demonstrating
its potential utility for rapid classification of
location-tagged samples. The core advantage
of these methods lies in the signature-based
representation of each read, which allows faster
comparison, clustering and classification of samples
and avoids the computationally demanding step
of aligning sequences to reference genomes of
organisms. k-mer representations might enable us
to analyse sequence data a rate that can keep pace
with the growth of metagenomic sequence data.

Most importantly we have shown that simple
k-mer representations can carry meaningful
information about sample origin without the need
to construct more elaborate feature vectors. We
found that performance generally improved with
increasing k-mer length and number of location
signatures. Removing uninformative reads also
made a material improvement to classification
performance.

A number of refinements may be made to the
approach: in the nature of the projection, the choice
of distance metric and perhaps most notably in the
choice of classification method. Yet even using a
simple nearest neighbour classifier allowed us to
identify at least one same-city sample in the top 10
predictions some 84% of the time. Given that there
are 1065 such samples available these results appear
very convincing: our approach is immediately
useful as a pre-processing filter—reserving more
accurate and resource hungry methods for the task
of distinguishing the most promising candidates—
and the results provide a firm basis for more
sophisticated extensions.

The main findings of this study are that k-
mer representations carry sufficient information to
reveal the origin of many of the CAMDA 2020
Challenge metagenomic samples, and that this
reference-free approach can be achieved with much
less computation than methods that need reads to be
assigned to operational taxonomic units. Moreover,
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there are a number of promising avenues for further
research likely to lead to significant improvements
in classification accuracy without detracting from
the convenience and computational advantages that
make these approaches so attractive. These ideas
will form the basis for future papers relating to this
Challenge.
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Figure 1. Merged reads vary in length from
50–292 bases. In general terms, we convert
each read to a fixed-length read signature by (1)
decomposing each read into its constituent read k-
mers (2) using a look-up table to encode each of
the read’s k-mers as a fixed length vector. A range
of encoding strategies are possible; here we show
encoding by random unit vectors. (3) the encoded
k-mers are summed and normalised to a vector of
unit length that we call a read signature. Since we
do not know the direction of any given read, we
work in terms of canonical k-mers, i.e., the k-mer
or its reverse complement, whichever occurs first
alphabetically.
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Figure 2. Each dot shows the percentage of reads
from a sample that mapped to the H. sapiens
genome (left panel) or C. acnes (right panel).
Each boxplot summarises the distribution of these
proportions in samples from a given city. Cities are
shown in descending order of median percentages
for H. sapiens. Note the change of x-axis scale
between panels.

Figure 3. Leave-one-out crossvalidation suggests
that we can more accurately predict a sample’s city
of origin using reads that do not map to H. sapiens
or C. acnes genomes (nHnC). Accuracy also
improves with the number of location signatures
used to characterise each city.

Figure 4. Leave-one-out crossvalidation accuracy
for city classification tends to improve with k-mer
length and number of location signatures.
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Figure 5. Using clusters of 10 location signatures,
leave-one-out crossvalidation accuracy for city
classification tends to improve with the number of
nearest neighbours. Accuracy appears to peak for
k-mer of length 5 in most cases.

Figure 6. In general, the classification accuracy of
mystery samples improves with the number nearest
neighbours. The relationship between accuracy and
k-mer length is more complex and there appears to
be an interaction with cluster size.
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Figure 7. The percentage of times the correct city
of a sample was identified within the first 1-10
results (counting ties). Retaining only non-human
(nH), or non-human and non-C.acnes (nHnC) reads
consistently improves retrieval.
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Figure 8. Summaries of the empirical leave-
one-out-cross-validation performances of different
classifier pipelines on the 2019 CAMDA challenge
data used by Zhang et al. (2021): “QUT” refers
to the methods of Chappell et al. (this paper);
“LDA”, “RF” and “SVM” denote linear discriminant
analysis, random forest, and support vector machine
methods evaluated by Zhang et al.
(a) one-versus-all positive predictive values (PPV,
a.k.a. precision) for each class. PPV estimates the
probability the actual class of an example is X given
the classifier predicted it is X: the higher the PPV
the better. Classes have been sorted in order of the
PPV of the QUT method.
(b) likelihood ratio of positive outcome (LR+) for
each class for the method in this paper versus the
random forest method of Zhang et al.: the higher the
LR+, the better that class is correctly discriminated
by a classifier. Red points and labels indicate the
classes where the method in this paper performed
better than random forest method.
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Process Amount of data Run time (hours:minutes:seconds)
Paired-end merging 8,712,731,964 sequences 14:51:04 (avg. 00:00:50 per sample)
Read filtering 37:22:09 (avg: 00:02:06 per sample) per species

2-mers 3-mers 4-mers 5-mers
Signature creation 920,430,590 sequences 00:04:51 00:05:53 00:13:11 00:34:09
Clustering (TVSQ) 100 clusters 00:55:54 01:19:47 03:17:07 07:02:03
Classification 1065 samples, 100 clusters 00:00:02 00:00:07 00:00:34 00:01:54

Table 1. Run time performance of different
processes in the analysis pipeline. The two steps that
involve sequence alignment—paired-end merging
and read filtering—dominate the overall run time;
the other steps take far less time thanks to the
computational efficiency afforded by the k-mer
representations they use.

True AKL BER BOG HAM HGK ILR LON MAR NYC OFA PXO SAC SAO SOF STO TOK
Predict
AKL 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BER 0 21 0 0 0 0 0 0 0 0 0 0 0 1 0 0
BOG 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 2
HAM 1 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0
HGK 0 0 0 0 16 0 0 0 0 0 0 0 2 0 0 1
ILR 0 0 0 0 0 24 0 0 0 3 0 0 0 0 0 0
LON 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0
MAR 0 0 0 0 0 0 0 8 0 0 0 0 0 1 0 0
NYC 0 0 0 0 0 0 0 1 26 0 0 0 0 0 0 0
OFA 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0
PXO 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0
SAC 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0
SAO 0 0 0 0 2 0 0 0 0 0 0 0 21 0 2 0
SOF 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0
STO 0 0 0 0 0 0 0 1 0 0 0 0 1 0 18 0
TOK 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 19
Error rate 7.14 0.00 13.33 0.00 11.11 0.00 0.00 20.00 0.00 16.67 0.00 0.00 12.50 20.00 10.00 13.64

Table 2. City-level confusion matrix of a run with
10 clusters per signature and a k-mer length of 5
against the data from the CAMDA 2019 challenge.
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