
Exact Ray Tracing of CSG Models by Preserving
Boundary Information

Geoff Wyvill and Andrew Trotman

Abstract

We question the idea that regular sets and regularized operations are necessary in
Constructive Solid Geometry. We argue that dangling points, lines and planes have their
counterparts in the real world and their correct treatment leads to a more robust
approach to solid modeling.

New algorithms avoid the use of small corrections (fudge factors) to detect coincident
surfaces. Instead, a strictly logical scheme preserves inside/outside information as a ray
progresses through the environment. This maintains consistency at every stage and
guarantees a correct interpretation of the model.

Keywords: CSG, Regular sets, Ray tracing, Transparency, Rounding errors.

Introduction

Constructive Solid Geometry (CSG) is usually regarded as mainly applicable to
engineering problems and this view is reinforced by the choice of illustration one sees in
textbooks and papers on the subject. In the preface to his book, Martti Mantyla (1988)
observes, "In addition to design and manufacturing, solid modeling has a role in a
number of other applications ... ". His examples, however, are all drawn from
engineering. Mortensen (1985) shows some pictures of flames from particle systems but
all of his solid modeling examples come from mechanical engineering.

At the University of Otago, we use a CSG system for animation and as a testbed for
research ideas in Computer Graphics. We render all our pictures by ray tracing. In this
environment, we create solid models for clients, but the clients are animat9rs and artists
rather than engineers (Fig. 1). For this reason, we are more interested in the colors and
surface properties of models than most designers of CSG systems may be. There is
relatively little literature on ray tracing of solid models. Mantyla lists over 100
references to the CSG literature but he mentions only four papers relating to ray tracing.
Yet this is an area where there are still significant problems to be solved.

411
T. L. Kunii (ed.), Visual Computing
© Springer-Verlag Tokyo 1992

412

Fig. 1. The Rose, CSG is not just for engineers.

Constructive Solid Geometry (CSG) represents solids as sets of points in 3D space. But
addition and subtraction of such sets can create dangling points, lines and surfaces with
no thickness, so many systems use regularized sets (Tilove 1980). Regular sets, by
definition, do not include surface points and from a purely mathematical standpoint, their
use appears to solve the problem of generating a class of unwanted artifacts in CSG.

413

But from a practical point of view, there is something very unsatisfactory about the way
in which they must be implemented. Ultimately, we decide whether a point is inside,
outside or on the border of an object by means of a numerical comparison and this is
subject to rounding errors. If you study the nature of these errors, it quickly becomes
apparent that no form of number representation will eliminate them and systems that
depend on recognizing border points, actually regard as equal, numbers that are closer
than some small quantity - a fudge factor!

Several recent papers, e.g. Segal (1990), have addressed this problem by specifying what
the error or tolerance is and we have no argument with these methods in the context of
constructing polyhedral models. But when ray tracing, it is not necessary to identify
vertices as exactly lying on edges or faces, and it becomes possible to use the full
accuracy of the number system. Mike Muuss (1990) has described a boundary structure
to represent objects that are not 3-manifolds. So perhaps there is some interest in a move
away from regular sets.

The remainder of this paper is divided into four sections. First we describe regular sets,
the reason for using them and the arguments against. Then we describe some of the
problems inherent in rendering CSG by ray tracing. We present our new algorithm and
show that it deals correctly with the problem cases and we conclude with a brief
discussion and summary.

1.0 Regular Sets

The need for regular sets is described by Tilove (1980). Figure 2 shows two objects, A
and B, that share a common edge. In 3D they share a face. The object, A - B, is
identical to A except that a part of its surface is missing. The object, A - (A - B), is an
infinitesimally thin surface only. The idea of regular sets is to throwaway all such
surfaces and declare them, a-priori, to be not part of any object. Similarly, the object,
(A - B) + (B - A), is almost the same as A + B. Only an infinitesimally thin interior
surface is missing. The regularization routine should fill in this missing surface.

A-B

A - (A - B) (A - B) + (B - A)

Fig. 2, Non regular sets.

414

Because objects of no thickness cannot exist in the real world, it is sometimes argued that
the regularization of sets produces a more realistic model. However, there is a sense in
which such objects do exist. Suppose, for example, we grind a steel plate flat on a
surface grinder. Then we braze onto the surface, a small, flat piece of copper. If we
attempt to grind the copper away without touching the steel, we will always leave a little
behind. If we regrind the plate to the original dimensions, we will leave behind an area
where there is some copper and some bare steel on the surface. The shapes of these areas
will depend on the errors inherent in any machining operation.

To understand the relevance of this example, we need to examine the errors inherent in a
computer representation. To simplify the argument, we will assume that the numbers that
represent our coordinate system are fixed point fractions. Then continuous space is
represented by a finite grid of points and any position can only be represented by its
nearest grid point. The use of floating point numbers does not change this argument. It
merely complicates it because the grid no longer has a uniform spacing. If our surfaces
are aligned with the coordinate axes, it becomes easy to detect coincidence. But when
they are not, we get complications.

Figure 3 shows the objects of Fig. 2 but in a different rotation and with an enlarged grid
of representable points shown explicitly. Notice that you cannot place object B with its
vertices on grid points so that its edge coincides with that of object A. If you place the
objects as shown on the left, then some points close to the surface are clearly outside both
A and B. If you place them as on the right, the vertices of B lie inside A.

Fig. 3, Coincident surfaces.

In this example, the sides of the two squares have been shown parallel. If the objects are
represented by vertex positions, and general transformations are applied to these
positions, then the sides or faces will not necessarily be parallel. In a case like that,
coincident 'parallel' surfaces can be represented so that on one surface, points can be
found that lie inside, outside or on the surface of the other object.

2.0 Ray Tracing

The principle of rendering a CSG model by ray tracing was described by Roth (1982).
The intersections each ray makes with the primitive objects are found and these
intersection points are ordered by distance from the ray's source. The section of ray
between each pair of intersection points can be classified as inside or outside the object
and the intersection point at the first inside/outside boundary is the correct one for that
ray.

415

This process finds the correct surface points but can produce some strange effects when
surfaces are coincident. Figure 4 shows the effect of what we call ghost surfaces. Two
closed cylinders have been built by subtracting plane half spaces from cylindrical half
spaces. Then the cylinders have been added to make a simple scene. The top surfaces of
the two short cylinders happen to lie in the same plane. Consider what happens when a
ray is directed at cylinder B. It intersects with two surfaces, the plane on top of A and
the plane on top of B. Since these planes are identical, it should happen that the
intersection points are the same. Suppose, the ray tracer happens to deal with the
intersection with the surface on A first. The section of ray before the intersection is
outside the object and the section of the ray after the intersection is inside. Thus, using
Roth's rule, the intersection with the top plane of A can be wrongly identified as the
correct intersection. If A and B have different colors, this will give a wrong result.

Fig. 4, Ghost surfaces. The ray strikes the top plane of cylinder A and immediately enters B. This
intersection can be identified as correct but it carries the color of A.

The correct colors in cases like this can be found by using a more elaborate way to
classify points with respect to objects (Wyvill 1988). This classification is not described
in detail here, because the algorithm given in Section 3 supercedes it.

Fig. 5, Two rays intersect a surface. Due to rounding errors, the intersection, p, with ray, A, lies inside the
surface. The intersection, q, with ray, B, lies outside.

When rounding errors are taken into account, other strange effects can occur. Figure 5
shows two rays, A and B, directed at a plane surface. Representable points are shown by

416

dots. If the intersection routines find the nearest representable point to the ideal
intersection, then the intersection, p, with A lies inside the surface while the intersection,
q, with B lies outside the surface. This is the usual case and our algorithms must expect
it. Notice that these errors are present even though the end points of the rays, and the
vertices of the object fall exactly on representable points.

A

Fig. 6, CSG addition. The intersection of the ray with B is inside A and the intersection with A is inside B,
so both are rejected.

Suppose part of a model has genuinely coincident surfaces. This is shown in Fig. 6. Due
to rounding errors, the intersection point of a ray with object A can be inside object B
while the intersection with B is inside object A. In this case, the algorithm described by
Wyvill (1988) fails. Both intersections are thrown away and the ray passes through the
surface of the object.

A similar effect can occur in CSG subtraction as shown in Fig. 7. Here the common
intersection point is inside the subtracted object and outside the other object. Again, the
intersection is missed. There are published algorithms that will not miss surfaces like
this, but we know of none that, like Wyvill (1988), also guarantee the correct inheritance
of color properties. .

A

--.- -.- - -'

Fig. 7, CSG subtraction, A - B. The intersection of the ray with B is outside A and, therefore, discarded.

But the intersection with A is inside B, so both are logically rejected.

Rounding errors can produce strange effects in ray tracing, whether you are using a CSG
model or not. In Fig. 8, a ray strikes a reflective surface. Because of rounding errors,
the intersection point actually lies inside the surface. The reflected ray, therefore,
strikes the same surface from inside. Similarly a transmitted ray can start from outside
the surface and immediately intersect the same surface. We cannot simply ignore a

417

second intersection with the same surface, because there are cases where this does
happen: reflections inside a spherical bubble for example.

Fig. 8, Ray I intersects the surface, S. The intersection point is represented by p: the nearest grid point.

Since p is actually inside S, the reflected ray, R, also intersects S.

Most of these problems can be circumvented by introducing an error limit, E, within
which unequal numbers are regarded as equal. A point is regarded as on a surface if it
lies within E of the surface and systems that operate on regular sets use such a tolerance
value to avoid inconsistencies. The idea is appealing. Floating point numbers can be
represented to about twenty significant figures, while for engineering tolerances, six is
plenty. If we set E to 10-16 units, it is vanishingly small compared to the dimensions of
our model, yet enormous compared to the likely errors of computation.

In the context of ray tracing, using the error factor, E, implies changing the way we test
to see whether a point lies inside or outside a primitive object. We need to know, in
addition, if it is close enough to the surface to be regarded as on the surface. A given
ray is tested for intersection with the primitives and the intersections are stored in a list,
ordered by distance along the ray from the ray origin. If two, or more of these
intersection points lie within a distance E, they can be regarded as coincident and
appropriate special action taken (Amanatides 1990).

The problem of Fig. 8 is handled by shifting the intersection point by an amount, E, along
the ray, so that the reflected ray starts on the correct side of the surface. Similarly, a
transmitted ray, is started from a false position, E units along the ray and inside the
surface.

There are, however, a number of good reasons for not using an error limit in this way:

1. It is logically unsound. We can predict the circumstances where near coincidence
and rounding errors cause problems. We should address those problems directly.

2. Sooner or later, ~ user will place two surfaces exactly E units apart. The result is that,
due to rounding errors, some points will be recognized as on the surface while
others will not. All of the original problems will reappear.

418

3. There are cases where ideal objects become very thin. Figure 9, for example, where
two spheres are subtracted. Use of E can produce a hole in the top. This hole is
incorrect and only caused by the use of E. Without an E there is no hole.

4. Almost coincident surfaces occur in nature and produce the same effects (machining
away the c.opper on the steel surface). If you put a red surface and a blue surface in
the same place, the system might produce a random mixture .of these colors. It is
much harder to explain why this happens when you deliberately put them E units
apart.

•
Fig. 9, Object created by subtracting spheres (in cross-section). There is a single point of no thickness at
the top. This means that there is a finite hole if a very thin surface is regarded as absent.

3.0 The New Algorithms

The basic idea behind our new algorithms is to keep track of inside/outside information
by recording when it changes, i.e. at intersection points. To make this work, in practice,
you have to deal with some special cases and trying to explain these makes the main ideas
difficult to see. Therefore, we describe the principles first and the special cases
afterwards

3.1 Material Properties

The motivation for our earlier paper (Wyvill 1988) was to be able to represent models
such as the eggcup in Fig. 10. Layers of different material are added together to make a
composite block of material and the final shape is carved from this block. The final
pattern on the surface is produced by revealing areas of differently colored volumes of
material within the block. If a CSG system allows union of sets, and if the internal colors
of materials are regarded as important, then we need a rule to determine which color to
use for a volume that is common to the components of a union.

We avoid this ambiguity by using an asymmetric addition operator, +t, instead of set
union. By definition:

a +t b:: (a - b) + b

This means that the priority of volume properties is implicitly defmed whenever objects
are added together. We believe this system is easier to control than other systems such as
Salesin's (1990) .

419

When dealing with transparent objects, things get more complicated. At inner surfaces,
it is necessary to know the refractive index of the medium the ray is leaving as well as
the one it is entering. The rules described in the next section derive this information,
unambiguously, from the eSG tree.

3.2 Point Classification

The new algorithm needs to classify each intersection point with respect to a eSG tree.
We describe the classifier for completeness, and to provide a context for the rest of the
algorithm. The method of classification is not new. It is a minor extension of an
algorithm previously published (Wyvill 1988). The result of the classification is a record
that describes the state of the ray passing through the given point. The possible
classifications are:

• OUT
• IN, medium
• BORDER, from, to

OUT means that the point is outside the object described by the given tree. IN means
that it is inside. If it is inside, then medium is a pointer to a structure that describes the
properties of the material surrounding the point. If the classification is BORDER, then
it is accompanied by two values, from and to, that are pointers to the descriptions of
the material that the ray is leaving and the material that the ray is entering.

The simplest eSG tree of all is a leaf node that describes a single primitive object and its
material properties. In our system, these are half spaces defined by functions (Wyvill
1986). When a point is tested with respect to a primitive, the only possible values are
IN and OUT. In the case of IN, medium is set to the appropriate material. The
value BORDER is treated specially. It is assigned only to a point, with respect to a
particular instance of a primitive, when that point is created as the result of an
intersection test with the primitive. The primitive intersection function also finds the
surface normal and determines whether the ray is entering or leaving the primitive. If
the ray is entering the primitive, then to is set to the material of the primitive and from
is set to empty. If the ray is leaving the primitive, then from is set to the material of
the primitive and to is set to empty.

Each intersection point is described by a structure that includes a pointer to the leaf
node with which it was intersected. So, to classify an intersection point with respect to a
leaf node, we first check to see if this is the particular leaf node for which the point has
the property BORDER. If it is that node, then we have classified the point. Otherwise,
we call the appropriate function to classify the point as IN or OUT. Notice that a point
can be classified as BORDER with only one leaf node.

To classify a point with respect to a general node of the eSG tree, we first classify the
point (recursively) with respect to the sub-trees and then combine the classifications
according to a set of rules that define the behaviour of that node. The tables below

420

describe these rules for the asymmetric addition node and the subtraction node. The
special material empty is denoted by 0.

+t I right node
value IN,r OUT BORDER,c, d

leftnod~
value

if c = 0, BORDER, I, d
IN, I IN,r IN, I if d = 0, BORDER, c, I

else BORDER, c, d

OUT IN,r OUT BORDER, c, d

BORDER,a,b IN, r BORDER, a, b

Table 1, Combination rules for asymmetric addition node

- I right nodt
valut

leftnod~
IN,r OUT BORDER, c, d

value

if C =0, BORDER, l, 0
IN,l OUT IN, 1 if d =0, BORDER, 0, 1

else OUT

OUT OUT OUT OUT

BORDER,a,b OUT BORDER, a,b

Table 2, Combination rules for subtraction node

3.3 Inside / Outside Determination

The problems described in Section 2 all have a root cause in that the state of
inside/outside information has become inconsistent. In the real world, we cannot go
from A to B without crossing the intervening space. But in the false world of computer
representation, we allow a ray to proceed from outside an object to inside without going
through an intersection.

We can enforce consistency by insisting that, for each leaf node, the state of the ray, IN
or OUT, can change only when an intersection has been found. In simple ray tracing,
every primary ray emanates from an eyepoint and every secondary ray is spawned from
an intersection point on an earlier ray. The rays, therefore, form a tree structure in the

421

scene, and it is all connected. Suppose we detennine the state, IN or OUT, of the
eyepoint with respect to all the leaf nodes in the scene. As we traverse the graph
represented by the rays, we update this infonnation when, and only when, a ray
intersects the boundary of a primitive. When the classifier wants the status of a leaf
node, it is found stored in the leaf node structure. Only the initial IN and OUT
values need be detennined from the geometrical test.

3.4 The Ray Tracer

We find all the intersection points along the ray and order them by distance from the
eye. Each intersection, in turn, is checked for validity (see below) and then classified
with respect to the CSG tree, until one is found with the classification BORDER, x, y.
This is the correct intersection point and the ray is crossing from medium, x into y. If
x = y, the intersection can be discarded.

As each intersection point is classified, its leaf node is updated because the ray has either
entered or left so that further points along the ray will be classified correctly.

Transmitted rays, after calculation of refraction direction, are spawned from the
intersection point which will be regarded as inside the surface just intersected. Reflected
and light-source-seeking rays are also spawned from the intersection point, but the leaf
node has already been updated. This means that the reflected and light-seeking rays are,
logically speaking, spawned from outside the surface.

Let us see how this process handles each of the special cases. Firstly, ghost surfaces are
eliminated by the ordered tree traversal performed by the classification routine. Figure
11 shows the tree corresponding to the objects in Fig. 4. The ray shown at the top makes
intersections with the top surfaces of A and B, but the classification process quickly
eliminates the intersection with A because it is OUT with respect to the cylinder.

In the case of coincident surfaces, we will have two (or more) intersections that are in
the same place, or nearly the same place. Take, for example, the problem of Fig. 6. A
single surface is intersected by a ray and the intersection point, p, lies inside the surface.
Let us suppose that this surface represents the surface of A +t B, where the sub-objects
A, B, share this surface. Because the intersection points are identical, the intersection
with A is really inside B, but if we process the intersection with A first, we will be
logically outside B because we have not yet crossed that boundary. The intersection with
B is also inside A, but if we process B first, we will be logically outside A. In either
case, the ray tracer takes the correct action and gives us a single, valid intersection.

422

Fig. 11, Elimination of ghost surfaces.

If the surfaces of A and B are not quite parallel, the intersection with A can be inside
or outside B, while the intersection with B can be inside or outside A. This gives four
distinct cases which are handled consistently by the table. When the surfaces are exactly
coincident, we will always strike the same surface first. Whether it is A or B will
depend on the ordering of the CSG tree and the way our sorting algorithm handles
identical points. When the surfaces are almost identical, rounding errors can result in
some rays being identified as hitting A while some strike B. This is in accord with our
physical example of grinding the steel and copper. In no case is an intersection missed.

Figure 7 is more complicated. There are four distinct cases:

Intersection with A outside B, intersection with B outside A.
ii Intersection with A inside B, intersection with B inside A.
iii Intersection with A inside B, intersection with B outside A.
iv Intersection with A outside B, intersection with B inside A.

It can be seen, from Fig. 12, that all four cases represent possible, legitimate solids. This
means that ordinary inside/outside tests would inevitably lead to a wrong interpretation
of Fig. 7. In Fig. 7, the intersection with object A would be treated as case ii in Fig. 12
because the intersection is within object B. The intersection with object B in Fig. 7
would be treated as case i in Fig. 12. The reason for the wrong interpretation is that the
inside/outside test has been inconsistent. If we encounter the intersection leaving B first,
then we can argue that the intersection with A, encountered later, cannot be inside B
because we know that we have left B. The new algorithm either finds the intersection
with A before it leaves B, or else finds the intersection with B before it enters A. Either
way, a single intersection is found.

'~~_'. A : ' , B: .. _--

iv

423

___ ,A , ,
: '
, -~-:

Fig. 12, Four cases of intersection relations for A-B.

3.5 Validity Check

Because the ray tracer carries the logical inside/outside infonnation for every leaf node,
we no longer need to adjust intersection points to avoid spurious intersections with
reflected or transmitted rays. In the case of Fig. 8, the reflected ray, R, starts inside the
surface due to rounding errors, but it is still logically outside. The intersection of R
with S can be rejected because we are leaving a leaf node when we are already out of
it.

We say this intersection is invalid. We recognize it, unambiguously, because the
primitive intersection routine has recorded whether we are entering or leaving, and the
leaf node tells us whether we are currently IN or OUT. When an intersection is
rejected because it fails this validity check, the leaf node is not updated because there has
been no change in its status.

3.6 When multiple surfaces cannot be avoided

There is one remaining problem with coincident, transparent surfaces. After the first
intersection has been found, the intersection point may lie inside one or more additional
surfaces. If we simply cast the transmitted ray, it will intersect immediately with the
additional surfaces and these intersections will be behind the ray origin. See Fig. 13.

I

" _ r-. "I '" B C
R P --

A I
Fig. 13, Coincident surfaces. Incident ray, I, intersects with A, but'due to rounding errors the intersection,
p, is inside B and C, The refracted ray, R, makes valid intersections with Band C, but these are behind p.

424

There is no way to distinguish these surfaces from any others behind the ray origin so we
cannot permit general intersection points to be behind. The solution is to identify these
surfaces as we process the original ray.

Whenever the classifier returns BORDER x, y. we look ahead at the next intersection,
if any, on the list. We perform a geometrical inside/outside test to see whether the
current intersection point lies beyond the surface of the next intersection. If it does, then
we have detected a coincident surface, and we must pass through it before spawning the
transmitted ray. The correct action, in this case, is not clear. By definition, we are
passing through an infinitesimally thin surface. Should we generate another reflected
ray? In our present implementation, we compromise. The coincident surfaces are
crossed, in order, until either the ray is stopped by an opaque surface or the next surface
is beyond the original intersection point.

This creates a sequence of values, from the classifier, of the form:

BORDER al, a2 BORDER a2, a3 BORDER an-l, an

Of course, this list will be longer than two or three only in pathological cases. If all the
surfaces are transparent, or if some of the surfaces are subtracted, the incident ray will
continue and, in principle, we could generate reflections from each interface. What we
do at the moment, is to treat the whole sequence as a single intersection: BORDER a1,

an·

3.7 The Implementation

The ray tracer relies on being able to classify the origin of the ray with respect to all the
objects in the scene. This is done separately for each ray. Initially the ray is cast into the
scene and all intersection points with all objects are inserted into a list. This list is then
sorted by distance along the ray. To classify the eye point with respect to the primitives,
the IN or OUT status of each object with intersection points behind the eye is reversed
as the ray progresses through each of its intersection points up to the eye.

For primitives that are not closed, it is necessary to determine unambiguously what
happens at the first intersection point. The ray could be either entering or leaving the
object. We choose a reference point some large distance along the ray, before the
intersection point, and determine, numerically, whether the point is inside or outside the
primitive. Provided that the reference point is not close to any intersection point, this
result will be consistent.

Currently, we use a scheme of uniform space division (Fujimoto 1986) where the world
is divided into voxels that are either uniform or active. Uniform voxels are empty or
full of material belonging to only one leaf node. Active voxels contain boundaries, and
these are represented by a reduced CSG tree (Wyvill1986). Ghost surfaces, as in Fig. 4,
cannot contribute valid intersections, so a voxel containing only ghost surfaces would be
uniform. We traverse the voxels using a variant of Cleary's algorithm (Cleary 1988). If
our space division routines have done their job we can guarantee that every voxel

425

contains all the information necessary to represent the scene within the voxel. We can
now consider each voxel on its own, as if it were the whole scene being rendered. Every
time a ray enters a new voxel the ray is checked for intersections with all the primitives
and any valid intersection point within the voxel is a true intersection point between the
ray and scene.

4.0 Results

Figure 14 shows some simple objects ray traced without avoiding the rounding error
problems and a correct version using the new ray tracer. Each object has been added to
itself to create coincident surfaces. Some rays penetrate to the blue background, while
some find the correct surface but are then shadowed by the surface they have just
intersected.

Figure 15 shows a spherical lamina. A sphere has been subtracted from itself, creating
exactly matching surfaces, and a plane subtracted from the top. This produces coincident
intersection points wherever a ray strikes the sphere. The sorting routine always finds
the positive sphere first so the second intersection is still inside the subtracted one. The
effect of this is that the lamina is visible only from the outside. Although rays pass
through the back surface, it is visible in the reflective backplane.

Figure 16 is a simple scene that includes a transparent object and Fig. 17 shows a more
complicated scene containing over 900 primitive objects with reflection and texturing.

5.0 Discussion

It could be argued that we have used regular sets in that our classifier recognizes only
inside and outside points except for the intersection itself. We have disallowed coincident
surfaces as detected by each ray, but we are capable of detecting the surface of an object
subtracted from itself, although the resulting object has no thickness.

There are many places where the algorithm can be improved. For example, it is
probably not necessary to perform a complete, top down tree traversal at each
intersection. Only one surface has been intersected, and it should be possible to use this
information to find the change in current medium. The new ray tracer does a little more
work in finding intersections that get discarded after reflection. However, it avoids the
calculations associated with error limits and fudge factors, and where repeated
inside/outside tests used to be needed, it uses stored flags.

5.1 Conclusion

Scenes can be rendered directly from CSG models without using regularized operators
and without resorting to fudge factors to decide when boundaries coincide.

A practical version of the ray tracer works at similar speeds to a conventional algorithm
using error limits, in a system where space division is used.

Fig. 10. Computer generated design for
an eggcup turned from layered wood.

426

a

b

Fig. 14. (a) Errors produced by coincident surfaces,

Fig. 15. Spherical lamina with reflective
backplane. The object is invisible from the inside.

(b) The errors corrected with the exact ray tracer.

Fig. 16. Example with transparency.

Fig. 17. Masterpiece a complex design rendered with the new algorithm.

427

This approach should be particularly useful for building ray tracing hardware, because it
enables the full accuracy of the computer's number system to be used. With modem
workstations, there is little advantage in using reduced precision arithmetic, because the
floating point hardware returns full precision results more quickly than special software.
But a hardware ray tracer could gain some advantage by working in fixed point and
limited precision.

Acknowledgements

We wish to thank the other members of our graphics research group for proofreading
and help with bug fixes. Figure 1, The Rose, was designed by Stuart Smith and Fig. 17,
Masterpiece, by Craig McNaughton. This research has been funded by the University of
Otago. We are also grateful to Ecole Poly technique Federale de Lausanne where the final
copy and photographs were completed.

References

Amanatides J, Mitchell DP (1990) Some Regularization Problems in Ray Tracing, Proc.
Graphics Interface '90, 221-228.

Cleary JG, Wyvill G (1988) Analysis of an Algorithm for Fast Ray Tracing Using
Uniform Space Division, The Visual Computer 4(2): 65-83.

Fujimoto A, Tanaka T, Iwata K (1986) ARTS: Accelerated Ray-Tracing System, IEEE
Computer Graphics and Applications 6(4): 16-26.

Mantyla M (1988) An Introduction to Solid Modeling, Computer Science Press,
Rockville, MD.

Mortenson ME (1985) Geometric Modeling,Wiley, New York.
Muuss MJ, Butler LA (1990) Boolean Operations on Boundary Representation Solids

Using n-Manifold Geometry, Proc. Ausgraph '90,291-299.
Roth SD (1982) Ray Casting for Modeling Solids, Computer Graphics and Image

Processing 18(2): 109-144.
Salesin D, Stolfi J (1990) Rendering CSG Models with a ZZ-Buffer, Proc. SIGGRAPH

'90, Computer Graphics 24(4): 67- 76.
Segal M (1990) Using Tolerances to Guarantee Valid Polyhedral Modeling Results, Proc.

SIGGRAPH '90, Computer Graphics 24(4): 105-114.
Tilove RB (1980) Set Membership Classification: A Unified Approach to Geometric

Intersection Problems, IEEE Transactions on Graphics, <:-29, 10: 874-883.
Wyvill G, Sharp P (1988) Volume and Surface Properties in CSG, Proc. CGI '88, New

Trends in Computer Graphics, Springer-Verlag, 257-266.
Wyvill G, Kunii TL, Shirai Y (1986) Space Division for Ray Tracing in CSG, IEEE

Computer Graphics and Applications 6(4): 28-34.

428

Geoff Wyvill graduated in physics from
Jesus College, Oxford, and started working
with computers as a research technologist
with the British Petroleum Company. He
gained MSc and PhD degrees in computer
science from the University of Bradford
where he lectured in computer science from
1969 until 1978. He is currently senior
lecturer in computer science at the University
of Otago. He is on the editorial board of The
Visual Computer and is a member of
SIGGRAPH, ACM, CGS and NZCS.

Address: Department of Computer Science
University of Otago Box 56
Dunedin, New Zealand

Andrew Trotman is a graduate student at
Otago University. His research interests
include constructive solid geometry and
computer animation. He completed a BA
degree in computer science in 1988 and he is
a student member of ACM and SIGGRAPH.

Address: Department of Computer Science
University of Otago Box 56
Dunedin, New Zealand

