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Researchers have had much recent success with ranking models based on so-called learned sparse represen-
tations generated by transformers. One crucial advantage of this approach is that such models can exploit
inverted indexes for top-𝑘 retrieval, thereby leveraging decades of work on efficient query evaluation. Yet,
there remain many open questions about how these learned representations fit within the existing literature,
which our work aims to tackle using four representative learned sparse models. We find that impact weights
generated by transformers appear to greatly reduce opportunities for skipping and early exiting optimizations
in well-studied document-at-a-time (DaaT) approaches. Similarly, “off-the-shelf” application of score-at-a-
time (SaaT) processing exhibits a mismatch between these weights and assumptions behind accumulator
management strategies. Building on these observations, we present solutions to address deficiencies with
both DaaT and SaaT approaches, yielding substantial speedups in query evaluation. Our detailed empirical
analysis demonstrates that both methods lie on the effectiveness–efficiency Pareto frontier, indicating that the
optimal choice for deployment depends on operational constraints.
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1 INTRODUCTION

Despite various investigations of alternatives over the past few decades, document-at-a-time (DaaT)
query evaluation algorithms remain the dominant solution for the top-𝑘 retrieval problem that
lies at the core of systems-focused information retrieval research as well as deployed production
systems. The most recent systematic exploration of different query evaluation strategies that we are
aware of is the work of Crane et al. [9], who compared the then latest score-at-a-time (SaaT) query
evaluation algorithm against the WAND-family of DaaT index-traversal techniques [5, 18]. They
concluded that despite advances in score-at-a-time query evaluation, the best approach at the time,
known as JASS [37, 70], was still slower than Block-MaxWAND (BMW) in terms of mean query
latency, although the query latency of JASS was more consistent, with much lower tail latency [14].
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Since the work of Crane et al. [9], however, the research landscape has changed in one important
way: the introduction of a new class of retrieval models that rely on learned sparse representations.
These models take advantage of transformer-based pretrained language models to assign term
weights to bag-of-words representations that can be interpreted as impact scores, and thus top-𝑘
retrieval with these models can be accomplished using standard inverted indexes. Recent empirical
studies have shown that this new class of models yields effectiveness that is superior to unsupervised
retrieval models such as BM25, and at least on par with popular dense retrieval techniques [35].
Thus, it is important to study the behavior of query evaluation techniques—both DaaT as well as
SaaT methods—in the context of these models.
Interestingly, we observe that the neural models that underlie these learned sparse retrieval

models often assign counter-intuitive weights to terms in bag-of-words representations. These
weights are counter-intuitive in at least two ways: First, the distribution of term weights does not
appear to allow standard DaaT optimizations to effectively perform skipping and early exiting,
which represent the source of accelerated query evaluation performance with traditional bag-
of-words scoring models like BM25. Second, manual examination of the assigned term weights
reveals that high scores are frequently assigned to terms in unexpected ways, for example, large
weights placed on stopwords and subwords that lack any meaningful semantic content. These
weight assignments are particularly puzzling since the models have been demonstrated to be more
effective than existing bag-of-words models such as BM25 on various benchmark datasets.

From this starting point, we view our work as making three important contributions:

(1) We systematically characterize the differences between these learned sparse representations
and their effects on query evaluation performance. Although these issues have been observed
before [41, 55], our work confirms that term weights arising from learned models can negatively
impact query performance.

(2) We are the first to compare DaaT and SaaT approaches in the context of learned sparse
representations and show that these negative performance traits affect both DaaT and SaaT
techniques, but in different ways. For DaaT approaches, the term weight distributions appear to
greatly reduce opportunities for skipping, thus reducing the benefits of standard optimizations.
These same weight distributions also force SaaT retrieval to use score accumulators in an
inefficient manner, also slowing down the retrieval process.

(3) We introduce optimizations to address the deficiencies we observed in DaaT and SaaT algo-
rithms above, leading to over 2× speedups without any appreciable loss in effectiveness.

On the whole, we demonstrate that both the accelerated DaaT and SaaT algorithms lie on the
effectiveness/efficiency Pareto frontier across a variety of learned sparse models, meaning that the
best choice of model and algorithm depends on operational constraints. The findings presented
in this work establish a series of best practices for deploying learned sparse models in traditional
inverted index architectures, and provide a reference for academics or practitioners wishing to
experiment with learned sparse models in their own systems.

The remainder of this paper is organized as follows: Section 2 discusses background and related
work, including efficient indexing and search. Section 3 outlines our experimental setup and
evaluation framework. Section 4 details a preliminary experiment demonstrating the baseline
efficiency of learned sparse models in both DaaT and SaaT retrieval systems. Section 5 analyzes
the deficiencies of learned sparse models to gain a better understanding of when and why they are
slower than traditional models. Section 6 then applies various optimization methods, both novel
and existing, to DaaT and SaaT traversal to accelerate retrieval over learned sparse models. Finally,
Section 8 concludes this research and discusses future work.
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Fig. 1. Postings lists corresponding to the query “Kurt Gödel” with document-ordered postings shown on

the left, and the equivalent impact-ordered postings shown on the right. Document identifiers are shown as

blue squares and the corresponding impacts are shown as red squares. The document-ordered lists are sorted

ascending on document identifiers, whereas the impact-ordered lists are sorted descending on the impacts

and then sorted within each impact by ascending document identifier.

2 BACKGROUND AND RELATEDWORK

The standard formulation of document retrieval using bag-of-words representations can be distilled
into the following scoring function:

𝑆𝑑,𝑞 =
∑︁

𝑡 ∈𝑑∩𝑞
𝑤𝑑,𝑡 ·𝑤𝑞,𝑡 (1)

where 𝑤𝑑,𝑡 is the weight of term 𝑡 in document 𝑑 and 𝑤𝑞,𝑡 represents the weight of term 𝑡 in
query 𝑞. Document weights are typically computed via a function of term statistics such as term
frequencies, (inverse) document frequencies, document lengths, and so on. Query weights are often
set to one (i.e., a multi-hot vector), which simplifies query–document scores to the sum of document
weights of terms that are found in the query. This formulation covers nearly all major families of
retrieval models (probabilistic [29, 65, 72], vector space, language modeling [63], divergence from
randomness [1]) and is equivalent to the inner product of two weighted vectors of dimension |𝑉 |,
where 𝑉 is the vocabulary of the collection.

2.1 Efficient Indexing and Ranking

How to efficiently generate a top-𝑘 ranking of documents from an arbitrarily large collection
C = {𝑑𝑖 }𝑁𝑖=0 in terms of 𝑆𝑑,𝑞 has been, quite literally, the subject of many decades of intense study.
In the IR context, this is often referred to as the query evaluation problem (or alternatively, the
top-𝑘 retrieval/ranking problem), and nearly all modern algorithms exploit an inverted index where
postings lists are systematically visited (i.e., traversed) in order to generate the top-𝑘 documents,
stored in data structures such as min-heaps, accumulator tables, or a combination thereof. We
now review some of the key data structures and algorithms used to facilitate efficient large-scale
retrieval; we refer the interested reader to surveys by Zobel and Moffat [83] and Tonellotto et al.
[69] for more detailed overviews.

Document-Ordered Indexes. Document-ordered indexes store, for each unique term 𝑡 , a postings
list containing a strictly increasing list of numeric document identifiers corresponding to documents
that contain 𝑡 . These document identifiers are assigned arbitrarily, often according to the order in
which documents are indexed, although any ordering is possible (see below for additional discussion
on document identifier reassignment). Alongside these identifiers is typically a secondary payload;
this payload is often the number of times 𝑡 appears in 𝑑 (also known as the term frequency),
but alternatives such as pre-computed impact values are also possible. Figure 1 (left) shows this
layout. Based on best practices, document-ordered indexes compress fixed-sized blocks of identifiers
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interleaved with fixed-sized payload blocks, thereby allowing portions of individual postings lists
to be selectively decoded.

Document-at-a-Time Retrieval. Given a document-ordered index, the most natural implemen-
tation of top-𝑘 retrieval follows the document-at-a-time (DaaT) strategy. At a high level, DaaT
approaches work on postings lists that are increasing in document identifier and achieve low
latency query evaluation by “avoiding work”. That is, through the use of auxiliary data structures
and per-term score upper-bounds, algorithms can cleverly work out when one or more documents
cannot possibly be in the top-𝑘 and thereby “skip” them (often en masse). These optimized retrieval
methods are commonly referred to as dynamic pruning algorithms.
Researchers have been exploring these algorithms since the 1980s. The simplest approaches

includeMaxScore [74] andWAND [5]. Both of these methods store, during indexing, the largest
score contribution (𝑤𝑑,𝑡 ) observed across each postings list in the index; this term-wise upper-bound
score, denoted 𝑈𝑡 , can then be used to accelerate retrieval. In particular, the values of 𝑈𝑡 across
the query terms can be used to derive score estimates for a document before scoring it. Using a
min-heap data structure to keep track of the top-𝑘 highest scoring documents at any given moment,
these estimates can then be used to determine when documents cannot possibly enter the top-𝑘 set
of interest, and this allows the algorithm to skip over them without actually computing the scores.
This, in turn, can avoid unnecessary decoding and scoring operations.

BeyondWAND andMaxScore, a variety of more advanced dynamic pruning algorithms have
been explored. Most of these advanced dynamic pruning mechanisms employ block-based upper-
bound scores to generate better local upper-bound score estimates, trading off space (necessary to
store auxiliary statistics to aid in the upper-bound computation) for accelerated retrieval [6, 18].
Presently, Variable Block-MaxWAND (VBMW) [51] is generally acknowledged to represent the
state of the art, although the best choice of DaaT traversal algorithm can depend on properties of
the collection, ranker, queries, and specific optimizations enabled [31, 44, 53, 56, 60].
At an intuitive level, DaaT approaches can be informally characterized as accelerating query

evaluation by “avoiding work”, and the latest techniques accomplish this by “being smarter” to
figure out what work can be avoided (e.g., which postings blocks to skip). However, this unavoidably
requires storing additional term statistics in the inverted index and additional computations to
reason over them. Naturally, the efficiency gains depend on the distribution of term weights that
are generated by the underlying scoring functions. As we show in this work, it appears that the
distribution of term weights generated by transformers in learned sparse representations are
different from those expected by these techniques. Thus, dynamic pruning algorithms often end up
spending a lot of computational effort without much efficiency gains.

Impact-Ordered Indexes. Impact-ordered indexes represent a completely different arrangement
compared to document-ordered indexes. Instead of organizing postings lists based on the underlying
document identifiers, impact-ordered indexes collect documents sharing the same impact score
together, sorting these segments from high to low impact score. To this end, impact-ordered indexes
rely on quantization, where the𝑤𝑑,𝑡 values are computed offline and quantized into integer values
in some range [0, 2𝑏 − 1], with 𝑏 representing the total number of bits required to store the
highest impact value [8]. Within each segment, the document identifiers are sorted in a strictly
increasing manner [2]. Typically, impact-ordered postings lists are compressed on a per-segment
basis, allowing flexibility on which segments to process during retrieval. Figure 1 (right) shows this
arrangement.

Score-at-a-Time Retrieval. Top-𝑘 retrieval over impact-ordered indexes is realized via score-at-
a-time (SaaT) retrieval. Query evaluation proceeds by visiting each of the postings segments in
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decreasing order of the segment impact score. Scoring a single segment involves decoding the list of
associated document identifiers, and for each document, adding the impact score to a corresponding
accumulator . Typically, these accumulators are stored in a large table-like structure, with one
accumulator allocated to each document (in the corpus), and various optimizations for efficiently
managing these structures have been explored [28, 45].
Instead of “avoiding work”, the intuition behind SaaT is to perform the necessary work as

efficiently as possible. Operationally, this means organizing computations to maximally take
advantage of modern processors architectures, by avoiding pipeline stalls and cache misses. The
most recent take on SaaT query evaluation is the technique known as JASS [37, 70], which has the
additional advantage of being an anytime algorithm [82]: Since term contributions are considered in
decreasing order of importance (that is, contributions to the final document score), query evaluation
can terminate at any time to yield an approximate ranking.
Because of their fundamentally different approaches, SaaT methods make fewer assumptions

about the underlying distribution of term weights, and thus their performance is less affected by
transformer-generated representations compared to their DaaT counterparts. As we empirically
demonstrate, this gives rise to differential (negative) performance artifacts, which is exactly the
motivation that compels us to re-examine the performance of DaaT vs. SaaT methods in light of
modern neural models.

Compact Storage and Retrieval. Although document-ordered and impact-ordered indexes repre-
sent vastly different organizations of the same data, there are additional optimizations that can
apply to both. Index compression, for example, is an important inclusion in modern retrieval
architectures, allowing more compact storage and better memory efficiency. A large body of prior
work exists for compressing indexes; see, for example, the survey by Pibiri and Venturini [62].
Interestingly, prior work by Lin and Trotman [38] demonstrated that the latency of SaaT systems
can be reduced with uncompressed indexes, but at a large space cost.

Another optimization that can reduce index size and accelerate retrieval is document identifier
reassignment. The main idea is to reassign the integer identifiers of each document such that
similar documents appear close together in the resulting index [15, 48, 67]. By clustering documents
together, the delta gaps representing the document identifiers typically become smaller, thereby
making compression more effective. Interestingly, document identifier reassignment has been
shown to accelerate retrieval in both DaaT and SaaT systems, making it a useful pre-processing
step during indexing [49].

Comparing Index Traversal Mechanisms. Although a wide range of work has focused on
improving the efficiency of various search engines based on inverted indexes, there has been
relatively little work on comparing different indexing and query processing approaches. One of
the earliest studies was conducted by Fontoura et al. [19], who studied top-𝑘 retrieval strategies
for in-memory document-ordered indexes. More recently, Mallia et al. [53] explored the interplay
between compression schemes and retrieval latency with differentDaaT algorithms. However, these
studies did not examine impact-ordered indexes. Similarly, Mackenzie and Moffat [44] examined
how different efficiency innovations interact with one another within the DaaT WAND family of
dynamic pruning algorithms.

To our best knowledge, the most recent comparisons across index arrangements was the work of
Crane et al. [9] and the work of Mackenzie et al. [49]. The experiments of Crane et al. [9] showed,
on a number of standard IR test collections, that DaaT processing (via the BMW algorithm) was
faster than SaaT retrieval (represented by the JASS system). Nevertheless, SaaT retrieval was
shown to have a much better control of latency, exhibiting much lower tail latency than the DaaT
techniques. For a relatively small fraction of queries, ill-behaved term weights render BMW much
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slower than JASS. Most recently, the work of Mackenzie et al. [49] employed JASS as a baseline
against a new class of anytime DaaT retrieval algorithms. Their experiments showed that the novel
anytime DaaT retrieval systems can outperform their SaaT counterparts, addressing some of the
weaknesses previously attributed to DaaT algorithms.

This represents the state of affairs with respect the age-old DaaT vs. SaaT debate. However, as
we will show, the advent of a new class of neural retrieval models means that a lot of these prior
observations no longer hold.

2.2 Retrieval with Learned Representations

The performance benefits of the various optimization techniques described above depend natu-
rally on the scoring function. For example, the ability to skip blocks of postings depends on the
relationship between the various term weights and how they are distributed across the index (for
block-based pruning approaches). Previous evaluations have been based on “traditional” scoring
functions such as BM25 or language models [60], but recently the field has seen the emergence
of models where term weights are learned; the community has been describing them as learned
sparse representations [35, 36]. These models still rely on bag-of-words representations, thus top-𝑘
retrieval can still be captured by Eq. (1), and hence all the foregoing discussions about DaaT
vs. SaaT approaches still apply. However, term weights are now supplied by neural networks
(today, transformer-based pretrained language models), and learned in a supervised manner from
large amounts of training data.
The first example of this class of models using transformers is DeepCT [12], which uses a

regression model to learn term frequencies. Mackenzie et al. [47] showed that these frequencies
affect the behavior of DaaT query evaluation approaches, although, with appropriate mitigation,
it is possible to accelerate query evaluation without harming effectiveness. In other words, the
distribution of term weights assigned by the neural model is qualitatively different from those based
on an unsupervised model, say, BM25. Additional evidence for this finding comes from the work of
Mallia et al. [55] in the context of their model called DeepImpact: query latency is noticeably longer
with term weights assigned by a transformer model, compared to the BM25 score over the same
sets of terms in each document. To further compound this issue, some learned models also assign
weights to queries, thereby changing the relative importance between the terms and potentially
hindering efficiency further. These interesting observations suggest that we should take another
detailed look at query evaluation algorithms in the context of learned sparse retrieval models, and
thus the virtues of DaaT vs. SaaT should be re-examined.

Note that our work only examines learned sparse representations for retrieval, where documents
are represented by bags of words, i.e., the basis of the vector representation is the vocabulary space.
There is, of course, another large class of learned dense representations, exemplified by models such
as DPR [30] and ANCE [78]; see Lin et al. [42] for a survey. Although transformer-based models
are involved in both classes of retrieval models, dense retrieval techniques require a completely
different indexing and retrieval pipeline. For example, top-𝑘 retrieval is formulated as nearest
neighbor search and implemented either with brute-force search or with approximate techniques
such as HNSW [50]. These techniques do not use inverted indexes and thus our discussions of
DaaT and SaaT query evaluation algorithms are not applicable. However, for the interested reader,
a number of papers have attempted to draw conceptual connections between dense and sparse
learned representations [35, 36, 41].
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3 EXPERIMENTAL SETUP

Our experiments used the popular MS MARCO v1 passage corpus, comprising 8.8M passages, and
all models were evaluated on the 6980 queries in the development set [4]. We also explored the v2
passage corpus in Section 6.4.

3.1 Retrieval Models

As points of comparison, we adopted the following baselines:
BM25 simply performs retrieval using the ubiquitous BM25 scoring function [65] over bag-of-words
representations of the passages in the corpus. We set 𝑘1 = 0.82 and 𝑏 = 0.68, after tuning on a
selection of training instances on the MS MARCO passage ranking test collection [40].
BM25 w/ doc2query–T5 [58, 59] (BM25-T5 for short) augments passages in the corpus with query
predictions generated by the T5 [64] neural sequence-to-sequence model. The expanded passages
are scored using BM25 at retrieval time, with the same BM25 formulation and parameters above.
Thus, while neural models are involved in corpus preparation, the assignment of term weights does
not involve any neural networks.
We examined the following retrieval models that leverage learned sparse representations using
transformers:
DeepImpact [55] uses doc2query–T5 to identify dimensions in the passage’s bag-of-words repre-
sentation that should have non-zero weights (i.e., expansion terms) and learns a term weighting
model based on a pairwise loss between relevant and non-relevant passages with respect to a query.
uniCOIL + doc2query–T5 [36] (uniCOIL-T5 for short) is a simplified variant of COIL [24] that
assigns scalar weights to terms (as opposed to vector weights in the original COIL formulation).
This model additionally benefits from doc2query–T5 expansions.
uniCOIL + TILDE [80] (uniCOIL-TILDE for short) can be best characterized as replacing the
doc2query–T5 expansion component with an alternative model based on TILDE [81] that has lower
inference costs but appears to be just as effective.
SPLADEv2 [20] represents an improvement over SPLADEv1 [21], which itself builds on SparTerm [3].
For this family of sparse retrieval models, the expansion component can be best characterized as be-
ing based on masked language modeling. SPLADEv2 further improves effectiveness via distillation
techniques.

Note that for all models, reported experiments are based on our own code implementations and
data preparation, with Anserini as a starting point (see details below). In all applicable cases, we
started with checkpoints of the neural models provided by the authors. Thus, our results are quite
close, but not exactly the same, as figures reported in the respective authors’ original papers. For
the learned sparse retrieval models, the corpus and queries are both pre-tokenized; the specific
tokenization method depends on the model and how it was trained. Since these statistics may
have an effect on efficiency, we provide a detailed analysis in Section 5.1. The prepared corpora
already include term weights for document terms, and the same for the queries. Thus, none of
these experiments involved neural inference, which eliminates a source of non-determinism in
neural models.

3.2 Search Systems

We conducted experiments with three different retrieval systems:
Anserini [79] is an IR toolkit built on the open-source Lucene search library written in Java. The
version of Anserini used in our experiments is based on Lucene 8.3.0, which uses BMW for query
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evaluation [25]. We made no special modifications to the default query evaluation settings other
than applying the tuned BM25 parameters as discussed previously.

PISA [52] is an efficiency-focused IR system written in C++. In our experiments, PISA executes
MaxScore [74] processing over SIMD-BP128 encoded postings lists [33]. While VBMW is currently
the state-of-the-art approach for DaaT traversal, recent work has demonstrated that MaxScore is a
better choice for larger values of 𝑘 (such as 𝑘 = 1000) and for long queries [53]. We also experiment
with the anytime version of the PISA system described by Mackenzie et al. [49], which we discuss
in more detail in Section 6.

JASS [37, 70] is, as far as we are aware, the only actively maintained open-source SaaT search
engine today. It, too, was implemented in C++ for efficiency and uses a SIMD-enhanced Elias gamma
encoding scheme for compressing the postings [71]. Query evaluation proceeds by processing
impact-ordered postings using simple integer arithmetic and storing the results in an accumulator
array managed with a unique page-table like algorithm [28]. JASS controls the tradeoff between
query latency and effectiveness through a parameter 𝜌 , which limits the total number of postings
processed per query. Although the default implementation of JASS employs 16-bit accumulators
(allowing maximum per document scores of 216 − 1), 32-bit accumulators were necessary in our
initial experiments in order to avoid overflows, as the learned sparse impacts for document and
query terms often result in scores exceeding 216 − 1 = 65,535. In Section 6, we present optimizations
for supporting 16-bit and 8-bit accumulators.

For the learned sparse models, all implementations used the “pseudo-document” trick to assign
custom impact scores to each document term. That is, if term X was assigned a (quantized) integer
weight of ten by the transformer, we simply repeat the term ten times in a dynamically created
“fake” document. This allows us to use all the existing systems without any modifications, by simply
swapping in “sum of term frequency” as the scoring function, and has no impact on the indexing
pipeline since we focus only on representing documents as bags-of-words. Note, however, that
both DaaT systems do not pre-quantize the BM25 or BM25-T5 indexes, computing scores on the fly
instead. In contrast, JASS relies on impact-based scoring, even for the BM25-based models.

3.3 Hardware and Evaluation

All experiments were conducted in memory using a single thread on a Linux machine with two
3.50 GHz Intel Xeon Gold 6144 CPUs and 512 GiB of RAM. Indexes were built with Anserini and
exported to the Common Index File Format [39] before being imported into PISA and JASS—thus
guaranteeing that each of the three systems has a semantically identical index. In addition, both
PISA and JASS made use of document reordering via the recursive graph bisection algorithm [15, 48]
which has been shown to improve compression and accelerate query processing for both DaaT and
SaaT index traversal [49]. The latency measurements we report are the mean of three independent
runs. Thus, we have adopted all current best practices to achieve the best possible results in a fair
manner.
Output quality is measured in terms of mean reciprocal rank at cutoff 10 (RR@10), the official

metric of the MS MARCO passage test collection; time is measured in terms of query latency in
milliseconds when retrieving the top 𝑘 documents; and space in terms of index size measured in
megabytes. Note that latency figures do not include the time taken to encode or expand the queries
for the learned sparse retrieval models since we used pre-tokenized queries with pre-computed
weights. Besides, this time is simply a constant factor independent of the scoring technique.
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Table 1. Experimental results for top 𝑘 = 1000 retrieval on the development queries of the MS MARCO

passage ranking test collection.

Quality Time Space

Method RR@10 Latency Index Size
(ms) (MB)

Anserini (Lucene): DaaT

(1a) BM25 0.187 40.1 661
(1b) BM25-T5 0.277 62.8 1036
(1c) DeepImpact 0.325 244.1 1417
(1d) uniCOIL-T5 0.352 222.3 1313
(1e) uniCOIL-TILDE 0.350 194.6 2067
(1f) SPLADEv2 0.369 2140.0 4987

PISA: DaaT

(2a) BM25 0.187 8.3 739
(2b) BM25-T5 0.276 11.9 1150
(2c) DeepImpact 0.326 19.4 1564
(2d) uniCOIL-T5 0.352 36.9 1358
(2e) uniCOIL-TILDE 0.350 28.4 2108
(2f) SPLADEv2 0.369 220.3 4326

JASS: SaaT

Exact
(3a) BM25 0.187 15.8 1156
(3b) BM25-T5 0.277 50.2 1452
(3c) DeepImpact 0.326 39.3 2039
(3d) uniCOIL-T5 0.352 147.2 1310
(3e) uniCOIL-TILDE 0.350 83.5 1976
(3f) SPLADEv2 0.369 314.0 3813
Approximate
(4a) BM25 0.186 12.4 1156
(4b) BM25-T5 0.275 10.1 1452
(4c) DeepImpact 0.319 12.6 2039
(4d) uniCOIL-T5 0.338 14.9 1310
(4e) uniCOIL-TILDE 0.338 15.4 1976
(4f) SPLADEv2 0.324 15.3 3813

4 PRELIMINARY COMPARISON

Our first series of experiments compares the three retrieval systems (Anserini, PISA, and JASS)
across different ranking models. The goal is to demonstrate that the term weight distributions
derived from learned sparse models do cause performance issues with off-the-shelf DaaT and SaaT
methods. Having thus identified the problems, we circle back in Section 6 to then address these
issues.

Our main results are presented in Table 1, where each combination of retrieval model and system
is characterized in terms of output quality, time, and space, with the top 𝑘 = 1000 documents
retrieved for each query. While PISA and JASS were designed specifically as platforms for research
in query evaluation algorithms and thus engineered for speed, none of the systems had small index
sizes explicitly as a design goal (beyond incidental effects on query evaluation performance that
result from index compression techniques).
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Each block of the table is devoted to a system, and rows represent each retrieval model. Note
that JASS results occupy two blocks; the top one represents exact (i.e., rank-safe) processing (where
all postings are processed) and the bottom one represents approximate processing. For the latter,
we used a maximum of 𝜌 = 1 million postings visited, based on heuristics provided by the JASS
authors [37, 70].
There are a few takeaways from these results: First, our experiments confirm what previous

researchers have already reported [47, 55]—that retrieval models based on learned sparse repre-
sentations substantially alter the behavior of query evaluation algorithms (in a negative way).
However, our results more thoroughly and comprehensively capture the effects, illustrating that
these issues pervade learned sparse models more broadly. For DaaT approaches, both Anserini
(Lucene) and PISA, we see that, in general, models with higher effectiveness are slower. In Lucene,
the difference between BoW BM25 in row (1a) and the most effective model, SPLADEv2 in row (1f)
is a whopping ∼50× slowdown. With PISA, the slowdown is “only” ∼25×, but nevertheless still
quite dramatic. Even for models that are slightly less effective than SPLADEv2, for example, the
uniCOIL models in rows (d) and (e), we observe substantially worse query evaluation performance,
in both Lucene and PISA.
Second, it is clear that the query evaluation performance of Anserini (Lucene) is far behind

that of PISA, both in absolute terms as well as relative degradation with the models that we have
explored. Of course, this is not a fair comparison because Lucene is production-ready search library
that is already widely deployed, whereas PISA is a research system. The performance deficiencies
of Lucene have been discussed elsewhere [25] so we don’t beleaguer the point further. For the
remainder of this paper, we set aside Lucene and use PISA as the representative for DaaT retrieval.
To further examine different query evaluation algorithms, we applied WAND and BMW to

SPLADEv2 in PISA in a separate experiment and found that these algorithms resulted in slower
processing than an exhaustive ranked disjunction, with mean latency values of 619ms, 681ms, and
553ms, respectively. In our experiments,MaxScore vastly outperforms theWAND-based approaches;
this result is due to MaxScore avoiding expensive sorting operations during query processing [53].
Essentially,WAND and BMW are “working hard” to compute which documents can be skipped,
but the work is essentially wasted because in reality, few documents can actually be skipped if
exact query evaluation is desired.
Third, the JASS results from Table 1 are largely consistent with what we already know about

SaaT approaches from the literature. Exact query evaluation (i.e., exhaustively traversing all
postings) with JASS is slower than PISA, but achieves comparable effectiveness. For the learned
sparse retrieval models, although we do observe performance degradation with JASS as well, the
slowdowns are slightly less than what we observed with PISA; “only” around 20× when comparing
BoW BM25 (3a) with SPLADEv2 (3f).

The approximate query evaluation results with JASS are also consistent with previous findings.
For “traditional” BM25 weighting, in rows (4a) and (4b), JASS is able to speed up query evaluation
at the cost of small decreases in effectiveness. However, as the “model sophistication” increases,
the heuristics provided by the JASS authors appear to result in an increased loss in effectiveness.
Looking at rows (4d) to (4f), while JASS is much faster than PISA, it comes at a drop in effectiveness.
Although the loss is less than 1% for BM25, and 4% on DeepImpact and uniCOIL, on SPLADEv2, the
loss is over 12%, which can be attributed to the smaller fraction of total postings being processed [45].
Table 1 only captures two operating points for JASS, but we explore additional configurations in
Section 6.3 that yield different effectiveness/efficiency tradeoffs.
Finally, in terms of index sizes, there’s a general trend of larger index sizes as effectiveness

increases; the underlying reasons will become obvious in the next section. However, for all models
and systems, the space requirements are quite modest on the whole. In the context of modern
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Table 2. Term statistics of documents and queries for different treatments of the MS MARCO passage corpus.

Apart from the vocabulary size, the reported values are means computed across all documents/queries.

Method |𝑉 | Terms in Documents Terms in Queries

Total Unique Total Unique

BM25 2660824 39.8 30.1 4.5 4.4
BM25-T5 3929111 224.7 51.1 4.5 4.4
DeepImpact 3514102 4010.0 71.1 4.2 4.2
uniCOIL-T5 27678 5032.3 66.4 686.3 6.6
uniCOIL-TILDE 27646 8260.8 107.6 661.1 6.5
SPLADEv2 28131 10794.8 229.4 2037.8 25.0

servers, where RAM may be on the magnitude of hundreds of gigabytes, these differences are
negligible. Nevertheless, deploying these models on much larger collections may result in the
compact models being more attractive, especially as the index needs to be replicated across a
distributed retrieval system.

5 INEFFICIENCIES OF LEARNED SPARSE MODELS

Based on the results of the previous experiments, it is clear that learned sparse models behave very
differently from “traditional” scoring models such as BM25. In particular, although they can provide
large effectiveness improvements, these come at the cost of query processing latency, irrespective
of the underlying processing mode. Our next series of experiments examines this behavior and
sheds light on why the learned sparse models are less efficient than their traditional counterparts.

5.1 Collection Statistics

As a starting point for this investigation, Table 2 shows descriptive statistics of the documents
and queries across the different models. To this end, the total term count is best understood as the
sum of all the weights assigned to all unique terms, either in the document or the query. On the
other hand, the unique term count ignores the weighting component, and can be thought of as the
number of postings entries associated with a document, or the number of postings lists traversed
for a given query. The second column, |𝑉 |, denotes the vocabulary size, or the total number of
unique terms in the collection; this is also the number of dimensions that are in the representation
vectors of the documents and queries.

A few additional caveats are necessary for properly understanding these values. All statistics
are computed based on our replication of the retrieval models, and thus may differ from figures
reported in the authors’ original papers due to differences in corpus preparation. In all cases, counts
are computed by simply splitting text on whitespace. For BM25 and BM25-T5, these are after
tokenization and stopword removal. For DeepImpact, uniCOIL and SPLADEv2, both documents
and queries are pre-tokenized. Thus, there are qualitative differences, especially since uniCOIL and
SPLADEv2 tokens are subwords derived from BERT.1 Thus, for this reason, uniCOIL and SPLADEv2
have much smaller vocabulary sizes, but more unique terms per query.

Nevertheless, these statistics go a long way to explaining many of the observations from Table 1.
It is clear that learned sparse retrieval models achieve higher effectiveness based on document
expansion, and in some models, query term weighting and query expansion. Document expansion
obviously yields longer documents (and bigger indexes), and together with query expansion, it
is now clear why query evaluation efficiency degrades. For example, comparing DeepImpact and
1For example, “androgen receptor” is broken into “and ##rogen receptor”, leading to a count of three tokens, not two.
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Fig. 2. The number of postings processed for each model with exhaustive retrieval (top) and for MaxScore

processing with 𝑘 = 1000 (bottom) on the MS MARCO v1 passage collection. More effective models typically

require more postings to be traversed. Note the log 𝑥-axis.

uniCOIL-T5, we see that the latter performs query termweighting, whereas the former does not. This
is likely the biggest source of query latency differences, row (2c) vs. row (2d) in Table 1; we explore
this idea in the following subsection. Comparing the T5 and TILDE variants of uniCOIL, we observe
that they achieve comparable effectiveness, but T5 is more compact (it has less document expansion).
However, counter-intuitively, uniCOIL-TILDE, row (2e), is actually faster than uniCOIL-T5, row (2d).
Figure 2 demonstrates why this is the case; even though the T5-based expansion is less aggressive,
the TILDE-based index requires processing fewer postings across the MS MARCO queries, resulting
in less total work. This observation also holds for MaxScore dynamic pruning, although the
differences in pruning ability become less evident. Similar findings arise when examining the total
number of documents scored during index traversal [57].
Finally, we note that SPLADEv2 likely derives its superior effectiveness from performing both

query term weighting and query expansion, with new terms added to each query. Compared to the
uniCOIL models, the SPLADEv2 queries contain around 4× more unique terms and the documents
contain 2 − 4× more unique terms. We explore this in more detail in the next subsection.

5.2 Effects ofQuery TermWeighting andQuery Expansion

Next, we conducted a small-scale ablation study on the uniCOIL and SPLADEv2 learned sparse
models; these models perform query term weighting and query expansion. Understanding the
effects of these different aspects on retrieval efficiency and effectiveness may shed more light on
the possibility for optimization.

We ran both variants of the uniCOIL model with the DaaT PISA and SaaT JASS systems, using
the same configurations as in Section 4, both with and without query term weighting. Table 3
shows the differences in efficiency and effectiveness that can be attributed to the weights assigned
to the query terms by each uniCOIL model. Interestingly, it appears that query term weighting
actually helps to accelerate the DaaT dynamic pruning methods. On the other hand, the effect on
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Table 3. Efficiency and effectiveness for different configurations of both uniCOIL models using DaaT and

(exact) SaaT retrieval. Interestingly, query term weighting makes retrieval faster for DaaT, whereas it has

only a minor effect on the efficiency of SaaT.

Model

Query Weighting No Query Weighting

RR@10 Latency RR@10 Latency
PISA: DaaT

uniCOIL-T5 0.352 36.9 0.312 92.8
uniCOIL-TILDE 0.350 28.4 0.309 77.3

JASS: SaaT

uniCOIL-T5 0.352 147.2 0.317 152.2
uniCOIL-TILDE 0.350 83.5 0.309 93.2

Table 4. Efficiency and effectiveness for different configurations of SPLADEv2 using DaaT and (exact) SaaT

retrieval. The default method, which employs both query term weighting and query expansion, is the most

effective.Query term weighting accelerates retrieval, especially for DaaT, while query expansion is the largest

source of added latency.

Query Weighting No Query Weighting

RR@10 Latency RR@10 Latency
PISA: DaaT

Query Expansion 0.369 220.3 0.281 430.6
No Query Expansion 0.338 30.8 0.317 46.9

JASS: SaaT

Query Expansion 0.369 314.0 0.280 326.6
No Query Expansion 0.338 56.2 0.316 56.9

SaaT is marginal; the same number of postings are processed, with the only difference being the
number of consequential heap insertions.
Similarly, we explored the effect of both query term weighting and query expansion on the

SPLADEv2 model. Table 4 shows the results of this experiment. Again, we find that query term
weighting is responsible for accelerating retrieval with the DaaT PISA system, but has only a
minor impact on the SaaT JASS system. On the other hand, query expansion is the largest source
of added latency to both retrieval systems. Since query expansion adds more postings lists to the
computation, it is no surprise that it increases latency. It is interesting, however, that SPLADEv2 is
capable of trading efficiency for effectiveness via query expansion. One possibility for future work
is to train different levels of “expansion aggression” into SPLADEv2 to allow finer control of the
resulting tradeoffs.

5.3 Qualitative Examination of TermWeights

The counter-intuitive nature of term weights assigned by learned sparse retrieval models is evident
based on manual examination of model output. Building on the tokenization example above, for the
query “androgen receptor define”, the full SPLADEv2 query includes 25 unique tokens, representing
an increase of 21 tokens beyond those in the original query, “and ##rogen receptor define”. Figure 3
shows the entire query as (“term”, weight) tuples.

Examining these tokens, the model assigns what appear to be reasonable weights to the original
input terms: (“and”, 225), (“##rogen”, 251), (“receptor”, 242), and (“define”: 59). However, the large
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('##rogen', 251) ('receptor', 242) ('and', 225) ('receptors', 189) 
('hormone', 179) ('definition', 162) ('meaning', 99) ('genus', 89)
('is', 70) (',', 68) ('define', 59) ('the', 56) ('drug', 53) ('for', 46) 
('ring', 38) ('gene', 37) ('are', 32) ('god', 25) ('what', 18) ('##rus', 15)
('purpose', 12) ('defined', 10) ('doing', 8) ('a', 4) ('goal', 4)

Fig. 3. The SPLADEv2 encoded query for the input “androgen receptor define”. Blue terms appear in the

original input query, orange terms correspond to different inflections of the original input terms, and pink

terms are entirely new expanded terms. The terms are represented as (‘term’, weight) tuples, and are sorted

descending on weight.

weight on “and” is a bit surprising, because the term “androgen” is actually represented by both
“and” and “##rogen”, but the first subword is conflated with a stopword. Many expansion terms
that SPLADEv2 adds to the query do make sense, for example, (“hormone”, 179), (“definition”, 162),
and (“meaning”, 99). However, puzzling is the fact that the model also adds many stopwords to
the query, including (“is”, 70), (“the”, 56), (“for”, 46), and (“are”, 32). Most non-sensical is the fact
that “,” (indeed, the comma) is added as an expansion term, with a relatively large weight of 68.
Note that as far as we are aware, SPLADEv2 was trained without any special corpus processing,
and punctuation is indeed part of BERT’s vocabulary (and, as such, the inverted index vocabulary).
In some cases, punctuation is semantically meaningful (e.g., apostrophes in names like O’Toole),
but it is difficult to see the role that the comma might play in the context of this query. While it is
difficult to argue with the overall effectiveness results (the high mean RR@10), the interpretability
of these weights is not straightforward.

6 ACCELERATING RETRIEVAL

Our preliminary experiments have demonstrated that while learned sparse representations are much
more effective than unsupervised weighting functions such as BM25, there is a substantial price to
be paid in terms of larger index size and longer query evaluation latency. This observation holds for
both DaaT and SaaT approaches, with the most expensive models requiring an order of magnitude
more time than the BM25 baseline. In this section, we focus on techniques for accelerating query
processing latency that aim to address these problems, and measure the resulting improvements.

6.1 Accelerating DaaT Traversal

One possibility for improving the efficiency of DaaT traversal is to employ an approximate pro-
cessing technique, thereby allowing some effectiveness to be traded off for better efficiency. While
DaaT systems cannot typically terminate early without large losses in effectiveness, recent work
by Mackenzie et al. [49] introduced a simple yet effective approach for rapidly converging on the
desired ranked list. Their anytime DaaT algorithm requires similar documents to be clustered
together during indexing. Then, the entire inverted index is logically segmented into a series of
clusters, where each cluster represents a set of similar documents, and term-wise upper-bound
scores are stored for each index cluster. At query-time, a simple estimator provides an ordering over
that set of clusters, which are visited greedily until either no new documents can enter the top-𝑘 or
some other termination criteria are met; query processing within each cluster is the same as in a
regular document-ordered index, but local cluster statistics provide tighter bounds for dynamic
pruning. In contrast to a standard DaaT traversal, which works through the index from the lowest
document identifier upwards, the anytime DaaT approach has the capacity to “jump” between
clusters; Figure 4 provides an example of this compared to the typical DaaT algorithm.
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Fig. 4. A sketch comparing regular DaaT (left) vs. anytime DaaT (right) at four distinct points of the traversal.

Gray sections represent documents that have been processed, whereas red sections represent the next

documents to be processed. While DaaT moves through the document space from low-to-high document

identifiers, anytime DaaT prioritizes the clusters of documents to process. By prioritizing the order in which

clusters are visited, anytime DaaT can more rapidly converge on the final top-𝑘 results list.

We hypothesized that anytime DaaT can reduce the amount of processing required for learned
sparse representations without large sacrifices in effectiveness. In our experiments, we assume that
the underlying document reordering process acts as a pseudo-clustering algorithm. Then, we split
the document space into 100 distinct (and uniformly-sized) clusters. Following Mackenzie et al.,
clusters are visited in decreasing order of the sum of the local term-wise upper-bound scores, and
MaxScore processing is used within each cluster. We denote this system “A-PISA” (anytime PISA)
in our experiments. While the idea of anytime DaaT is not novel, we are the first to apply such
techniques to tackle the efficiency shortcomings of learned sparse representations.

Measuring the Improvements. Table 5 compares the default PISA approach with the A-PISA
system using the same experimental setup as Section 4 (rank-safe processing, 𝑘 = 1000). The top
block of Table 5 is copied from the corresponding PISA results in Table 1 for ease of comparison.
Regardless of the retrieval model, the anytime approach is always faster, achieving speedups in
mean query evaluation latency between 1.3× to 1.8× with a negligible impact on effectiveness.
Similar speedups were observed for other values of 𝑘 . The only downside to the anytime DaaT
extension is the additional space required. However, this overhead is less than 10% of the total
index size, and we observe that the overhead decreases with more effective models.

6.2 Accelerating SaaT Traversal

Next, we turn our attention to accelerating SaaT traversal for learned sparse retrieval. Recall that
the key idea with SaaT traversal is to visit segments of postings that are logically grouped together
by score. By visiting the highest impact postings segments first, SaaT retrieval rapidly converges on
the final top-𝑘 results, refining them as more postings are processed. We first propose two general
improvements to JASS, and then propose a specific optimization targeted at reducing the negative
effects of the term weights from the learned sparse representations (but can be used elsewhere as
well). All three optimizations are novel and have not been described anywhere else.

Index Size Reduction. Previous papers, including Crane et al. [9], have compared DaaT and
SaaT not only with respect to query evaluation latency, but also with respect to index size. They
have reported SaaT indexes being approximately the same size as DaaT indexes. This is surprising,
as an impact-ordered index should be storing fewer integers than a document-ordered index, since
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Table 5. Comparing the default DaaT PISA approach to the anytime PISA approach with 𝑘 = 1000.

Quality Time Space

Method RR@10 Latency Index Size
(ms) (MB)

PISA: Exact

BM25 0.187 8.3 739
BM25-T5 0.276 11.9 1150
DeepImpact 0.326 19.4 1564
uniCOIL-T5 0.352 36.9 1358
uniCOIL-TILDE 0.350 28.4 2108
SPLADEv2 0.369 220.3 4326

Anytime PISA: Exact

BM25 0.187 6.4 818
BM25-T5 0.276 8.1 1260
DeepImpact 0.327 11.2 1677
uniCOIL-T5 0.352 20.9 1376
uniCOIL-TILDE 0.350 19.3 2126
SPLADEv2 0.368 156.4 4346

SaaT stores the impact score once for a group of documents (a segment) whereas DaaT stores an
impact score (or term frequency value) for each document.
Careful examination of the JASS indexes shows that indeed fewer integers are stored in the

postings lists, but that there is an overhead to each segment of each postings list. This overhead
includes storing pointers to the start of each segment, the segment’s impact score, and so on. In
the version of JASS we started with, these values were stored as uncompressed 32-bit and 64-bit
integers, and in almost all cases, these integers were unnecessarily large for the values stored in the
index. We addressed this issue by changing the encoding to variable-byte integers and removing
unnecessary information from the segment headers.

Heap Score Caching. SaaT retrieval uses a min-heap to keep track of the top-𝑘 scoring documents
via pointers into the global score accumulator table. The usual approach in SaaT is to check to
see if the heap is full, and if not, to add the impact score to the accumulator before adding the
accumulator to the heap. Only once the heap is full is a comparison performed to the bottom of the
heap in order to maintain the min-heap property. This series of operations typically requires at
least two comparisons per posting, as each individual scoring operation could result in a document
being promoted into the top 𝑘 .

Trotman and Crane [70] optimized this approach by re-arranging the order of operations. Instead
of checking whether the heap is full or not, their approach adds the current impact score to the
accumulator, which is then compared to the bottom of the heap (which is primed with zeros). If the
score of the accumulator is greater than or equal to the score at the bottom of the heap, then the
heap will need to be updated. This simple change reduces the typical number of comparisons per
posting from two to one, and results in a 8% decrease in latency in their experiments. Our baseline
version of JASS includes this optimization.

We observe, however, that this approach may result in unnecessary comparisons when score ties
arise, a common situation with quantized impact scores. In particular, maintaining the min-heap
ordering when ties are present requires on-the-fly tie breaking, which JASS achieves through a sec-
ondary comparison between internal document identifiers. Our additional novel micro-optimization
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is to simply cache the score at the bottom of the heap to avoid tie-breaking when a document
cannot enter the heap.

A secondary benefit of this approach is that it allows a minimum heap entry score to be primed
before querying, introducing the notion of top-𝑘 threshold estimation to SaaT search. Similar
to DaaT retrieval, the retrieval remains “safe” so long as the initial estimation is lower than the
final document score at rank 𝑘 [54, 61]. If the estimation is too high, the heap will not fill, but the
accumulator table will still be populated; a simple scan over the accumulator table is sufficient to
recover the top-𝑘 scores.
In preliminary experiments, we found that applying oracle thresholds resulted in only modest

speedups compared to simply allowing the threshold to grow organically as the heap fills, so we
opted to use the latter approach in our experiments. Nevertheless, we believe thismicro-optimization
may be further exploited, and plan to examine it further in future work.

Query-Specific Impact Score Rescaling. In Section 3.2 we noted that working with learned
sparse representations results in large accumulator values for many documents in many queries.
These values are sufficiently large that they caused numeric overflow in the normally 16-bit
accumulators used in JASS. To be clear, term weights are assigned by the learned sparse model
(ultimately derived from neural inference) and we have no control over the range of the scores “out
of the box”.

The obvious solution is to increase the size of the accumulators to 32 bits. However, manipulating
large quantities of 32-bit integers takes more time than manipulating the same quantity of 16-bit
integers, due to three main reasons: First, 32-bit instructions can be expected to take longer to
execute than the simpler 16-bit equivalents. Second, the CPU cache can hold twice as many 16-bit
accumulators as 32-bit accumulators. Third, a single cache line read will read twice as many 16-bit
accumulators as 32-bit accumulators. These last two points are particularly relevant when the
document ids have been reordered.

An alternative to increasing the size of the accumulators is to decrease the accuracy of the impact
score stored in the index. Crane et al. [8] examined the optimal size of the impact scores used
in impact-ordered indexes and concluded that the best size to use (to increase precision while
decreasing index size) was:

𝑏 =

⌈
𝑔 + ℎ × 10−4 ×

√︁
|𝑑 |

⌉
(2)

where 𝑔 and ℎ are metric specific constants, |𝑑 | is the number of documents in the collection, and 𝑏
is the number of bits to use in the representation. It is worth emphasizing that Crane et al. examined
static, index-wide scaling of the impact scores, which can be viewed as a single preprocessing
optimization.

Unfortunately, the size of the impact scores in our learned sparse representations all fall within
the bound suggested by Crane et al., making it impractical to further “squash” the score distribution
without losing effectiveness. However, we note that the overflow of the accumulators is typically
caused by the combination of query and document impact scores, not just the document scores
alone.
To address this issue, we introduce a novel optimization we call query-specific impact score

rescaling. Recall that SaaT query evaluation loads the postings list for each term, then sorts all
segments from all terms from highest impact score to lowest impact score. We introduce a phase
between these two in which we multiply the impact score for each segment by the query impact
score. We then keep a running total of the highest score from each term. That score, 𝑀𝑞 , is the
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largest possible score that any document can achieve for that query, and is given by:

𝑀𝑞 =
∑︁
𝑡 ∈𝑞

argmax
𝑑

(𝐼𝑑,𝑡 × |𝑡𝑞 |) (3)

where 𝑞 is the query, 𝑡 is a unique term from that query, 𝐼𝑑,𝑡 is an impact score for document 𝑑
containing 𝑡 , and |𝑡𝑞 | is the number of times 𝑡 occurs in 𝑞.
Knowing this query-specific maximum score makes it possible to re-scale the scores to fit an

arbitrary range. Without loss of generality, we use simple linear scaling:

𝐼 ′
𝑑,𝑡

=
𝐼𝑑,𝑡 × |𝑡𝑞 |

𝑀𝑞

× 𝑅 (4)

where 𝐼 ′
𝑑,𝑡

is the new term/document impact score, and 𝑅 is the new maximum possible impact
score. After processing, all documents will have scores between 0 and 𝑅. Obvious ranges to use are
those that fit into a machine word easily manipulated by a modern CPU, i.e., 8-bit, 16-bit, or 32-bit.
We explore these three settings in our experiments, where higher values are expected to yield
better effectiveness at the cost of higher latency. It is worth emphasizing that this dynamic scaling
is performed optionally and per query—that is, only when there is a potential for accumulator
overflow do we rescale the score ranges; otherwise, query evaluation proceeds exactly as before.

Measuring the Improvements. The discussions above present three novel SaaT optimizations:
two of these, index size reduction and heap caching, are general and can be applied beyond learned
sparse retrieval models; the third optimization, dynamic impact score rescaling, directly targets the
problems arising from the high query weights reported in Section 4, but can also be used beyond
learned sparse retrieval.

The complete set of results is shown in Table 6: the top block is copied from the corresponding
JASS results in Table 1 to facilitate easy comparison. The middle and bottom blocks show the results
of the optimizations, with 16-bit accumulators and 8-bit accumulators, respectively. In terms of
query latency, we observe large improvements across all models, particularly when dynamically
rescaling from 32-bit to 16-bit accumulators (overall speedup of between 1.3× and 1.9×); moving
to 8-bit accumulators yields additional gains, although not as dramatic (a speedup between 1.1×
and 1.6× compared to the 16-bit rescaling). In terms of effectiveness, we observe no differences
between 32-bit and 16-bit accumulators, although 8-bit accumulators can result in a small loss for
some models. The new encoding scheme yields savings of between 5% and 40% of the total index
size, with higher savings realized for collections with larger vocabularies.
Table 6 reports the cumulative gains of all our optimizations. However, we also conducted an

ablation study to tease apart the effects of each individual improvement. We found that the new
compression scheme resulted in a minor decrease in latency (on the order of 1–2 milliseconds).
Similarly, heap caching resulted in a small but consistent improvements of around a 1.1× speedup
in mean query latency. The remaining, and vast majority, of the latency reduction is directly
attributable to dynamic impact score rescaling.

6.3 Effectiveness/Efficiency Tradeoffs

To recap thus far: Our preliminary experiments clearly identify the challenges that unusual term
weight distributions from learned sparse retrieval models present for both DaaT and SaaTmethods.
We then proceeded to tackle these issues for both approaches. For DaaT, it appears that the
application of a previously developed anytime technique provides an adequate solution. For SaaT,
we developed three novel optimizations to address the challenges.

In our next set of experiments, we return to the age-old question of DaaT vs. SaaT, after both
approaches have been optimized to handle learned sparse retrieval models. In order to explore
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Table 6. Comparing the default SaaT JASS system with optimizations introduced in our work (𝑘 = 1000).

Quality Time Space

Method RR@10 Latency Index Size
(ms) (MB)

JASS: Default (32-bit)

BM25 0.187 15.8 1156
BM25-T5 0.277 50.2 1452
DeepImpact 0.326 39.3 2039
uniCOIL-T5 0.352 147.2 1310
uniCOIL-TILDE 0.350 83.5 1976
SPLADEv2 0.369 314.0 3813

JASS + Optimizations (16-bit)

BM25 0.187 8.2 729
BM25-T5 0.277 38.6 947
DeepImpact 0.326 23.7 1354
uniCOIL-T5 0.352 89.0 1139
uniCOIL-TILDE 0.350 54.2 1782
SPLADEv2 0.369 217.3 3595

JASS + Optimizations (8-bit)

BM25 0.187 6.6 729
BM25-T5 0.270 24.6 947
DeepImpact 0.325 18.0 1354
uniCOIL-T5 0.351 71.5 1139
uniCOIL-TILDE 0.350 43.3 1782
SPLADEv2 0.364 194.9 3595

multiple points of the effectiveness/efficiency tradeoff space, we apply both exact and approximate
versions of each approach. In particular, we run JASS with various settings of 𝜌 , ranging from
extremely aggressive early-termination (𝜌 = 100 thousand) to exact processing (𝜌 = 1 billion).
Similarly, we vary the number of clusters to process during anytime DaaT traversal, 𝑅, with
𝑅 ∈ {5, 10, 20, 50, 100} out of a total of 100 clusters.

Figure 5 shows the resulting tradeoffs. Here, we report absolute measures of effectiveness (mean
RR@10) as well as efficiency (mean query latency). This plot captures all combinations of retrieval
models (as shapes) and systems (as colors). Furthermore, we show results for three values of
𝑘 = {10, 100, 1000} to cover different use cases, ranging from single-stage retrieval (smaller values
of 𝑘) to candidate generation for reranking (larger values of 𝑘). Combinations that are on the
Pareto-optimal frontier are highlighted, with non-optimal combinations shadowed. Similar trends
were observed when measuring recall.

In this context, the Pareto-optimal frontier represents the best tradeoff that can be obtained for
all explored combinations of retrieval models × systems. If a point lies on the frontier, it means that
no other setting is able to achieve both higher effectiveness and lower mean query latency. There is
no principled way to identify “better” or “worse” configurations along the frontier, as the selection
of the operating point depends on the application scenario. Points along the frontier represent the
best of “what’s possible” for the system designer to choose from.
Our first observation is that, for 𝑘 = 10 (the top panel), the anytime DaaT method is most

frequently the best choice, with the converse holding true for 𝑘 = 1000 (the bottom panel). These
findings align with previous studies, which show that DaaT efficiency is much more sensitive to
the value of 𝑘 than SaaT retrieval [9]. Our second observation is that, quite amazingly, all models
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combination of system and 𝑘 .
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the frontier with the exception of BM25 (which is dominated by BM25-T5).

are Pareto-optimal in at least one system/𝑘 configuration. This means that there is no single system
that dominates all others. Furthermore, A-PISA, JASS-u8, and JASS-u16 share points along the
frontier (with JASS-u32 dominated in all cases). This means that depending on the desired tradeoffs
between effectiveness and efficiency, the optimal choice varies across values of 𝑘 , both in terms of
the retrieval model as well as the query evaluation approach!

Finally, Figure 6 provides more details on query latency along the Pareto frontier for 𝑘 = 100. The
configurations have been arranged in increasing order of quality (𝑥 axis) with the corresponding
latency distribution shown on the 𝑦 axis as standard Tukey box-and-whiskers plots. It is important
to note that the selection of the Pareto-optimal configurations was performed using mean query
latency, and means might differ from medians or tail quantiles due to outliers.
Confirming prior work [9], we observe that while DaaT query evaluation can outperform

SaaT query evaluation in terms of mean latency, better performance comes at the expense of less
predictable latency, evidenced by the larger spread and higher percentile outliers in the A-PISA
boxes. On the other hand, SaaT query evaluation, by design, yields much more predictable latency,
as it enforces a strict limit on the total amount of allocated computation on a per query basis. It is
also worth noting the tight clustering of query latency for the different JASS configurations with
the SPLADEv2 model. Since SPLADEv2 aggressively expands queries (see Table 2), JASS almost
always processes 𝜌 postings, resulting in highly predictable performance. In contrast, for some of
the other models, queries may have fewer than 𝜌 postings to process, resulting in the lower tails
(queries that are much faster), for example, in JASS with BM25-T5.

6.4 Scaling Up

So far, we have only experimented with the 8.8 million MS MARCO v1 passage collection. To deter-
mine whether the empirical findings hold on different collections, we ran a validation experiment
on the much larger MS MARCO v2 passage collection.
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Experimental Setup. The MS MARCO v2 passage collection consists of 138.4 million passages,
representing more than a 15× scale increase compared to MS MARCO v1 [10]. Similar to the v1
collection, the v2 passages are drawn from English web documents. All models were evaluated on
the 3903 queries in the first dev set. Collections were indexed in the same manner as the previous
experiments with one exception: we increased the number of clusters from 100 to 2000 for the
anytime DAAT mechanism. We explored one baseline and four learned sparse retrieval models
that collectively represent the current state-of-the-art:

BM25 with default parameters 𝑘1 = 0.9 and 𝑏 = 0.4. For BM25 retrieval, we employ the official
“augmented” version of the v2 corpus which expands each passage with the source document URL,
title, and document headings [43].

SPLADE++SD and SPLADE++ED [22] represent some of the latest SPLADE models, which use
MarginMSE knowledge distillation [26] with different hard negative sampling techniques to improve
effectiveness. In particular, SPLADE++SD (self distillation) mines negative examples from a base
SPLADEmodel before a subsequent training phase. In contrast, SPLADE++ED (ensemble distillation)
uses a publicly available set of negative examples before further training. Both approaches use the
coCondenser model [23] as their starting points.

ESPLADE-V and ESPLADE-VI [32] represent additional variants of the SPLADE family. These
models incorporate a series of efficiency improvements (hence our notation, ESPLADE) over
the original SPLADE family, with the aim of improving efficiency without greatly diminishing
effectiveness. ESPLADE-V and ESPLADE-VI correspond to the (v): PLM with FLOPS and the (vi):
BERT-Tiny models reported by Lassance and Clinchant [32].

Similar to the experimentation on MS MARCO v1, we apply both exact and approximate versions
of both PISA and JASS on the MS MARCO v2 collection. In particular, we run JASS with various
settings of 𝜌 , ranging from extremely aggressive early-termination (𝜌 = 500 thousand) to exact
processing (𝜌 = 1 billion). Similarly, we vary the number of clusters to process during anytime
DaaT traversal, 𝑅, with 𝑅 ∈ {100, 250, 500, 1000, 2000} out of a total of 2000 clusters.

Effectiveness/Efficiency Tradeoffs. Figure 7 shows the resulting tradeoffs between the official
RR@100 metric and mean query latency with 𝑘 = 1000. As expected, we see similar trends as those
on the much smaller v1 collection. There is a clear Pareto-optimal set of configurations which
flows between different systems (including PISA and the different versions of JASS) as well as the
different ranking models. However, we note that both SPLADE++ models are dominated by their
ESPLADE counterparts. This is perhaps not surprising as the ESPLADE models are specifically
tuned to provide good effectiveness/efficiency tradeoffs in the passage ranking context.
A few other interesting observations on the much larger collection: First, we can see the tim-

ings are around an order of magnitude larger on MS MARCO v2 than those on MS MARCO v1;
nonetheless, highly effective configurations can still achieve top 1000 retrieval in the 100 to 200
millisecond range. Second, we find that the rank safe anytime DaaT mechanism (where 𝑅 = 2000)
is actually slower than the default out-of-the-box PISA system on the v2 collection. While anytime
DaaT still provides useful points on the tradeoff curve (by allowing effectiveness to be traded
for lower latency), this was quite surprising, and indicates that better document clustering and
prioritization algorithms [49] may be necessary to achieve better performance. Finally, we observe
similar tradeoffs for different values of 𝑘 , again with the DaaT mechanisms becoming a better
choice as 𝑘 decreases. On the other hand, improvements to SaaT retrieval hold on the larger
collection, with smaller accumulator values providing more efficient retrieval at the cost of minor
effectiveness degradation.
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v2; those along the Pareto-optimal frontier are highlighted.

It is also worth noting that the MS MARCO v2 collection contains substantially more documents
than might typically be seen in a search engine shard in a production system. Trotman et al. [73],
for example, suggest that eBay shards are “typically tens of millions of documents” and not the
138.4 million documents seen in v2. As such, the experiments in this section are on a collection
that may be unrealistically large and take an unrealistically long time to search. Nevertheless, we
believe the experiments are important as they provide a scalability point of reference even if not
practical in a real-world application. Indeed, as collection processing becomes more complex, and
as querying latency increases, we can expect shard sizes to decrease, unless, of course, CPU single
core processing speed increases at a faster rate (which we do not believe is currently the case).

6.5 Experimental Summary

Coming back full circle to the age-old DaaT vs. SaaT debate, what have we learned? To begin,
we demonstrated how classic DaaT and SaaT retrieval algorithms can be rendered less efficient
by learned sparse models, and proposed new methods to combat these issues. With these “fixes”,
we find that DaaT algorithms remain a good choice when 𝑘 is small (smaller than useful as a
first-stage ranker, since rerankers typically process relatively large candidate sets), but suffer from
difficult-to-predict tail latency. On the other hand, SaaT methods are very stable because the total
workload is well managed, and they also scale well with increasingly large 𝑘 values—making SaaT
the best option as a first-stage ranker when used with learned sparse representations. However,
our experiments paint a more complex picture, especially for “intermediate” values of 𝑘 .
Before the advent of learned sparse retrieval models, the choices were relatively simple—the

scoring model was largely fixed (e.g., BM25), and the practitioner selected between DaaT and SaaT,
and then tuned a few parameters. Now, the choice of the model itself is an important consideration,
because different sparse retrieval models dominate different parts of the Pareto-optimal frontier.
For example, it is not possible to take an effective model like SPLADEv2 and “tune it” to operate in
the high efficiency regime; it becomes necessary to switch to a completely different model.2 Our
study begins to clarify this complex design space, allowing a practitioner to map from operational
considerations to good configuration choices.
2That said, it is possible to modify a model like SPLADEv2 to make it more efficient during training [32].
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7 LIMITATIONS AND OPEN QUESTIONS

The rapidly evolving field of neural information retrieval provides a number of exciting research
directions, and in this work we have focused on just one piece of the much larger puzzle. Our
primary goal was to better understand the current landscape of latency, space, and effectiveness
with different retrieval methods and models. While we believe that we have achieved this goal,
we also wish to acknowledge some of the limitations of our work, and briefly discuss some open
questions for future research.
Given the vast number of available choices of query processing systems, compression codecs,

and implementation specific settings, we fixed a number of settings based on preliminary experi-
mentation and guidance from the existing literature. For example, the choice of applyingMaxScore

processing as the representative method for top-𝑘 DaaT retrieval was based on Mallia et al. [53].
However, Mallia et al. used BM25 retrieval on traditional web corpora as their task. Although
Mackenzie et al. [47] showedMaxScore processing to be on-par with VBMW using the DeepCT
learned term frequencies on the MS MARCO v1 passage collection, it is not clear whether these
findings will hold across different collections and ranking models. Furthermore, many alternative
DaaT top-𝑘 retrieval algorithms have yet to be rigorously tested with learned sparse models, in-
cluding those that use window-based postings lists, live-block mechanisms, and other optimizations
[13, 16, 17, 31, 56, 66, 77]. Thus, a key open question is whether the assumptions derived from
years of research on efficiency experimentation with traditional ranking models hold under newer
learned sparse models.

Beyond fixing algorithmic settings and components, there is also the question of how efficiency
and effectiveness can be traded off against one another through parameters such as 𝑘 , the number
of documents to retrieve. While it is well known that SaaT systems are not highly sensitive to the
value of 𝑘 , DaaT systems are known to be extremely sensitive to 𝑘 , with smaller values allowing
higher levels of dynamic pruning [9]. Hence, it is likely that there exists an even richer set of
effectiveness/efficiency tradeoffs than those presented here. One promising research direction would
be to revisit the problem of dynamic cutoff prediction (predicting the value of 𝑘 on a per-query
basis) in the context of learned sparse retrieval models [11, 34, 46].

Another limitation of our work is that we focus solely on the MSMARCO collections. While these
collections have seen wide use by the community, it is important to also measure performance on
different tasks and corpora. The BEIR meta-collection is one possible avenue for exploring learned
sparse models in out-of-domain contexts [68], and has already seen attention from the community
[32]. Another rapidly developing aspect of this line of research is on the models themselves; since
writing this initial manuscript during late 2021 and through 2022, many newer models have been
developed, including the efficient and distilled SPLADE models [22, 32] (used in Section 6.4) and the
SpaDE model [7]. Keeping abreast of this rapidly changing research landscape represents another
challenge for translating new findings into best practices.
Finally, our work only looked at learned sparse retrieval, where inverted indexes still reign as

the go-to data structure for efficient top-𝑘 retrieval. Recently, however, a large body of research has
focused on alternative representations beyond those readily supported by inverted indexes [35, 42].
A thorough comparison between the various options for supporting efficient top-𝑘 retrieval across
all data structures, models, and data scales would benefit researchers and practitioners alike. There
has already been some work in this direction [27], but more research is needed.

8 CONCLUSIONS AND FUTUREWORK

Retrieval models based on learned sparse representations are relatively new. Most work has
focused on evaluating model effectiveness, but here we build on previous studies to examine
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effectiveness/efficiency tradeoffs. Our experiments demonstrate that the term weights generated
by such models have substantive effects on the behavior of both DaaT and SaaT query processing
algorithms. We then proceeded to address these issues, yielding large improvements to both DaaT
and SaaT approaches. Finally, we performed a head-to-head comparison of DaaT and SaaT to
arrive at an interesting finding: Which is better? It depends, as different sparse retrieval models
in conjunction with different query evaluation approaches dominate different parts of the Pareto-
optimal frontier. Thus, the “optimal” configuration will depend on operational considerations.

In future work, we hope to expand our experimental comparisons to different collections, includ-
ing larger collections with longer documents and in out-of-domain settings. Finally, an obvious
improvement for retrieval models based on learned sparse representations would be to incorporate
efficiency considerations into the model training objective, much like the “learning to efficiently
rank” thread of work from a decade ago [75, 76]. How to formulate an appropriate loss, however, is
not obvious. Nevertheless, there are many exciting directions we are interested in pursuing in the
near future.

SOFTWARE

Scripts and tools to reproduce our experiments can be found at the following URL: https://github.
com/JMMackenzie/learned-sparse-shootout
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