g

4
sl

S

COPYRIGHT © 1979 by
Technical Systems Consuliants, Inc.
P.Ce Box 2570
West Lafayette, Indizna 47906
. Al Rights Reserved

1#

Ze

Debug Tutorial 1

1. Introduction 1

il. The SimuTated Computer 1
TII. Whats in Memory? 3

IV. Simulating the Program 6
V. Breakpointing the Program 7
V1. Advanced Breakpoints 9
Vil. Protect Your Memory 1l

.¥11l. Trapping Those Bugs 13-

1%, And There is Still More! 14

Command Descriptions 15
1. Introduction 15

1. General System Contéo? 15 -

111, Memory Commands 20

IV. Simulation Control- 22
V. Breakpoints 25
V1. Memory Protection 28

. VII. Execution Traps 30

~ YITL. Interrupt Control 32

3.
de
5.
6«

7.

Commaﬁd Summary 35
Message Descriptions, 37
Getting Debug Running " 39

EFxample of Use 41 .
f. Sample Program Source 41 -
1I. Sample Debug Session 42

Adapting to Your System 47

I. 1/0 References 47

II1. 1/0 Related Storage 47

111. Stack Pointer References 48
I¥. Interrupt Vectors 48

V. Saving the Altered Program 48

SARE

Tahle of Contents

3

A

Preface

“The TSC 6809 Debug Package is a powerful tool for assembler Tanguage
program debugaing. It offers the power and flexibitity of an expensive
hardware emulator at only a very small fraction ef the cost! Used with
care, this package will save many hours when debugging programs.

entire user's manual be read before
The 'Tutorial® is written to provide a
fairly complete dintroduction to the Debug Package, while the ‘Command
Descriptions’ is a complete and concise description of all Debug features
and commands. Consult 'Getting Debug Running' for details on how to get
the program started. Working through the example given in ‘Example of
yse' is a good place to start once the manual has heen read.

It is recommended that the
attempting any serious debugging.

L SV

s A el e R

Debug Tutorial

I. Introduction

Program debugging s wusually thought of as work. 1% <hould be
thought of as an arte There is no reason for a lot of crying while
attempting to make & new program do what was intended. This i cﬂly frue,
however, 1f the program was designed with some forethought and planning.
Computer programs are executed in a logical, step by step, fashion. This
is the approach both program writing AND debugging should take. So marny

Ctimes a programmer will spend hundreds of hours, carefully planning the

fiow of a new program but spend only a few minutes thought on a debugging
approach. The debugging s usually attempted in some haphazard, keep your
fingers crossed, methoed. Sometimes this works and sometimes it does not,
but in most cases, valuable time is wasted.

By using.a debugying tool and by using some logical thinking, program
debugging can become very straight forward and sometimes even Fun! The
purpose of this tutorial is to introduce the reader te the capabilities of
the TSC 6809 Debug Package and offer some suggestions on how to tackle
those program bugs. The following sections give a more detailed
daescription of its capabilities. : ~

I1. The Simulated Computer

The TSC 6809 Debug Package is more than the name may imply. It s,
in fact, & complete 6809 simulator. A computer simulator is a proaram
which when run, behaves exactly Vike the computer it is simulating. Given
680% machine language, the simulator will perform the instructions as does
the actual 6809 CPU. There are two major differences, one being an
advantage, the second being a disadvantage. First for the good news. The
simulator has the ability to keep close account of all dinternal actions.
For example, any illegal opcodes are quickly detected and reported. Such

~things as stack overfiow and underflow are also easily checked. Any byte

of memory may have an assigned protection type such as write protection.
General conditions may also be spotted such as the occurrence of a
transfer of address type dnstruction. Overall, the simulator can keep
close watch over the executing program and detect any peculiarities.

This all sounds great, but as stated before, there is a disadvantage
in the simulator, namely speed. The simulated program runs somewhere
between 200 and 300 times sTower than a real 6809 CPU. This means that
real~-time dependent code may not be simulated. This §s not - a serjous
drawback since “less than one percent of all computer programs are real
time dependent.

. =

TSC 6809 Debug Package

“F

The 680% simulator incorporated in the TSC 6809 Debuy Package

supports all of the 6809 instructions. A1l of the user registers are also .

provided (CC, A, B, DP, X, Y, U, S, and PC}. To examine the contents of
these registers it is an?y naa.ssary ta type R followed by & carriage
peturn. This s assuming the Debug Package is veady to work indiceted by
the two asterisk prompt ("**"}. Typing the R command will cause the
debugger to display a line containing all register names followed by their
contents in hex. At the end of the Tine is the instruction fo which the
program counter {P-register) curvently points, and it is displayed in
disassembled form (standard Motorola mnemonics). A nonstandard vregister
{¢ also displayed, the K register. This register’s value represents the
subroutine nest depth. Each time a subroutine is called, an interrupt
eceurs, or the program counter is pushed on to the system stack, its value
js incremented; and each time a return Trom subroutine or vreturn from
interrupt s executed, or the program counter is pulled from the system
stack, its value is decremented. The content of any of the displayed
registers may also be set by using the SET command. For example:

**SET,P=100, A=F 3

will set the value of the PC to hex 100 and the value of the A register to
hex F3. There are several other registers end states of the simulated
machine. These c¢an be viewed by typing MACH. The items displayed with
this command are primarily the states of various traps which will be
described a Tittle later. :

There are several other internal . machine variables -which may be
pavily examined. One of these is the content of the system stack. Typing
STACY will display the top several bytes of the system stack. If more
stack content is desired, simply type the number of items desiréd after
the command.)

“FSTACK, 15

This will display the top 15 bytes of the stack. Note that e comma was
whed as a separator in the command Tine. It will be used in all examples
tn {his manual but a space is also acceptable and sometimes easier to
type. Another command which references the stack is the RET command. This
witl print the top two bytes of the stack as an address and represents ime
?ﬁtusn address if currently in a subroutine.

The simulated machine alwdys Keeps irack of where it has been and how
wurh time was spent there. The machine “states counter" is used to tally

the total number of machine states or cycles used so far by the executing
srocram, Fach 6809 instruction requires a certain number of machine
tyeles to execute. If the CPU is running at 1 megahertz, each machine
state {5 equivalent to 1 wmicrosecond.. The machine states counter s
capable of counting up to 99,999,999 cycles, or roughly 99.99 seconds of
&tual program execution t}m& Th%s counter is useful for defermining the
“Racl execution time of a routine. '

Y

o

<

TSC 6809 Debug Package

The TRAIL command will print the address of the last transfer type
tnstruction. A transfer of address instruction is one which causes the CPU
to change its normal course of instruction execution. Hormally
instructions are executed in & sequential fashion, stepping through memory
sequentially. A JMP instruction for example will cause the next
instruction to be fetched from the address specified in the instruction,
rather than from the next sequential address. In effect, we have a

.traﬁsfﬁr of address. The TRAIL command will print the Tocation of the

Jast transfer type instruction that was executed. This is very handy in
determining what caused a program to end up in memory where it did.

The <imulated machine is capable of running in two different modes.
These are referenced as mode 1 and mode O. In mode 1 (the default wmoded,
all checking and bookkeeping 1is performed. In mode O, several of the
features are turned off in order to improve the speed performance of the
cimulator. It is recommended that mode 1 always be used since it does the
most work for you and will catch more errors.

111. Whats in Memory?

How that the simulated CPU has been deseribed we need to look at
memory. The TSC 6809 Debug Package offers several ways of examining the
contents of memory locations, as well as altering them. The simplest form
is the MCM command, or M for short. Typing M followed by an address will

display that byte of memory, For example:

k100
100 CE

chows that memory location hex 100 contains a hex CE. At this time
ceveral choices are at hand. If all you wanted to do was check the
contents of location 100, simply type a carriace return and the debug
prompt will be issued. 1f you want to change the contents of 100, simply
type the new value followed by a “"space”. The “space” tells the debugger
that the new value is ready to be entered. It is only necessary to type
the significant digits of the new value to be entered, For examplie, i &
was to be entered, simply type 6 followed by a space. It should be: noted
that only the last two digits will be used so if HC23AY is typed, "3AY
will get entered. If zero is to be entered, simply type a space. After
the new value 1is entered, the next sequential memory Tecation will be
displayed. Any time a non-hex character is typed (with the exception of

space), one of two actions will occur. First if the character is a "line

feed", the previous location will be displayed, with the currvent location
Teft unchanged. If the character is any other non-hex character, the next
Tocation will be displayed leaving the current Tecation unchanged. An
example will clarify the M command's use. ' ot '
*%4 100

0100 CE .

0101 34 46

pi0g 4p -

Location $100 was left unaltered, while Tocation $101 was changed from &

T$C 6809 Debug Package ‘ L e

@ .
¥

430 to $46. Finally this mode was terminated on the next Tinme by typing a
reture ‘ .

Many times while debugging it is desirable to examine a large block
of memory. The DUMP command is used for exactly that. This command will
display 16 1lines of data, 16 bytes per line, for 2 specified memory
region. Each byte is displayed as & hex value &5 well as its ASCII
equivatent. A1l control characters {those bytes having a value Tess than
20 hex) are displayed as an underscore character "M, To display 256
bytes starting at memory location $1000, the following command should be

typed:
**DUMP, 1000 -

At the end of the dumped block, the progrem will stop and wait for &
character ta be typed. Typing an "“F" will move forward in memory,
printing the next sequential 256 bytes. In this exemple, typing an F
would display the block starting at $1100. It is also possible to display
the previous block of 256 bytes by typing a "' for backward movement. A
carriage return will cause the debugger to regain contre? and the prompt
will be issued. Any other characters will be ignored. 1t should be noted
that any time the debugger is displaying data on the terminal, the display
may be stopped at the end of the line by typing an "escape" characters
gnce stopped, another “"escape” will resume the display, while a “retura®
will give control back to the debugger.

Another useful memory interrogation command is the FIND command which

is used to find a specific string of bytes or’ characters in & .selected

biock of memory. As an example, suppose there was a jump to subroutine
instruction somewhere in your program. It is known that the code is BD 34
00, and that it 1is somewhere between Jocations $100 and $300. The
following command line will find it. S

#£[ND, 100, 300,B0,34,00

This tells the debugger to Took between memory tocations hex 100 and 300
for the hex string “BD3400". Al memory Tocations which contain this
string will be displayed on the terminal. It is alsc possible to search
for an ASCII string. Suppose it was necessary o find the character
string "CRROR 3" in memory. It should be somewhere between Tocations $200

and $1000. This can be done in the following way:
*RFIRD, 200, 1000, "ERROR 3
The double quote character tells the FIND command that the following

characters are to be considercd ASCII charecters instead of neXe
Otherwise the command works as described above.

T5C 6809 Debuy Package

S0 far the memory commands described have been oriented toward hex
and ASCIT walues. HMany times during debugoing it is necessary to decode
these hex values into assembler language instructions. The 8IS command
does exactly that! This command is a compiete program disassembler which
allows the user to examine the contents of memory in a higher level form.
Fach memory Tlocation in a specified block will be printed as address,

“followed by the opcode mnemonic and addressing mode. - Standavd HMotorola

mnemonics and addressing mode designators are used. (Exceptions are the
PSHS, PSHU, PULS, and PULU instructions which are display as immediale
mode instructions to saver space on the lime during tracing.) To use the
disassembler, simply type the command name (DIS), followed by two address
boundaries, For example, to disassemble the memory range between
locations 100 and 108, type the following. '

v -

**[315,100,108
g100 LDA §32
0102 STA 30240
0105 BRE §0121
(107 DECA

0108 STA [§2,%]

pemember that at any time the display is being produced, the "escape® key

" may be typed to temporarily hait the output.

Some instructions have two legitimate symbolic mnemonics, namely:
LLSL/ASL, BCS/BLO, LBCS/LBLO, BCC/BHS, LBCC/LBHS. With these intructions,
the first of each of the above pairs is the mnemonic displayed by the
dicassembler. How that we can examine memory in a higher Tlevel form it
would be nice if we could alter it in the same way, that is, using
assembler language mnemonics. The ASM command does exactly thatt It acts
as a line at a time assembler, allowing standard mnemonics and addressing
modes to be typed, while the corresponding hex values are automatically
inserted inte memory. To start this process simply type the command name
(ASH) followed by the address where the code should be placed. The
debugger will respond by printing the address of the location specified
followed by a space. At this time, simply type the desired instructions,
following each with a carriage return. The next available address will
then be printed and assembly can continue. Typing a carriage return in
response 1o the address prompt will exit this mode of operation. To show
ghe warkings of this command, some code will be assembled at Tlocation
YAUIN |

*EASH, 200

0200 LDA #10
0202 LDB $10
0204 PSHS A,B
0206 LDA #'H
G200 STA O, ¥+
0704 LERA $3000
020D

o A

T Hote that numeric values are interpreted as decima) wnless preceded by a

doliar sign {$) to designate hex. It is also possible to enter an ASCH

#

B

s

TSC 6809 Debug Package
constant by preceding 1t with 2 single quote {*}.

V. Simulating the Progran

Program simulation s very simple. If the test program starts at
$100, simply type START,100 to start the simulation process. The program
will run exactly as the CPU would run it, just sTower. The START command
clears several of the machine conditions such as the states counter. To
start a program where it left off, the GO commarnd can be used. This will
cause the progrem to start nxenut?Un at the Tocatton to which the program
counter {P-register) points. No states will be cleared. :

A very valuable feature of the simulator is the "trace wmode". VWhen
trace s enabled, @ vregister dump {exactly like that produced by the R
command} will be displayed after each instruction 1is executed. The
simutation may be temporarily halted by typing an "escape® character
anytime during the tracing cperation. The simulation may also be stopped
by typing a "eontrel €". This will cause the debwg prompt to be reissued.
To enabie the trace mode use the TRACE command.

— *ETRACE=10

This Tine will cause the debugger to trace all instructions which are in a

subroutine nest Tlevel of 9 or Tower. The number in the command Tine

specifies the nest Jevel where tracing should be disabled. This allows

only the outermost program structure to be traced if desired, while the .
deeper subroutines will be simulated without the Lracingﬁ To ui¢ab?e the

trace, use a count of zero {e.g. TRACE=0}.

There are several other methods of starting program simulation. One

15 the SIM command. This command will allow the simuiation of a specified

umber of instructions. Tracing 1s disabled during the execution of this
commanau

*SIM, 100

This Tine will -cause 100 ipstructions to be simulated starting at the
address to which the program counter points. The TSIM command is
tdentical to the SIM command except trace is avtomatically set to 255
during the execution of the command,

It"is often desirable to step through the execution of a program, one
instruction at a time. The STEP command will start simulation at the
instroction to which the program counter p@fﬂts, execute a specificed
nunher of instructions, print a register dump, and then wait for input.
At this time, a space will repeat the process, whz!v a return w1]1 refurn
coniroi back to the debugger. The usuzl method of operation 1is "singie®
step which wiil execute one iastruction, then dump the registers. This
mode can be entered by: -)

e i A

y

g

TSE 6809 Debun Packaoe

*ESTEP

Mu?izpie instructions can be executed between pagister dumps by specifying
a count. For exampie; :

*ESTEP 25

Cwill cause 2% fnstrections to be simulated st g time. The step mode s a

very powerful method for cliosely following the {low of a program.

During program execution, the simulator keeps track of the last 256
instructions executed.s I & program ever goes ¢ff on its own, ending up
in meémory where 1% should not, theé PAST command can be used to examine the

instructions executed to get it there. Typing the command,

#*PAST, 20

will display the addresses and mwnemonic instructions of the . last 20
opeodes executead. - '

V. Breakpointing the Program

So far, methods have been described which allow all or a certain
number of instructions fo be simulated. HMost of the time, the number of
instructions to a certain.point in the program is not known. It would be
helpful 1f & break in the program simulation could be specified o take
place at a particular peint in the program, or fin other words,
breakpoints. A brea%po1nt is a mechanism for stopping the execution at a
specified eaddress in the program. As an example, to set a breakpoint at
Tocation $23A, use the fel]owzng command.

‘**B@ZBA

As the program executes, any time location $234 is reached, simulation

Will stop and the registers witl be dumped to the terminal. After the
program has stopped, typing a "6" will restart execution, starting at
address $234 {the breakpoint will be temporarily ignored). 1t should be

oted that the method used to create the breakpoint does not alter the
contents of memory in any way. This means that after setting a
breakpoint, the contents of memory at the breakpoint location will be

‘unchanged. This allews breakpoints to be set in ROM as well as RAMI

In the above example, the breskpoint caused twe actions to take
place. One was printing the registers, the other was stopping program
simulation. These acticns are the ones performed by most debugging
systems. The TSC 6803 Debug Package allows six .other actions to be
performed upon the exe sui?cﬁ of a brﬁdkpesﬂte ATist of all 8 possible

Cactions follow:

£
s

15C 6809 Debug Package

Re.oPrint register contents
TeeoEnable the trace function
UoosDisable trace (untrace)
Lo Zero the states counter
Ho. Histogram counter

« Moo Print a message

¢ JussJdump to specified address
B. S...Stop simulation

= L

)

LI

The first breskpoint example shown defaulted to R and S type actions since
noite were specified. The 7 action zeroes the machine states counter.
This 18 useful for program timing. For an example, the states counteyr may
be zeroed upon entry to a subroutine and a stop type breakpoint set at the
exit point of the routine. By using the STATES command after the program

Cstops, the exact number of executed machine states for that routine will

be displayed.

The T and U actions allow the trace mode to be enabled and disabled
at selected points in a program. When enabled, trace will be set to level
255. Many times, tracing is only desired during one voutine or selected
portion of the program. These acticns will permit this sort of program
tracing. A few examples will demonstrate action type breakpoinis.

RRB L RZBLOOO
**B, TEALG

The first command will set a breakpoint at Tocation hex 1000 which when.
executed will print the registers and zero the states counter. The
program will then continue since a stop {S) ection was not specified. The
second example will cause trace to be turned on at location hex AlG.

Another action is the histogram (H). A histogram counter counts the
number of times the instruction at that address has been executed. This
is useful for determining "hot spots” or sections of programs which are
executed very frequently. By setting a histogram breekpoint at the first
instruction of each subroutine in @ program, it is possible to ¥ind out
exactly how many times each routine was called. As an example, suppose
there were three subroutines in a program, and they were Tocated at $100,
$123, and S$1AO0. To set histogram counters at these locations, type the
following commands: '

#+B HE100
L RIOVE
4 HOLAC

CAfter simulating the progrem, typing HIST will display the totals of the

counters at ' each address. This command is used to examine the histogram
counters at any time. The CLH command is- used to clear- the histogram
counteprs,

*#CLI, 100
*CLH

fhe Tirst comeand will clear (set to zero) the value of the histogram

cn.

A R SRR i

¥

3oy

TSC 6809 Debuy Package

counter at Tlocation 100. The second commind will zero all of the
counters. The histogram commands allow a very complete profiling of a
program; letting the user “fipe tune" it for maximum speed.

The remaining two action codes arve special purpose. One permits a
cplocted message to be printed as the action, the second aliows transfer
of control to a specified address (like a JHP instruction}.

4 ME325,5UB 1
R 3270, 1000

The first Tine will print the message "SUB 1" each time the instruction at
$325 is executed. The second command will cause the Jinstruction at
address hex 1000 to be the next inetruction executed. The instruction at
27C will not be executed! ,

Any combination of acticn codes may be 1isted for.a'breakpointg They
are executed in the order they appear in the above Jist. For example,

w4 TRZE300

will cause the registers to be displayed (R}, trace to be enabled (T}, and
the states counter to be zeroed (Z), in that order. This ordering may be
important, for in the actions "RSJ", the stop {3 will never get executed
cince the J transfers control to another address. The M, J, and H type of
breakpoints are mutually exclusive. Only one of these may appear 1in any
one breakpoint statement. -

VI. Advanced Breakpoints

Programs containing Tecps or recursion are often difficult teo
breakpoint since one particular section of code may be called thousands,
or even millions of times. As an example, suppose there is a toop in the
program being debugged, and it 1s necessary to examine the contents of the

"X register after the GOGth time through the toop. One way is to set a
" breakpoini at the desired instruction and start the program simulating,

Every time the program halts at the breskpeint, type G to restart it.

- Repeat this process 600 times and you can examine X. This 1is very

time~consuming. The TSC - 6809 Debug Package allows a pass counter to bhe
associated with a breakpoint. This count determines how many times the

“instruction at the address of the breckpoint shewld be executed before the

actions specified should be performed. In the gbove exampie, assuming the
instruction to .be breakpointed i$ at address 300, the following will do
exactly what we want. '
**RE300,5600
or
4B SROI00,>600

Both commands are identical since the first defauits to SR actions. The

~ W34 4q the pass count modifier and should be rzad as “after®. The result

of this command is to stop and print the registers on the ianstruction at
Tocation 300, after 600 times through it. Unce the count reaches 600 {or

R e

TSC 6809 Debug Package

R 3

whatever value was set), the breakpoint actions will always ocCurs A

second similar type of pass count uses a “<" for a modifier and shoultd be |
read as "before®. This is used to create & temporary breakpoint.

#*5 RE300, <100

This command will set up a breakpoint at 300 which will print the
registers for the first 100 times through. After the 100th time, the
hreakpoint will be cleared and no Tonger function. In summary, the pass
count value associated with @ breekpoint is decremented each time the
snstruction at the specified address is executed. If the wmodifier s @
Byt no-oactions will be performed until "after” the count has reached
serc. With the "<" modifier, actions are only performed “hefore” the count
roaches zero, and once it 1§ zero, the breakpoint is clesred. ... = & -

In the above example it was decided that the program should be
stopped after 600 times through the leop. While debugging Toops, it is
not always possible to determine an exact number of times to execute the
joop before it should be stopped. Often it is desirable to siop on a
certain condition, such as the contents of a register or the state of a
particular memory Tlocation. Conditional expressions are allowed in
breskpoint definitions and provide a great deal of power. The conditional
can he determined on the contents of a selected register (cc, A, B, DP, X,
Y, U, S, N, or P} being equal (or not equal) to & specified value. A
particular memory location may also be tested for zerc or not zevo.
Following are a fow exampies. '

*RRE1O00, IF A=3F
*43 RO320,1F Bl=10
wxf TOGAT, IF $20-0

The “TFY statement designates the conditional part of the breakpoint
definition. The first example will stop and print the registers at
Tocation hex 1000 but only when the value in the A accumulator is hex 3F.
The second example will print the registers at 320 only if the contents of
the B register is not hex 10 ("!=" is to be read as “not eguals®}. The
Tast exampie will enable the trace mode -at Tocation-6A7 if the contents af
memory location hex 20 is zero. The dollar sign "% is5 used to designate
a memory veference and not a hex value (the value s always interpreted as
hex). The value on the right of the equals sign must always be zero when
a memory reference has been designated.

“The above breakpoint features may be combined in a variety of ways to

produce a Yarge variety of breakpoint combinations. As an example:

*48, 1701000, >100, IF X=100

will cause trace to be enabled and the states counter to be zerced, after
executing the instruction at hex 1000, 100 times, but then only if the
vatue of the index register is $100. It should be noted that the H, 14,
and J action codes will not allow & conditional expression os part of the.
breakpoint definition. o T

«10-

Tse 6apt Debug Package

Gnee breakpoints are set it is poseiiy, to examine the location of
them a5 well as remove them. To check the Tocations of breakpoints, use
the BP command. C

EERRET00

w*EP L 100-500
The first Tine will print the Jlocation ¢ " ach one
followed by a Yist of its action Cﬁd“ﬁafﬁgd;;ggbggﬁinggigégﬁgﬁé;Dna§g
are displayed. The second example will ”iip1aylthé actiog codes of the
breskpoint at location hex 100 (iF on “ffsts); o O and 1ine
will display all breakpoints between Tocat iy, 100 and 500 iﬁc?usivea The
CLB command s similar in syntax by 15" used to Eieﬁr OF remove a
breakpoint. CLBE by itself will clear all breakpoints., If it is Tollowed
by an address, the breakpoint at that ,idress will be removed. If two
a?dres;es are specified, then all breakpoines 4n their range will be
cleared. _

wﬁfle debggging very large progrivs, 5t may beceme quite time
consuming to simulate the program up t0 4 fngired address. For example, &
program which requires @ minute to execute iy yeal time may require over
an hour if simulated. To get around thig hroh?ém it is possible to set a
"real time" breakpoint. This is entirely difrorent from the previously
described breakpoints in that it does e fy the contents of memory (by
substituting a JMP instruction) and no pase caﬁntiﬁg or conditionals are
permitted. The only action performed i LO‘S?Gﬁ and print the registers.
An example of use follows: _ i -)

4T, 5A00

This command will cause the CPU to start wyecyring the program (NOT the
simulator}) at "the current address of (p." peoeram counter. When the
program reaches the specified address (SRUQ) the program will stop, print
the registers, and restore the contents ue pam at that location Ergm@ve
the breakpoint). Since the program is befny executod in real time and not
being simulated, no other breakpoints, 111nga] condition checking, states
counting, or record keeping is performed. {hi¢ type of execution As not
recommended for this reason and should snjy pe used where the simulation
time gets tremendously long. o ” '

-VII. Protect Your Memory

Perhaps .the most aggravaling aspecl of jrogram debugging s having
your program destroy itself in wmemory, 7,4 many times, programs e
avay”, writing garbage in memory, usually eyuetiy where it is not wantede
In these instances, it wguld be nice to b able to "write protect” memory,
or at least certain portions of it. The T4¢ gapo Debuyg Package will allow
exactiy that! %n fack, eany section gf omory ri@ht dogn‘to‘a single
byte, may be write, execute, menory, or oimulate protected! Write
- protecting memovy will prohibit any $tGvae op writes into it. Execute
protection prohibits opcodes from being feiiiod from wemory. In other
words, the program counter {PC} will .0 pe pﬂrmiéted to pdiﬂt to a

w1lw

TSC 680% Debug Package

Tocation of memory which s execute protected. Hemory protect is a brute
force type of protention. By memory protecting a region, you are 1in
effect saving that no memory exists in this regies and that nothing should
be allowed to reference it in any way. Any memory referenced in confiict
Cwith its protection will cause the simulation to stop and an- appropriate
message will be printed. Finally, simulate protection is stightly
different from the rest. It is used-to tell the simulator to execute any
code in a simulate protected region in reel time, or in other words, not
simulated. A restriction requires the code in @ simulate protected region
to be called as a subroutine {JSR, LBSR, or ESR) from the non-simujate
protected code. This is very convenient for 1/0 operations. A1l I/0
routines can he simulate protected (such as terminal and disk routines)
allowing them to be executed by the CPU {resl time) and not the simulator.
T+ i often convenient to simulate protect the entire region of memory
containing the monitor and/or operating system simce this code is known
functional, Keep in mind that code in simulate grotected memory may only
he accessed via a subroutine calls ‘

B B R 5 D R o £ 0 S SR T

The command used to set protection is PROT. A few examples will
demonstrate its use. '

**PROT, 100-3FF, X
#XPROT, 2£0, U
®*PROT, 500-6FF , M, 1200~1FFF, W

The first example will execute {X) protect the wmemory between Tocations
$100 and $3FF. The second Tine write protects (W) location $2E0. The
Tast example will memory protect (M) Yocations $500 through $6FF and write
protect $1200 through $1FFF. There are some guidelines to follow when
protecting memory. Memory protection should be used on all sections of
memary not referenced or used by the progrem being debugged, especially
the ares of memory containing the Debug Package. This will keep & runaway
program from clobbering something it should not. Sections of memory which
are used for register storage or flags should be execute protected.
Femory containing the actual program code should be write protected for
obvious reasons. Finally, as mentioned above, the memory locations where
the monitor and/or operating system reside should be simulate protected.

G

o

Once the protection has been defined it may be checked by wusing the
- BOUNDS command. - This command will allow the examination of the boundaries
of each type of proteciion. Fither 211 types or selected ones may be
displayed.) _ :

“FROUNDS
®EBOUNDS W, M ‘

The first example will display a1l types while the second will show only
Lhe defined boundaries for write and memory protection. Memory protection
can be cieared in a similar fashion. _ _

HCLP
FECLP X,

T hy - S ey s . . . - e
the first command will clear ali protection while the second will only

R
H
-y
S
¥

i AT AR >

A

5%

7 -t

TSC 6809 Debug Package

- g -

clear the defined execute and write protected regions.

VIIl. Trapping Those.Bugs

The previously described breakpeinting feeture allows programs to be
stopped at specific locations and en specific conditions. It is often
desirable to "trap” a program on some general cendition such as every time
a transter of address instruction is encountered. The memory protection
described ahove is a form of trap in that the program will stop if a
protection violation is detected (e.g. writing into write protected
memory}. There is address information asscociated with this -protection
which makes 4§t different from the general traps available in the Debug
Package. The general traps cause programs to stop on a general condition
which is not address dependent.

One of these traps 1is the illegal opcode trap which is always
enabled. Any time "an illegal opcode is encountered during the course of
program simulation, the program will stop and report its occurrence. A
second, always enabied trap will stop the program if an RTS instruction is
encountered and the current nest level is C.

There are several wuser controlled traps which may be enabled and
disabled at wili. The transfer trep is enabled with the XFR command.
When enabled, the program will stop each time a transfer of address 1is
encountered. These instructions are JMP, LBRA, BRA, and all conditional.
branches such as BCC. The subroutine calls and returns are not trapped
out. -)

X R=0N
*%YFR=0FF

These twh commands will enable and disable this trap respectively. Once a
program has stopped because of a transfer trap, typing G will restart 1L,
allowing the current transfer to be executed. This is very useful for
quickly following the major flow of @ program. Another one of the general
traps allows halting the program if the subroutine nest counts reaches &

 specified Tevel.

wHENEST=20

This will cause a trap if the nest level ever reaches 20. To disable the
nest trap, use NEST=0. . .

. The Tast general trap to be discussed is the ITRAP. This command
allows activation of the interrupt trap and will cause the simulating
program to stop if an interrupt type instruction is encountered (SHI,
SWiz, SWI3, RTI, SYNC, and CWAI). Since these instructions are not used
in the majority of programs it is a good idea to wuse this feature. An
exampie will demonstrate s use. S

.

] e

TSC 6809 Debug Package

«5]TRAP=ON
#R]TRAP=OF F

These twe commands will enable and disable the dinterrupt trap
respectively. '

1¥. And Th@re is Still Morel

There are still many undescribed features of the TSC 6809 Bebug

Package. Ume of these is the handy 1ittTe CALC command which acts as a hex

- ' caleulator. Typing CALC followed by a rvelurn will cause the debugger to

' output an equals sign (=) for a prempt. At this time hex and decimal

addition and subtraction may be performed. To add two numbers simply type

them in separated by a plus sign. If the number is hex, precede it with a

: dollar sign, otherwise the debugger will interpret it as decimal. Use &

. ‘ minus sign for subtraction. It is also possible to do base conversions.

; This can be accomplished by entering just one number after the prompt {hex

or decimal} followed by a return. AT answers are displayed in both hex
and decimal. An example follows. :

%

wECALL
=$1A+10-1
$0023 35
=256
$0100 286

After entering the calculator mode, the numbers hex IA and decimal 10 were
added and then 1 subtracted to give the result hex 23 or decimal 35, The
second entry is a base conversion of the decimal number 256. The resull
shows 1ts hex equivalent is $100. The calculator mode is terminated by
typing a return in response to the prompt.

" There are still many other features in the Debug Package, such as
interrupt simulation, which have net been described. It is not the

égw . o intention of this tutorial to teach all there 1is fo know about the
§%w¢§§ adebuggeyr, but to teach encugh te make the user feel comfortable with the
majority of its features. Once the material in this section is thoroughly

! o understood, the following detailed command description should be studied
: in depth. . _

Now that the basic mechanics of the Debug Package are understood they
should bhe put to good use., Keep in mind that a Jogical and planned
appreoach should be taken when debugging & program. Use the available
tools such as memory protection and breskpoints. When first starting the
debug process on a new program, start. at.the beginning, working your way
through the flow of the program. Let the program be the quide. If you
pay close attention, 11 will definitely point cut the bugs. Above. all,
have patience. Great bugs are not killed gpvernight! - .

14

«
3

TSC 6809 Debuy Packuge

Command Descriptions

. Introduction

This section of the manual contains a detailed description of each
Debug command. Fach command s shown with a few examples. The syntax
definitions show optional items in square brackets ([1). All command
parsmeters are shown separated by commas for clarity in the syntax
definitions and examples. Any place a comma is shown, a space may aiso be
ysed. The foilowing definitions apply throughout this document:

“ ITEH ERNING
{address> 1-4 digit hex value
<valued decimal number {max = 255)
{count> decimal number {max = 65,000}

The Debug Package ~is ready to accept a command anytime the H#EwS
prompt is present on the line., When typing commands, a “vontrol HY will
cause a backspace, and delete the last character typed. A "control I
will cause the entire line to be deleted and a new prompt of "?7" wiil be
output to show the deletion of the line. Any time text is being output to
the terminal, display may be stopped ot the end of @ Tine by typing an
"oscape" character. Once stopped, another “escape" will restart the
output while a “return" will give control back to the debugyer and the
Hakt ppompt will be output. ' :

I1. Geperal System Contra?'

The general system control commands allow a variety of general actions to
be performed. Register examination and changing is supported by use of
the REG and SET commands. The status of several machine control regist
can be obtained through the MACH command. Commands to view the stac
contents, set simulation speed, reset wachine parameters, enter -a
calculator mode, examine the ‘“machine states counter”, and exit the

e

- debugger are all described in this section.

CLALL]

PURPOSE: ; '
The calculator mode will be entered and a "=" prompl will be
printed. The calculator will altow addition or subtraction of a
series of numbers. The numbers may be hex (designated by a "§°
prefix) or decimal. If more than one number is typed, they must
be separated by a “=" or "+" and the apprepriate result will be

~displayed. The answer is shown in both hex and decimsl. It is
possibie to enter enly one number {hex or decimal}, optionally

preceded by a unary "+ or U-0, followed by & réeturn. The answer

will be this number printed in both hex and dectmal, thus atlowing

hase conversions. After each calculation, a new =" prompt will
d? : N

“15-

e | EXAMPLES:

CTSC 6809 Bebug Package .

he output. To exit this mode, type a “return® as & response to
the prompt. .

-

2%
Bt
A

EXAMPLES:

CALD Fnter calculator mode
=$A+10-1 Add hex A and 10 and subtract 1

$0013 19 The result is printed

DELTAY J=<value>

PURPOSE: .
This will set the simulation delay (the amount of detay after each
instruction 4s executed) to an amount proportional to <valued.
The higher the number {max = 255) the longer the delay. A delay
of zero will result in the delay being turned off.

DELAY=100 Set delay to 100
DELAY=0 Disable the delay
DEP[TH] | |

PURPOSE: :

: The depth command will print the deepest value of the stack
pointers {the lowest memory address. atl which the stacks were
extended during program simulation). To initialize this pointer,
it is necessary to set the stack pointers using the SET command.
The depth value will be set to the same velue as the stack
pointer. This command is useful for defermining the amount of
stack space required by a program. .

EXAMPLES: | |
DEPTH Print the deepest stack Tocattons

A

L

ELXIT]

PURPOSE: '
Exit the debug program. Use this cemmand when finished with the

Debug Packaqe.

EXAMPLES: : : -
EXIT Exit the debugger

FLIAGI[=<address>] -

PURPOSE : :
The Flag register is a 2 byte word at the specified memory
Tocation which will be displayed on a REG command or during.
tracing, as the "F" register. The memory location for the flag
will be set to the address specified. If no address is given, the
flay register will be disabled. This is useful for tracking flags
in memory during program tracing., See the REG command.

.

TSC 6809 Bebug Package

EXAMPLES: |
FLAG=1A85 Set flag register to $1A85
FLAG Disable flayg register printout

IND=0N or JFF

- - PURPODSE: '
Used to enable or disable the indirection printout in a register
dump {see REG}. If IND is ON, the register dump will show two
registers called "IX" and "IY" which are the values contaiped in
the memory locations to which X and ¥ point, respectivel¥s 184
this feature 1is off, the indireciion registers will not be

_ displayed. _ ,
EXAMPLES: .
IND=0N _ Turn indirection on
ING=0FF Turn it of f
o MALCH]
PURPOSE:

The MACH command will print the current status of the simulated
machine. Values displayed are for mode {M}, trace {T), instruction
count trap {I), nest trap (N), stop address (5), interrupt trap
(1T}, transfer trap {XT), IRG count (IRG}, FIRQ count {FIRG), NWI
count {NMI}, and flag address (F).. The description of these
appear elsewhere in this manual.

¢ - EXAMPLES: . _ - :
MACH . Print the machine status

'MO[DEjmi or O ,l

PURPOSE::)

The debugger has two modes of operation, mode O and mode 1. The
P - system comes wp in mode 1. Mode 1 offers all debug features
¢y allowing the simulated program to run approximately 300 times
. ' stower than real time. -In mode 0, the program will run
approximately 200 times slower than real time, but the f{oliowing
features are not supported; -nest count checking, all traps, states
counting, memory protection, past finstructien boockkeeping, and
automatic interrupts. Mode 1 should be used most of the time to
take full advantage of the debugger. . Co -

EXAMPLES: .
MODE =1 - Set mode to 1
MO=0 Set mode to O

wlde

TSEC 6808 Debug Package

RIEG]
PURPOSE: : .

brint the conterts of the machine registers. Al1 values are shown,
in hex. Besides the hardware registers {(CC, A, B, ¥, X ¥, v, 5
and PC), the nest Tevel (N} s displayed (shows how doep im
subroutine calls) as well as three optional registers. Two ave
enabled by the IND command and display the bytes to which the X
and Y registers point. These are shown as #px" and "IY" in the
REG dump. The third register 1¢ enabled by the FLAG command and
will display the selected two bytes of memory. This is shown as
SEN in the dump. The instruction to which the program counter
peints is also disassembled in the dump.

EXAMPLES:

REG Display all registers
R Displéy all registers
RES[ET]
 PURPOSE:

The RESET command is used to reset aTE machine states. ATY
registers will be set to zero, the stack pointer will be set 1o
$CO7F, all breakpoints and memory protection will be cleared, end

% the mode will be set to 1. This will set up the machine exactly
: the same as initializing the debugger upon Tirst entry.
EXAMPLES: | N
RESET - _ Reset the machine
RET
PURPOSE:

Print the top two items on the ctack. If the system is currently
in a subroutine, these bytes will represent the return address
Frem this routine. If the nest level is currently zero (=0}, the
message “NEST LEVEL IS 0" wili be displayed.

- EXAMPLES:
RET . . Print the return addr@ss

SEET3n<register Tistd>

PURPOSE: :
The SET command is used to set or assign values to registers. The

‘)

(register 1isty is a list of register names (cc, A, B, bP, X, ¥,
U, §, P) followed by an equals sign, followed by the hex value.
Setting & stack pointer will also set the corresponding depth.
value to the same value. :

5
/
H

EN

TSC 6809 bebug Packane

- _ EXAMPLES: ‘
£ SET,P=100,A=C3 Set PLoto $100 and A to $C3
@é} S B=20 X=1FFF Set B to 520 and X to SIFFF
. STACK[, <values] |
: PURPOSE:
Print the contents of the system stack. The number of bytes
specified by <valued wiil be printed. If <valued s not
specified, the top 12 bytes will ke printed. The stack is printed
from high address to Tow eddress, so the top of stack will be the
tast itew printed.
EXAMPLES: : u
STACK Print the top 12 stack bytes
STACK, 10 . Print the top 10 stack bytes
) STATLES]
‘g$§ PURPOSE:
\ .) Display the current value of the states counter. This value

represents the number of actual machine cycies {microseconds on a
1 megahertz computer) which have been executed since the last
START or RESET command. It 4s also possible to set this counter
to zero using breakpoints. Only states for simulated instructions
are counted; real<time and simulation protected routines do not
accumulates states. ‘

EXAMPLES: AT _ ' :
STATES . Print the current states count

TRAIL

PURPOSE: . : .
Print the address of the Yast executed instruction which caused a
transfer of address {e.g. JMP instruction). This is useful when
attempting to find how a program ended up where it did.

EXAMPLES: .
TRAIL Print the last transfer address

L,<operating system commandd

PURPOSE: : ‘
The X command is only operational on disk systems (see Adaptionsj.
It allows the execution of any DOS command from the debugger.

EXAMPLES:
' K CAT T - Catalog drive 1

18

i

)

Ghi
{3
G

T4C 6802 Debug Package

Tii. Memory Commands

The memory commands allow examining and altering the contents of memory in s
a variety of ways. The assembler allows simpie, direct insertion uf
pbject code by wusing standard opcode mnemonics and addressing mods
designators. The disassembler provides an opposite type of convenience, in
that the contents of memory may be displaved as assembler Tanguage
mnemonics and operands., A single byle memory examine and change function
is also available {the MEM command). Commands fer viewing large blocks of
memory, finding specific hex or ASCII strings, and filling a section of
memory with a selected character are all available in this group.

A[SHI[, <address>]

PURPOSE: :
fnter the Tine at a time assembly mode. Assembly will start at

the address specified or at the location of the program counter if
no address is specified. No labels are permitted. A1l standard
Motorola 6809 instruction mnemonics and addressing modes are
accepted; pscudo-ops are . nol allowed, Memory references 1o
addresses Jlower than §$100 are assembled as direct references
unless the address is preceded by a ™", which forces an - extended
memory reference. In indexed mode, the index register musi be
preceded by a comma. Instructions of the form LDA X (meaning
LDA ,X) are not permitted. The smallest possible offset is
generated for indexed mode. Fxtended addressing and 16-bit
indexed offsets may be forced by placing & ">' character as the
First character of the operand. Constants, addresses, and offsetls
may be either decimal or hexidecimal (indicated by a leading "EYYe
Eight-bit immediate mode constants may also be an ASCIT cheracter
preceded by a single quote ('}. Negative numbers are not altowed.
Negative numbers should be entered as hex values; the CALC ¢ omma
can be used to determine the negative of a number. For relative
branch and PC relative instructions, the actual target address 1is
specified; the assembler will calculate the offset. EXG, TFR,
PSHS, PSHU, PULS, and PULU accept standard register notation. The
PC is automatically advanced to the next Tocation after the line
is assembled. To exit this mode, type a return in response to the
address prompte
- EXAMPLES: R
ASM, 100 . Start assemhly at $100
100 LEAX $1Y0,PCR (X)=Messaue Address
[3F810] Print message

103 JsSR

107 LDA §'A . Load an ASCLi "A"

109 STA 0,Y+ Store it

10BR BRA $100 Loop _

10D ‘ Exit with return
P {F

LR

156 6808 Debug Package

BIIST, ¢start address>,<stop address

PUR?)%T
“Disassemble memory herwnen the addresses spacified. The address,
mnemonic, and addressing mode will be pristed out for each
instruction in the range. If an illegal opcede is found, four
stars {*%*) will be displayed instead of a mnemonic, followed by
the hex value found at that address.

EXAMPLES: .
015,100, 1A0 Disassenbie from 100 to 1AD
pUIMPI, <address> SR
PURPOSE:

bump 256 byte blocks of memory starting at the addroqs specified.
The memory is displayed 16 bytes per line, To??awed by the ASCILI
values of the hex numbers. Afier eachl b?ock s dumped, typing an
“FR will move Forward and d15p;ay the next 256 bytes, typing a "BY
will move Back and -display the previous 256 bytes. Typing a

Yreturn” will exit this mode.

EXAMPLES:
- BUMP,AGD Dump memory at $A00

FIL[L], <(start address),(gtdp address>,<byte>]

PURPOSE:)
This command will Fi11 memory with the <byte> (hex) specified
starting at the first address, filling through the second address.
If <byte> is not specified, zero will be used.

EXAMPLES: . , ' :
FILL,100,300,FF Fi11 with FF from 100 to 3006
FILL,0,100] Clear from 0 to 100

FIN[DT, <start addressd>,<stop address>,<string

PURPOSE ¢ o

Find the specified strwng in momoyyﬁ The search will start at the
<start addressy and continue through the <stop address»>. The
address of each location where the string is found will he
displayed. The <string> can be entered in one of two ways. The
first can be a string of hex digits separated by spaces or commas.
The second s an ASCII string preceded by a double 1uoiw
charscter. ' : o

- EXAMPLES: _ ' '
“IND,0,60,7E,33,A2 Find the hex value 7E33AZ
FIND,0,1000,"7TEST Find TEST in memory

.

wP T

-t

T5C 6809 Debuy Package
TR S .’-;1»,_” - - L,

MirM], <addressy

PURPOSE:
Examine and efter memovy. The address specifies the first
Tocation to be erzmined. Upon entering this command, the address
specified and LS contents will be displayed on a new Pine. AL
this time, typinge any non-hex printing character will move to the
noxt tocation arc display its contents. Typing a "line feed” witl
move to the previcus Tocation. A carriage return will exit this
mode. To change the contents of a Tocation, type the new hex value
smmediately folicwing the one displayed. After the value, type 4
space. The new value will be entered and the next memory Tocation
w111 be displayed. It should be noted that it is only necessary
to type fthe rumber of significant digits apd only the Tast two
digits are used. For example, typing a 1 would enter a1, typing
1A7 would enter AZ, etc. If only a space is typed (no number} a
zevo will be entered. Any time a non-hex character s typed
(besides & spice), the next location will be displayed, lteaving
the current locetion unchanged.

 EXAMPLES: _
- MEM, 540 Fxamine memory at $540
1,200 ~ Examine Tocation $200

iv. Simu?étiaﬂ Control

This group of commands is ysed to control the program simyiator. Code in
RAM or ROM may be simulated. There are several methods of initiating
simulaticon. Programs mey be executed with "trace" on or off. While trace
is on, each instruction will be displayed prior to its execution, along
with the current state of the CPU (all register contents are displayed).
Trace provides a very powerful tool for following program flow. Several
keyboard commands may be invoked during-actual program simulation. These
commands aliow the speeding up OF slowing down of simulation, as well as
ways to halt the execution of the program. The PAST command is a powerful

bhookkeeper which keeps track of where your prograf has been.

¢lol
- PURPOSE: . ‘
Start the program executing.at the Tocation to which the program
counter curvently points. HNo machine values are altered with this
command . , .
. EXAMPLES: . ‘
- GO start the simutation at the PC
G Poes the same thing a '

75C 58092 Debug Package

- = A e ;Jégl
JIUMPT, Caddressy
é PURPOSE : o
- ' This command 1s exactly Yike 60 except exetution will begin at the

address specified. Mo machine values #re allered with this
command, except the program counter which 1§ set to <addresss.

CHAMPLES: :
JUMP, 322 Start simelation at §322
J,80 Start simulation at $00

PALSTI <valued]}
PURPOSE:
Display the past several instructions executed by the simufated
program. If <value> is not specified, the past 255 instructions
will be printed’ (oldest to most recent}, otherwise <valued sets
the number of instructions to be displayed. FEach instruction is
shown in & disassembled form, with its addresse

EXAMPLES

PAST 'DéspTay the past 255 instructions -
| PAST, 10 - Display the past 10 instructions
SIM[, <count>] |
PURPOSE:

Simulate the number of instructions specified by <{count> with the
trace disabled. If the count is not specified, one instruction
will be executed. Fxecution starts at the current PC. Ho machine
values are altered prior to simutation. Trace will be reset to
its original value following SIM"s termination.

- EXAMPLES:

SIM Simulate one instruction
SIM, 100 Simulate 100 instructions
{ : . STIART],<address>.
PURPOSE s | o

Start progrem simulation at the specified address. The PC will be
sét to the address specified, the states counter wili be zeroed,
and the nest count will be cieared. :

EXAMPLES:

START, 1000 Start simulation at $1000
ST,2A Start simulation at $002A
P03

i v

TSC 6809 Debug Package

STEP], Ccounts}

PURPOSE:
This command will cause the debugger to enter the "step mode.
The <county specifies how many instructions should be executed at
s time in this mode and defaults to one (single step). Upoa
entering the STEP command, the system will immediately execute the
nusber pf instructions specified by <countd, then print a register
dump. The execution will begin at-the Tocation pointed to by the
P register {program counter). After the register dump, typing a
"gpace® will cause execution of the next <{count> instructions and
produce another register dump. Typing a “return” will exit the
, step mode. Any other character will be ignored. It should be
. noted that while in the step mode, breakpoints and tracing are

inoperable.
EXAMPLES: - o .
- STEP EFnter “single step" mode
CSTEP 10 ~ Fxecute 10 instructions at a time

CTIRACE J=<value?

PURPOSE: _ . o : _ :
Set the trace depth. If value is set to zero, trace mode will be
disabled. Setting trace to a non-zero value will enable tracing
up to but not including the subroutine nest level indicated by
{valued. For example, if TRACE=2 is entered, tracing will occur at
nest Jevel 0 and 1 but will be disabled at nest Tevels of 2 and
higher. The nest level is displayed as “pYoin a register dump.

EYAMPLES: _ o
: TRACE=255 Enable trace at all levels
T=0 - Digable trace mode

TSOIMIL, <count>]
PURPOSE:) ‘ ,
This command 35 similar to SIM except ftrace mode is enableq

(TRACE=255) and the registers will be dumped after . each’
instruction simulated. The count will default to T+ if not

specified. Trace will be reset to its original value following
TSiM's termination. . “

EXAMPLES: L : :
o TSIH CTrace and simulate 1 instruction
¢ CTSIM,20 - Trace 20 instructions

o

-24-

ey

e

TSC 680% Debug Packaoe

veontrol £

PURPOSE: - o
Anytime & program is being simulated, & "control C* witl cause i%»
exce cution to hatt and the message "OP HALT AT X" to be
displayed at the terminal. This means "Operator Halt" and ?
SN will ba replaced by the actual address where the program was
hatted. '

HE
j13
»
it

&4

“Coeape Character”

PURPOSE: :

o puring progrem tracing, typing an “escape® will cause the program
to pause at the end of the next displayed line. At this time,
typing another "escape” will enable the trace t¢ restart, white
typing a ‘“return”. will return control back to the command entry
mode.

V. Breakpoints

Breakpoints ailow the insertion of check ppints inte & program. A
breakpoint always has an address associated with +dt.. The address
specifies where in the program the breakpoint action ¢ should eoccur. Thess
actions vrange from printing the machine registers to controlling trace
mode. Each breakpoint may also have a pass counter which determines the
amount of time until it becomes active, or the amount of time it should
remsin active. The actions are also dependent- on the result of a
conditional expression nvolving a CPU register or memory Jocation.
Breakpoints are deceded with the following precedence. If the address of
the current PC matches the address of a breckpeint, then the posg count 1s
checked. ff the counter is in a state to allew continuing, *then the
condition is checked (if present). Finelly the actions specified for thes
breakpoint are performed. The other commands in this group allow clearing
breakpoints (removing -them), p”iﬂt?ﬂq histogram counter vatues, printing
breakpoint Yocation and type, and ciearing histogram counters.

BF(actfaﬁ5>@<address>ﬂw(modﬁfﬁer}(cmunt>}ﬂyIF(QOH@?&?GN)}
- or '
B@<address>[, <modifiery<count> J[, ¥ <conditions]

PURPOSE: .
The B command is used to set breakpoinis. These bresipoinis are
nondestructive in that they do not atter the contents of memory at
the breakpoint location. Two forms of the- command exist. . The
first is the general form of the corwand and allows user definable
breaskpoint actions. The <scticns> may be any one or combipnation
of the following:

TSC 6809 Debug Package

ReooPrint register contents
Toeolrace mode on

U, .. Trace mode off (untrace}
L...7evo the states counter
HesHistogram counter
MeooPrint message

JawoJump to new address
Se.o5top simulation

J e e

The above actions ave executed in the order shown. A histogram
action causes a counter to be set up swch that each time the
instruction at the address specified is executed, the counter will
be incremented by one. By later requesting a histogram, all of

second form of the B command is a special case of the Tfirst. In
this form, no acticns are specified, and they default to S and R
(just as if § and R were used in form one). The <countd part of
the syntaex is optional and acts as a pass counter. The <modifiery
shown in the command description represents either a ">", used to
mean “after”, and “<" to represent “before”. A count preceded by
“>" will cause the breakpoint defined on the Tine to vemain
inactive wuntil <count> number of times through that address. A
count preceded by "<" will cause the breakpoint defined to be
active for only the Ccount> number of times through that address,
at which time it will be automatically removed. The <ecountd> in
either case must riot exceed 32,000. The next part of the syntax
is the optional <conditionai>. This allows the breakpoint action
to be dependent on some condition. The condition can be the
contents of any machine register being equal or not equal to a hex
valug ("=" and "I=" respectively), or the contents of a specified
memory tocation being zero or not zero. If a register fis used,
simply state the register name, followed by the reltationat,
followed by the hex value {e.g. A=23, or BI=E2). The allcwable
registers are: CC, A, B, DP, X, Y, U4, S, P, and N. To use a
memory Tocation, a dollar sign “$" must precede the address. For
example, $100=0 would check if the byte at Yocation hex. 100 was
zero, and $AZ0!=0 would check if the byte at location hex A20 was
not zero. It a memory address is specified, the only allowed
value to the right of the relational is zero, and if any other
value 1s used, an error message is issved. NOTE: The conditional
part of the breakpoint definition may not be used with H, ¥, or &
action codes. Two of the breakpoint actions require snpecial
- syntax. These are the ¥ {message} and & {jump) types. The M
action is. used to print a specified message to the terminal Upot
execution of the breakpoint. The J action is used to transfer
controt to another address. The M, J, and H breakpoints are
Cmutually exclusive, Only ‘bne of these may appear in a breakpoint
Lommand. A breakpoint containing M should have an ASCII string
Tollowing the <countd> (or following the address if -no count is
specified). This string is the message which will be printed on
the terminal each time the instruction is to be executed.
Messages- should be kept short {under & letters if possiblel. For
the J type action, the hex address of the Jocation of tranecfer
should be provided after the <countd> field. The examples below

w26

" the counters and their associated values will be displayed. The

T5C 6809 Debug Package

- ~will help clarify the syntax. o ,
gﬁj' - EXAMPLES: :
i : : Re10G Stop and print registers at $100
[B SEAI00 Same as above
8, HRALIDD Set histogram at $A100
. _ BLZRE300 >100 Zevo states and print registers
_ ' ~after 100 times through $300
: - : - BEZOG,IF A=3C - Stop & print registers at $200
‘ - _ only if acc. A = $3C
" ' B MBZI0,SUB 1 Print message “SUB 1" every time
_ through Tocation $210
B,Jd8100,1000 Transfer control to Yocation $1000

. when reach instruction at $100

- B,TZB400,<25,1F $20 o .

, For the first 25 times throuch

! L ' : Yocation 3400, turn trace on and

: _ - _ . zero the states counter, but only
if Tocation $20 is zero. '

BP[,<address>[-<address> 1]

PURPOSE: | o o
The BP command is used to print the]ocatzon of breakpazntr and

their asscciated action codes. The two address specifications are
used to define the vregion of memory for checking breakpoints
(beginning and énding, respectively). If no addresses are
specified, all breakpoints will be listed. If only one address is
given, then only the breakpoint at that address will be displayed
{if one exists) Only the action codes are Tisted with ecach

addr&saa

o EXAMPLES: . .
: 8P§J ~C00 List breakpoints between $10 & $CO0

! - - BP ’ List all breakpoints
% o LBl <addressy[-<address> 1]

PURPOSE: :
Clear breakpoints in specified memory region. The addresses
define the region of memory. If only one address is listed, then
only the breakpoint at that Tocation will be cleared. If no
addresses are specified, all breakpoints will be cleared,

EXAMPLES: S
- CLB. “ Clear a1l breakpoints
CLB,0-100 Clear breakpe1nts hetween $0 & $100
- CLE,22A Clear breakpoint at $224.;
s
DT

TSC 6809 Debug Package

CLHL <address>[-<addressd> 1]

N

PURPOSE: R
Clear histogram counters in the specified memory region. The
addresses define the region of memory. 1T only cone address is
Tisted, then oniy the histogram counter at that localion will be
cleaved. If no addresses eare specified, all counters will be
dectared. KOTE: This command does not remove the histogram

breakpoints, but «c¢lears its associated counter to zerg in
preparation for & new run. '

EXAMPLES: .
CLH - Clear all histogrem counters
CLH,25-2G0 Clear counters between $25 & $200
CLH
PURPOSE:
5 Clear all messages in the breakpoint message table {used by the K
[action code, see the B command}. This table 75 a2 fixed size and
can be filled up. . When deleting messace type breakpoints using
{ the CLE command, the associated space in the message table doeg
; not. get freed. It is recommended that whenever all M type
breakpoints have been cleared, also use the CLM command. Do not
use this command §f there are any active M type breskpoints.
Their message strings will be desiroyed!
EXAMPLES:

CLM Clear all messages
HLISTIM <address>[-<address>] |

PURPGSE: ' :

© Print- the histogrem céunter {otals for the section of memory
specified, The addresses define the region of memory. If only cne
gddress s Tisted then only tihe -counter at that lecetion is
displayed. If no addresses are specified, all counter contents .
will be displayed. Each counter is shown preceded by its address.
The counter value shows the number of times the. instruction at
that address has been executed.

EXAMPLES: y '
. HIST . Display a1l histogram counters
H,0-200 . Display counters between 0 & $200
RT[,<address>] |
PURPOSE:

start - real time program execution {not simulated) at the current
FC location, Program execution will halt at- the <addressy
specified. This 1is similar to the standard breakpoint most users
care familiar with in that mesory ds actually altered™at the
address specified (with a J¥P instruction). fntering 87 without
an address will clear any real time breakpoint which may have boeen

1R R

S

SCHB0Y Debug Package

e

ad. This type of hrg&%?”§ﬁfaﬂd program execution

J i ed i--"" L e 3 &0 {t' g : Ti{"’,da
ed since no protectien O Heking is performe

: U Blppos eified. the
“when the progrem reaches the bresk gf'T%h% speciiiea, the
Cbreskpoing fi sutomatically cleared ond ﬁfggr‘ﬁ?“ﬁi code restored
S S memory. HOM may nol be breskpointed Witbokis eommand.

proavicusly ente

& o oy, gt g
8 bt el

o
H

o

Tk

IMPORTANT KOTE: When the breakpgoint iy Wﬁﬂﬁhﬁs the debugger witl
push two bytes on to. the systenm statk 4991 gaves the Dy ogyan
registers. Therefore, the system stack mist w07 be nointing 1o
data at the Tocalion of the breakpein, &4 (o bytes of stack
space MUST be available. The stack 1S teaned up once all
registers have been saved befare return COnty] 5 the yser.

. EXAMPLES:

RT,600 - Start at PC, end at $60¢ _ -
RT _ . Ciear an existing RT brgkpoint

Vi. Hemory Protection

. The memory protection commands are a very powerful fhtyre of the program

debugaer. The PROT command allows selected areas & memory to be write,
execute, memory, or simulate protected. Write protec g memory will cause
a trap on any attempt to write to jt. [xecute Digtect will not allow

optodes to be fetched. Memory protect will not .opmit any type of

reference; vead, write, or execute. Simulate protey 5¢ ysed to protect
sections of code which should not be simulated {exccting ip peal timel.
Tt is dimportant that only code called as & subrout;e from non-simulate
protected memory be contained in the area(s} of wuory designated as
simulate protected. An example would be to simulaty orotect the section
of memory where a DOS resides. Al subroutince calls ¢4 +he DOS would then
be executed in real time. Code which is simulate Drgreeted and does not
follow this convention will wusually cause the CPY to take over the
execution of the program resulting in.a loss of CONf vgl. Other commands
in this group allow examination of protectios bounds as well as the
clearing of protection types. R

CBOLUNDS L <types>]

. PURPOSE: ' L
Display the bounds of protected memary. Eacy, Ctyped pe:
witl st all vegions of memory protected [4pat type. <typey
may be W, M, X, or § for write, menory, exe s and cimulate,
respectively. Multiple types may be displayed By Eggtgng the types
on the command Tine separated by a comrm or Shééeﬂ It %S type 1%
specitied, all fypes of protection will be liﬁﬁegg |

EXAMPLES:
BOUNDS . Display all memory protecs sy
B, HLX Bisplay memory and executi,
’ protection bounds
20~

cified

T
Lo

TSC 6809 Debuy Package

CLPL, Ctyped]

PURPDSE: (,
Clear all protected regions for a specified type of protection.
The <type> s specified by the same letters described in BOUNDS.
Only one type may be Tisted per command tine. If iype i5 not
specified, atl protection will be cleared.

EXAMPLES: :
CLP Clear all protection
CLP X Clear execute protection

PIROTT, <address>-<address>], <type>

PURPOSE: '

- The PROT command is used fo assign protection to a region of
memory. The two <address> specifiers designate the beginning and
ending addresses of the selected region. If only one address 1is
specified, only the byte at that location will be protected. The
<type> designator may either be M, X, W, or S for memory, exgouie,
write, and simulate protection respectively. Only one type may

- appear with each address range. HMultiple protection may be
performed on one Tine by separating the range-type specifiers by a
comna Or a4 Space.

TMPORTANT NOTE: Simulate protected memory must be entered with a
subroutine call. The top two bytes of the stack MUST be a return
address. On exit from simulate protected code, the system stack
MUST have the same value as when the simulate protected code was
entered. ' '

EXAMPLES:
PROT,0-100,HM Memory prot 0-$100
P,100,W,AL00-AG00,S
Write prot $100 and simulate
protect $A100-AG0D

VIl. Execution Traps

Execution traps allow program stopping on certain general conditions.
Several traps are always enabled. These include; trap on iilegal opcode
and trap on RTS if pest count is zero. The user may enable and disable
several olher traps. These traps are for interrupt type instructions,
transfer of address type instructions, trap on a selected subroutine depth
(nest count), an instruction count timeout, and a gencral "stop® address.

E

w3l

P
A .

TSC 6808 Debug Parkaun

INST=<Lcounts

PURPOSE: o :
Set the instruction count timer to the value of count. 1If set to
zero, this trap will ke disabled. This timer {s used to count ihe
number of simulated instructions. Fach ¢ime this counter reaches
zeros, the program witl halt and print “IC TIMEOUT AT XXXX", where
X¥x¥ 9s the address vwhere the program stopped, and the counter
will be reset to the value at which 1t started (the value

specified by <countd>}.

EXAMPLES:

IRST=400 Set counter to 400
: INST=0 isable the intruction counter

ITIRAPI=0OH or OFF

PURPGSE: .
Turning the ITRAP on will cause the simulator to treat interrupt
type instructicns similar to illegal opcodes. Any time a RVI,
SWE, SWIZ, SWI3, SYNC, or CWAI instruction is found, the message
"I TRAP AT XXXX" will be displaved. The address of the
instruction will be printed in place of the XXXX shown.

EXAMPLES: ‘ . :
ITRAP=0N ~ . Enable the interrupt trap
IT=0FF Turn off the trap
N[ESTI=Cvalued> |
PURPOSE:

Set- the nest trap at the Tevel specified by <vaiuer. The
simulator will trap execution if & subroutine call instruction fis
found which will cause the nest level to equal or exceed that set
by REST. Setting the <value> to zero will disable this trap.

+

EXAMPLES:
NEST=6 Set nest trap to Tevel 6

k=0 ' Disable nest trap
STOP=<addrassy
PURPOSE: : _
The STOP trap is a general "stop at address X" trap. It is useful
for -trapping returns to monitor type programs or operating
systems. The trap is set at the address specified.

EXAMPLES:

STOP=100 ' Set stop trap at $100
stop=Lone - Set trap at & monitor entry
w3l

TSC 6809 Debug Package

XFR=0R or OFF

PURPUSE: ‘ ‘ _
Enabling the XFR trap will cause a trap each time a transfer of

address type instruction is found (JHP, BRA, LBRA, LBxx, or Bxxje
This is useful for following major program Flow. Typing a "G"
command after this trap will cause the progran to start executing

agaifi.
EXAMPLES: _
KFR=0N Frnable the transfer Urap
XFR=0FF ' Turn the trap off

VITI. Interrupt Control

FIRD, NMI, and IRQ type interrupts may be simulated. Two modes of
operation are possible. The first s avtomatic, periodic interrupt
generation. This mode allows interrupts 1o be generated every H
instructions. The secaﬂd allows random interrupt generation from the
kevboard. When these keys are typed during program simulation, the

appropriate interrupt ww?] be issued.

Simulated 1nterrupt$ advance the nesting level {N) as do subroutine calls.
The nesting level is decremented by the RTI instruction. Simulated
interrupts, however, will not cause a nest level trap to occur 1f the

nesting Timit is eﬁceeded

If 3 SYNC or CWAL instruction is bﬂ1ng ezmuiaicd “the simulation will stop
waiting for an interrupt to occur. If automatic interrupt generation 1is

enabled and the condition codes are set appropriately, simuTated execution

will resume automatically. If automatic interrupt generstion is not
selected, a manual simulated interrupt must be enitred from the keyboard
to continue simulation. A “control C% may. be entered to return to command.
mode while a SYNC or CHWAI is waiting for an interrupt; however, restarting

simulation with a GO, SIM, TSIM, or JUMP will cause the debugger Lo

continue fo wait for an 1nt@rr upt regardless of where the program counter
is pointing. A START command can be used to continue simulation at some
other address and will clear the "waiting for interrupt” condition in the

debugger.

The 6809 Debug Package wuses the interrupt vectors at $FFFZ-SFFFD to
gﬁterminﬁ the Tcocation to which te transfer control when a simulated
interrupt is veceived. In wost systems, these will point to routines in
the system monitor ROM which, in turn, will give control . to some user
routine. These interrupt handlers in the system ROM must NOT be simulate
protected since they will be entered bn an interrupt, not a subroutine,
¢all as is required for simulate protected code. It is possible to patch
the Debug Package so that simulated interrupts will not refer to the
standard vectors at $FFF2-$FFFD. See the section on "Adapting to Your
System” for details. f

i
4
%
i

s

cumy AT

it

T5C 66809 Pebug Fackage

w N e
. . H

FIR(=Ccoimt>

PURPOSE:
Cause an FIRG uype int ‘tvupt to be geperated every <countd
ing irn{f79Nf; I <epuntr s zero, automatic FIRD intervupis witl
he turned off. '

EXAMPLES:
FIRG=1000 Generate FIRQ every 1000 instructions
FIRG=0 ' Turn of f automatic FIRQs

IRG={county

PURPDSE: : - ‘
Cause an RO type interrupt to be generated every <count?
instructions. If <count> is set to zero, IRQ interrupts will be
turned of f. '

EXAMPLES: :
TRG=5000 - Generate IRQ every 5000 1nSLrUf{Toms
TRG=0 Turp of ¥ automatic IRQs

T RMI=<county

PURPOSE:
Cause an M4T type interrupt to be generated every <Jcounts
1nctruatxonsn If <count> is zero, automatic NMI tnterrup s witl be
turned off.

EXAMPLES: . ‘ .
- NMI=300 - Gererate HMI every 300 instructions
NM1=0 © Turn of { automatic NMls

“Control F®

PURPGSE: . : ,
Typing a “control F" during program simulation will cause an FIRQ
type interrupt to be generated, '

“ﬁontro? I¥

PURP?dl@ ‘ :
Typi ing & "eontrol IY during program simutation wiltl cause an IR
type interrupt ig be generated.

¢

"Control KT
PURPOSE ne
Typing a "control N during program simuTation will cause an Nii
type interrupt to be gencrated.

*

86 6809 Debug Package

Crgam b @ e

T

e

g

{ommand

1. General System Control

CrALC]
Dii{ﬁxi Cyaiuer
pLTH]
E{XITB
FILAG [=<address>]
IND=0N or OFF
MA[CH _ ,
MOMDEJ=0 or 1 - , e
RLEGH -
RES[ET]
RET .
S[ET],<register 1isty
STACKE , <value>]
STATIES]
TRAIL
X, <FLEX system command>

Ii. .Memoty Commands

CALSMIE <addressy]

DLIsy, <siasi address> {stop address>
DU M”‘ addressy

Summary

rifgL: <vtart addressy, {stop address>1j<byte>}
FEN{Dj£<start address>,{stop address>,<string>»

MLEM], <addressy

ITI. Simulation Control

GI0] ‘

JIUNMPT, Caddressy

PALSTI ,<values]

SIML, <count>] .
STLARTY <addressy .
STEP[,<count>]

TIRACE J=<vatued

S TSLIMIE, <counts]

3B

TSC 6208 Debuyg Packaye

TSC 6808 Debug Package F

1Y, Breakpoints

% KactiondBladdress>l, <modifierd><count>]l TP<Londftiun>}

”f <amd;@ssff¢<aﬁnross>g3 -
“{ caddressy-<address» 1)
CLH[, Ceddressy-<address> 1)

i
£y
?
i
ACISTI <address>[-<address>J} -
§T§ LLaddressy]

. HMemory Protection pg 27

EOLOuRDS I, Ctypesy]
Lepl, <type¥}
V{ROT] <address>[~ <address>] <type>

- ¥I. Execution Traps

HST=<count>
JTIRAPI=0N or OFF
HEST J=<valuer
370P=<address>
AFR=0N or OFF

¥Il. Interrupt Control

FIRg=<county
Ii0=<county

Hdl=<county

Bladdressy, f“”d?f?@??(?ﬂu%tz}[If(copﬁiriaﬂﬁj

LRt e

*d

~36

>j\" £ xd ij;’.

?\j ‘9-";1,(i

el

%

i flg\i}K

TSC 6809 Debug Packays
Message Descriptions
The following is’a tist of all Debug generated messages and thelry
respective meanings. _
WHAT? = This is the generat error message reported when an invalid input
command has heen entered, ,
sgTOp® AT = The address set by the STOP trap command has been reached.

IC TIMEOUT AT = The number of.instructions specified by the INST trap
+ command have been executed. -~

TLLEGAL OPCODE AT = The instruction to which the PC points is an iliegal
opcode. .

T TRAP AT = An SWY, SWIZ, SWI3, RVI, SYNC, or CHAI instruction has been
encountered and the ITRAP command has been used to enable the
interrupt trap. :

“LAST XFR FROM = Displayed by request using the TRAIL command. The address
- gives the Tocation of the last transfer of address type insfructicn
which was executed. _

SYNTAX ERROR = The command just entered does not follow the syntax rules
for that command. ' ‘

Ep TRAP AT = An Execubtion Protect trap at the specified Tocatien resulting
from an attempt to execute code in execute protected memory.

WP TRAP AT = A Write Protect trap at the specified location resulting from
an attempt to write into write protected memory.

EX-MP TRAP AT = An attempt to execute code residing in memory protected
memory has been detected at the specified address.

REF-MP TRAP AT = An attempt to reference (read or wrfte) a byle in memory
protected memory has been detected at the specified address.

SP TRAP AT = A Stack Pointer reference (PSH, JSR, etec.} was attempted in &
section of memory which is memory protected. .

CTARLE OVERFLOW = The Tast command entered caused an internal table fo
gverflow. The command did not get executed. :

#

NCTRAP AT A Hest Count trap occurred as a result of the nest Tevel
reaching the level specified in a NEST command. -

A F

T8¢ 6809 Debug Package

Sy, CORTS INLEVEL O AT ¢ An RTS instruction was encountered while the nest
. Jevel was 0 (no previous call to subroutine had been executed). .
¥ o '

. NEST LEVEL IS © = There is no return address on the stack so the RET
; : command can not display an address.

£ ‘ E) '
F - XERTRAP AT = A transfer of address type instruction has been encounterso
gt with the transfer trap enabled (from XFR=0N).

I | L

4 MON XFR. TO = The program being simulated {ried to pass control to the
5" . monitor address which i3 used by the EXIT command. '

QP HALY AT = An operator halt signal {control € character) was detected by
the simulator.

s

. ! .
I
i -
Ly

s A P e e

should be ﬁﬁit;md at location

TSC 6809 Debug Packsue

Getting Debug Running

Y, Disk Version

Toads from address Toug e
i stack and variable stor: age. The Hejuu DQL;LQG

may ‘be exccuted fr GmJlLLX“ by typing:

+HDEBUG

AoPer® o oprompt should appear. The program i started through its cold
start entry point (location $5500) which initializes all system tables,
clears all registers, and c?ear% out breakpoints, I¥ it is necessary to
re-enter the debugger after an EXIT command, the program should be entered
at Jocation %5503, the warm start eniry pc1ﬂL, Ne clearing of values or
tahles is performed at this entry. Once in the Debug Fackage, fites may
he Jloaded from the disk by using the X command. As an eydmpieg to load

the file TEST.BIN, type the following:
Y GET,TEST

Tf TEST is found, it will be Yoaded into memory. It is important that the
program being tested and the Debug Package do not overlep in nomory ¥
they do, the RUN utility (supplied on the Debug diskette) may be used fo
1oad thL Debug Package at some other address. For exa mple to foad the
Debug Package at address $3500, type the following:

+++RUN 3500 DEBUG

The prompt should appear. HNote, hovvler, that the coldstart and warmstart
entry points witl -be different if the Debug Package is loaded st some
addvess other than its default load address. The coldstart entry point is
at the lcad address; the warmstert address {s 3 locations higher. Be sure
to Teave $500 bytes free below the Debug Package for stack and variable
storage.)

1. Cassette Version

The object code supplied Toads from address $5500 through $7FFF and
yses memory down fo $5000 for stack and varisble storage. The tape should
he “Yoaded into memory using your monitor system's lcad routine. Unce
Toaded, the program to be debugged should be loaded. Tt is important that
the itwo programs do not overlap in memory. i they do, it will be
necessary to move the Debug Package to a Yocation in memory such that the
two programs do not ¢onflict. See the sectien below on ““wv1ng the Debuy
?aak&qé” for more information. After all code is vesident in memory,
start the Debug Package at Tecation $5500, thv (oﬁd start entry point. A
Mekt ospompt should appear. The cold start entry initializes all system
tables, c?ear= allt registers, and clears oul breakpoints, ¥ it ig'
necessary to enter the Debug Package aftler an DXIT command, the progra

the warm start entry point. Rﬁ

N TN KT T 2 5 R ol

I5C 6809 Debug Packa age

P

“Clearing of values or tables is performed at this entry,

Moving the Debug Package

The Debug Packaoe is written o be position i independent; it may be
moved to any Tocation in me mory and it will run cor rect?y without
uudif%cﬂi'ﬁng the following is an exa mple of & program which moves the
Debug Package to anot hnr mecory Yocation, '

8 LS00 LDX #85500 (X)=0LD ORIGIN
10 8F uxwx LBY #<new crigin ddﬁf@%a}

Ag 80 . TAG LDA e MOVE BYTE

A7 AG STA St

BC 8000 CHPX #88000 CHECK ADDRESS
25 F# - BLO TAG IF KOT DORE

75 ywyy JMP <your moenitors
S ‘

Insert the appropriate addresses for the "xxxx" and “vyyy". (Note that $f
You are moving the Debug Package to a higher addre 255, you should start at
the high end of the Debug Package and work downward d.) After the Debug
Packﬁg@ has been moved, the cold start entry paxﬁt is now at the <ney
origin addressd and the warm starl entry point is 2 Jocations higher. For
examnple, if the Debug Package was moved to $1600 ihe cotd start s at
$1000 ang the wWarm start is at $1003. When wovx:q the Debug Package, be
sure to Teave $500 bytes free below it for stack and variabies, {The
tiack may be mnvnd independently of the Debug Package: see the section an
“Adapting to Your “ystem” for details.)

AR

PP —————EE A L

[

il e o
.

.
E
s

CTSC 6809 Debuy Paeckage

-

Example of Use

The following s an example debug session. It is assumed that tne
Dobug Package 1s running and the program neing tested {s resident in
memory. The sample program is chown Tirst in its source listing form.
Foilowing is the sample debug operatiocn. :

1. Sample Program Source Listing

» S g EIND THE MAX & MIN OF DATA LIST
0100 - D RG 0100

STbRAGE LOCATIONS
6100 _ (ARGE RMB 1 LARGEST VALUE
0101 SHALL RMB 1 SHALLEST VALUE
0200 RG $0200

* PROGRAM STARTS HERE

pz00 88 0275 MINMAX LDX HDATA POINT TO DATA STRING

peo3 7w 010U CLR { ARGE FRESET MAX
0206 86 FE 1.DA F3FF ALSD

n2og 7 0101 STA SMALL PRESET MINIMUM
pzos A6 B0 LOOP LDA G, X+ GET DATA ITEM
pzon BY 0100 CHPA LARGE - ITEM > LARGE 7
pri0 24 G3 BCC CONTZ

g1z 87 0100 STAA LARGE UPDATE LARGE
gz1s 81 0101 CONTZ CMPA SMALL ITEM < SMALL 7
0218 24 03 BCC CONT3 -

GziA BY OlCC STA LARGE UPDATE SMALL
021D 8¢ 0ZZ0 CONTZ ~ CPX . ZDATEND EHD OF LISTY?
0220 26 b9 BRE Loop IF NOT, REPLAT
gzzz 7€ CDO3 . JMP - MON RETURN TO MONITOR

* DATA LIST
G725 02 36 4020 DATA © FCB . 2,54,76,32,12,87,55,6
0226 OC 57 37 06 - S
0220 DATEMD EQU %
003 MON EQU §CDO3 MONITOR EQUATE

ERD

wl e

TS0 LSG‘ Debug Package

11, Sample Debug Session

ﬂxﬂj Ciﬁ 0100

(706 LDA §SFF

0708 sTA Q10T

qees bha o i+

OelD CEPA QGE{WJ‘

G710 BOC 50215

G217 STRS0IG0

G715 CHPA SOI0L -

0218 BCC 0210

0214 STA SDIGO

0710 CWMPY ESG22D

(2e0 BRE 50208

Oree Jup o 4CDO3

FERROT 200, 278 ¥

"“*ROLF ¥
WRETE

0200~

’s&"ﬁ“q
CO=00 A=00 B=00 DP=00 X=0000 Y=CO000 S=CO7F U=0000 H=00 P=0000 ADBCA $BORG
WRSTART, 200 . :
MOH XFR TO CDE3
1 o i 100

C QIoG 08
: giral FF

*&SET P=200

15y
ROTECTLON
02

; CC=04 A=06 B=00 DP=00 X=0220 Y=0000 $=CO7F U=0000 N=00 P=0200 LDX #50225
FETND=ON :
*AFLAG=100

AR
CC=04 A=06 B=00 DP=00 X=072D Y=0000 S=CO7F U=0000 N=00 P=0200 LDX #$0225
I%=48 1Y=89 F=06FF :
FATSIM 10 : oo
CO=00 A=06 B=00 [ﬂ GG Y=0725 Y=0000 S=C07F U=C000 W=0G P=0203 CLR $0100
J¥=02 1Y=B9 F=06FF
CCs o& ﬁwté e 9@ ;; G0 ¥=0225 Y=0000 $=C07F U=DOCO N=00 P=0206 LDA #3FF
1 5=(07 f¥ 33 =Q0FF .
. Cle fﬁ ﬂ Oﬂ P00 X=0725 Y=0000 S=CO7F U=0000 H=00 P=0208 STA $0101
COIRsDE LY PS - UEFY o ‘ .
Cl= 08 A=FF B=00 0P=00 X=0225 Y=0000 $=CO7F U=00CC R=00 P=020B LDA X+
. 1}’ 17 Y= RQ [= ﬁﬂ’ e g) e 8 -
=00 A=02 § @(=00 K=0226 Y=0000 $=CO7F U=0000 N=00 p=0200 CMPA 30100
Fhe %h I? “Q QU%{ ’
CC=00 A=02 B=00 DP=00 X=0226 Y=0000 S=CO7F U=0000 N=00 P=0210 B
{i= }F Z? B8 F=00FF
CO=00 A=02 B=00 DP=00 X=0226 Y=0000 S=COVF U=0000 K=00 P=0215 CMPA 0101
£ [E=36 TY=RO F=DOFF '
o C=01 f‘“”gﬁﬁf BP=00 X=0226 Y=0000 $=CO7F U=0000 N=00 P=0718 BCC $071D
Pred6 FY=DO Fe0OrF i

e 50215

&
i
i
%
¥
H

T P Y S ST

CC=01 A=02 B=00 DP=00
[X=36 1¥=B9 F=00FF
€C=01 A=02 B=00 DP=00
1436 {Y=B9 F=02FF
“HROZ1E

#Hgp

6218 ~ SR
4G
CC=01 A=36 B=00 DP=00
1X=4C 1Y=BY F=02FF
##TS I

CC=01 A=30 8=00 DP=00 X

IX=6C 1Y=B9 F=02FF
EERSH, 214 |
0214 STA $101
0210
(LB
®*START, 200
MON XFR 10 CDO3
*¥i, 100
0100 00 .
6101 02
FETRACE =40
EXSTART, 200
CC=00 A=06 B=00 NP=00
IX=02 J¥=B9 F=0002
Co=04 A=06 R=00 DP=N0
S IX=02 JY=B9 F=0002
CO=08 A=FF B=00 DP=00
T¥=02 1Y=BY F=0002
CC=08 A=FF £=00 DP=00
FX=02 1Y=B9 F=0OFF

CC=00 A=02 B=00 DP=00

14=36 1Y=B9 F=00FF
CC=00 A=02 B=00 DP=00
FX=306 1Y=B9 F=00FF
CC=00 A=02 B=00 DF=00
1X=36 1Y=B9 F=00FF
CC=01 A=02 B=00 DP=00
IX=36 [Y=BQ F=00FF

CC=01 A=02 B=00 DP=00

[A=36 1Y=R9 F=00FF
£C=01 A=02 B=00 DP=00
1X=36 [Y=R9 F=0002
=09 A=02 B=00 DP=00
FX=36 1Y=B9 F=0002

1=0726
K=02726

X=0225
X=0225
X=0225
%=0225
X=0226
X=0226
X=0226
X=0226
K=0226
X=0226
X=0226

CC=09 A=02 B=00 DP=0D ¥=

FX=36 1Y=B9 F=0007

TSC 68092 Debug Package

Y=0000 §=C07/F U=0000 N=00 P=CZ1A STA

Y0000 S=CO7F U=0000 N=00 P=021D CHMPX

Y=0000 S=CO7F U=0000 N=00 P=0218 BLC

=
o

Y=0000
10000
¥=0000
Y=0000
Y=0000

¥=0000

Y=0000
Y=0000
Y=0000
¥=0000
Y=6000
¥=0000

S=CO7F U=0000
$=C07F U=0000
S=CO7F U=D000
S=COTF U=0000
§=CO7F U=0000
$=CO7F U=0000
$=CO7F U=0000
S=CO7F U=0000
5=COTF U-0000
S=CO7F U=0000
S=CO7F 4=0000
5=CO7F U=0000

iy o

H=00 P=0203
N=00 P=0206
N=00 P=0208
=00 P=0208
N=00 P=0200
N=00 P=0210
N=00 P=0215
H=00 P=0218
=00 P=021A
N=00 P=021D

- ¥=0000 S=C07F U=0000 N=00 P:OZIA.STﬁ

CLR
EDA
STA
LDA
CHMPA
BLE
CHPA
BCC
STA

W=00 P=0220 WNE

N=00 P=0208

501400

&
b?

30220

it

$0218

$0100

$0100
$9FF
$0101
e

%0100

507215

40101

$021n

$0101

X #0220

-
T

TS0 6809 Debug Packade

Ceegl Ee7 BeD0 OP=00 10227 Y0000 5=CO7F U=0000 H=0O P=0ZCH CMPA $0100

(X

b 18

CLe00 A6 B=00 DP=00 X=0227 Y=0000 S=COTF U=0000 K=00 pi0210 BOC

40215
PX=0C [Y=B0 F=0002

=00 A=36 B=00 DP=00 £=0227 ¥=0C0
[X=4C 1Y=RG F=0007 i -

CEa00 Aa36 B=00 DP=00 (=0727 Y=0000 $=CO7F U=0000 |
D%=40 1Y=RY F=000: , .

aéjegfnxiﬁlﬁx;@}mgisa y=0727 Y0000 S=COTE U=000D N=00 P=021D CHPX 730220
LXe4l [V=B9 F=0002

0P HALT AT 021D

©p1S 203 210 o

0208 LDA 44 : -

020D CHPA £80100

0210 BCC 50215

*RASH 210 :
0210 BLS
0217

ﬁ%YﬁG

#:START 200

HON XFR TO CDO3

#4100

0100 57 .

0101 07

##5, HE200

45, HOZ0B

55 {215

#5§ HEZ1D

#*B?

0 5=C07F US00H0 N=00 P=U215 CHPA $0101

=00 P=0218 BCC $0Z21D

5%

21

L

0200 « H
0208 - H
0715 - K
0210 ~ H
*%START, 200

MON XFR TO CDO3

ST

0200 - ©

0208 - 8
0215 - 8

02l - §
*ESTATES B
STATES=00000116, e

: TSC 6805 Debug Package

FANTS 200
o 0200 10X

* 0703 CLR

0206 1DA

0708 STk

g 0208 LDA X+

L 020D CHPA $0100

0710 BLS 0715

0212 STA $0100

: 0215 CHPA $0101

[0218 BCE S021D

% 021h STA $0101

021D CHPX £50220 -
0220 BNL $020B |

0722 JMP $CDO3

wp XIT

Tl
L7 D
RN

£oen
bt T et 7T E %

v

A T L ey

g

H
i,

s MRS A S A Bk

b G

150 6809 Debug Package
Adapting to Your Systen

The following descriptions may prove helpful in gdapting thig progran
to non-standard systems. All I/ and stack references are described
below. '

I I/0 References

"Get One Character™ gt $5510. Thie Jump vector references the standard
inpul character routine in the S-BUG menitor ROM. 5t 15 an extended
indirect jump through the S-pUG transfer vector. Any input routine may be
used as Tong as it returns the ASC)I character in the A accumulstor with
the parity removed, and preserves the B and ¥ registers,

"Put One Character® at $550C, This Jump vector references the standard
output cheracter routine in the S-BUG monitor ROM, It is an extended
indirect jump through the $-BUG transter vector. Any output routine may
be wused as Tong as 1t outputs the character from the A accumulator, and
preserves the B oand X registers,

“System Monitor™ at $5514, This Jump vector references the starting entry
address of the $-BUG monitor ROM. It j¢ an extended indirect Jump through
Coothe $-BUG transfer vector. * This may be changed to the starting address of
Your own monitor. This is the address used by the EXIT command, ‘

“Check for Input Character" a4t $551a. This jump vector references the
routine which checks for a character having been entered from the
keyboard. It s an extended indirect Jump through the $-BUG transfer
vector. Any check input character routine may he used as tong as it
returns & "not equal” condition 1f a character has been entered, does not
input the character itself, and preserves the B and X registers,

L3

L. 1/0 Related Storage

BSP at $551C. This byte contains the character which is decoded as the
backspace character {currently a Control H, $08). Change as desired,

CBEL a2t $5510. This byte contains the character whiich is decoded as the
line cancel character {(currently a Control Xy $18}. Change as desired,

BSE at $851F, This byte contains the character Wiieh will be echoed after
Lhe receipt of a backspace character {(currently & Control H, $08), If
Lhis character is set to 508, a space will be cutput preceding fhe
backspace eche character. Setting this byte to zerg will inhibit the
backspace echo character,

S41F. +This hyte contains the character which is decoded as the
“ecter {(currently an ASCII Escape, 318). This way be changed as

BT

e
3

F
S

TSC 6009 Debug Package

T ﬁ’-&
111, Stack Pointer References

The stack pointer is normally preset to the @rigih address of Debug
Packzge. To use & different aves for the stack, leoad the systonm stack
pointer {8 recister) with the desired stack address and enter the Debuy
Pechage at the origin address plus © (55508) for cold start, and at the
oricin address plus 9 (5509 for werm start. The Debug Package requives
1500 bytes for stack space since it puts all variabtes and tables on the

stack.

IV, Interrupt Vectors

" * -

The Debug Packace normaily references the hardware inferrupt vectors
lacated at $FFF2-$FFFD to determine those addresses to which to transfer
control when & simulated interrupl OCCUTS. 1t is possible to patch the
Debug Package to reference other addresses in determining the location of
interrupt routines. These patch points contain addresses of locations
which, in turn, contain the addresses of the interrupt handling routines.
Re sure teo preserve this “double indirection" when modifying these patch

points.

8

NI at $5520, default = SFFFC

SW] at $5522, default = $FFFA

IRD at $5524, default = $FFF8 -

FIRG at $5526, default = $FFFO -
W12 at .$5528, default = $FFF4 . _

SHIZ at 35524, default = §FFF2

i

i

i

V. Saving the Altered Program

After modifications have been made to the program, it may be saved on mass
storage. The progrem should be saved from $5500 through S7FFF. The
starting or transfer address is $5500. '

N

