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Abstract 

We question the idea that regular sets and regularized operations are necessary in 
Constructive Solid Geometry. We argue that dangling points, lines and planes have their 
counterparts in the real world and their correct treatment leads to a more robust 
approach to solid modeling. 

New algorithms avoid the use of small corrections (fudge factors) to detect coincident 
surfaces. Instead, a strictly logical scheme preserves inside/outside information as a ray 
progresses through the environment. This maintains consistency at every stage and 
guarantees a correct interpretation of the model. 
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Introduction 

Constructive Solid Geometry (CSG) is usually regarded as mainly applicable to 
engineering problems and this view is reinforced by the choice of illustration one sees in 
textbooks and papers on the subject. In the preface to his book, Martti Mantyla (1988) 
observes, "In addition to design and manufacturing, solid modeling has a role in a 
number of other applications ... ". His examples, however, are all drawn from 
engineering. Mortensen (1985) shows some pictures of flames from particle systems but 
all of his solid modeling examples come from mechanical engineering. 

At the University of Otago, we use a CSG system for animation and as a testbed for 
research ideas in Computer Graphics. We render all our pictures by ray tracing. In this 
environment, we create solid models for clients, but the clients are animat9rs and artists 
rather than engineers (Fig. 1). For this reason, we are more interested in the colors and 
surface properties of models than most designers of CSG systems may be. There is 
relatively little literature on ray tracing of solid models. Mantyla lists over 100 
references to the CSG literature but he mentions only four papers relating to ray tracing. 
Yet this is an area where there are still significant problems to be solved. 
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Fig. 1. The Rose, CSG is not just for engineers. 

Constructive Solid Geometry (CSG) represents solids as sets of points in 3D space. But 
addition and subtraction of such sets can create dangling points, lines and surfaces with 
no thickness, so many systems use regularized sets (Tilove 1980). Regular sets, by 
definition, do not include surface points and from a purely mathematical standpoint, their 
use appears to solve the problem of generating a class of unwanted artifacts in CSG. 
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But from a practical point of view, there is something very unsatisfactory about the way 
in which they must be implemented. Ultimately, we decide whether a point is inside, 
outside or on the border of an object by means of a numerical comparison and this is 
subject to rounding errors. If you study the nature of these errors, it quickly becomes 
apparent that no form of number representation will eliminate them and systems that 
depend on recognizing border points, actually regard as equal, numbers that are closer 
than some small quantity - a fudge factor! 

Several recent papers, e.g. Segal (1990), have addressed this problem by specifying what 
the error or tolerance is and we have no argument with these methods in the context of 
constructing polyhedral models. But when ray tracing, it is not necessary to identify 
vertices as exactly lying on edges or faces, and it becomes possible to use the full 
accuracy of the number system. Mike Muuss (1990) has described a boundary structure 
to represent objects that are not 3-manifolds. So perhaps there is some interest in a move 
away from regular sets. 

The remainder of this paper is divided into four sections. First we describe regular sets, 
the reason for using them and the arguments against. Then we describe some of the 
problems inherent in rendering CSG by ray tracing. We present our new algorithm and 
show that it deals correctly with the problem cases and we conclude with a brief 
discussion and summary. 

1.0 Regular Sets 

The need for regular sets is described by Tilove (1980). Figure 2 shows two objects, A 
and B, that share a common edge. In 3D they share a face. The object, A - B, is 
identical to A except that a part of its surface is missing. The object, A - (A - B), is an 
infinitesimally thin surface only. The idea of regular sets is to throwaway all such 
surfaces and declare them, a-priori, to be not part of any object. Similarly, the object, 
(A - B) + (B - A), is almost the same as A + B. Only an infinitesimally thin interior 
surface is missing. The regularization routine should fill in this missing surface. 

A-B 

A - (A - B) (A - B) + (B - A) 

Fig. 2, Non regular sets. 
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Because objects of no thickness cannot exist in the real world, it is sometimes argued that 
the regularization of sets produces a more realistic model. However, there is a sense in 
which such objects do exist. Suppose, for example, we grind a steel plate flat on a 
surface grinder. Then we braze onto the surface, a small, flat piece of copper. If we 
attempt to grind the copper away without touching the steel, we will always leave a little 
behind. If we regrind the plate to the original dimensions, we will leave behind an area 
where there is some copper and some bare steel on the surface. The shapes of these areas 
will depend on the errors inherent in any machining operation. 

To understand the relevance of this example, we need to examine the errors inherent in a 
computer representation. To simplify the argument, we will assume that the numbers that 
represent our coordinate system are fixed point fractions. Then continuous space is 
represented by a finite grid of points and any position can only be represented by its 
nearest grid point. The use of floating point numbers does not change this argument. It 
merely complicates it because the grid no longer has a uniform spacing. If our surfaces 
are aligned with the coordinate axes, it becomes easy to detect coincidence. But when 
they are not, we get complications. 

Figure 3 shows the objects of Fig. 2 but in a different rotation and with an enlarged grid 
of representable points shown explicitly. Notice that you cannot place object B with its 
vertices on grid points so that its edge coincides with that of object A. If you place the 
objects as shown on the left, then some points close to the surface are clearly outside both 
A and B. If you place them as on the right, the vertices of B lie inside A. 

Fig. 3, Coincident surfaces. 

In this example, the sides of the two squares have been shown parallel. If the objects are 
represented by vertex positions, and general transformations are applied to these 
positions, then the sides or faces will not necessarily be parallel. In a case like that, 
coincident 'parallel' surfaces can be represented so that on one surface, points can be 
found that lie inside, outside or on the surface of the other object. 

2.0 Ray Tracing 

The principle of rendering a CSG model by ray tracing was described by Roth (1982). 
The intersections each ray makes with the primitive objects are found and these 
intersection points are ordered by distance from the ray's source. The section of ray 
between each pair of intersection points can be classified as inside or outside the object 
and the intersection point at the first inside/outside boundary is the correct one for that 
ray. 
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This process finds the correct surface points but can produce some strange effects when 
surfaces are coincident. Figure 4 shows the effect of what we call ghost surfaces. Two 
closed cylinders have been built by subtracting plane half spaces from cylindrical half 
spaces. Then the cylinders have been added to make a simple scene. The top surfaces of 
the two short cylinders happen to lie in the same plane. Consider what happens when a 
ray is directed at cylinder B. It intersects with two surfaces, the plane on top of A and 
the plane on top of B. Since these planes are identical, it should happen that the 
intersection points are the same. Suppose, the ray tracer happens to deal with the 
intersection with the surface on A first. The section of ray before the intersection is 
outside the object and the section of the ray after the intersection is inside. Thus, using 
Roth's rule, the intersection with the top plane of A can be wrongly identified as the 
correct intersection. If A and B have different colors, this will give a wrong result. 

Fig. 4, Ghost surfaces. The ray strikes the top plane of cylinder A and immediately enters B. This 
intersection can be identified as correct but it carries the color of A. 

The correct colors in cases like this can be found by using a more elaborate way to 
classify points with respect to objects (Wyvill 1988). This classification is not described 
in detail here, because the algorithm given in Section 3 supercedes it. 

Fig. 5, Two rays intersect a surface. Due to rounding errors, the intersection, p, with ray, A, lies inside the 
surface. The intersection, q, with ray, B, lies outside. 

When rounding errors are taken into account, other strange effects can occur. Figure 5 
shows two rays, A and B, directed at a plane surface. Representable points are shown by 
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dots. If the intersection routines find the nearest representable point to the ideal 
intersection, then the intersection, p, with A lies inside the surface while the intersection, 
q, with B lies outside the surface. This is the usual case and our algorithms must expect 
it. Notice that these errors are present even though the end points of the rays, and the 
vertices of the object fall exactly on representable points. 

A 

Fig. 6, CSG addition. The intersection of the ray with B is inside A and the intersection with A is inside B, 
so both are rejected. 

Suppose part of a model has genuinely coincident surfaces. This is shown in Fig. 6. Due 
to rounding errors, the intersection point of a ray with object A can be inside object B 
while the intersection with B is inside object A. In this case, the algorithm described by 
Wyvill (1988) fails. Both intersections are thrown away and the ray passes through the 
surface of the object. 

A similar effect can occur in CSG subtraction as shown in Fig. 7. Here the common 
intersection point is inside the subtracted object and outside the other object. Again, the 
intersection is missed. There are published algorithms that will not miss surfaces like 
this, but we know of none that, like Wyvill (1988), also guarantee the correct inheritance 
of color properties. . 

A 

--.- -.- - -' 

Fig. 7, CSG subtraction, A - B. The intersection of the ray with B is outside A and, therefore, discarded. 

But the intersection with A is inside B, so both are logically rejected. 

Rounding errors can produce strange effects in ray tracing, whether you are using a CSG 
model or not. In Fig. 8, a ray strikes a reflective surface. Because of rounding errors, 
the intersection point actually lies inside the surface. The reflected ray, therefore, 
strikes the same surface from inside. Similarly a transmitted ray can start from outside 
the surface and immediately intersect the same surface. We cannot simply ignore a 
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second intersection with the same surface, because there are cases where this does 
happen: reflections inside a spherical bubble for example. 

Fig. 8, Ray I intersects the surface, S. The intersection point is represented by p: the nearest grid point. 

Since p is actually inside S, the reflected ray, R, also intersects S. 

Most of these problems can be circumvented by introducing an error limit, E, within 
which unequal numbers are regarded as equal. A point is regarded as on a surface if it 
lies within E of the surface and systems that operate on regular sets use such a tolerance 
value to avoid inconsistencies. The idea is appealing. Floating point numbers can be 
represented to about twenty significant figures, while for engineering tolerances, six is 
plenty. If we set E to 10-16 units, it is vanishingly small compared to the dimensions of 
our model, yet enormous compared to the likely errors of computation. 

In the context of ray tracing, using the error factor, E, implies changing the way we test 
to see whether a point lies inside or outside a primitive object. We need to know, in 
addition, if it is close enough to the surface to be regarded as on the surface. A given 
ray is tested for intersection with the primitives and the intersections are stored in a list, 
ordered by distance along the ray from the ray origin. If two, or more of these 
intersection points lie within a distance E, they can be regarded as coincident and 
appropriate special action taken (Amanatides 1990). 

The problem of Fig. 8 is handled by shifting the intersection point by an amount, E, along 
the ray, so that the reflected ray starts on the correct side of the surface. Similarly, a 
transmitted ray, is started from a false position, E units along the ray and inside the 
surface. 

There are, however, a number of good reasons for not using an error limit in this way: 

1. It is logically unsound. We can predict the circumstances where near coincidence 
and rounding errors cause problems. We should address those problems directly. 

2. Sooner or later, ~ user will place two surfaces exactly E units apart. The result is that, 
due to rounding errors, some points will be recognized as on the surface while 
others will not. All of the original problems will reappear. 
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3. There are cases where ideal objects become very thin. Figure 9, for example, where 
two spheres are subtracted. Use of E can produce a hole in the top. This hole is 
incorrect and only caused by the use of E. Without an E there is no hole. 

4. Almost coincident surfaces occur in nature and produce the same effects (machining 
away the c.opper on the steel surface). If you put a red surface and a blue surface in 
the same place, the system might produce a random mixture .of these colors. It is 
much harder to explain why this happens when you deliberately put them E units 
apart. 

• 
Fig. 9, Object created by subtracting spheres (in cross-section). There is a single point of no thickness at 
the top. This means that there is a finite hole if a very thin surface is regarded as absent. 

3.0 The New Algorithms 

The basic idea behind our new algorithms is to keep track of inside/outside information 
by recording when it changes, i.e. at intersection points. To make this work, in practice, 
you have to deal with some special cases and trying to explain these makes the main ideas 
difficult to see. Therefore, we describe the principles first and the special cases 
afterwards 

3.1 Material Properties 

The motivation for our earlier paper (Wyvill 1988) was to be able to represent models 
such as the eggcup in Fig. 10. Layers of different material are added together to make a 
composite block of material and the final shape is carved from this block. The final 
pattern on the surface is produced by revealing areas of differently colored volumes of 
material within the block. If a CSG system allows union of sets, and if the internal colors 
of materials are regarded as important, then we need a rule to determine which color to 
use for a volume that is common to the components of a union. 

We avoid this ambiguity by using an asymmetric addition operator, +t, instead of set 
union. By definition: 

a +t b:: (a - b) + b 

This means that the priority of volume properties is implicitly defmed whenever objects 
are added together. We believe this system is easier to control than other systems such as 
Salesin's (1990) . 
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When dealing with transparent objects, things get more complicated. At inner surfaces, 
it is necessary to know the refractive index of the medium the ray is leaving as well as 
the one it is entering. The rules described in the next section derive this information, 
unambiguously, from the eSG tree. 

3.2 Point Classification 

The new algorithm needs to classify each intersection point with respect to a eSG tree. 
We describe the classifier for completeness, and to provide a context for the rest of the 
algorithm. The method of classification is not new. It is a minor extension of an 
algorithm previously published (Wyvill 1988). The result of the classification is a record 
that describes the state of the ray passing through the given point. The possible 
classifications are: 

• OUT 
• IN, medium 
• BORDER, from, to 

OUT means that the point is outside the object described by the given tree. IN means 
that it is inside. If it is inside, then medium is a pointer to a structure that describes the 
properties of the material surrounding the point. If the classification is BORDER, then 
it is accompanied by two values, from and to, that are pointers to the descriptions of 
the material that the ray is leaving and the material that the ray is entering. 

The simplest eSG tree of all is a leaf node that describes a single primitive object and its 
material properties. In our system, these are half spaces defined by functions (Wyvill 
1986). When a point is tested with respect to a primitive, the only possible values are 
IN and OUT. In the case of IN, medium is set to the appropriate material. The 
value BORDER is treated specially. It is assigned only to a point, with respect to a 
particular instance of a primitive, when that point is created as the result of an 
intersection test with the primitive. The primitive intersection function also finds the 
surface normal and determines whether the ray is entering or leaving the primitive. If 
the ray is entering the primitive, then to is set to the material of the primitive and from 
is set to empty. If the ray is leaving the primitive, then from is set to the material of 
the primitive and to is set to empty. 

Each intersection point is described by a structure that includes a pointer to the leaf 
node with which it was intersected. So, to classify an intersection point with respect to a 
leaf node, we first check to see if this is the particular leaf node for which the point has 
the property BORDER. If it is that node, then we have classified the point. Otherwise, 
we call the appropriate function to classify the point as IN or OUT. Notice that a point 
can be classified as BORDER with only one leaf node. 

To classify a point with respect to a general node of the eSG tree, we first classify the 
point (recursively) with respect to the sub-trees and then combine the classifications 
according to a set of rules that define the behaviour of that node. The tables below 
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describe these rules for the asymmetric addition node and the subtraction node. The 
special material empty is denoted by 0. 

+t I right node 
value IN,r OUT BORDER,c, d 

leftnod~ 
value 

if c = 0, BORDER, I, d 
IN, I IN,r IN, I if d = 0, BORDER, c, I 

else BORDER, c, d 

OUT IN,r OUT BORDER, c, d 

BORDER,a,b IN, r BORDER, a, b 

Table 1, Combination rules for asymmetric addition node 

- I right nodt 
valut 

leftnod~ 
IN,r OUT BORDER, c, d 

value 

if C =0, BORDER, l, 0 
IN,l OUT IN, 1 if d =0, BORDER, 0, 1 

else OUT 

OUT OUT OUT OUT 

BORDER,a,b OUT BORDER, a,b 

Table 2, Combination rules for subtraction node 

3.3 Inside / Outside Determination 

The problems described in Section 2 all have a root cause in that the state of 
inside/outside information has become inconsistent. In the real world, we cannot go 
from A to B without crossing the intervening space. But in the false world of computer 
representation, we allow a ray to proceed from outside an object to inside without going 
through an intersection. 

We can enforce consistency by insisting that, for each leaf node, the state of the ray, IN 
or OUT, can change only when an intersection has been found. In simple ray tracing, 
every primary ray emanates from an eyepoint and every secondary ray is spawned from 
an intersection point on an earlier ray. The rays, therefore, form a tree structure in the 
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scene, and it is all connected. Suppose we detennine the state, IN or OUT, of the 
eyepoint with respect to all the leaf nodes in the scene. As we traverse the graph 
represented by the rays, we update this infonnation when, and only when, a ray 
intersects the boundary of a primitive. When the classifier wants the status of a leaf 
node, it is found stored in the leaf node structure. Only the initial IN and OUT 
values need be detennined from the geometrical test. 

3.4 The Ray Tracer 

We find all the intersection points along the ray and order them by distance from the 
eye. Each intersection, in turn, is checked for validity (see below) and then classified 
with respect to the CSG tree, until one is found with the classification BORDER, x, y. 
This is the correct intersection point and the ray is crossing from medium, x into y. If 
x = y, the intersection can be discarded. 

As each intersection point is classified, its leaf node is updated because the ray has either 
entered or left so that further points along the ray will be classified correctly. 

Transmitted rays, after calculation of refraction direction, are spawned from the 
intersection point which will be regarded as inside the surface just intersected. Reflected 
and light-source-seeking rays are also spawned from the intersection point, but the leaf 
node has already been updated. This means that the reflected and light-seeking rays are, 
logically speaking, spawned from outside the surface. 

Let us see how this process handles each of the special cases. Firstly, ghost surfaces are 
eliminated by the ordered tree traversal performed by the classification routine. Figure 
11 shows the tree corresponding to the objects in Fig. 4. The ray shown at the top makes 
intersections with the top surfaces of A and B, but the classification process quickly 
eliminates the intersection with A because it is OUT with respect to the cylinder. 

In the case of coincident surfaces, we will have two (or more) intersections that are in 
the same place, or nearly the same place. Take, for example, the problem of Fig. 6. A 
single surface is intersected by a ray and the intersection point, p, lies inside the surface. 
Let us suppose that this surface represents the surface of A +t B, where the sub-objects 
A, B, share this surface. Because the intersection points are identical, the intersection 
with A is really inside B, but if we process the intersection with A first, we will be 
logically outside B because we have not yet crossed that boundary. The intersection with 
B is also inside A, but if we process B first, we will be logically outside A. In either 
case, the ray tracer takes the correct action and gives us a single, valid intersection. 
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Fig. 11, Elimination of ghost surfaces. 

If the surfaces of A and B are not quite parallel, the intersection with A can be inside 
or outside B, while the intersection with B can be inside or outside A. This gives four 
distinct cases which are handled consistently by the table. When the surfaces are exactly 
coincident, we will always strike the same surface first. Whether it is A or B will 
depend on the ordering of the CSG tree and the way our sorting algorithm handles 
identical points. When the surfaces are almost identical, rounding errors can result in 
some rays being identified as hitting A while some strike B. This is in accord with our 
physical example of grinding the steel and copper. In no case is an intersection missed. 

Figure 7 is more complicated. There are four distinct cases: 

Intersection with A outside B, intersection with B outside A. 
ii Intersection with A inside B, intersection with B inside A. 
iii Intersection with A inside B, intersection with B outside A. 
iv Intersection with A outside B, intersection with B inside A. 

It can be seen, from Fig. 12, that all four cases represent possible, legitimate solids. This 
means that ordinary inside/outside tests would inevitably lead to a wrong interpretation 
of Fig. 7. In Fig. 7, the intersection with object A would be treated as case ii in Fig. 12 
because the intersection is within object B. The intersection with object B in Fig. 7 
would be treated as case i in Fig. 12. The reason for the wrong interpretation is that the 
inside/outside test has been inconsistent. If we encounter the intersection leaving B first, 
then we can argue that the intersection with A, encountered later, cannot be inside B 
because we know that we have left B. The new algorithm either finds the intersection 
with A before it leaves B, or else finds the intersection with B before it enters A. Either 
way, a single intersection is found. 
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Fig. 12, Four cases of intersection relations for A-B. 

3.5 Validity Check 

Because the ray tracer carries the logical inside/outside infonnation for every leaf node, 
we no longer need to adjust intersection points to avoid spurious intersections with 
reflected or transmitted rays. In the case of Fig. 8, the reflected ray, R, starts inside the 
surface due to rounding errors, but it is still logically outside. The intersection of R 
with S can be rejected because we are leaving a leaf node when we are already out of 
it. 

We say this intersection is invalid. We recognize it, unambiguously, because the 
primitive intersection routine has recorded whether we are entering or leaving, and the 
leaf node tells us whether we are currently IN or OUT. When an intersection is 
rejected because it fails this validity check, the leaf node is not updated because there has 
been no change in its status. 

3.6 When multiple surfaces cannot be avoided 

There is one remaining problem with coincident, transparent surfaces. After the first 
intersection has been found, the intersection point may lie inside one or more additional 
surfaces. If we simply cast the transmitted ray, it will intersect immediately with the 
additional surfaces and these intersections will be behind the ray origin. See Fig. 13. 

I 

" _ r-. "I '" B C 
R P --

A I 
Fig. 13, Coincident surfaces. Incident ray, I, intersects with A, but'due to rounding errors the intersection, 
p, is inside B and C, The refracted ray, R, makes valid intersections with Band C, but these are behind p. 
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There is no way to distinguish these surfaces from any others behind the ray origin so we 
cannot permit general intersection points to be behind. The solution is to identify these 
surfaces as we process the original ray. 

Whenever the classifier returns BORDER x, y. we look ahead at the next intersection, 
if any, on the list. We perform a geometrical inside/outside test to see whether the 
current intersection point lies beyond the surface of the next intersection. If it does, then 
we have detected a coincident surface, and we must pass through it before spawning the 
transmitted ray. The correct action, in this case, is not clear. By definition, we are 
passing through an infinitesimally thin surface. Should we generate another reflected 
ray? In our present implementation, we compromise. The coincident surfaces are 
crossed, in order, until either the ray is stopped by an opaque surface or the next surface 
is beyond the original intersection point. 

This creates a sequence of values, from the classifier, of the form: 

BORDER al, a2 BORDER a2, a3 .... BORDER an-l, an 

Of course, this list will be longer than two or three only in pathological cases. If all the 
surfaces are transparent, or if some of the surfaces are subtracted, the incident ray will 
continue and, in principle, we could generate reflections from each interface. What we 
do at the moment, is to treat the whole sequence as a single intersection: BORDER a1, 

an· 

3.7 The Implementation 

The ray tracer relies on being able to classify the origin of the ray with respect to all the 
objects in the scene. This is done separately for each ray. Initially the ray is cast into the 
scene and all intersection points with all objects are inserted into a list. This list is then 
sorted by distance along the ray. To classify the eye point with respect to the primitives, 
the IN or OUT status of each object with intersection points behind the eye is reversed 
as the ray progresses through each of its intersection points up to the eye. 

For primitives that are not closed, it is necessary to determine unambiguously what 
happens at the first intersection point. The ray could be either entering or leaving the 
object. We choose a reference point some large distance along the ray, before the 
intersection point, and determine, numerically, whether the point is inside or outside the 
primitive. Provided that the reference point is not close to any intersection point, this 
result will be consistent. 

Currently, we use a scheme of uniform space division (Fujimoto 1986) where the world 
is divided into voxels that are either uniform or active. Uniform voxels are empty or 
full of material belonging to only one leaf node. Active voxels contain boundaries, and 
these are represented by a reduced CSG tree (Wyvill1986). Ghost surfaces, as in Fig. 4, 
cannot contribute valid intersections, so a voxel containing only ghost surfaces would be 
uniform. We traverse the voxels using a variant of Cleary's algorithm (Cleary 1988). If 
our space division routines have done their job we can guarantee that every voxel 
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contains all the information necessary to represent the scene within the voxel. We can 
now consider each voxel on its own, as if it were the whole scene being rendered. Every 
time a ray enters a new voxel the ray is checked for intersections with all the primitives 
and any valid intersection point within the voxel is a true intersection point between the 
ray and scene. 

4.0 Results 

Figure 14 shows some simple objects ray traced without avoiding the rounding error 
problems and a correct version using the new ray tracer. Each object has been added to 
itself to create coincident surfaces. Some rays penetrate to the blue background, while 
some find the correct surface but are then shadowed by the surface they have just 
intersected. 

Figure 15 shows a spherical lamina. A sphere has been subtracted from itself, creating 
exactly matching surfaces, and a plane subtracted from the top. This produces coincident 
intersection points wherever a ray strikes the sphere. The sorting routine always finds 
the positive sphere first so the second intersection is still inside the subtracted one. The 
effect of this is that the lamina is visible only from the outside. Although rays pass 
through the back surface, it is visible in the reflective backplane. 

Figure 16 is a simple scene that includes a transparent object and Fig. 17 shows a more 
complicated scene containing over 900 primitive objects with reflection and texturing. 

5.0 Discussion 

It could be argued that we have used regular sets in that our classifier recognizes only 
inside and outside points except for the intersection itself. We have disallowed coincident 
surfaces as detected by each ray, but we are capable of detecting the surface of an object 
subtracted from itself, although the resulting object has no thickness. 

There are many places where the algorithm can be improved. For example, it is 
probably not necessary to perform a complete, top down tree traversal at each 
intersection. Only one surface has been intersected, and it should be possible to use this 
information to find the change in current medium. The new ray tracer does a little more 
work in finding intersections that get discarded after reflection. However, it avoids the 
calculations associated with error limits and fudge factors, and where repeated 
inside/outside tests used to be needed, it uses stored flags. 

5.1 Conclusion 

Scenes can be rendered directly from CSG models without using regularized operators 
and without resorting to fudge factors to decide when boundaries coincide. 

A practical version of the ray tracer works at similar speeds to a conventional algorithm 
using error limits, in a system where space division is used. 



Fig. 10. Computer generated design for 
an eggcup turned from layered wood. 
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a 

b 

Fig. 14. (a) Errors produced by coincident surfaces, 

Fig. 15. Spherical lamina with reflective 
backplane. The object is invisible from the inside. 

(b) The errors corrected with the exact ray tracer. 

Fig. 16. Example with transparency. 

Fig. 17. Masterpiece a complex design rendered with the new algorithm. 
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This approach should be particularly useful for building ray tracing hardware, because it 
enables the full accuracy of the computer's number system to be used. With modem 
workstations, there is little advantage in using reduced precision arithmetic, because the 
floating point hardware returns full precision results more quickly than special software. 
But a hardware ray tracer could gain some advantage by working in fixed point and 
limited precision. 
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