OPSYS ___ SERIAL 12441

OMEGASOFT 6889 PASCAL
VERSION 2 LANGUAGE HANDBOOK

ORDER No. MPCS2
RELLEASED FOR SOFTWARE VERSION 2.2

CERTIFIED SOFTWARE CORPORATION
616 CAMINO CABALLLO., NIPOMO CA 93444
TEL: (805) 349-8202 TELEX: 467613

Fifth printing, July 1983

The information in this document has been carefully checked and
is believed to be reliable, however, no responsibility is assumed
for inaccuracies. Certified Software Corporation reserves the
right to change specifications without notice.

Copyright 1981, 1982 and 1983 by Certified Software Corporation.
All rights reserved. No part of this publication may be stored in
a retrieval system, transmitted, or reproduced in any form or
means, photocopying, electronic, mechanical, recording, or
otherwise, without the prior agreement and written approval of
Certified Software Corporation.

OmegaSoft and OmegaSoft Pascal are trademarks of Certified
Software Corporation.

-~

OmegaScft Pascal Version 2 Language Handbook
~ CONTENTS

PREFACE 0=7

CHAPTER 1 INTRODUCTION
Syntax Notation

=
§
b

PASCAL PROGRAM STRUCTURE
Program Heading
Block
Lexical Levels

CHARACTER SET

IDENTIFIERS .

PREDECLARED IDENTIFIERS

RESERVED WORDS

SPECIAL SYMBOLS

DELIMITERS

PROGRAM DCCUMENTATION

COMPILATION OPTIONS AND INCLUDE FILES

i

i
bt b2 AD D 00 00 OV U W

H
[
=

e i e
1

i
L
k.

CHAPTER 2 DECLARATION SECTION

3
i
=

NUMBERS
LABEL DECLARATIONS
CONSTANT DECLARATIONS
Predeclared Constants
TYPE DECLARATIONS
Bocolean
Character and Byte
Encmerated
Integers
Hex
Subranges
Long Integers
Reals
Structured types
Strings
Arravs
Records
Sets
Devices and Files
Standard Devices

£

¢

i
st nailandlandl Sl Sl e SR SR LS e s B0 WY o SO W/ 4 R S -y WO SS I I e
w -,

[

i

i

s O

[Sl S S SR SR SN SR SESE NS SIS N SN
i

Pointers -
Longhex -
VARIABLE DECLARATIONS 2-1
Extended Addressing 2-18
Direct Page Addressing 2=20
PCR Addressing 2-20
External Addressing 2-20
Entry Addressing 2-21
SCOPE OF IDENTIFERS 2-21

CHAPTER 3

CHAPTER 4

CHAPTER 5

CmegaSoft Pascal Version 2 Language Handbook

EXPRESSIONS

ARITHMETIC EXPRESSIONS

RELATIONAL EXPRESSIONS

SET EXPRESSIONS

PRECEDENCE OF OPERATORS
VARIABLES

PASCAL STATEMENTS

COMPCOUND STATEMENT
ASSIGNMENT STATEMENT
CONDITIONAL STATEMENTS
Case
If-Then~Elise
REPETITIVE STATEMENTS
For
Repeat
While
TRANSFER STATEMENTS
Exit
Goto

WITH STATEMENT

PROCEDURE CALL

LABELED STATEMENTS

INLINE STATEMENT

PROCEDURES AND FUNCTIONS

FORMAT OF A PROCEDURE OR FUNCTION

PARAMETERS

Formal Parameter List

Value Parameters

Variable Parameters
Punction Return Type
Type Compatibility

Dynamic Array Parameters

SIDE EFFECTS

DECLARATICN OPTIONS

Forward

External

Entry
Absolute

(¥}
f
bt

i

[VEN VR0 FU 5 UV 3y 7%
I
O Oy 4t U o

I

e
1

1
b+ D RO~ W W N =

= O

| D O T I T |

&%#b-&hb?hh&bhboﬁ&

i
I
|

(I I T |

O ~F~Jh Ut U b e e LW B

CmegaSoft Pascal Version 2 Language Handbook

CHAPTER 6 PREDECLARED FUNCTIONS

ARITHMETIC FUNCTIONS

Abs :

Arccos

Arcsin

Arctan

Cos

Exp

Ln

Log

4

Random

Sin

sqr

5qrt

Tan

TYPE CONVERSION FUNCTIONS

I/0

Boolean

Char

Chr

Enum

Floor

Hex

Integer

Longhex

Longinteger

0dd

Ord

Real

Bound

String

Trunc

AND RUNTIME STATUS FUNCTICNS
Break

Conversion

Deverr

Eof

Eoln

Memavail

Range

STRING FUNCTIONS

Cline

Concat

Index

Length

Substr

Upshift

MISCELLANEQOUS FUNCTIONS

Addr

Pred

Sizeof

Succ

(=)}
H
[

(I S I I

ounc\mcn?\Tcnc\mcha\m
E1d
(VRIS RSV SN S I SNSRI

t FEr et
O o~~~ ~1 S VOV U U BT UL b

|
1 ADAD WD

Ty h G Oh Ch A AR AR NN NN
i

|
ot
L)

OmegaScft Pascal Version 2 Language Handbook

CHAPTER 7 PREDECLARED PROCEDURES

~d
i
(=

I/0 PROCEDURES

Close 7=1
Create 7-1
Del 7-2
Devinit T2
Get 7-3
Open T3
Page 7-4
Put 7~-4
Read and Readln T=4
. Reset T=-6
Rewrite 7=-6
Seek T-7
Write and Writeln 7-8

DYNAMIC VARIABLE MANAGEMENT PROCEDURES

Dispose 7=12
Mark T=12
New T7-12
Release : 7-13
MISCELLANEOUS PROCEDURES
Halt 7=13
.CHAPTER 8 MODULAR COMPILATION g-1
MODULE BEADER FORMAT B=~1
GLOBAL VARIABLE MANAGEMENT g~2
EXTERNAL AND ENTRY VARIARBLES g=-3
EXTERNAL AND ENTRY PROCEDURES AND FUNCTIONS - 8=3
CHAPTER 9 ASSEMBLY LANGUAGE INTERFACE 9-1
PARAMETER PASSING §-1
GLOBAL VARIABLE ACCESSING 94
INTERUPT PROCEDURES §-5
CHAPTER 10 WRITING DEVICE DRIVERS 101
CHAPTER 11 CHAPTER 1-10 INDEX i 11-1
CHAPTER 12 APPENDIX 12a~1
A = COMPILATION ERRORS 12A~1
B — RUNTIME ERRORS 12B-1
C = RUNTIME ENVIRONMENT l12C-1
D « RUNTIME ROUTINES 12D-1
E - I50 VALIDATION REPORT 12E+~1
F =~ CONVERTING FROM OLDER VERSIONS 12F=1

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

13

14

15

16

17

CmegaSoft Pascal Version 2 Language Handbook

PROGRAM EXAMPLES

DEBUGGER

Operation

Commands

UTILITIES (OS DEPENDANT INSERT)

INSTALLATION (0OS DEPENDANT INSERT)

STANDARD I/0 OPERATICN {(0OS DEPENDANT

INSERT)

13~1

14-1
14~1
14-3

15~1

16-1

i7-1

OmegaScft Pascal Version 2 Language Handbook
PREFACE

MANUAL OBJECTIVES
This manual describes the Pascal Language as implemented by
OmegaSoft for the 6809 CPU. This manual is a reference document
and is not meant as a tutorial on Pascal. For those not familiar
with the Pascal Language the following book is recommended by
OmegaScft.

Programming in Pascal

Revised Edition

Peter Grogono

Published by Addison-Wesley

Number ISBN 0-201~02775-5
Readers should have a basic knowledge of the operating system to
be used with the Pascal Compiler. Operating system dependant
features are presented in the rear of this manual.
STRUCTURE OF THIS MANUAIL

* Chapter 1 describes the basic structure of a Pascal program and
its elements.

* Chapter 2 describes in detail the components of the various
declaration sections.

* Chapter 3 describes the valid forms of an expression.
* Chapter 4 describes the statement types allowed in Pascal.

* Chapter 5 describes the format of user defined procedures and
functions.

* Chapter 6 describes the predeclared functions supported.
* Chapter 7 describes the predeclared procedures supported.
* Chapter 8 describes Modular compilation and its advantages.

* Chapter 9 describes how you can interface assembly language
data and programs with Pascal.

* Chapter 10 describes Pascal device drivers.

* Chapter 11 is an index for the preceding 10 c¢hapters.

Q-7

OmegaSoft Pascal Version 2 Language Handbook
PREFACE

* Chapter 12 is an appendix that includes compilation ané runtime
errors, the runtime environment, the runtime support routines
used and their location, and the ISO Validation Report. This
report can be used as an aid for those of you who must write
portable Pascal programs or wish to transport programs from
another source to run on OmegaSoft Pascal.

* Chapter 13 includes a number of program examples developed at
OmegaSoft or by its customers (reprinted here with their
permission).

* Chapter 14 describes the working of the Symbolic Debugger
included with the Pascal system.

* Chapter 15 describes any other utilities that are included.
These utilities are operating system dependant.

* Chapter 16 outlines the installation of the Pascal system on
your operating system. Before tryving to use this software this
section should be read. This chapter alsoc provides an example
program (source on disk) and a session where this program is
tested using the debugger and then assembled and linked into an
operating system utility.

* Chapter 17 details the operation of the standard I1/0 devices on
your operating system.

OmegaSoft Pascal Version 2 Language Handbook
INTRODUCTION

Omegascft Pascal is an extended implementation of the ISO
standard Pascal language. This language is designed for
industrial control and related real-time applications and
features the following extensions :

* Additional data types including longinteger, longhex, hex,
string, and user-defined device.

* Logical operators for 1, 2, and 4 byvte types.
* Shift operator for 1, 2, and 4 byte types.

* Loop exit and program halt.

* HBex and binary conétants.

* Easy interface to assembly language procedures, functions,
and variables. ‘

* Else clause and subrange constants for case statement.

* ADDR and SIZEOQOF functions.

* Arithmetic operators for one bvte values.

* Include files.

* Modular compilation.
Features in the IS0 standard not supported in this compiler are
packed variables (and associated procedures) and procedures and
functions as formal parameters to procedures and functions.
SYNTAX NOTATION USED IN THIS MANUAL
Modified Backus-Naur form is used as the primary syntax in this

manual. Note that terminal symbols (reserved words, special
symbols) are in boldface print.

Meta-Symbol . Meaning

= shall be defined to be

I alternatively

[x] zero or one instance of x

{x} Zero or more repetitions of =z
{(xlylt..l2z) grouping: any one of %x,V,..,Z
XyZ the terminal symbol xyz
anything-else a non~terminal symbol

1-1

OmegaSoft Pascal Version 2 Language Handbook

INTRODUCTION - Syntax Notaticn

For more complex constructions pictorial syntax diagrams are also

provided.

>

starting

Ovals are used to represent reserved words,
predefined identifiers, and symbols. These appear
in the program as shown and are not expanded out
into further syntax. The items within the ovals are
in boldface print to.correspond with the Backus-
Naur form outlined above.

A rectangle contains syntax elements that are
defined elsewhere in their own diagram. These can
be either user defined identifiers or parts of the
syntax that can be expanded out into its basic
cemponents.

Lines and arrows indicate authorized paths and are
used to show the acceptable sequence of elements in
the syntax diagram.

For example, the syntax for the label declaration
is drawn as follows:

1integer

. 4 X
o~ - optional path

OmegaSoft Pascal Version 2 Language Handbook
INTRODUCTION - Syntax Notation
The correctness of the declaration
label 5,100 ;
can be verified by tracing through the syntax diagram. The
following diagram is a step-by-step illustration of how the label

declaration is constructed (or verified) by following the syntax
rules.

label 5,

U A f——

label 5,100

—— =13l - —

label 5,100 ;

a——

—_—— 1 el>——7 110

i ——

2]
/]
Y

|
|
),
=~}
k)
|

OmegaSoft Pascal Version 2 Language Handbook
PASCAL PROGRAM STRUCTURE

PROGRAM HEADING -

The PROGRAM line must be the first line of a program. An
identifier follows the word PROGRAM and this identifier is
converted to upper case, truncated to 6 characters, and used as
the starting address label for the program. This identifier has
no further significance in the program.

Following this identifier may be a list of standard I/0 devices
and device variable names. If any of the standard I/0 devices are
to be used in the program, then vou must list them here.

If any device variable names are listed, then their relative
position corresponds to a position within the command line. Using
the program heading and variable declarations that follow :

program Test (data, report, error_file) ;
var
error_file, data, report : text ;

then if the program is called with the command line

test jones Jjreport jerror
then the default filename for data will be jones, for report will
be jreport, and for error_file will jerror. For additional
information on options available for the standard I/0 devices see
the section on compilation options.

Following the optional list of identifiers is a semicolon, the
outer block, and the program is terminated by a period.

program heading = Program identifier [(identifier
{; identifier!})] ; block .

identifier} =) r-‘idéntifier
o=

-

Cre—0

OmegaSoft Pascal Version 2 Language Handbook
PASCAL PROGRAM STRUCTURE

BLOCK

The block contains the declaration part and execution part. All
data items referenced in the execution part must be defined in
the declaration part of the same or an enclosing block.

block = {(label-declaration | constant-declaration |
type~declaration | variable-declaration)!}
{ (procedure-declaration | function-~declaration)}
begin [statement {; statement}] end

AN
™ '{label declarationf“*‘j)
L/ <
™ s constant declaration}———j)
e <
™ =i type declarationk————jj
e -~
A = variable declarationf“"—fj
- <
v

,///)Aﬁrocedure declaration
\\\\\\‘qunction declaration

L -

/

OmegasScft Pascal Version 2 Language Handbook
PASCAL PROGRAM STRUCTURE

LEXICAL LEVELS

Zach block is at a specific lexical level. This lexical level is
assigned by the compiler and is used to determine the code
required at runtime to access variables. The first lexical level
defined is the outer (program) block and is level one. Procedures
and functions defined immediately within the program block are at
lexical level two. Procedures and functions defined within
lexical level two are at lexical level three, etc.

" A procedure defined at lexical level "N" may call a procedure
defined within its block at lexical level "N + 1". A procedure
defined at lexical level "N" may also call any procedure at a
iower lexical level in an enclosing block. This is shown in the
following example.

OmegaSoft Pascal Version 2 Language Handbook
PASCAL PROGRAM STRUCTURE
Program A; { lex level 1 }
Procedure B; { lex level 2 }

Procedure C:; { lex level 3 }

Begin
{ procedures B and C may be called }
End;
Begin { B }
{ procedures B and C may be called }
Eng;

Procedure D; { lex level 2 }
Procedure E; { lex level 3 }

Procedure F; { lex level 4 }
Begin
{ procedures B, D, E, and F may be called }
End;

Begin { E }
{ procedures B, D, E, and F may be called }
End;

Begin { D }
. 1 procedures B, D, and E may be called }
End;

Begin { A }
{ procedures B and D may be called }
End.

Constants, types, variables, and parameters carry the lexical
ievel of the procedure (or program) they are defined in. When
accessing a variable the difference between the current lexical
level and the lexical level that the variable is defined at
affects the amount of code (and time) required. The smallest
amount of code is required for accessing local variables (those
that are defined in the same block as the access). Global
variables (defined in the program block, but accessed from a
procedure) require more code to access. Variables defined in a
procedure block and then accessed in an inner block require the
most code to access.

OmegaScft Pascal Version 2 Language Handbook

CHARACTER SET

OmegaSoft Pascal uses the American Standard Code for Information
Interchange (ASCII) character set. Of the ASCII character set the
following characters are used :

* The upper and lowercase letters A through Z and a through z
* The numbers 0 through 9

* The special characters space ! # S & ' () * + , = , / 1 : < =
>e [17 {1}

* The carriage return (hex OD) for terminating lines of input

Upper and lower case characters are eguivalent except in
character and string constants.

IDERTIFIERS

Identifiers are used to name programs, constants, types,
variables, procedures, and functions. Some identifiers are
predeclared by the compiler but can be redefined by the user,
Other identifiers are predeclared and cannot be redefined by the
user, these are called reserved words. aAn identifier is a
sequence of letters, digits, and underscores (_) with the
following restrictions :

* The identifier must begin with a letter

* The identifier must not contain any blanks

* The identifier must not cross a line boundary

OmegaSoft Pascal does not place a restriction on the length of an

identifier and all characters are significant. The following are
examples of valid and invalid identifiers :

VALID INVALID

testl testl {starts with _}

test200] 200test {starts with a digit}
time_of_day time&day {contains an ampersand}

Omegafoft Pascal Version 2 Language Handbook

OmegaScft Pascal predeclares the following identifiers

PREDECLARED IDENTIFIERS

Ty

abs addr arccos arcsin
arctan auxout beoolean break
byte char chr cline
close concat conversion cos
create del deverr device
dispose e entry enum
eof eoln exit exp
external false floor forward
get halt hex index
input integer interactive keyboard
length in log longhex
longinteger mark maxint maxlint
memavail minint minlint module
new odd open ord
output page - pi pred
put random range read
readln real release reset
rewrite round seek g8in
sizeof sgr sqgrt- string
substr succ . tan text
true trunc update upshift
write writeln

These predeclared identifiers may be redefined to denote some
octher item. Doing so will mean that you will not be able to use
the identifier for its intended purpose and therefore it is
recommended that you not redefine standard identifiers.

The standard I/0 device names : input, output, auxout, and

keyboard are considered global if they are declared in the
program. '

RESERVED WORDS

Reserved words are predeclared identifiers that may not be
redefined at any time and include :

and array begin case
const div do downto
else end eor file
for function goto if
in label mod nil
not: of or packed
- procedure progranm record repeat
set then to type
var until while with

OmegaScft Pascal Version 2 Language EHandbook
SPECIAL SYMBOLS

CmegaScft Pascal includes the following special symbols :

Syumbol = Usage

space delimiter

inline assembly code marker

character comstant marker

hex constant marker
" binary constant marker

character and string constant delimiter

start of parameter list or expression

end of parameter list or expression

arithmetic multiply and set intersection

arithmetic addition and set union

list separator

arithmetic subtraction or set difference

end c¢f program or decimal point

division

part cof declaration syntax and case statement

general syntax separator

less than

shift left

egual to

greater than

shift right

less than or equal to

greater than or equal to

not equal to

start of array index

end of array index

pointer to or pointer dereference

used in long identifiers for clarity

start of comment

end of comment
(* alternate symbol for
*} alternate symbol for
{. alternate symbel for
.} alternate symbol for
@ alternate symbol for

4 # om0 0 AR =

-

.
FaN

P AN ANV VA A e e
vl BV

ot i |

Yl S Ay

OmegaSoft Pascal Version 2 Language Handbook
DELIMITERS

The semicelon (;) is used to separate one Pascal statement from
another. More than one statement may appear on a line, but the
statements must be separated by semicolons. Correct usage of
semicolons tends to be the most common problem that new Pascal
programmers have. It is unfortunate that Wirth made the semicolon
a statement separator rather than a statement terminator. This
methodology also applies to.-the use of the semicolon as a
separator in declaration sections.

One way many Pascal programmers get away with poor use of
semlcolons is that a semicolon may be used immediately before the

"end" in a compound statement or case statement. A semicolon in
this positien results in a "null" statement and is generally
harmless.

The period (.) delimits the end of a Pascal program.

Spaces and carriage-returns are separators and cannot appear in
an identifier, any number, or special symbol. At least one
separator must be used between consecutive identifiers, reserved
words, and numbers. This allows a great deal of freedom in the
formatting, for an example see the next section on program
documentation.

Begin and end are reserved words that act as dellmlters. Begin
indicates the start of a compound statement and is not followed
by a semicolon. End terminates a record definition, a compound
statement, or a case statement.

PROGRAM DOCUMENTATION

Probably the most significant advantage Pascal has over other
languages such as assembly, "C®, and Forth is its inherent self-
documentation. This feature results in more source code for a
given amount of object code than the other languages, but pays
0ff in reduced maintenance costs in the long run.

Towards that end, it is recommended that your company define
guidelines for program documentation and structure. The following
are recommendations only and in no way are enforced by the
compiler.

It is generally good practice to put a comment section before the
main program and every procedure describing its purpose,
parameters, and any global variables affected. It is usually not
necessary to insert comments in with the code as is required by
other languages.

OmegaSoft Pascal Version 2 Language Handbook
PROGRAM DOCUMENTATION

The syntax for comments is :
comment = { characters } | (* characters *)

Comments are syntatically equal to separators. Replacing them by
a blank does not alter the meaning of the program unless the
comment is also a compiler control toggle (see compilation
options section).

Since Pascal is a free format langﬁage, a great deal of freedom
is provided for layout. All of the following represent the sanme
program and will be compiled the same

program
test
(output)

begin
writeln (
Ttest')
end.

program test (cutput) ; begin writeln ('test'} end.

program test (output)
begin
writeln {'test')
end.

£y

As an aid to determining the structure of a program the compiler
provides an "indent"®™ count along with the line number on the
listing. This indent count represents what level the compiler is
in based on the first identifier in the line. This in no way
dictates what style of layout you must use in your programs.

The recommended indenting is based on the guidelines presented in
'Programming in PASCAL' written by Peter Grogono and published by
Addison~Wesley. The indent count starts at 0 representing the
left margin and increments one per indenting level. After the
count reaches 9 its next increment is A, and the count proceeds
through the alphabet. If the count gets very far into the
alphabet it is usually a signal that you should break something
out into a procedure or function.

Const, type, var, procedure, and function headings should be
indented. The bodies for the const, type, var, procedure, and
function sections should be indented from their headings.

OmegaSoft Pascal Version 2 Language Handbook
PROGRAM DOCUMENTATION

The following layouts are recommended for statements :

Begin
Statement 1
Statement_ 2

YT

Statement_ N
End

If expression
then
statement

If expression
then

statement
else

statement

While expression do
statement

For X := expression_l to expression_2 do
sStatement

Repeat
Statement, 1
Statement_2
Statement_N

Until expression

N we

With variabie do
statement

Case expression of
Constantl :
statement_1
Constant? :
statement 2
ConstanthN :
statement N
Else
statement
End { case }

~e

g

i=-13

OmegaSoft Pascal Version 2 Language Handbook
COMPILATION OPTIONS AND INCLUDE FILES

In OmegaSoft Pascal there is a special syntax used %o control
various aspects of the compiler. If the open of a comment (a {)
is followed by a dollar sign, then the characters that follow are
considered to be compiler control toggles.

control~toggles = { § ((lislibiclalrii) (+I=}) | p)
{((Llslbiclalxli) (+i=}) | p)} |
¢ (nejeqlilt!leligtige) constant | cend |
i<file name> rest-of-comment

\
option fl'!constant}—\
L file namey——-"“—“w

|

<<i:E§§;::> (- \\\\“ﬁrestuof*commentf“’

G

h o= d

Some of the options affect the action of the compiler during the
compilation, other options generate code that will modify
operation only at runtime and only after the code containing the
options is executed. '

The first set are the options that affect the operation of the
compiler

If the S option is followed by a + then subrange checks are
enabled, if the 8 option is followed by a - then subrange checks
are disabled. If subrange checks are on when doing assignments to
subrange variables extra code is emitted to perform this check.
This option also affects the type of code generated for array and
string indexing and whether or not c¢ode is generated to check for
truncation and overflow errors on arithmetic done in inline code
rather than a subroutine at runtime. Note that it does no good to
have the S option on without the R cpticn on.

OmegaSoft Pascal Version 2 Language Handbook
COMPILATICN OPTIONS AND INCLUDE FILES

If the I option is followed by a file name, this file is opened
and source text is read and compiled until end of file is hit, at
which point the original file is used again. This syntax is
referred to as an "Include file" and thev may not be nested. If
compiling an include file the compiler will place an "I" to the
left of the line number on the listing.

If the P option is specified and the listing page size is non-
zero then the next line of sourcé will appear on a new page.

If the L option is followed by a + and the L command line option
is on then listing will be enabled. If the L option is followed
by a - and L command line option is on listing will be disabled.
Note that these can be nested, If two L~ 's are encountered then
two L+ 's will be reqguired to enable the listing. Default at
start of compilation is L+.

If the B option is followed by a + then any text devices that are
declared after that point will have their "break bit"™ set during
initialization. If the B option is followed by a =~ then any text
devices that are declared after that point will have their "break
bit® cleared during initialization. Default at start of
compilation is B-. Refer to the section of Chapter 2 dealing with
Devices and files for an explanation of the "break bit".

The A opticn is not usefnl for 0S-9 systems and this section can
be skipped if you will be running yvour target program under 08=-$.
The A option is only effective during the program parameter list
declaration. If enabled (A+) then any standard I/0 devices
defined there after will be setup for automatic command
redirection. If disabled (A=) then any standard I/0 devices
defined there after will be setup for fixed attachment (they will
use their normal devices). The default at the start of
compilation is A-., If the A option is enabled then the strings
that follow the special symbols in the command line will be the
device or file name that will be used for the standard I/0
device.

Input uses string following <
Qutput uses string following >
Auxout uses string following >>

If the string is P or p then it will connect to the system
printer, if the string is TERM or term then it will connect to
the system terminal, any other string will connect to a disk file
with the string as its directory name.

OmegaSoft Pascal Version 2 Language Handbook
COMPILATION OPTIONE AND INCLUDE FILES

If the C options is followed by "ne" "eg"™ "1t™ "le" "gt" "ge" and
a constant, this is the start of conditional compilation. The
constant must either be a numeric one or two byte constant, or an
identifier declared in the constant declaration section. This
constant value is compared (signed) against zero, if it meets the
condition specified then compilation will continue, else
compilation will be turned off ({(source not parsed) until a "cend"
compilation option is encountered. Conditiocnal compilation may
not be nested. ‘

The other group of options generate runtime code that affects the
error mask in the stack frame during execution. These options
must be located in a section of the program that will be
executed. Although there is sometimes executed code cutside of a
blocks begin .. end pair, it is not recommended that you put
these options anywhere other than in a block's begin .. end pair.

When a procedure is entered its error mask is copied from its
lexical parent, not the caller (unless the same).

If the I option is followed by a + then runtime I/0 checks are
enabled, if the I option is followed by a - then runtime I/C
checks are disabled. Default at start of compilation is I-.

If the R option is followed by a + then runtime range checks are
enabled, if the R option is followed by a - then runtime range
checks are disabled. Default at start of compilation is R-.

If the C opticn is followed by a + then runtime conversion checks
are enabled, if the C option is follcocwed by a - then runtime
conversion checks are disabled. Note that this only refers to
halting the execution on a conversion error, the conversion
function will always return the latest status, regardless of the
condition of this toggle. Default at start of compilation ig C-.

A brief example will more clearly demonstrate the effect of the
I, R, and C options. Only the R option will be used since the
other two behave exactly the same.

OmegaScft Pascal Version 2 Lanquage Handbook
COMPILATION OPTIONS AND INCLUDE FILES

Program A ;
Procedure B ;
Procedure C ;
Begin
{ at this point options are the same as Procedure B
at the time when Procedure C is called. }
{$R+ this affects only Procedure C }
B { its options will reflect Program A's
because of the lexical levels }
End ;
Begin { B }
{ at this point options are the same as Program A
at the time when Procedure B is called. }
{$R~ this does not affect Program A }
C { at entry Procedure C's R flag will be off }
End ; { 8 } '
Begin { A }
{ at this point all options are off }
{SR+ turn on range checks 1}
B { at entry Procedure B's R flag will be on until
' set explicitly off 1}
End . { A}

OmegaScft Pascal Version 2 Language Eandbook
DECLARATION SECTION

All constant, type, variable, and procedure names nust be
declared before being used. This chapter describes each of the
declaration sections available in OmegaScft Pascal.

Before covering the declaration sections it is appropriate to
present the number types available in OmegaSoft Pascal.

NUMBERS

CmegasSoft Pascal recognizes integer (signed fixed point), hex
(unsigned fixed point) and real (signed floating point) numbers.
Hex numbers may be represented in hexidecimal (0-9 and A-F) form
or binary (l1's and 0's) form. In addition, integer and hex
numbers may be used to form byte (unsigned fixed point) numbers.

INTEGERS

Normal integers are positive and negative whole numbers ranging
from ~-32768 to 32767. A minus sign (-} precedes a negative
integer, a plus sign (+) may precede a positive integer, but has
no effect.

Longintegers are positive and negative whole numbers ranging from
-2147483648 through 2147483647. Minus and plus signs are allowed
in the same manner as normal integers. A longinteger is an
integer that is out of the integer range, or an integer followed
by an "L" with no intervening space.

HEX

Hex numbers are formed by using the decimal digits 0 through 9
and the letters A through F preceded by a dellar sign (S$). The
range for hex numbers is $0 through S$FFFF.

Hex numbers may alsc be represented by using the decimal digits 0
and 1 preceded by a percent sign (%).

Longhex numbers have a range of $0 through SFFFFFFFF. A longhex
number is a hex number that is out of the hex range, or a hex
number follcwed by an "L" with no intervening space.

BYTES

Byte numbers are formed by prefixing a pound sign (#) in front of
an unsigned integer or hex number. Only the least significant
byte of the integer or hex number will be used. Byte numbers and
byte variables are identical to character numbers and character
variables, byte and c¢har are synonyms.

OmegaSoft Pascal Version 2 Language Handbook
NUMBERS

REALS

Real numbers have a range of approximately 2.7E~-20 to 9.2E18 and
a resolution of 7 digits. Note that due to the algorithms used
the compiler and runtime routines will not convert the ascii
representation of a real number into internal binary format
ocoutside of the range 5E-19 to 5E18.

The cumulative syntax for the above numbers follows ¢

digit~sequence = digit {digit}
unsigned~integer = digit-sequence
unsigned-real = unsigned-integer {(. unsigned-integer
[(e | B) signed-integer] | (e | E) signed~integer)
hex-digit = {(digit 1 A I B I C I DI E | PF) :
hex-number = (§ hex—digit {hex-digit} | & (0 ! 1) {(0 | 1)})
byte-number = # (unsigned-integer | hex-number)
signed~integer = [(+ | =)] unsigned-integer
signed~-real = [(+ | -)] unsigned-real
longinteger = signed-integer [L | 1]
longhex = hex-number [L [1]

Pictorial diagram for signed-real :

LABEL DECLARATIONS

The label declaration is used to define to the compiler those
unsigned-integers to be used as destinations for a GOTO
statement. Note that this section dces not define where the label
will be, only that the designated values may be used as a label.

label-declaration = label unsigned-integer {, unsigned-integer} ;

OmegaSoft Pascal Version 2 Language Handbook'
CORSTANT DECLARATIONS

Constants are identifiers that are assigned an unchanging value.
Constant identifiers.are preferred over the use of numbers within
a program. OmegaSoft Pascal has a very useful extension which
allows a constant to be any constant-valued simple expression
(see Chapter 3 for details of simple-expression syntax).

The type of the simple expression must be boolean, character,
integer, longinteger, hex, real, string, or pointer.

The following types and operators and functions will remain
constant if the operands are constants :

Not operator for boolean, character, integer, and hex. Unary
negation for integers, longintegers, and real. Addition and
subtraction for character, integer, and hex. Or operator for
boolean, character, integer, and hex. Eor operator for boolean,
character, integer, and hex. Multiply for character, integer,
and hex. And operator for boolean, character, integer, and hex.
Shift operator for character, integer, and hex. Ord, and chr
functions. Boolean function for enum, char, integer, and hex
parameters. Enum and Char functions for integer and hex.
Integer and Hex functions for boolean, enum, and char. Longhex
function for longinteger, Longinteger function for longhex
parameter. Above general conversion functions when the
parameter is the same type as the functicn.

constant-declaration = const identifier = constant
{; identifier = constant} ;
constant = constant-valued-simple-expression

= constant

PREDECLARED CONSTANTS

These are predeclared identifiers having specific constant
values, they include :

false - boolean with an ordinal value of 0

true - boolean with an ordinal value of 1
maxint - integer with a value of 32767

minint - integer with a value of =-32768

nil - pointer or hex with a value of 50
maxlint - longinteger with a value of 2147483647
minlint - longinteger with a value of -2147483648
e - real with a value of 2.718282

pi - real with a value of 3.141583

OmegaScft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

The type-declaration part is used to assign a type to an
identifier, or to create a new type out of existing types, either
user defined, or predeclared.

In this chapter we will also describe how the various types are
stored in memory as variables an how they appear on the data
stack during expression evaluation or when passed as parameters.

The simplest of the types are the ordinal types. Any of the
ordinal types can be converted into a unigue integer. The ordinal
types include : boolean, character, enumerated, integer, hex, and
subranges. :

type-declaration = type identifier = type {; indentifier = typel;

identifier (=) - type:
<~ ; e N

NS

BOOLEAN

Boolean types represent logical values, either false or true.
Boolean is a predeclared enumerated type :

boolean = (false, true}
such that in relational expressions : false < true.

Boolean variables are stored as one byte. The most significant 7
bits of the byte must be zero. If the least significant bit is
zero, then it is false, else it is true. When boolean values are
used in expressions they are in the B accumulator. When boolean
values are passed as parameters by value or returned from a
functiocn they occupy one byte on the stack.

boolean—-type = boolean
boolean-constant = (false | true | boolean-constant-identifier)

CHARACTER AND BYTE

A type defined as char (for character) or byte are exactly the
same, char and byte are synonyms. Character values most often
represent ascil data, but may represent any other data that can
fit within one byte. Character variables are very useful for
interfacing to byte~wide I/C ports by using absolute addressing.

OmegaScft Pascal Version 2 Language Haﬁdbook
TYPE DECLARATIONS

Character variables are stored as one byte. When character values
are used in expressions they are in the B accumulator. When
character values are passed as parameters by value or returned
from a function they occupy one byte on the stack.

character—-type = char | byte _

character-constant = (' character ' |
$# (unsigned-integer | hex-number) |
character-constant~identifier)

Note that in a character-constant if it is necessary toc represent
the single quote (') it must be written twice ('').

ENUKERATED

An enumerated type declaration specifies the permissible values
for that type. Enumerated types are most often used as selectors
for case records and statements, or as values for array indexes.
They have the advantage over using integers or bytes in that each
value can be made to represent what it will actually be doing.
Enumerated type values such as (current, voltage, phase) would be
much more meaningful than using the values 0, 1, 2.

Enumerated type variables are stored as one byte, the first value
listed in the declaration is assigned to zero, the next to one,
etc. When enumerated types are used in expression they are stored
in the B accumulator. If an enumerated type is passed as a
parameter by value or returned from a function they occupy one
byte on the stack.

The identifier names given are not actually used at run-time,
therefore they cannot be read or written. Enumerated type is
equivalent to the user defined scalar type as described in the
Jenson and Wirth report.

enumerated-type = (identifier {, identifier})

The identifiers listed become constants of that enumerated type.
enumerated-constant = identifier

INTEGER

Integer variables are stored in two bytes, the most significant
byte being at the lower address. When integers are used in
expressions they are in the D accumulator, with the most
significant byte in the A accumulator. When integers are passed
as parameters by value or returned from a function they occupy
two bytes on the stack, the most significant byte being at the
lower address.

integer-type = integer
integer~constant = signed-integer | integer-~constant-identifier

OmegaSoft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

HEX

Hex types are used to represent unsigned 16 bit values such as
addresses. Hex variables are stored in two bytes, the most
significant byte being at the lower address. When hex values are
used in expressions they are in the D accumulator, with the most
significant byte in the A accumulator. When hex values are passed
as parameters by value or returned from a function they occupy
two bytes on the stack, the most significant byte being at the
lower address. Note that hex values are also compatible with any
pointer variable.

hex-type = hex
hex-constant = hex-number | hex-constant-identifier

SUBRANGES

Subranges specify an ordinal type with a reduced range. Subranges
are used to specify array indices, and in cases where you want to
restrict the range of an ordinal type. When an assignment is made
into a subrange variable (with the compiler § option enabled)
extra cocde is generated to make sure that the value to be
assigned does not fall outside of the subrange declaration. The
foliowing are examples of subranges of the ordinal types :

becolean : false .. true

character : tat o,, 'z? $#0 .. #S1F

enumerated, with definition of (one,two,three) : two .. three
integer : -32768 .. 32767 0 .. 10 -5 .. 5

hex : $0 .. SFF $1000 .. S7FFF

subrange-type = constant .. constant
LONGINTEGERS

Longintegers are used for applications where an integer does not
have enough range and reals are not desirable due to either speed
or roundoff problems. For instance in business applications where
it is desirable to carry large money amounts and still have
accurate cents amounts, reals are not suitable. A longinteger in
ths application has a maximum value of $21,474,836.47 .

Longinteger variables are stored as four bytes, with the most
significant byte being at the lowest address. When longinteger
values are used in expressions, passed as parameters by value, or
returned from a function, they occupy four bytes on the stack
with the most significant byte being at the lowest address.

longinteger~-type = longinteger .
longinteger—-constant = signed-integer |
longinteger—constant—~identifier

OmegaScft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

REALS

Real numbers are used for applications requiring a large range
with limited resolution.

Real variables are stored as four bytes, with the most
significant (exponent) byte being at the lowest address. When
real values are used in expressions, passed as parameters by
value, or returned from a function, they occupy four bytes on the
stack with the most significant byte being at the lowest address.

Real value format : (same as AMDSY9511)
exponent mantissa

M E
S S EEEEEE MMMMMMMMMMMMMMMMMMMMMMM

bit 31 30 29 24 23 0

The mantissa is expressed as a 24-bit unsigned normalized
fractional value. The exponent is expressed as a two's complement
7~bit value having a range of -64 to 63. The most significant
bit is the sign of the mantissa (0 = positive, 1 = negative), for
& total of 32 bits. The binary point is assumed to be to the left
of the most significant mantissa bit (23). Bit 23 must be equal
to 1 (normalized) except for zero (all bits = 0).

real~type = real
real-constant = signed-real | real-constant-identifier

STRUCTURED TYPES

The structured types include strings, arrays, records, sets, and
devices and files. The reserved word "packed" may precede any of
these type declarations, but has no effect in OmegaSocft Pascal.

STRIRGS

String types are most often used to represent strings of ascii
characters. A unigue feature of OmegaSoft Pascal is that each
character in a string may be any 8 bit value, there is no special
value used as a terminator. This implies that strings can be used
for any variable length data up to 126 bytes in length.

String types are declared by following the identifier "string" by
an integer number in brackets. The integer number defines the
string's "static length®™, or longest possible length. Optionally,
this integer in brackets can be left off, and the static length
will be assumed to 80.

OmegaSoft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

A string consists of a 1 byte dynamic length "n"™ in the range of
0 .. 126 followed by "n" bytes of characters. String variables
occupy the declared length of the string plus one byte. The
current dynamic length is at the lowest address, followed by the
actual data. If the current string is shorter than the declared
length, then any bytes following the string are garbage.

When a string value is used in expressions or returned from a
function they occupy the current dynamic length of the string
plus one byte on the stack. Even if the string is declared as 100
bytes, the string "ABC' will occupy only 4 bytes on the stack.
The dynamic length will be at the lowest address on the stack.

When a string value is passed as a parameter by value then the
string will occupy the declared length of the parameter
declaration plus one byte on the stack. The dynamic length will
be at the lowest address on the stack. As an example, for the
procedure declaration :

procedure a (b : string [40]) ;

If the string 'ABC' were to be passed to this procedure it would
occupy 41 bytes on the stack. The lowest addressed byte would
nave the dynamic length (3), the next three addresses would have
A, B, and C, and the next 37 bytes would be garbage. This is done
s¢ that the called procedure can access the parameter at a fixed
offset from the stack mark, regardless of the size of the
parameter.

string-type = string [[unsigned-integer 1]
string-constant = ' { character } ' | string-constant-identifier

Note that in a string-constant if it is necessary to represent
the single quote (') it must be written twice (''}.

ARRAYS

An array is a group of variables all of the same type. Each
variable in the array is called an element of the array and they
are accessed by using the array identifier name and an index ({or
subscript). The index of an array can be any ordinal type except
full range integer or hex. The element of the array can be any
type.

The array 1s defined by following the reserved word "array" by
the index declaration in brackets, in most cases this a subrange.
After the index declaration the reserved word "of"™ is used,
followed by the element type declaration.

An array variable must not occupy larger than 32757 bytes of
memery. This byte count is determined by multiplying the size of
the element times the range of the index, for instance :

OmegaScft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

array [0..31] of string [15]
occupies 32 * 16 = 512 bytes.

The above array variable would occupy 512 bytes in memory; either
as a variable, or on the stack if passed as a parameter by value.
The above array could not be returned frem a function, but if the
size of an array is less than 127 bytes, it can be a function
return value. Two arrays are compatible if their size is equal.

If the element of an array is another array, then a
multidimensional array is created. In OmegaSoft Pascal there is
no limit on the number of dimensions possible, as long as the
maximum size limit for the outer array is honored. There is a
shorthand method of specifying multidimensional arrays :

array [1l..5] of array ['A'..'C'] of integer ; is equivalent to :
array [l..5, "A'..'C'] of integer

Multidimensional arrays are stored with the last index changing
mest rapidly. In the above array, the elements would be stored in
memory as :

l1-A 1-B 1-C 2-A 2~B 2-C 3-a 3-B 3~C 4-A 4-B 4-C 5=-A 5-B 5-C

In ISO standard Pascal there is a concept called a character
string variable defined as :

packed array [(l..nl] of char

This variable can be used as a sort of "string" in that it can
accept string constants and be written out to a text file. The
catch is that ALL of the characters are valid at .all times, so
this is not as good as the OmegaSoft Pascal string type. Note
that if you must use this form that when assigning a string
constant to this array that the length of the constant must match
the declared length "n" or there will be garbage in the variable
that will be considered valid.

OmegaScft Pascal supports this form of string by allowing it to
be written to a text file, and by making arrays of less than 127
bytes compatible with string constants and string variables.

index-type = ordinal~type
= [packed] array [index-type {, index-type} 1
of type

array~type

OmegaSoft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

RECORDS

Records are used to organize different data types into a new data
type. Records have a fixed number of elements called fields.
Fields consist of a fixed part (i.e. fixed size and definition)
and a variant part (variable size and definition).

Each field in the fixed part of the record is allocated space
immediately following the previous field., Each variant part
starts allocation at the same location, therefore each variant
uses the same space in a record. The tag field of the variant
part is allocated space (if it is a variable definition) before
the variants are allocated space. As an example of the allocation
used, in the record :

alloc = record
' b : hex ;
real :
string [41 ;
e : integer of
(£ real) ;
{g string [41) ;
(h record
i,3 : char
end)

Q00

BY b D UL #v we

a

o

[TR 1Y
8 % w8

end ;

the fields use the following memory locations (relative to the
start of the record) :

a : 0 - 1 b :2 -3 c : 4 -7
d: 8 - 12 e + 13 - 14 £f : 15 - 18
g 15 - 18 h.i ¢ 15 h.j ¢ 16

The tag type must be an ordinal type and the tag constants must
be the same type. The particular tag constants have no meaning
other than signaling the start of a new variant. The variant part
must be defined after the fixed part, but variant parts can
nested. Variable identifiers must be unique within a record only.
A field in a record is referenced by the record name followed by
the field name.

The size o0f a recérd is the size of the fixed part plus the size
of largest variant part, either as a variable, or on the stack if
passed as a parameter by value. A record can be returned from a
function if its size is less than 127 bytes. No record can exceed
32757 bytes.

Two records are compatible if their sizes are equal.

DmégaSoft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

record-type = [packed] record [field-list [:;}i] end
field-list = [fixed-part 1 [; variant-part] | variant-part
fixed-part = record~section { ; record-section }
record-section = identifier {, identifier } : type
variant-part = case variant-selector of variant { ; variant }
variant-selector = [tag=~field :] ordinal-type

tag-field = identifier

variant = constant {, constant} : ([field~list [;1])

Record-type.:
field listg ‘h-@\‘ '

Field list :

-—-—Kblfixed par_tf——4®7—>f variant part"“l-'"’

Fixed part :
field identifier type"—ij-——~*>

Variant part :

)

identifier}qn@ A -{

"lconstant|

SETS

Sets are a collection of ordinal data items. Bach set can have up
to 1008 elements with ordinal values from 0 to 1007.

Sets are defined by following the reserved words "set™ "of" with
the base type of the set. The maximum ordinal value that the base
type can have determines the amount of memory allocated for the
set. The size is = maximum ordinal value 4div 8 + 2,

2=11

OmegaSoft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

Sets are useful for collecting a series of attributes together,
and to be able to insert and remove attributes without affecting
the other attributes. Por instance, in an assembler you could
have an enumerated type :

stat = (declared,forward,encountered,absolute,relative) ;
and a set variable :
status : set of stat ;

You would then be able to set in the encountered atfribute by
using :

status := status + [encountered] ;

without affecting any of the other attributes, likewise you could
remove the forward attribute by :

status := status -~ [forwardl] ;

One of the most common use of sets is in characters sets. For
instance to check if a character is a letter, digit, or an "_"
you could use a check like :

1f upshift (ch) in ['A'..'2','0'..%9%,'_ '] then e....
which is much nicer than the multiple range checking alternative.

A set physically consists of a dynamic set length "n" (first
byte) in the range of 0 .. 126 followed by "n" bytes. The lowest
(ordinal value) element in the set is the least significant bit
in the last byte of the set. The last byte contains elements 0
through 7, the second to the last byte contains elements 8
through 15 (element 8 is LSB), etc. If the current set is shorter
than the amount allocated for the set, then any bytes following
the "n" bytes are garbage.

When a set value is used in expressions or returned from a
function they occupy the current dynamic length of the set plus
one byte on the stack. Even if the set is declared as requiring
100 bytes, the set [4,12,19] will occupy only 4 bytes on the
stack. The dynamic length will be at the lowest address on the
stack. :

Any set is compatible with any other set as long as an assignment
is not made to a set variable that would require more memory than
allocated to that variable.

2-12

OmegaSoft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

When a set value is passed as a parameter by value then the set
will occupy the declared length of the parameter declaration plus
one byte on the stack. The dynamic length will be at the lowest
address on the stack. As an example, for the procedure
declaration :

procedure a (b : set of 0..250) ;

If the set [4,12,19] were to be passed to this procedure it would
occupy 33 bytes on the stack. The lowest addressed byte would
nave the dynamic length (3), the next three addresses would have
$08,%10,510, and the next 29 bytes would be garbage. This is done
so that the called procedure can access the parameter at a fixed
offset from the stack mark, regardless of the size of the
parameter.

set-type = set of ordinal-type
set-constant = see chapter 3 under set expressions

OmegaScft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

DEVICES AND FILES

A device is a sequence of data items, all with the same type,
called components or elements of the device. The elements of a
device can be any type, except for ancther device or any
structure containing a device. Devices are the entity that
represent I/0 devices in a system.,

A file is a special type of device normally associated with a
random acc<ess disk, that have names that go with a specific group
of data on the device. Procedures are included in Pascal to
access these groups of data by their "file name™

A device consists of zero or more elements, only one of which can
be accessed at any particular moment. The element is stored in a
series of one or more locations in the device descriptor called
the element buffer. This serves as a "window" through which the
Pascal program can read or write to a device. The number of
elements is not fixed and can vary up to the amount allowed for
the particular device.

For every device declared there is automatically ancther variable
which is called the buffer variable. This buffer variable points
to the element buffer allowing the data to be transferred in and
out of the device through the "window”.

Devices are automatically initialized upon entering the block in
which they are defined. For the standard devices (Input, Output,
Reyboard, and Auxout) this means upon entering the main program
block. For all but the standard devices, the device should be
closed when no further accesses will be done.

All devices are assumed to be system level, they don't magically
disappear when a block 1is exited. If you want a temporary file,
delete it when ycu are done with it.

Text devices have the base type of character but in addition have
line structure. The Procedures Readln, Writeln, and Page and the
function Eoln are only valid for text devices. Any other
procedures and functions that are available for non-text devices
are also available for text devices. ASCII nulls are skipped when
reading data from text devices by the device driver. Carriage
returns are represented by a space in the element buffer and the
eoln function returning true.

Interactive devices differ from other devices in that there need
not be a valid element for the Eof and Eoln functions. The test
is done based on the current flags. This was implemented so that
in the situation as depicted below :

OmegaSoft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

While not Eof do
begin
Write ('Enter value : ') ;
Read (value) :
Writeln ('Log is : ', Log(value)}
end ; ;

The first character of value need not be entered before you are
told what you are supposed to enter by the Write statement as
would be required in standard Pascal. Using this flag in the
device descriptor we are able to use the same functions and
procedures (reading a string is modified by the interactive flag)
for both terminal and disk devices. The interactive attribute has
no effect when writing to a device.

When the buffer variable is used an assumption is made regarding
data direction depending on where the buffer variable is used. If
the buffer variable is used on the left side of an assignment
statement then it is assumed that the data will be written to the
device. If the buffer variable is used on the right 'side of an
asslgnment statement (as part of an expression) then before using
the data in the element buffer, the buffer is filled. This is

accomplished by executing the get procedure if the element buffer
is not wvalid. .

Most users will not need to define their own custom devices and
so all of the details of what a device descriptor and device
driver are will be left until chapter 10, for those that need
this information. The standard I/0 devices (input, output,
auxout, and keyboard) are pre-defined and are covered below.

Files are declared by following the reserved words "file" "of" by
the type of the file, or by the word "text". Note that "file of
text" may be abbreviated to just "text" for compatibility with
the IS0 standard. In the standard versions of the compiler a file
will use the disk management in the operating system. A file
declaration may also have the words "interactive® and "packed"
preceding the word "file". As is true with all types, packed has
no meaning in this compiler and is ignored. If interactive is
specified it will affect the meaning of the EOF and EOLN flags as
described above. Interactive is not normally used for files.

file-type = [interactive] [packed] file of (type | text) | text

interactive =

OmegaSoft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

STANDARD DEVICES

The operation of the standard devices depends on which operating
system you will be using. Chapter 17 contains detailed
information on each of the devices, including the operation and
modes for files. The following information is general in nature
and is aimed at non-0S-9% users, 0S-9 users should consult chapter
17 pefore using the standard devices input or auxout.

The standard I1I/0 device "input™ is normally attached to the

system terminal's keyboard, with buffering done by the operating
system similar in action to the command line buffering. This
device is capable of input transfers only. Data typed from the
terminal is also echoed in the same manner as command line
buffering. No actual data is available from this device until a
carriage return is entered. The normal character delete and line
delete edit functions are available from the terminal, others may
be available depending on the operating system.

The compiler B option (as described in chapter 1) will affect the
operation of the input device. If the B option is off and the
operating system defined break key is hit, then control will
return to the operating system when the break function is
executed., If the B option is on and the break key is hit, then
control will not return to the operating system but will return
true from the break function. This is used when cleanup is
required before returming to the operating system, or when you
wish to use the break key for some other purpose. The standard
input device is implicitly declared as : interactive device of
text. '

The standard I/0 device "output™ is normally attached to the
system terminal's screen. This device is capable of output
transfers only. The standard output device is implicitly declared
as : device of text.

The standard I/0 device "auxout" i1s normally attached to the
system printer. This device is capable of output transfers only.
The standard auxout device is implicitly declared as : device of
text.

The standard I/0 device "keyboard" is normally attached to the
system terminal's kevboard. This device is capable of input
transfers only. No buffering is done by this device and there are
no special character recognized. This device does not echo its
input to the screen. The standard keyboard device is implicitly
declared as : interactive device of char.

2~16

OmegaScft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

POINTERS

In IS0 standard Pascal pointers are only used to dynamically
create variables on a stack-like structure called a heap.
Pointers types are declared by following the caret symbol *°" by
the base type of the pointer. NOTE: The caret symbol " is also
referred to as a circumflex, or in fact may be an up-arrow on
some terminals or printers. This symbol will be referred to as a
caret in this manual. '

The base type of the pointer may be any of the simple types
(booclean, integer, hex, character, longinteger, or real) or may
be a user defined type identifier.

The actual pointer variable is compatible with any other pointer
variable and with any hex value. The hex value of $0 is used to
signify that the pointer does not point to a valid object and the
reserved word "nil"™ is used to represent this $0 value. It is
therefore not a good idea to start the heap at location zero.

To access the data object that the pointer points to, follow the
pointer name with the caret., For example :

pntr = "real ; { pntr points to real values }
pntr := nil ; { the pointer now points to nothing }

new (pntr) : { allocates 4 bytes for a real on the stack
and puts the address for it in pntr }

pntr” := 4.3 ; { stores 4.3 at the location pointed to by pntr }

The procedure "new" stores the next available location on the
heap into its parameter. It also moves the internal heap pointer
up by the size of the type that the pointer points to.

OmegaScft Pascal allows a number of extensions to make pointers
even more powerful. A pointer is essentially a hex value with a
special attribute, meaning that any operation that can be used
for a2 hex variablie will work for a pointer. For example, suppose
you wanted to store strings on the heap. The pointer declaration
would be :

line : string [80] ;
pntr : “line ;

To put the string 'ABC' on the heap you could use :
line := 'ABC!'

new {pntr} ;
pntr™ := line ;

o

OmegaSoft Pascal Version 2 Language Handbook
TYPE DECLARATIONS

But this would use up 81 bytes of heap space for the 3 byte
string, for which only 4 bytes are needed. OmegaScft Pascal
allows an optional parameter to the new procedure which overrides
the default size of the base type. Therefore we can specify how
much heap space we really need :

new (pntr : length(line) + 1) ;
pntr” := line ;

The integer expression following the colon in the new procedure
specifies the number of bytes needed off of the heap. To move
from one string to another pointer arithmetic may be used :

pntr := pntr + hexint(length(pntr™) + 1) ;

This extension can save a great deal of space when dealing with
variable length structures.

pointer—-type = ° type
pointer~constant = nil | hex-constant

LONGHEX

Longhex numbers were added to the compiler so that the 32 bit
addressing of the 68000 could be supported in OmegaSoft cross
software. We hope that some of you will f£ind a use for them.

Longhex variables are stored as four bytes, with the most
significant byte being at the lowest address. When longhex values
are used in expressions, passed as parameters by value, or
returned from a function, they occupy four bytes on the stack
with the most significant byte being at the lowest address.

longhex—-type = longhex
longinteger-constant = longhex-number |
ionghex-constant-identifier

OmegaSoft Pascal Version 2 Language Handbook
VARIABLE DECLARATIONS

Variables are normally allocated on the data stack. The first
variable declared is allocated immediately below the stack frame,
and subsequent variables below that. Since variables are
referenced relative to the stack frame, small and often used
variables should be allocated first. This will allow those
variables to use shorter and faster addressing instructions to
access them.

The variable section must not exceed 32757 bytes in length or
else a compile-time error will occur.

variable—~declaration = var var~definer { var-definer }
var-definer = identifier {, identifier} : type [(pcr | entry |
external | at { <] address—-expression) ; ‘
address—-expression = integer-constant-expression |
hex-constant-expression

={Var ~wlidentifier

- integ/hex expr. // ’<::ptr

\

EXTENDED ADDRESSING

If the type in the variable declaration is followed with the word
"at" and then an integer or hex constant expression then the
variable will start at the indicated address. The variable will
be accessed using the 6809 extended addressing mode. This mode is
useful for placing a variable at a specific location in memory =-
such as a byte variable for an ACIA or PIA, or an array starting
at the start of a RAM or ROM.

2-19

OmegaScft Pascal Version 2 Language Handbook
VARIABLE DECLARATIONS

DIRECT PAGE ADDRESSING

If the type in the variable declaration is followed with the word
"at™, the symbol "<", and then an integer or hex constant
expression then-the variable will start at the indicated address
in base page. The variable will be accessed using the 6809 direct
page addressing mode., This mode is useful for common variables
between Pascal and assembly language or as way to obtain very
fast access of critical global variables.

PCR ADDRESSING

If the type in the variable declaration is followed with the word
"pcr" then the variable will be accessed using the 6809 program
counter relative addressing mode. An external reference (XREF)
will be issued for the variable using its declared name truncated
to 6 characters and upshifted.

‘As an exanmple :

initarray : array [1..16] of byte pcr ;

will generate : XREF INITAR

and to access the array will use : LEAX INITAR,PCR

This mode is useful for placing tables or other "constant
variables" in along with the program, normally by using assembly
language and linking it with the Pascal program.

EXTERNAL ADDRESSING

If the type in the variable declaration is followed by the word
"external®™ then it means that the variable is allocated on the
stack but declared in another module. An external reference
{XREF) will be generated using the variable name truncated tc 6
characters and upshifted. As an example :

flag : byte external ;
will generate : XREF FLAG
and to access the array will use :

LEAX FLAG,Y { if at lexical level 1 (globall}
or

LDX -6,Y

LEAX FLAG,X { if not at lexical level 1 }

This mode is useful for referencing global variables from the
main program (with those defined as entry) from a module. This is
an alternative to declaring global variables in every module that
uses them and is very attractive when only a few variables need
be imported from the main program into the module.

2-20

OmegaScft Pascal Version 2 Language Handbook
VARIABLE DECLARATIONS

ENTRY ADDRESSING

If the the type in the variable declaration is followed by the
word "entry" then normal stack addressing will be used, but in
addition an external definition will be generated for the
variable. The external definition (XDEF) will use the variable
name truncated to 6 characters and upshifted. As an example :

flag : byte entry ;

will generate : XDEF FLAG
FLAG EQU Sxxxx

where xxxx is the stack offset to be added to the global stack
frame pointer.

This mode is useful for defining global variables in the main
program for use in a module with the variable defined as
external. This mode can also be used when you need to access a
global variable from an assembly language routine by inserting
into the code :

XREF FLAG

-

LDX -6,Y
LEAX FLAG,X

The entry allocation attribute is automatically applied to the
standard I/0 devices if declared in the program parameter list.

NOTE : These special addressing modes may only be used in the
global variable declaration section, not within procedures.

SCOPE OF IDENTIFIERS

Identifiers declared in a block are accessible from any inner
blocks unless redefined in the inner block. Outer blocks may not
use identifiers declared in inner blocks. The innermost
definition is used in cases where the same identifier is used to
define different objects in nested blocks. These scoping rules
apply to ail identifiers used as names for constants, variables,
types, procedures, and functions.

OmegaSoft Pascal Version 2 Language Handbook

EZPRESSIONS

BExpressions are a combination ¢of one or more constants,
variables, or functions separated by operators.

expression = simple-expression {(< | <= | =1 <> | > | > | in)
simple=-expression }
simple—-expression = [(+ | =)] term {(eor ! + | — | or) term}
term = factor {(* | / | ** | div'| mod | and | << | >>) factor }
factor = (unsigned-constant | variable [(expression)} |
function-call | not factor | set-constructor)
variable = (variable~identifier | field-identifier) {(= }
[expression {, expression} 1 | . field-identifier)}

function-call = function~identifier [(expression

{, expression } } 1
set-constructor = [[set-element {, set-element } 1 1}
set~element = expression [.. expression]

Expression :

simple .

SRIEYTYYTY

Simple expression :

NEICRRX
IXXX XX

factor

OmegaSoft Pascal Version 2 Language Handbcok
EXPRESSIONS

rFactor

|

< h{unszgned constant | 7

]
1v-{::ﬁf4expression
o
(O)——

\mmm4variable§

\\——anunction identifieri

expression],

L]

not - factor

u__,<I>

expression FJQ::>—44express;on

Variable

o
4

varizble
identifier)H::D

field :
identifier
> —»Ficld identifier —

~. —~ e

expression

The parts of an expression are evaluated Factor first, term,
simple expression, and expression last; and within a part it is
evaluated left to right. For all binary operators {(except INJ,
the left and right expressicn parts must be of the same type,
with the following automatic conversions taking place:

Expression part type Converted type
integer —— real
longinteger —-——> real
integer - longinteger
hex _ -—> longhex

OmegaSoft Pascal Version 2 Language Handbook
EXPRESSIONS
Binary operator compatibility table :
Expression type

Operator Bool <Char 1Int Hex Lhex Lint Real Set Str Enum

<= = b3 X X X X b4 X X b4 X
<> >=
< 2 X X b4 b4 b4 X X X X
in L L L L R L
div mod X b4 X X X
* X X X X X X X
%/ X
and or eor x X X X X X
<< >> X D' X X
+ - X X b X X X b4
not X % X X b4 3
Notes :
L = Left operand.
R = Right operand.
X = both operands.

Unary + or =~ are defined for integers, longintegers and reals.
Pointers are allowed the same operations as hex.

OmegaSoft Pascal Version 2 Language Handbook

ARITHMETIC EXPRESSIONS

Qperator Example Meaning
+ a +b add a to b
- a—-b subtract b from a
* a * b multiply*a times b
*% a ** p raise a to the b power
/ a/ b divide & by b
div a div b divide a by b and truncate
mod a div b remainder after dividing a by b
and a and b bitwise anding of a and b
or a or b bitwise oring of a and b
eor a ecr b bitwise eoring of a and b
not not a bitwise complement of a
<K a << b shift a left b places (fill with 0)
>> a > b shift a right b places (fill with 0)

The addition and subtraction operators (+ and =) work on
character, integer, longinteger, hex, longhex, and real operands.
Addition or subtraction of character or hex operands cannot
generate an error (values wrap around 0). Addition or subtractiocn
of integer values cannot generate an error unless the compiler S
option is enabled.

The multiplication operator (*) will work on character, integer,
longinteger, hex, longhex, and real operands. Multiplication of
character operands cannot generate an error unless the compiler §
option is enabled.

The exponentiation and division operators (** and /) work on real
operands only. If either operand is an integer or longinteger,
they will be converted to real before being processed. An
attempted division by zero will yield an error if range checks
are on, else a garbage result. The base operand of an
exponentiation must not be negative.

The div and mod operators work on character, integer,
longinteger, hex, and longhex operands. The left and right
operands must be of the same type and the right operand must not
be zero. :

The and, or, eor, and not operators work on boolean, character,
integer, longinteger, hex, and longhex operands. The left and
right operands must be of the same type. All are bitwise except
the not operator for boolean : 0 beccmes 1 and 1 becomes 0.

The shift left and shift right (<< and >>) cperators work on
character, integer, longinteger, hex, and longhex operands. The
left and right operands must be of the same type. The right
operand is the shift count and if negative will reverse the
direction of the shift (a << b = a >> -b). Regardless of the
direction of the shift, zeroes are shifted in.

OmegaSoft Pascal Version 2 Language Handbook
ARITHMETIC EXPRESSIONS

Except where otherwise noted above, the arithmetic operators
allow you to mix integer, longinteger, and real operands. In the
case of a mis~match the smaller type is converted automatically
to the larger type.

RELATIONAL EXPRESSIONS

The relational operators generate a boolean result based on a
comparison of arithmetic or boolean operands.

Qperator Examole Meaning
= a==>bt a is equal to b
< a <b a is less than b
> a>b & 1s greater than b
<= a<=b a is less than or equal to b
< a<>hb & is not equal to b
b a > b a is greater than or equal to b

The relational operators work on boolean, character, integer,
longinteger, hex, longhex, real, string, array, and record.
String comparisons are done on a character by character basis
using the ASCII ordering. If two strings have identical
characters up until one of the strings runs out of characters,
the shorter string is considered smaller.

SET EXPRESSIONS

Oprerator Example Meaning

+ a + b union of a and b, result of all
elements in either a or b

- a-»b difference of a and b, result of all
elements in a but not in b.

* a *b intersection of a and b, result of
all elements in both a and b

= a=>5on a is equal to b

<> a <> b a is not equal to b

m= a <= b elements in a are also in b

>= a > b elements in b are also in a

in k in a ordinal k¥ is in the set a

Operators +, -, and * require that both operands be sets and the
result type will be a set. Operators =, <>, <=, and >= require
that both operands be sets and the result type will be bocolean.
The in operator requires that the left operand be an ordinal and
that the right operand be a set, returning a boolean result.

CmegaScft Pascal Version 2 Language Handbook
PRECEDENCE CF OPERATORS

The precedence of operators in Pascal is based on which syntax
{expression, simple-expression, term, or factor) that the
operator is located in. Within any precedence level evaluation is
done from left to right. Below is a table of precedences going
from highest to lowest :

Svntax section Qperstors : precedence

factor {) not 1

term * / %% div mod and << >> 2

simple~expression + - eor or 3

expression < K== <> >= > in 4
VARIABLES

Variables may be either whole variables, or some part of the
variable. Records may have individual fields accessed by
following the record name with a period and the field name.
Arrays may have individual elements accessed by indexing (index
within brackets). Strings may be indexed by either an integer or
byte expression in brackets, the result being a character.
Devices and pointers may have their element or base type accessed
by following the device or pointer name with a caret (7).

These access methods may be nested in complex structures, for
instance in

type
a = string [40] ;
b = "a ;
c = record
d : array [1..5] of b ;
& ¢ record
£ : integer ;
g : real
end ;
h : a
end ;

var
i array [#1..%#20] of c ;
j ¢ file of ¢

-

LY

The following accesses can be made :

i[#57.h is a string {40]
i[#10).e.£f is an integer
j”.di31” is a string [40]

OmegaSoft Pascal Version 2 Language Handbook
STATEMENTS

Statements are the part of the Pascal program that actually do
the work required. Statements may only appear within the
begin..end of the program block or of a procedure or function
block. Remember that semicolons are used as statement separators
in Pascal, not terminators.

statement = [unsigned~integer :°] (null-statement |
compound-statement | assignment-statement |
case-statement | if-then-else-statement |
for~statement | repeat-statement | while-~statement |
exit-statement | goto~statement | with-statement |
procedure~call | inline-statement)

statement :

unsigned integer! -<EZ>]

< egi statement end

{compound}

N /|

e

™~ -{case statementf———*****’
~ » exit statement f———

™ i statement} ~
™ mywith statement
™~ ». repeat statement /]

N » while statement f———]
~ = goto statement
™~ -4for statementF——~“4*-“’

™ + procedure call b—-—

St 356 ignment statementf“““““‘/

:finline statement

4=1

OmegaSoft Pascal Version 2 Language Handbook
STATEMENTS

The null-statement consists of nothing and useful in case
statements to do nothing if a certain case is met, it is also
found when extra semicolons are used, as in

begin
writeln ('help') :
end

A null statement is found between the semicolon and the end, and
will do no harm.

COMPOUND STATEMENT

The compound statement allows grouping of Pascal statements to
act as one statement. The sequence :

begin
K :
3 o
end

5 ;
-k

Can now represent one statement. A compound statement may contain
any other kind of Pascal statement within it. The begin .. end
section of a block is essentially a compound statement that must
be present.

compound-statement = begin statement {; statement} end
- ASSIGNMENT STATEMENT

The assignment statements allows the result of an expression
(covered in chapter 3) to be placed into a variable or function
return variable.

assignment-statement = (variable | function-return) := expression

Dvariablel\
h@ : expression p—s=
function-return ////

identifier

OmegaSoft Pascal Version 2 Language Handbook
ASSIGNMENT STATEMENT

The following table lists the expression types that are
compatible (can be assigned) to the various variable types :

variable tvpe acceptable expression

boolean boolean

character character

enumerated enumerated (any)

integer integer

hex hex

subrange subrange (same base type), base type
longinteger longinteger or integer

longhex longhex or hex

real real, longinteger, or integer

string string, character, array*

array array (same size), character*, string*
record record (same size)

set - set (any)

pointer peinter or hex

NOTE : The acceptable expressions marked with an asterisk "*" may
only be used if the array is less than 127 bytes.

CONDITIONAL STATEMERTS

Conditional statements select a statement to execute based on the
value of an expression.

CASE STATEMENT

The case statement selects zero or one statement to execute based
on the value of a selector expression. The expression is compared
against constants until & match is found, at which point the
statement that goes with the matching constant is executed. The
expression may be boolean, character, enumerated, integer, hex,
or string. Constants of the same type as the expression are used
to determine which statement to execute. More than one constant
may be specified to select a statement and except for string
selectors, a subrange of constants may be used to compare
against.

If none of the constants match, then none of the statements will
be executed. If it is desired that a statement be executed when
there is no match then an optional "else®™ or "otherwise" clause
may be inserted at the end of the case statement. There is no
check for duplication of case constants in this compiler, the
compariscns are done in the order of declaration.

CmegaSoift Pascal Version 2 Language Handbook
CONDITICORAL STATEMENTS

For example the following code will pick out carriage returns and
line feeds separately from all other control characters

case ch of
#SD : {process carriage return}! ;
#SA : {process line feed} ;
#$0..4#81F : {process all other control characters!
else {process non-control characters}
end ;

Note that boolean and character selectors are the fastest,
followed by integer and hex, with string being the slowest.

H]

case-statement case expression of cagse-selection [;]1 [{(else |
otherwise) statement [;]] end
case-constant-list : statement

{; case-constant~list : statement!}
case-constant~list = constant [.. constant]

{, constant [.. constantl}

case—-selection

- ase' ~#4 e¥pression i i{§§> J
constant N\ -@ . » ™1 statement N
A o=

otherwise)

-statement%ﬁ

OmegaSoft Pascal Version 2 Language Handbook
CONDITIONAL STATEMENTS

IF~-THEN-ELSE STATEMENT

The if-then-else statement allows execution of the statement
following the "then" if the boolean expression following the "if"
is true. It will execute the statement following the "else" if
the boolean expression is false. The else clause may be left off,
leaving you with an if-then statement which will only execute the
statement if the boolean expression is true. Note that in nested
if-then-else statements an else always goes with the closest
unpaired then, such that in :

if exprl then if expr2 then statl else stat2 ;
is equivalent to and should be formatted as :

if exprl
then
if expr2
then
statl
else
stat2 {goes with second if} ;

if-statement = if boolean-expression then statement
[else statement]

OmegaSoft Pascal Version 2 Language Handbook
REPETITIVE STATEMENTS

The repetitive statements are used for forming loops to execute
statements multiple times until a condition is met.

FOR STATEMENT

There are two forms of the for statement, the first in which one
is added to the control variable each time through the loop. This
form is specified by following the first expression with the word
"to". The value of the first expressions is assigned to the
control variable. This value is then compared against the second
expression, and if it is less than or egual will execute the
statement. After the execution of the statement the control
variable is compared against the second expression and if egual,
the for statement is terminated. If the control variable is not
equal then one is added to it and the statement is executed
again. This process repeats until the control variable is equal
to the second expression.

The second form is where one is subtracted from the control
variable. This form is specified by following the first
expression with the word "downto™. The value of the first
expression is assigned to the control variable. This value is
then compared against the second expression, and if it is greater
than or egual will execute the statement. After the execution of
the statement the control variable is compared against the second
expression and if equal, the for statement is terminated. If the
control variable is not equal then one is subtracted from it and
the statement is executed again. This process repeats until the
control variable is equal to the second expression.

In either case 1if the statement is never executed then the
control variable will have the value of the first expression. If
the for statement finishes normally then the control variable
will have the value of the second expression.

The control variable and expression type may be boolean,
character, integer, enumerated, or hex type.

for-statement = for variable := expression (to | downto)
expression do statement

~—{ezziezsion}

OmegaSoft Pascal Version 2 Language Handbook
REPETITIVE STATEMENTS

REPEAT STATEMENT

This statement will execute one or more statements until a
condition is met. The statement(s) will be executed until the
boolean expression is true. An endless loop can be created by
making the expression equal to the boolean constant "false®, in
this case an unconditional branch will be used in the code
generated,

Note that the statement(s) will always be executed at least once
since the test is done at the end of the loop.

repeat-statement = repeat statement {; statement!}
until expression

-»Tepeab o statement ——c—wluntil) - boolean ——
_ <::>‘ expression
- ,

WHILE STATEMENT

The while statement is similar to the repeat statement except the
condition is checked at the top of the loop. If the boolean
expression is true, then the statement is executed and the iocop
repeated. This will continue until the boolean expression is .
false. An infinite while loop is constructed by using the boolean
constant "true®” as the expression. The statement will not be
executed at all if the expression is false when the while
statement is entered. '

while-statement = while expression do statement

hile boolean expression l{éé} l'-1Lstatemezn'z:‘“"'““'-'-'“-""

OmegaSoft Pascal Version 2 Language Handbook
TRANSFER STATEMENTS

The transfer statements are used to modify the flow of control in
a program where one of the standard conditional or repetitive
statements is not suitable.

EXIT

The exit statement is used to "jump out of" loops. It can only be
used to exit a for, repeat, or while loop. If executed inside a
loop it will jump to the point at which the loop would terminate
normally. For example :

repeat

statementl ;

statement2 :

if condition

then
exit ;

statement3
until condition ;
statement {this is the destination for the exit}

If the optional integer parameter in parenthesis is used, then
that will be the loop count. If you are nested 2 deep in loops
then you can exit both loops by using : exit (2) ., You cannot
exit more levels of loops than you are currently in and you
cannot use this to exit a block.

The exit statement is usually referred to as a "structured goto"
and is preferable to a goto unless ISO standard code is desired.

exit-statement = exit [(unsigned-integer-constant)]

GOTO

The goto is rarely required and should be avoided when possible.
The OmegaSoft Pascal compiler will not allow you to jump in or
out of a block and you cannot jump into certain statements
including whiles, for loops, and case statements using a string
selector. The destination of a goto must be a labeled statement
(covered later in this chapter) and there is a limit of 8 forward
defined goto's in a block. A forward defined goto is a goto to a
label that follows the goto.

goto = goto unsigned-integer

Omegasoft Pascal Version 2 Language Handbook
WITE STATEMENT

The with statement is used to abbreviate the notation reqguired
for accessing fields in a record. In the with statement a record
variable name is specified and when the statement is being
compiled any identifiers will be checked to gee if they are a
field of the specified record before checking the rest of the
symbol table., In the record :

applicant : record
name : string [40] ;
age : integer ;
address : array [1..2] of string [40]
score : integer
end ;

The fields could be setup as :

applicant.name := 'Joe Smith' ;
applicant.age := 26 ;
applicant.address({l] :
applicant.addressi{2] :
applicant.score := 93

'4500 Nonroad st.?
'Reseda, NJ 90009¢

- e

Ko

Or as :

with applicant do

begin
name := 'Joe Smith' ;
age := 26 ;

address[l] := '4500 Nonroad st.'!
address[2] := 'Reseda, NJ 90009
score := 93

end

. we

Note that using a with statement affects the code generated to
access each field. In the first example each field was accessed
individually from the stack mark. In the second example at the
start of the with statement the record was accessed from the
stack mark and that address is pushed on the data stack. The
fields are accessed as offsets from this value saved on the
stack. In this example it might generate more code to use the
with statement than without it. Where a with statement can save
code is when the record access involves array indexing or file
access. If the data structure allows you to have an array of
records like

symbol = array [1..1000] of record
name : string [6] ;
address : hex ;

OmegaSoft Pascal Version 2 Language Handbook
" WITH STATEMENT

Then it would be advantages to use a with like :
with symbol [j] do
begin
name := curr_name ;

r

address := location

~e

~e 8 @

end

Since the array access would be done only once for many £ield
accesses.

More than one record name can appear in a with statement and in
this case :

with namel, name2, name3 do

LI I A)

is eguivalent to :

with namel do
with namezZ do
with namel3 do ...

and the innermost name (name3) would be searched first when
locking for possible fields.

with-statement = with variable {, variable} do statement

record
mvariable

¥t st atement =

PROCEDURE CALL

A procedure call is used to pass actual parameters to a procedure
and execute it. See chapter 5 for a description of procedures and

parameters. The parameters are pushed ontoc the data stack before
calling the procedure.

procedure-call = procedure-identifier [(expression
{, expression} }1

procedure :
————-J identif ier-expression ﬂ—j——-¢-®—-——>
(o= |

4~10

OmegaSoft Pascal Version 2 Language Handbook
LABELED STATEMERTS

Labeled statements are used as destinations for goto statements.
The unsigned~integer must have already been declared as a label

in this block and any gotos to the label must also be in this
block.

labeled~statement = unsigned-integer : statement
INLINE STATEMENT

The inline statement allows assembly language source code to be
passed through the compiler unchanged. Note this feature should
be avcided and that the assembly language code will be ignored by
the debugger. This feature will only work if the output of the
compiler 1s to be assembled and linked.

The inline statement is specified by following a exclamation mark
"1" by the code to be passed through. Everything up until the end
of the line is passed through. A group of these lines represent
one statement. If the last character on the line {(before the
carriage return) is 2 semicolon then the semicolon is not passed
through but is instead considered a statement separator. As an
example :

begin
I LDA #£4
ILOOP TST SAQ00C
! BMI LOOP
! BTA SAGOD :
a :1= true
end

4-11

OmegaSoft Pascal Version 2 Language Handbook

PROCEDURES AND FUNCTIONS

Procedures and functions are program units that a similar to the
main program block. They may have parameters that are passed on
the data stack, they may have all of the declaration sections
that a program can have, and they have an execution section.

Procedures and functions are used for two reasons. They allow you
to build a routine that can be called many different places and
thus reduce redundant code. They also allow vou to isclate
related code and variables into a separate section, reducing the
probability of undesired side-effects and allowing re-usability
of code.

Procedures and functions are similar in nature and the term
"procedure" in this chapter is meant to refer to either a
procedure or function. Where there is a difference between the
two, it will be pointed out,.

There are many predeclared procedures included with the compiler,
these will be covered in the next two chapters. This chapter will
deal only with user written procedures.

FORMAT OF A PROCEDURE OR FUNCTION

procedure~declaration = procedure identifier parameter-list ;
(block | entry ; block | external | at address) ;
parameter~list = (| (parameter-element {; parameter-element}})
parameter-element = [var] identifier {, identifierl}! : type
address = integer-constant-expression | hex-constant-expression
procedure~call = procedure~identifier [{ (expression | variable)
{, (expression | variable)})1l

mmﬂb<52§§§§E§f£F——-*4identifier}www—*{pa:ameter list_—ij

“external

hex/integer
constant

5=1

OmegaSoft Pascal Version 2 Language Handbook
FORMAT OF A PROCEDURE OR FUNCTION

Parameter list:

Oty IO (S
o

—

function-declaration = function identifier parameter-list : type
;i (block | entry ; block | externmal | at address)

«——*{?unctioq)—ﬂqidentifier——h-parameter listwdn<:>~h§55§€%—jj'

o Block —O

external

hex/integer
constant

PARAMETERS

FORMAL PARAMETER LIST

The formal parameter list specifies what parameters are to be
passed to the procedure from the caller and how they are to be
passed : by value or by address (variable). The identifiers in
the parameter list and local variables in the procedure are
allocated at the time of the procedure call. At the end of the
procedure execution they disappear (de-allocated). Variables
defined global to a procedure may also be used by the procedure.

OmegaSoft Pascal Version 2 Languageée Handbook
PARAMETERS

VALUE PARAMETERS

A value parameter has its value copied to a local variable
created by the procedure at the time of the procedure call. Any
changes made to this parameter within the procedure does not
affect the. original variable passed. This is evident by the fact
that an expression may be passed as a value parameter. Devices
may not be passed by value.

VARIABLE PARAMETERS

A variable parameter (definition in parameter list prefixed by a
"var®™) actually has its address passed to the procedure at the
time of the procedure call. Therefore, any changes made to the
parameter within the procedure does change the original variable
passed. Only a variable (not an expression) may be passed as a
variable parameter. '

Variable parameters are essentially pointers to values and
therefore can also be expressed as passing pointers by value. The
two sections of code that follow are similar in operation :

program variable_parameter ;
var
% : integer ;
procedure a (var y : integer) ;
begin
write (y)
end ;
begin
a (x)
end.

program pointer_parameter ;
var
x : “integer ;
procedure a (y @
begin
write (y7)
end ;
begin
a {(x)
end.

“integer) ;

There is one important difference between the above two sections
of code, type checking. Using variable parameters allows the
compiler to check the type of the actual parameter against the
parameter declaration. Since any pointer is compatible with any
other pcinter, there is no tvpe checking and a real could have
been passed just as easy as an integer. This can be used where
such tricks are desired - such as processing a record as an array
but it alsc can get you into big trouble if you are not careful.

OmegaSoft Pascal Version 2 Language Handbook
PARAMETERS

PUNCTIOR RETURN TYPE

The functicn return type may be one of the following: integer,
longinteger, hex, character, enumerated, boolean, real, string,
set, or subrange. The return value may also be an array or record
as long as it does not exceed 126 bytes in size. The function
name must be assigned to from within the functiocn, this sets the
function return value.

TYPE COMPATIBILITY

When a procedure call is compiled the actual parameters used are
compared against the procedure declaration to verify that the
types are correct. The following table lists what actual
parameters can be passed to what declarations :

declaration tvpe acceptable parameter

boolean booliean

character character *

enumerated enumerated {(any)

integer integer

hex hex

subrange subrange (same base type)
longinteger longinteger or integer*

longhex longhex or hex*

real real, longinteger*, or integer*
string string or character®*

array array (same size - see dynamic arrays)
record record (same size)

set set (any)

devices and files devices and files (variable only)
pointer pointer and hex

NOTE : The acceptable parameters marked with an asterisk "*" may
only be used if they are to be passed by value, not by variable.

DYRAMIC ARRAY VARTIABLES

If an array is passed by variable then the array passed may be
the same size or smaller than the declaration. This feature may
be used to create procedures capable of handling different size
arrays as parameters. Refer to OmegaSoft Application Note number
5 for details on this feature. Note that this is not the method
specified for "conformant array parameters"™ specified in the ISO
standard for compliance level one.

OmegaSoft Pascal Version 2 Language Handbook

SIDE EFFECTS

A side effect is the modification of a non-local variable in a
procedure. This may take the form of an assignment to a non-local
variable or as an assignment to a parameter that is declared as a
variable parameter. Side effects should be avoided since their
use will cause a procedure to modify its environment in ways that
are difficult to document. Some side effects may cause non-
portable code to be produced, as in :

program test (input,output) ;
var
X : integer ;

function b (y, z : integer) ;
begin

k8

2+ x *y ;
Y

[*TR- N e

™y e wm

en

begin
read {x) ;
a :=b (b(3,5),b(2,7)) ;
writelin (&)

end.

In the OmegaSoft compiler procedure parameters are evaluated left
to right but this is left to the implementor in the ISC standarg.
If you were to transport this code to a compiler that evaluates
right to left then the result would be different.

DECLARATION OPTIONS

If none of the declaration options are used then the procedure
block must immediately follow the declaration part and the
procedure name will not be known outside of this compilation. The
Declaration options provide for mutually recursive routines,
assembly language procedures, and modular compilation.

5-5

OmegaSoft Pascal Version 2 Language Handbook
DECLARATION OPTIONS

FORWARD

Since every procedure must be declared before it is referenced a
problem is created when two or more procedures call each other
recursively. The forward declaration is included in the language
to get around this problem :

procedure a (j : integer) ; forward ;

procedure b (k : integer)
begin
a (k)
end ;

procedure a ;
begin
b (3)
end

Note that in the forward declaration the full parameter list is
used but that when the procedure block is going to be presented
that only the procedure name is used. . .

There is an area where the OmegaSoft compiler differs from the
I80 standard for forward declarations. The variables in the
parameter list for the procedure declared forward remain known at
that lexical level until the end of the block for that procedure
is presented. This means that vou could not have :

procedure a (3

integer) ; forward ;
procedure b (3 ;

: integer) { multiply defined variable }
Since forwards are rarely needed this difference should not be a
serious problem. Note that the use of forward declared procedures
also eats up symbol table space faster than normal in the
compiler.

OmegaSoft Pascal Version 2 Language Handbook
DECLARATION OPTIONS
EXTERNAL

If a procedure is declared as external then itg name is used
truncated to 6 characters and upshifted. In the declaration :

procedure setports (b : byte) ; external ;
the following code is emitted :
XREF SETPOR

~and if the procedure is called then the following code will be
used :

LBSR SETPOR

This is used to access procedures defined in other Pascal modules
or to access assembly language procedures.

ENTRY

1f a procedure has the word "entry" placed between the
declaration and its block then the procedure name truncated to 6
characters and upshifted will be made available as an entry
point. In the declaration :

procedure setports (b : byte) ; entry ;
begin

end ;
the following code is emitted at the start of the procedure :

XDEF SETPOR
SETPOR EQU *

Using this declaration you can reference this procedure in
another Pascal module by declaring it external, or you can call
the procedure from assembly language by using a :

AREF SETPOR

LBSR SETPOR

OmegaSoft Pascal Version 2 Language Handbook
DECLARATION OPTIONS
ABSOLUTE
This option is similar in use to the external option but instead
of using the name of the procedure, an absolute (extended
addressing) address is provided. For the procedure :
procedure setpor (b : byte) ; at S$F31Aa
The following code would be generated to call it :
JSR $F31A
This is useful for placing commonly used Pascal or assembly

language routines at fixed addresses, such as in an EPROM, and
calling them from Pascal programs.

OmegaSoft Pascal Version 2 Language Handbook
PREDECLARED FUNCTIONS

OmegaSoft Pascal features a wide range of predeclared functions,
both IS0 standard and extensions. The predeclared functions will
be presented by category, and within a category, alphabetically.

ARITBMETIC PUNCTIONS

ABS

Returns the absolute value of its parameter. The result type will
be the same type as the parameter and will be positive regardless
cf the sign of the parameter.

abs (5) = 5 “abs (=5} = §

abs-function = abs ((integer~expression | real-expression |
longinteger-expression))

ARCCOS

Returns the arc cosine (in radians) of its parameter. The result
type will be real. The parameter may be in the range of -1 to 1
inclusive, any parameter outside of this range will generate an
overflow error at runtime.

arccos—~function = arccos ((integer-expression | real-expression
| longinteger~expression))

ARCSIN

Returns the arc sine (in radians) of its parameter. The result
type will be real. The parameter may be in the range of -1 to 1
inclusive, any parameter outside of this range will generate an
overflow error at runtime.

arcsin~-function = arcsin ((integer-expression | real-expression
| longinteger—expression))

ARCTAN

Returns the arc tangent {(in radians) of its parameter. The result
type will be real. The parameter may be in the range of ~2E9 to
2E9 inclusive, any parameter outside of this range will generate
an overflow error at runtime.

arctan~function = arctan ((integer—expression | real-expression
t longinteger-expression))

OmegaSoft Pascal Version 2 Language Handbook
ARITHMETIC FUNCTIONS

Cos

Returns the cosine of its parameter. The result type will be real
and in radians. The parameter may be in the range of =-51000 to
51000 inclusive, any parameter outside of this range will
generate an overflow error at runtime.

cos-function = cos ((integer~expression | real-expression
! longinteger—expression))

EXP

Returns the value of E raised to the power of the parameter. The
result type will be real. The exp function is equivalent to e **
parameter with e being equal to 2.718282 . The parameter must in
the range of =31 to 31, any parameter outside of this range will
generate an overflow error at runtime.

exp-~function = exp ((integer-expression | real-expression
' I longinteger-expression))

LN

Returns the natural logarithm (base e) of the parameter. The
result type will be real. The parameter must not be zero or
negative or else it will generate an invalid argument for square
root or log error at runtime.

ln~function = 1ln ((integer-expression | real-expression
| longinteger-expression))

LOG

Returns the common logarithm (base 10) of the parameter. The
resuit type will be real. The parameter must not be zero or
negative or else it will generate an invalid argument for square
root or log error at runtime.

log-function = log ({(integer—expression | real-expression
I longinteger—expression))

RANDOM

Returns a pseudo~random real value between (but not including)
0.0 and 1.0 . The parameter must be a real variable identifier
and will be used a 32 bit shift register with feedback. The
parameter is first shifted, the upper 9 bits are masked off to
make the number between 0.5 and 1.0, 0.5 is then subtracted to
get the number between 0.0 and 0.5, the number is then multiplied
by 2 to get the final result between 0.0 and 1.0 .

OmegaSoft Pascal Version 2 Language Handbook
ARITHEMETIC FUNCTIONS

The parameter should be initialized to a non-zero number before
use, as zero is the only forbidden state for the "seed"™. The
initialization number should have a good distribution of 1's and
0's to provide a even distribution, 0.5 is a very bad choice
(only 1 bit on) while non powers of two like pi or e are good
choices. .

random-function = random { real-variable)

SIN

Returns the sine of its parameter. The result type will be real
and in radians. The parameter may be in the range of -51000 to
51000 inclusive, any parameter outside of this range will
generate an overflow error at runtime.

sin~function = sin ((integer—expression | real-expression
I longinteger—-expression))

SOR

Returns the sgquare of its parameter. The result type will be the
same type as the parameter. This function is equivalent to
parameter * parameter and will generate less code and execute in
approximately the same amount of time (logs are not used).

sgr-function = sqr ((integer—expression | real-expression
| longinteger-expression))

SORT

Returns the square roct of the parameter. The result type will be
real. The parameter must not be zero or negative or else it will
generate an invalid argument for sgquare root or log error at
runtime.

sgrt-function = sgrt ((integer-expression | real-expression
| longinteger~expression))

TAN

Returns the tangent of its parameter. The result type will be
real and in radians. The parameter may be in the range of -51000
t0*51000 inclusive, any parameter outside ¢f this range will
generate an overflow error at runtime. :

tan~function = tan ((integer—expression | real-expression
| longinteger-expression))

OmegaScft Pascal Version 2 Language Handbook
TYPE CONVERSION FUNCTIONS

The OmegaSoft Pascal compiler features an orthogonal method of
converting between the nine basic-data types : boolean,
enumerated type, character, integer, longinteger, hex, longhex,
real, and string. The method is to use the desired type as the
function name, or the standard identifier "enum" for enumerated
type.

In general there is only one parameter. When converting from real
to anything other than real or string a second parameter may be
used. The second parameter may be "round™, "trunc®, or "floor"
and if not used then rounding will be used. Other cases where a
second parameter is allowed will be pointed out where applicable.
If you convert from one type to the same type, no code is
generated. Many other instances also will generate no code, only
changes in the type of expression, these cases occur if the type
of parameter is not mentioned in the description for the general
type conversion functions (boolean, enum, char, integer, hex,
longhex, longinteger, real, and string).

conv-parm = (boolean-expression | enumerated-type-expression |
character-expression | integer-~expression |
hex~expression | longhex-expression |
longinteger—-expression | string~expression)

real-round = real-expression {, (round | trunc | floor) !
BOOLEAN

Converts its parameter intc a boolean value. For enumerated type,
character, integer, hex, longhex, and longinteger parameters the
least significant byte is simply "anded®" with one and is
equivalent to the odd function. For a real parameter it is first
converted to an integer and then anded. When using a string
parameter it must not have any leading spaces and the first
letter must be a Y, T, N, or F (or lower case equivalents) or
else a conversion error will be generated. If the first letter is
a ¥ or T then boolean true will be returned, if the first letter
is a N or F then a boolean false will be returned.

boolean-function = boolean ((conv-parm | real-round))

CHAR

Converts its parameter into a character. For longhex and
longinteger parameters the 4 byte value is removed from the
stack, with only the least significant byte being retained. For a
real parameter the value is converted intc an integer and only
the least significant byte is retained.

For a string parameter there is a second parameter allowed. The

second parameter must be a byte or integer constant and specifies
which byte of the string is to be returned as a character.

64

OmegaSoft Pascal Version 2 Language Handbook
TYPE CONVERSION FUNCTIONS

If no second parameter is used then the first data byte of the
string will be returned. Using a second parameter of zero will
return the dynamic length.

char-function = char { conv-parm {, (character=-constant |
integer-constant)})

CHR

Returns a character (byte) equivalent of its parameter. This is
done by removing the most significant B bits of its parameter., If
the compiler S option is on then checks will be generated to
verify that the most significant 8 bits were zero. If range
checks are on and they are not zero, then a truncation error will
occur at runtime. -

chr-function = chr ((integer-expression | hex-expression))

ENUM

Converts its parameter into an enumerated type value. For longhex
and longinteger parameters the 4 byte value is removed from the
stack, with only the least significant byte being retained. For a
real parameter the value is converted into an integer and only
the least significant byte is retained. A string parameter is
converted into an integer (see integer function with string
parameter) and the least significant byte retained.

FLOOR

Will return the integer equivalent of its parameter. The integer
result will be the largest integer less than the real value. If
the parameter cannot be represented as an integer a truncation
error will be generated at runtime.

floor (4.6) = 4 floor («4.6) = =5
floor~function = floor (real-expression)
HEX

Will return the hex equivalent of its parameter. If the parameter
is boolean, enumerated, or character, then a zero most
significant byte will be added. If the parameter is longhex or
longinteger then the 4 byte value is pulled from the stack and
the least significant 2 bytes retained. If the parameter is real
then the value will be converted to an integer and this result
treated as a hex number (hex(~10000.0) would return $D8F0). With
a string parameter it must not have any leading or trailing
spaces or else a conversion error will be generated. The digits
0-9 and the letters A~F (or a-f) are acceptable for hexidecimal
input. If the value exceeds SFFFF then a conversion error occurs.

hex-function = hex ((conv-parm | real=-round))

6-5

OmegaScft Pascal Version 2 Language Handbook
TYPE CONVERSION FUNCTIONS

IRTEGER

Will return the integer equivalent of its parameter. If the
parameter is boolean, enumerated, or character, then a most
significant byte will be added that is the sign extension of the
original byte. If the parameter is longhex or longinteger then
the 4 byte value is pulled from the stack and the least
significant 2 bytes retained. If the parameter is real then the
value will be converted to an integer. With a string parameter it
must not have any leading or trailing spaces or else a conversicn
error will be generated. The digits 0-9 and a leading plus or
minus are acceptable for decimal input. If the value exceeds plus
or minus maxint then a conversion error occurs.

integer~function = integer ((conv-~parm | real-round))}
LONGHEX

Will return the longhex equivalent of its parameter. If the
parameter is boolean, enumerated, or character, then 3 zero bytes
will be added as the most significant and pushed on the stack. If
the parameter is integer or hex then 2 zero bytes will be added
as the most significant and pushed on the stack. If the parameter
is real then the value will be converted to a longinteger similar
to round, trunc, or floor. This value will then be treated as a
longhex value (longhex(-3437138.0) will be $FFCBSDAE). With a
string parameter it must not have any leading or trailing spaces
or else a conversion error will be generated. The digits 0-9 and
the letters A-F (or a-f) are acceptable for hexidecimal input. If
the value exceeds S$FFFFFFFF then a conversion error occurs.

longhex~function = longhex ((conv-parm | real~round))
LONGINTEGER

Will return the longinteger equivalent of its parameter. If the
parameter is boolean, enumerated, or character, then 3 bytes will
be added as the most significant reflecting the sign extension of
the original byte, and pushed on the stack. If the parameter is
integer or hex then 2 bytes will be added as the most significant
reflecting the sign extension of the original most significant
byte, and pushed on the stack. If the parameter is real then the
value will be converted to a longinteger similar to round, trunc,
or floor. With a string parameter it must not have any leading or
trailing spaces or else a conversion error will be generated. The
digits 0-9 and a leading plus or minus are acceptable for decimal
input. If the value exceeds plus or minus maxlint then a
conversion errcr ocgurs.

ionginteger-function = longinteger ((conv-parm | real~-round))

66

OmegaScft Pascal Version 2 Language Handbook
TYPE CONVERSION FUNCTIONS

ODD

Returns a boolean result that represents the least significant
bit of its parameter. This tells you whether the parameter is odd
(ls bit one) or even (ls bit zero).

odd-function = odd ((character-expression | integer-expression |
hex-expression | longinteger-expression |
longhex-expression))}

CRD

Returns the integer equivalent of its parameter. If the parameter
is one byte (boolean, enumerated, character) it will simply add a
2ero most-significant byte. If the parameter is integer or hex
then no code is generated.

ord-function = ord { (boolean-expression | character—-expression |
enumerated-expression | hex—expression |
integer—-expression)) '

REAL

Will return the real equivalent of its parameter. If the
parameter is boolean, enumerated, or character, then it will be
sign extended to an integer, and then converted to real. If the
parameter is integer, hex, longhex, or longinteger, it will be
converted to real (signed conversion). With a string parameter it
must not have any leading or trailing spaces or else a conversion
error will be generated. The digits 0-9, a leading plus or minus,
and an E or e for the exponent are acceptable for floating point
input. If the value exceeds 5E-19 or 5E18 then a conversion error
occurs.

real—-function = real ((conv-parm | real-expression))

ROUND

Will return the integer equivalent of its parameter. The integer
result will be the closest integer to the real value. If the
parameter cannot be represented as an integer a truncation error
will be generated at runtime.

round (4.6) = 5 round (~4.6) = =5

round-function = round (real-expression }

OmegaSoft Pascal Version 2 Language Handbook
TYPE CONVERSION PFPUNCTIONS

STRING

Returns the ascii string equivalent of its parameter. The string
returned is in the same format as when the values are written to
a text file (see write in chapter 7) with no fieldwidth (no
leading or trailing blanks). If the parameter is enumerated then
its integer equivalent is converted to a string. If the parameter
is character, it is converted to a string of length one. If the
parameter is of type real then there is an additional byte or
integer parameter to be used as the precision (same function as
in write procedure).

string-function = string ((conv-parm | real-expression
[, (character~expression |
integer-expressicnl i))

TRUNC

Will return the integer equivalent of its parameter. The integer
result will be the real value with its fractiocnal part set to
zero. If the parameter cannot be represented as an integer a
truncation error will be generated at runtime.

trunc (4.6) = 4 trunc (-4.6) = —4

trunc-function = trunc { real-expression)

OmegaSoft Pascal Version 2 Language Handbook
I/0 AND RUNTIME STATUS FUNCTIONS

BREAK

Returns boolean true if the device parameter has encountered a
break condition. Break is normally used as an operator input. In
standard OmegaSoft Pascal supplied device drivers break is used
as an operator wait or abort. The break status is cleared after
the break function is executed. See chapter 17 for detailed
information on the break function for your operating system.

If the parameter is not included then the standard input device
is used as the parameter.

break-function = break [(&evicevvariablé)1
CONVERSION

Returns boolean true if the last ascii to internal formast
conversion encountered an error. These conversions occur during
the boolean, integer, hex, longinteger, longhex, and real
functions with a string parameter and the read and readln
procedures when reading boolean, integer, hex, longhex,
longinteger, or real values from a text device.

This value is cleared after any successful conversion takes
place. This function is only useful when conversion error
checking (compiler toggle C) is off, since if it is on, a
conversion error will halt the program execution.

This function may be used in interactive programs to avoid
crashing the program if the operator enters an invalid value.

conversion~function = conversion
DEVERR

Returns the device parameter's error byte as a character (byte).
Refer to chapter 10 for a description of this byte and chapter 17
for the operating-system dependant value it may take on. This
function is only useful when I/0 error checking (compiler toggle
I) is off, since if it is on, an I/0 error will halt the program
execution.

This function may be used in interactive programs to avoid
crashing the program if the operator enters an invalid file name
or if the program requires that it check for or delete files that
may not be in the directory.

If the parameter is not used then the standargd input device will
be used as the parameter.

deverr~functicn = deverr [(device-variable)]

OmegaSoft Pascal Version 2 Language Eandbook
I/0 AND RUNTIME STATUS FUNCTICNS

EOF

Returns boolean true 1f the device parameter has hit end of file.
The meaning of eof is system and device dependant and chapter 17
should be referenced for more information.

If the device is not interactive the element buffer must be valid
and if not valid a get procedure will be executed before checking
for end of file. If the device is interactive then the current
contents of the element buffer will be used, valid or not.

If the device ig a text device and eof is true then the element
buffer {(device”) will be a space.

If the parameter 1s not used then the standard input device will
be used as the parameter.

ecf-function = eof [{ device~variable }]
EQOLN

Returns boolean true if the text device parameter is currently on
end of line. If eoln is true then the element buffer (device”)
will be a space.

If the device is not interactive the element buffer must be valid
and if not valid a get procedure will be executed before checking
for end of line. If the device is interactive then the current
contents of the element buffer will be used, valid or not.

If the parameter is not used then the standard input device will
be used as the parameter.

eoln~function = eoln [(device-variable)]
MEMAVAIL

Returns a hex result which is the amount of free space available
on the heap. This may be used in interactive programs to make
sure that sufficient room is left on the heap for the anticipated
data before using the new procedure and risking a heap overflow
runtime errcr. This function can also be used to allocate maximum
sized buffers on the heap by using memavdil (minus some slop) as
the extra parameter to the new procedure.

The amount of space left on the heap is affected by heap
allocation (new procedure) and heap de-allocation (release
procedure) .

OmegaSoft Pascal Version 2 Language Handbook
I/0 AND RUNTIME STATUS FUNCTICNS

If you are running your program with a single section of RAM for
heap and data stack then procedure and function calls will alsc
affect the amount left. If this is the case then you should leave
enough slop to handle the deepest procedure/function calling when
you calculate the amount of heap than can be used. In the single
ram area setup, procedures and functions use up heap space
because their parameters, stack frames, and local variables move
the data stack pointer down towards the heap pointer.

memavail~function = memavail

RANGE

Returns. boolean true if a range error was generated (errors 4
through 12) since the last time this flag was cleared. The range
errcor 1s different in that it is not cleared when a successful
operation takes place, it must be cleared by the programmer.

The range error flag is cleared by an assignment

range := false ;

In this way it is more of a standard variable rather than a
function. This function is only useful when range error checking
{compiler toggle R} is off, since if it is on, a range error will
nalt the program execution.

range-function = range
range~assignment = range := boolean expression

6-11

CmegaScft Pascal Versiocn 2 Language Handbook
STRING FUNCTIONS

CLINE

Returns a string with the contents of the command line (running
under operating system only). If no parameter is provided or if
the parameter has a value of zero then the entire command line
will be returned. If the parameter is a positive number "n" then
the "nth"™ command line argument will be returned. If there is no
argument "n" then a null string will be returned. Command line
arguments are separated by spaces or commnas.

If the parameter is equal to -3 then the character "<" and the
characters that follow it will be returned. If there is no "<"
character then a null string will be returned. In a similar
manner -2 will look for ">" and -1 will look for ™>>".

cline-function = cline [((integer-expression |
character-expression))]

CORCAT

 Returns a string that is the concatenation of its parameters. The
parameters will be concatenated in the order in which they are
listed. If the resulting string would exceed 126 charactsrs the
concatenation is not performed and a dynamic Tenctb error will be
generated.

concat~-function = concat (param {, param})
param = (character-expression | string-expression)

INDEX

Returns an integer that corresponds to the location that one
string is contained within another. The result is the location
(starting character number) in the first parameter where the
second parameter occurs. If there is no occurrence then 0 will be
returned.

index~-function = index (param , param)
param = (character-expression | string-expression)

OmegaSoft Pascal Version 2 Language Handbook
STRING FUNCTIONS

LENGTH

Returns an integer in the range of 0 to 126 that represents the

current dynamic length of a string parameter. This function is
similar to

ord (parameter{0l)

The difference is that the length function will accept an
expression and that it runs much slower. If you are trying to
save time and space and need the length of a string parameter you
can use the above equivalent. If vou just need a byte
representation of the length you should use

tring~variable [0]

rather than

chr (length(string-variable))
length~function = length (string~variable)
SUBSTR

Returns a string that is a subrange of the string parameter. The
subrange is defined by a starting expression which is the first
character to include and by a count expression which is the
number of characters to include. If the sum of the starting and
count expressions would exceed 126 or if the start expression is
O then an error occurs. If the starting expression is past the
end of the string then a null string will be returned. If the sum
of the starting and count expressions is past the end of the
string no error will be generated, the result string will just be
shorter than the count expressicn specifies.

i

substr-function = substr (string-param , start-expression ,
count-expression)

string-param = {(character-expression | string-expression)

start-expression = count-expression = integer-expression

UPSHIFT

Returns a character or string with each character that lies in
the range "a" .. "z" converted to lie in the range "a" .. "Z".
This function will return the same type as its parameter.

upshift-function = upshift ((string-expression.|
character-expression))

6-13

OmegaScft Pascal Version 2 Language Handbook

MISCELLANEOUS FUNCTIONS

ADDR

Returns the hex absolute address of a variable. This is useful
for doing all sorts of devious things with pointers. For
instance, to access the device descriptor for the standard output
device

type
descriptor = record
mode : byte ;
err : hyte ;
drv : hex ;

elnt : integer ;
elmt- : char ;
path : byte {os-9 only}
end ;
var
ptr : “descriptor ;
begin

ptr := addr (output) ;
write ('Path number is : ',ord(ptr”.path):1)

Wiil write out the current path number (os-9 only).
addr-function = addr (variable)
PRED

Will return the value of its parameter decremented by one. The
return type will be the same as the parameter type. For example

type

colors = (red, blue, green)
var

a : byte ;

b : integer ;
C : colors ;
d : boolean ;
begin :
= pred (#5) ; { result is #4 }
pred {(3) ; {result is 4 }
pred {(green) ; { result is blues }
pred (true) ; { result is false }

-
*
H

[

»
H

s L T W

-14

(63

OmegaSoft Pascal Version 2 Language Handbook
MISCELLANEOUS FUNCTIONS

This function cannot generate an overflow, the one byte or two
byte value will simply wrap around zero.

pred-functiocn = pred ((boolean-expression |
hex-expression |
integer-expression |
enumerated-expression |
~character—~expression})

SIZEOF

- Returns the integer size (in bytes) of its type or variable
parameter. If the type contains a variant record the size
returned will be the size of the largest variant.

sizeof-function = sizeof ((type-identifier | variable))
SuccC

Will return the value of its parameter incremented by one. The
recurn type will be the same as the parameter type. For example :

type
cclors = (red, blue, green) :
var
: byte ;
: integer :
colors ;
koolean ;

succ (#5) » { result is %6 1}

succ (5) ; {result is 6 1}

succ (red) ; { result is blue }
succ (false) ; { result is true }

H 00

&
s AT O LO TR
"""
T

This function cannot generate an overfliow, the one bvte or two
byte value will simply wrap around zero.

succ-function = succ ((boolean—expression |
' nex-expression |
integer-expregsion |
enumerated«expression |
character—expression) }

OmegaSoft Pascal Version 2 Language Handbook
PREDECLARED PROCEDURES

OmegaSoft Pascal features a wide range of predeclared procedures,
both ISC standard and extensions. The predeclared procedures will
be presented by category, and within a category, alphabetically.

I/0 PROCEDURES
CLOSE

Will send a signal code to the device driver to terminate use of
that device, or in the case of a disk file will do an operating
system close to the file that was open. No further data transfers
may take place to the device until it is re-opened. This
procedure is normally ignored by non-disk devices.

If any files or non-standard devices are opened in your program,
you should close them before exiting your program rather than
relying on the operating system to do it.

close—~procedure = close (device-variable)

CREATE

This procedure is normally used toc open a new file on a disk
(£ile variable type). In this usage the string expression is the
name to be given to the file and the mode is "input”®, "output",
or "update" which determines the allowable data direction. The
attribute expression (truncated to one byte if hex or integer)
will be passed to the runtime code and is used as an operating
system dependant flag (see chapter 17). It will be defaulted to 0
if not included. If the file already exists it will be truncated
to zero length (may be deleted first depending on cperating
system)} .

If the second parameter is one of the standard device names
"input", "output", "keyboard"™, or "auxout" then the device is
initialized to be that device. In this case the last two
barameters are not used. This is very useful for determining the
nature of the device during runtime.

Create~procedure = create (device-variable ,
(standard-device | string-expression) [, mode
[, attribute~expression 11)

standard-device = (input | output | keyboard | auxout)

mode = (input ! output | update)

OmegaSoft Pascal Version 2 Language Handbook
1/0 PROCEDURES:

—»Create -"ﬂ. device varib standard devicej

string expr.

+integer expr. . mode

]hex expression

character expr.

DEL

This procedure is normally used on disk-file devices to delete
the file specified by the string expression. If the file does not
exist, an error will occur.

del-procedure = del (device-variable , string-expression)

DEVINIT

If a file or device is declared as part of an array or record
then the compiler will not automatically initialize the device at
the start of the block. This procedure is used for that purpose.
As an example, in the following declaration :

var
X @ integer ;
fgroup : array [1..5] of record
status : boolean ;
fyle : text
end ;

The following code could be used to initialize each file in the
array :

for x := 1 to 5 do
devinit (fgrouplxl.fyle) ;

devinit-procedure = devinit (device-variable)

OmegaSoft Pascal Version 2 Language Handbook
: I/0 PROCEDURES

GET

Will transfer data from a device into its element buffer
(device®™). If the eof status is set on the device then performing
a get will generate an eof runtime error. If eof is not set then
get will attempt to transfer data from the device intoc the
element buffer. If eof is hit during this transfer then the eof
status is set and the element buffer is undefined (space for text
devices). If any other error is encountered during the transfer
it will generate a runtime error. This procedure will also set
the eoln status if appropriate on text devices.

get-procedure = get (device-variable)
OPEN

This procedure is normally used to open an existing file on a
disk (file variable type). In this usage the string expression is
the name to be given to the file and the mode is "input”,
"output", or "update" which determines the allowable data
direction. The attribute expression (truncated to one byte if hex
or integer) will be passed to the runtime code and is used as an
operating system dependant flag (see chapter 17). It will be
defaulted to 0 if not included. If the file does not exist a
runtime error will be generated.

If the second parameter is one of the standard device names
"input™, "output®, "“keyboard", or "auxout" then the device is
initialized to be that device. In this case the last two
parameters are not used. This is very useful for determining the
nature of the device during runtime.

open—-procedure = open { device-variable ,
(standard—-device | string-expression) [, mode
[, attribute~expression 11)}

standard-device = (input | output ! keyboard | auxout)

mode = (input | output ! update)

ope { device wvarib

" standard devicef— “{Z}

= string expr.

- <z>¢// integer expr.j= (::;:\\ gmode

hex expression

character expr.

OmegaSoft Pascal Version 2 Language Handbook
I/0 PROCEDURES

PAGE

Will bring the text device to top of form if supported by the
device driver. If the device is not currently at the beginning of
the line then a writeln will be performed before issuing the top
of form. See chapter 17 for more information on the page
operation for the standard devices. In most cases this procedure
is only used when driving a printer. If the parameter is not used
then the standard output device will be used as the parameter.

page~procedure = page [(device-variable)} 1
POT

Will transfer data from the device's element buffer (device™) to
the actual device. If any errors are encountered during the
transfer then a runtime error will be generated.

put-procedure = put (device-variable)
READ AND READLN

These two procedures transfer data from a device to one or more
variables. Readln is identical to read except it can only be used
on text devices and will skip data up until the next end of line
marker if necessary, thereby making sure that the next read or
readln will start at the beginning of a new line.

For non-text devices the ISO standard specifies that read is
equivalent to :

variable := device”
get {(device)

But in OmegaSoft Pascal a method is used to handle both
interactive files and random access which requires a flag be used
to indicate whether or not the contents of the element buffer is
valid. Using this method a read is equivalent to :

if device”™ is not valid
then
get (device) ;
variable := device” ;
device”™ := not valid

This will rarely make any difference in the operation of a
standard ISO program. The only affect of this method is that data
is not transferred into the element buffer until actually needed.
The exception to this is when an eof or eoln function is
performed on a non-interactive device which would do a get to
check for those devices - this would set device” valid so that a
read procedure that follows would not do the initial get.

OmegaSoft Pascal Version 2 Language Eandbook
I/0 PROCEDURES

If the device is of type text then internal conversions are done
using the boolean, integer, hex, longhex, longinteger, and real
functions for boolean and numeric values using a string
parameter. The read procedure will skip leading blanks when
reading these types (this includes the blank that represents end
of line) until it finds the end of a non-blank sequence. If a
character is being read then nothing will be skipped and a space
will be read in place of the end of line mark. If a string is
read then it will read all characters up to but not including the
end of line mark. Note that if a string read is attempted while
eoln 1s true then a null string will be returned and eoln will
still be true.

The sequence :
readin {device, varl, var2, var3)
is eguivalent to :

read {device, wvarl)
read (device, var?2)
readin (device, var3)

and s¢ 1t makes no sense to read multiple strings in this manner
since the read of varl will leave you on the eoln mark and so
var2 and vard must receive a null string. Multiple string reads
must be done with multiple readln procedures - one per string.

If the eof status for the devices is true when a read is called
then a runtime error will be generated.

If the first parameter is not a device variable then the standard
input device will be used.

read-procedure = read [((device-~variable [{, variable}] |
' variable {, variable}))]
readln-procedure = readln [((device=-variable [{, variablel}l |
variable {, variablel}) }I

/"®—/l{device-var

variable p

CmegaSoft Pascal Version 2 Language Handbook
I/0 PROCEDURES

RESET

There are two forms of the reset procedure. The first one
includes only a device parameter and is used to open a file for
input using a file name derived from the command line. As an
example :

program test (input,output,filel,file2) ;
var
£ilel : text ;
file2 : file of integer ;
begin
reset (filel)
reset (file2)

~e e

filel will be opened using the first command line parameter and
file2 will be opened using the second command line parameter.
This is a result of the declaration of the two device variables
in the program parameter list. In this case reset (filel) is
equivalent to reset (filel, cline(l)) (second form below). If
this form is used and the device name is not in the progranm
parameter list thern a null string will be used for the file name.

The second form of reset uses an additional string parameter
which specifies the file name to use. This second parameter will
override the default file name if the device is declared in the
program parameter list. reset {(device, name) is equivalent to
open {device, name, input).

reset-procedure = reset (device~variable [, string-expression])

REWRITE

There are two forms of the rewrite procedure. The first one
includes only a device parameter and is used to create a new file

for ocutput using a file name derived from the command line. As an
example :

program test (input,output,filel,file2) ;
var
filel : text ;
file2 : file of integer ;
begin
rewrite (£ilel)
rewrite (file2)

-e we

OmegaSoft Pascal Version 2 Language Handbook
I/0 PROCEDURES

filel will be created using the first command line parameter and
file2 will be created using the second command line parameter.
This is a result of the declaration of the two device variables
in the program parameter list. In this case rewrite (filel) is
equivalent to rewrite (filel, ¢line(l)) (second form below). If
this form is used and the device name is not in the program
parameter list then a null string will be used for the file name.

The second form of rewrite uses an additional string parameter
which specifies the file name to use. This second parameter will
override the default file name if the device is declared in the
program parameter list. rewrite (device, name) is equivalent to
create (device, name, cutput).

rewrite~procedure = rewrite (device-variable
[, string-expressionl])

SEEK

Is normally used to access records on a disk file. The parameter
is used as the record number to move to, this is multiplied bv
the size of the element to obtain a 32 bit byte offset into the
file. After a seek is done either a read/get or write/put can be
done and the file then acts sequentially until a new seek is
done. The operation of the seek is very operating system
dependant and is covered in chapter 17. The first record of a
file is 0 and therefore seek (device,0) is equivalent to a rewind
operation.

Seek-procedure = seek (device-variable , (integer-expression |
hex-expression | longinteger-expression |
longhex~expression))

OmegaSoft Pascal Version 2 Language Handbook
I/0 PROCEDURES

WRITE AND WRITELN

These two procedures transfer data from one or more expressions
tc a device. Writeln is identical to write except it can only be
used on text devices and will add a carriage return (and possibly
a line feed depending on the device) to the end of the data to
move to the next line.

For non-text devices write is equivalent to :

device” := expression ;
put (device}

If the device is of type text then internal conversions are done
using the string function for boclean and numeric values. If the
first parameter is not a device variable then the standard output
device will be used.

Following each expression may be an optional colon and fieldwidth
parameter whose functions depends on the data type to be written.
If the fieldwidth is positive it will pad spaces on the left, if
it is negative then it will pad spaces on the right. Only the
least significant 8 bits of the parameter are used. We will
present the formatting used on a type by type basis :

Boolean

If the fieldwidth is not specified then a value of 6 will be
used. If the specified fieldwidth is not sufficient to hold the
string then it will be truncated on the right.

Fieldwidth = 6 " TRUE" " FALSE"
Fieldwidth = 4 "TROE" "FALS"
Fieldwidth = 1 n"p® g
Fieldwidth = ¢ "*® ”H
Fieldwidth = ~6 "TRUE ™ "PALSE "
Character

If the fieldwidth is not specified then a value of 1 will be
used. If the specified fieldwidth is not sufficient {0) to hold
the character then it will be truncated to zero length.

Fieldwidth = 6 " An
Fieldwidth = 1 "a®
Fieldwidth = g ®*®
Fieldwidth = -6 ™A "

OmegaSoft Pascal Version 2 Language Bandbook
I/0 PROCEDURES

Integer
If the fieldwidth is not specified then a value of 10 will be

used. If the specified fieldwidth is not sufficient to hold the
string then it will be expanded.

Fieldwidth = 6 " 1234"
Fieldwidth = 4 "1234F%
Fieldwidth = 1 "1234"
Fieldwidth = -6 "1234 *
Bex

If the fieldwidth is not specified then a value ¢f 6 will be
used. If the specified fieldwidth is not sufficient to heold the
string then it will be truncated on the right.

Fieldwidth = 6 ™ PF3A7"
Fieldwidth = 4 ™F3a7"
Fieldwidth = 1 "p*®
Fieldwidth = ¢ =*
Pieldwidth = -6 *r3a7 *
Longhex

If the fieldwidth is not specified then a value of 1¢ will be
used. 1f the specified fieldwidth is not sufficient to heold the
string then it will be truncated on the right.

Fieldwidth = 10 ™ F3A70481"
Fieldwidth = 4 "pF3a7"
Fieldwidth = 1 *=F"®
Pieldwidth = 0 "
Fieldwidth = -~10 "F3A70481 *
Longinteger

If the fieldwidth is not specified then a value of 16 will be
used., If the specified fieldwidth is not sufficient to hold the
string then it will be expanded.

Fieldwidth = 10 * 431874"
Fieldwidth = 6 "431874"
Fieldwidth = 4 "431874"
Fieldwidth = -~10 "431874 "

OmegaSoft Pascal Version 2 Language Handbook
I/0 PROCEDURES

Real

If the fieldwidth is not specified then a value of 16 will be
used. If the specified fieldwidth is not sufficient to hold the
string then it will be expanded. There is another opticnal
parameter than can follow the fieldwidth. If a colon and a
parameter follows the fieldwidth it is the precision. If the
precision is positive the format will be in fixed point notation
and the parameter is the number of digits past the decimal point.
If the precision is negative then the format will be floating
pcint with exponent. In this floating point format there will
always be 6 digits to the right of the decimal point and a 2
digit exponent. The default for the precision is negative.

Fieldwidth = 14 , Precision = - T 3.1415938+0Q"
Fieldwidth = 14 , Precision = 3 " 3.141"7
Fieldwidth = 14 , Precision = & " 3.141593"
Fieldwidth = 14 , Precision = 1§ " 3.1415930000"
FPleldwidth = 5 , Prec¢ision = 3 "3.141"
Fieldwidth = 5 , Precision = § "3.141593"

In the flcoating point format there is always one position used in
front of the number to be used as a sign, space for plus, "-" for
negative. In the fixed point format there is only a position used
if the number is negative (for the - character).

Pieldwidth = =14, Precision = - * 3,141593E4+00 ™
Fieldwidth = =14, Precision = = "~3.141583E+00 "
Fieldwidth = ~10, Precision = 5 "3.,14159 "
Fieldwidth = =10, Precision = 35 "w.3,14159 "
String

If the fieldwidth is not specified then a value equal to the
dynamic length of the string will be used. If the specified
fieldwidth 1s not sufficient to hold the string then it will be
truncated on the right.

Fieldwidth = default "OmegaSoft”
Fieldwidth = 10 "OmegaSoft "
Fieldwidth = 3 "Omega®
Fieldwidth = 0§ e
Fieldwidth = ~-10 " OmegaSoft"

The sequence :

writeln (device, exprl, expr2, expr3l)
is equivalent to

write (device, exprl)

write (device, expr2) ;:
writeln (device, expr3l}

7-10

OmegaScft Pascal Version 2 Language Handbook
1/0 PROCEDURES

write—-procedure = write [({(device-variable
[{,write-expression}i] |
write-expression {,write-expression!) }!
writeln-procedure = writeln [((device~variable
{{, write—-expression 11 |
write—expression {, write—expression }))1
write—expression = expression [: field [: precision 1}
field = precision = (integer-expression | character-expression)

\(’<:>\\’E;Q)] *"' 'lﬂ! *1!'!*

device variable
data expression
fieldwidth
precision

1
-t
H Uil &

OmegaSoft Pascal Version 2 Language Handbook

DYNAMIC VARIABLE MANAGEMENT PROCEDURES

These procedures are used to handle allocation of variazbles on
the heap.

DISPOSE

This procedure will "disconnect" the pointer parameter from an
the area of the heap it was pointing to. The pointer will have
the value of nil after execution of this procedure. In the
standard implementation of the heap this procedure does not
actually give back any memory to the system.

If a more~advanced heap manager is used then the amount of memory
tc give back must be the same as the amocunt gotten using the new
call. See the description of the new procedure on the use of the
tag values and the size parameter.

dispose-procedure = dispose (pointer-variable {, tag-values!
[z size 1)

MARK

This procedure will store the current position of the heap
poeinter into its parameter. This is the start of free storage in
the heap. Further calls to new will cause the heap pcinter to
increase in magnitude. To effectively restore all of this memory
used by the new procedure from the time the mark procedure was
called, the release procedure would be used.

mark-procedure = mark ((integer-variable | pointer-variable |
hex-variable})

NEW

This procedure allocates storage on the heap and places the start
of that storage in its pointer-parameter. The base type of the
pointer variable will determine how much storage is allocated on
the heap.

The optional tag values are field identifiers of records and in
IS0 Pascal are used to determine how much space to allocate based
on which case variants are active in the record that the pointer
points to. These tag values are ignored in OmegaSoft Pascal angd
the size ¢f the largest variant is used.

7-12

OmegaScft Pascal Version 2 Lanquage Handbook
DYNAMIC VARIABLE MANAGEMENT PROCEDURES

An extension in OmegaSoft Pascal is the size parameter which
allows you to override the default size with a specific value.
This is especially useful when putting strings on the heap by
using something like :

type
. lines = string [80]
var
ptr : “lines
line : lines
begin
new {ptr : length (line) + 1) ;
ptr” := line

-~ g

new-procedure = new (pointer-variable {, tag-field }
([2 size 1)

tag-field = identifier

size = (integer—expression | hex-expression)

i pointer tag value
Lyvariable |

[: ;{E) » integer/hex (D(E}* >

expression

RELEASE

Will store the value in its parameter into the heap peointer. This
has the affect of de-allocating all dynamic variables allocated

between the previous mark using the same parameter and this
release.

release-procedure = release ((pointer-variable | hex-variable |
integer-variable))

MISCELLANEQUS PROCEDURES

HALT

Will pass the least significant byte of its parameter to the
error handling software as an error. If the rarameter is zero
then it will return with no action. If the parameter is 255 (SFF)
‘then it will stop the program with no error. Any other value for
the parameter will signal a2 runtime error and stop the program.

halt~procedure = halt ((character-expression |
integer-expression | hex-expression))

OmegaScft Pascal Version 2 Language Handbook
MODULAR COMPILATION

When a program becomes very large it will tend to delay
development 'of the program. This results from longer editor load
and save sequences, longer compilation time, and longer assembly
times. If instead your program is broken up into one main
program, and a number of modules, then only the portion being
changed need be recompiled and reassembled. A typical method of
mogular programming would be to have one file be the main program
with procedures and functions declared as external and only the
main global block in the file. The actual procedures and
functions would be declared as entry in the various modules.

To set up a modular system, first segment procedures and
functions into modules, compile and assemble those modules,
compile and assemble the main program, and then set up a linker
control file to load first the setup code (from the linkage
creator), then the main program, then the modules (any order),
and then of course the runtime library. The modules can also be
assembly language routines. Now when a module needs changing just
compile it, assemble it and then link it, this will be much
faster than a non-modularized system.

MODULE HEADER FORMAT

The module header is very similar to a program heading with the
word "program" changed to "module". After the last procedure in a
module there is the word "modend" and then the period. This
replaces the main program's begin end pair.

module heading = module identifier [(identifier
{, identifier})] ; sub-block modend .

identifier

identifier

®sub-block pr—i modend ﬁ(::} e

8-1

OmegaSoft Pascal Version 2 Language Handbook
MODULE HEADER FORMAT

The sub-block is identical to a block except it lacks the
begin..statement..end syntax.

sub-bleock = {{label-declaration | constant-declaration |
type—~declaration | variable-declaration):}
{{procedure-declaration ! function-declaratiocn}}

\\\\~ b{label declaration wwmij
P ,
™ ,l i ‘

) constant declaratzon-——)

\ :

: » type declaratlonmﬂww]
N > , ' .
//}// variable declaratlon-———j

procedure declaration

function declaration

. B - .

¥ GLOBAL VARIABLE MANAGEMENT

If the modules require the use of global variables (including the
standard I/0 devices) then these must be defined in the modules.
Since global variables are assigned stack offsets in the order in
which they are compiled, care must be taken to insure that the
variable declarations in the modules exactly match the variable
declaration in the main program. Failure to observe this
precaution will result in execution errors, and possibly the end
cf life as we now know it.

One of the easiest methods of doing this is to put all of the
global varilable declarations in an include £ile and using it in
each file. In this manner if a change is made to a global
variable it will be changed in each module the next time they are
compiled.

OmegaSoft Pascal Version 2 Language Handbook
GLCBAL VARIABLE MANAGEMENT

If any standard 1/0 devices are declared in a module they are
given the external attribute, therefore they must also be
declared in the main program, which will give them the entry
attribute.

An example cof a system that uses global variables in an include
file is the OmegaSoft Screen Editor RKit. This program contains
one main program with the main block and the procedures to handle
specific terminals. In addition, there are five modules
containing somewhat logically related procedures and functions.
This scheme makes an otherwise 1500+ line program into small
files of around 200 to 400 lines apiece.

EZTERNAL AND ENTRY VARIABLES

Another way to access global variables is to declare variables as
entry in one module (normally in the main program) and to declare
variables as external in the modules that need to reference them.
This method is good for systems that have modules that access
only a portion of the global variables. Note that when using this
method that any variables declared as entry or external must be
unique within the first 6 characters, as they must pass through
the assembler and linker.

EXTERNAL AND ENTRY PROCEDURES AND FUNCTIONS

To be used in a modular system some procedures and functions will
be declared as entry or external. Only those procedures and
functions who must be called from other mcdules need be declared
entry, all others can remain local to their module. Note that any
procedures or functions that are declared as entry or external
must be unique within the first 6 characters, as they must pass
through the assembler and linker. '

OmegaSoft Pascal Version 2 Language Handbook
ASSEMBLY LANGUAGE INTERFACE

In most cases assembly language routines will be called from the
Pascal level, this is usually simpler than calling Pascal
procedures from assembly language. This is also the more natural
direction since Pascal is a high-level language and should handle
the outer level of the program with assembly language called to
handle low level problems where very fast execution is required.

Although most of this chapter will deal with calling assembly
language from Pascal, the details of calling Pascal procedures
from assembly language will also be presented.

PARAMETER PASSING

When any procedure or function is called there may be parameters
that have to be passed. The parameters are passed on the data (U)
stack using PSHU instructions. The parameters are passed in the
order that they are declared.

Varilable parameters are passed by pushing their address on the
data stack.

Value parameters are passed in different ways depending on the
data type : '

Boolean, character, and enumerated types are simply one byvte
pushed on the stack.

integer, hex, and pointer types are two bytes pushed on the
stack, most significant byte at the lower address.

Longinteger, longhex, anﬁ real types are four bytes pushed on the
stack,; most significant (exponent) byte at the lowest address.

Records and arrays are a group of bytes pushed on the stack and
appearing just as they do when stored as a variable (the first
byte ¢f a record is at the lowest address).

Sets and strings are passed by first pushing the set or string on
the stack, with the dynamic length at the lowest address and
using dynamic length + 1 bytes on the stack. A procedure ig then
called which adjusts this variable length structure into a fixed
length structure by moving it down to take up as many bvtes on
the stack as are required by the formal parameter declaration of
the called procedure or function. As an example, if the
declaration is : string [5] and it is passed by value the string
'ABC' then initially the parameter will occupy 4 bytes on the
stack

OmegaScoft Pascal Version 2 Language Handbook
PARAMETER PASSING

o e o o e e +
{ 'c! l

R +

| 'B! !

o ——— +

| AT N

e o e e e +

! 3 |
et + <= U

After the stack adjustment routine is called the stack will lock
like :

e o e o e e +
l ! [
 —— - +

! 'B! l

o o o e +

| c! I

o - +

! 'B! I

o e e +

! A’ !
e +

| 3 l

o + <= U

To occupy 6 bytes on the stack. This is done so that for any type
of variable and any combinations of parameters a procedure can
access its parameters by using fixed offsets from its stack mark.

In the case of assembly language routines there is really no need
for all that messing about with stack frames and it is convenient
to access parameters referenced off of the U stack mark. Below.
are two examples of what the stack would lcok like when control
was passed to an-assembly language routine :

procedure testl (var disk : text ; name : stringl5]) ; external :

function test2 (count : integer ; var xx : string) : boolean ;
external ;

OmegaSoft Pascal Version 2 Language Handbook
PARAMETER PASSING

stack frame when testl is called

fm—— - -+ <- +8 from U

| address of variable disk |

fm————— ——— wewmet (= +6 from U

| contents ¢f name [.

o ————— - -+ <= +1 from U

I dynamic length of name | .

o e e e - + <~ U stack pointer

to load X with the address of disk : LDX 6,U
to load X with the address of name : LEAX 0,U
to remove parameters from stack : LEAU 8,U

stack frame when test2 is called :

o ke + ¢~ +4 from U

! count]

foe= et e o o e 2 + <= +2 from U

| address of variable xx |

- -— ~——==t <= [stack pointer
to lcad D with the count : LDD 2,0
to load x with the address of xx : LDX 0,U
to remove parameter from stack : LEAU 4,C

When an assembly language procedure returns (RTS) all parameters
must be removed by moving the user stack pointer back up. When an
assembiy language function returns, the only thing on the stack
should be the function return value., In the case of test2 above,
the stack should look like this when returning :

P —————— —-—— -+ <~ +1 from U
| boolean value of function |
e e e e e e e e + <= U stack pointer

Function return values are in the same format on the stack as
parameters are, except for sets and strings. When a set or string
is returned from a function it is not to be adjusted. The set or
string must occupy dynamic length + 1 bytes on the stack.

If a Pascal procedure is to be called from assembly language then
the assembly language routine must use the same method of
parameter passing. In addition to this the Pascal procedure will
expect a lexical level difference in the A accumulator. This is
the difference between where the caller is and where the called
procedure is defined.

For instance if you have an assembly language routine that is at
the global level (same as main program) and vou call a Pascal
procedure that is at lexical level 2 (non-nested procedure) the
lexical level difference is :

1 (main program - global) - 2 (procedure) = =1 (S$FF)

9~3

OmegaSoft Pascal Version 2 Language Handboock
PARAMETER PASSING

The base register must also be valid when calling Pascal
procedures and in this case the base register (Y register) would
be the same as the global base register (see Interrupt
procedures).

GLOBAL VARIABLE ACCESSING

Pascal global level variables may be accessed by declarlng those
variables as entry at the Pascal level and by using an XREF in
the assembly language program. Note that for this to work that
the base register (Y) at the entry to the assembly language
routine must be available (usually best to push it on the system
stack if you might need to use the Y register for scmething
else). As an example :

flag : byte entry ;
may be accessed in assembly language using

XREF FLAG

LDX -6,Y GET GLOBAL BASE REGISTER
LDA FLAG,X GET ADDRESS OF FLAG

If the assembly language routine will only be called from the
main program block then you can use

LDA FLAG,Y

Since Y will be the global base register.

OmegaSoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

Two examples will be shown to do the same task, one using Pascal
and one using a device driver for access tc a memory-mapped CRT.
The drivers support the normal carriage return, line feed, and in
addition a back space function.

The first example uses the approach of writing the drivers in
Pascal and calling the character output routine with one
character at a time. The advantages of doing this are that very
little assembly language was used (just as an efficient way of
initializing the crt controller chip) and the code was developed
and debugged very quickly. The disadvantages are not being able
to use the standard Write and Writeln statements and the
increased size and speed penalty for handling low level I/0 in a
high~level language.

Program crt (Reyboard) ;

{
Echo characters from the keyboard to the crt. Shown here using
Pascal to handle the memory-mapped screen. The cursor can be
moved to anywhere on the screen by setting Xpos and ¥Ypos to
the desired value.

Const
Init_size = #15
Screen_size = 1279 ;
Xmax = 79 ;
Ymax = 15 ;
Cursor = #14
Space = #8520

. Wy

CR = #8D

LF = #3%A

BS = #8588
Type

MC6845 = Record
Address : byte ;
Register : byte
End
Screen_image

ft ==

Array [0..8creen_sizel o¢f char

-~

var
Xpos, ¥pos : integer ;
ascii : char ;
Crtc : MC6845 at S$F804 ;
Screen : Screen_image at S$EC0C ;
initparms : Array [(#0..Init_size] of byte per

~r

10-7

OCmegaSoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

Prcocedure Init ;
var
Init_count : byte ;

Screen_count : integer ;

7

Begin
Xpos = 0 ;
Ypos := 0 ; ‘
For Init_count := #0 to Init_size do
begin ‘
Crtc.address := Init_count ;
Crtc.register := initparms [Init_count]
end ;
For Screen_count := § to Screen_size do
Screen [Screen_count] := space
End ;

Procedure Crt_out (Character : char)
var

Xtemp : integer ;

.
f

Procedure Store (Value : char) ;
Begin
Screen [80 * Ypos + Xposl := Value
End ;

Procedure Set_cursor
Begin
Crtc.address := Cursor
Crtc.register := Chr ((80 * Ypos + ¥pos) >> 8) ;
Crtc.address := Cursor + #1 ;

Crtc.register := Chr (80 * Ypos + Xpos)
End ;

Begin { Crt_out }
If Character >= Space
then { not control }
begin
Store {Character) ;
If Xpos = Xmax
then
begin
Crt_out (CR) :
Crt_out (LF)
end
else
¥pos := succ (Xpos)
end

10-8

OmegaSoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

REQUIREMENTS FOR OSSET :

On entry X contains the address of the descriptor and A contains
the function code.

IF THE FUNCTION CODE = 0 (STS$SBRK) :

Then a break check should be done and bit MSBRK set or cleared in
PSMODE. This is ignored by most drivers. It is used in the griver
for INPUT to allow the operator to stop and/or terminate display
activity on the CRT or terminate a long execution program.

IF THE FUNCTION CODE = 1 (STSOPN) :

Then Y points to the file name (terminated with a CR) and B is a
flag byte. This entry point is normally used for multi-file
devices such as a disk to access one existing file on the device.
The status bits of P$MODE have already been set by the Pascal I/0
handler. The driver must open the file using the file name in Y.
The flags in B are available for system dependent functions. If
there are any errors encountered during the open the error code
should be set into PSERR (system dependant) .

IF THE FUNCTION CODE = 2 (STSCRE) :

Then Y points to the file name (terminated with a CR) and B is a
flag byte. This entry point is normally used for multi-file
devices such as a disk to access one new file on the device. The
status bits of PSMODE have already been set by the Pascal I/0
handler. The driver must create the file using the f£ile name in
Y. The flags in B are available for system dependent functions.
If there are any errors encountered during the create the error
code should be set into PSERR (system dependant).

IF THE FUNCTION CODE = 3 (STSCLS) :

This entry peint is normally used for multi-file devices such as
a disk to close access to one file on the device. The status bits
of PSMODE have already been set by the Pascal I/0 handler. The
driver must close the file. If there are any errors encountered
during the close the error code should be set into PSERR (system
dependant).

IF THE FUNCTION CODE = 4 (STSDEL) :

Then Y points to the file name (terminated with a CR). This entry
point is normally used for multi-file devices such as disk to
remove one file from the device directory. That status bits of
P3MODE have been set to closed and must remain closed. The driver
must delete the file named by Y. If there are any errors
encountered during the delete the error code should be set into
PSERR (system dependant).

16-5

OmegaSoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

IF THE FUNCTION CCDE = 5 (STSSER) :

Then Y points to a 32 bit byte address. This entry point is
normally used for random access devices such as disk to positian
the "window". The MSVAL, MSEQF, and MSEOLN (if applicable) bits
must be cleared after the seek to indicate that the element
buffer is not valid. The driver must move the "window" to reflect
the byte address pointed teo by Y. The driver must not do a data
transfer at this point since it does not know the direction of
the next transfer. If there are any errors encountered during the
seek the error c¢ode should be set into PSERR (system dependant).

IF THE FUNCTION CODE = 6 (STSPAG) :

Then a Page operation should be done ¢n the Text device. This
operation is normally only used for printers and the requirements
for pagination vary from printer to printer. The two OmegaSoft
standard output devices (OUTPUT and AUXQUT) both support the page
operation. There is a byte in the device descriptor to mark
whether or not a Writeln was the last operation performed. If it
was not one will be generated to make sure the printer is at the
beginning of & line. An ASCII form feed will then be sent to the
device. One extra byte has been included in the device descriptor
that will allow you to keep a line count in cases where the
printer does not support form feeds. You could then see how many
line feeds were needed to move the printer to the top of the
page.

10-6

OmegaSoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

STANDARD DEVICE DRIVERS :

There are five device drivers that are supplied by OmegaSoft
as part of the standard runtime package. These are used to handle
the standard devices of INPUT, OUTPUT, AUXOUT, and KEYBOARD, The
FILE type, and a means for reporting runtime errors. If you wish
to re-define the standard devices for your target system, you may
modify these drivers in the runtime package.

« INPUT : INPUT

LQUTPU : CUTPUT

JAUXOU : AUXoOUT

.KEYBO : KEYBOARD

.DISK DISK (FILES)

.ERROR ERROR PRINTER (special format)

e e

FORMAT. OF DEVICE DRIVERS :

Each device driver (except .ERROR) has four entry points. These
entry points are accessed via the device driver vector table. The
table consists of a branch to the appropriate code with the
following offsets :

Offzet Label Restination

0 OSINIT Initialize device

3 OS$XFOT Transfer data to device

6 QOSXFIN Transfer data from device
9 O$SET Setup device

If any of the entry points are not used they can be replaced by
an RTS. The OSINIT entry will be called when the block is entered
that contains the device definition therefore the table must be
at the first location for that driver. The U and X registers must
not be altered by any of these device drivers.

-ERROR has only one entry point and accumulator A is used to
transfer a one byte error code. The OmegaSoft supplied driver
will perform a system dependant transformation to the error code,
report it in some manner, and return to the operating system. The
exception is in the case of error code = 255 in which no error is
reported but control is returned to the operating system.

10~3

OmegaSoft Pascal Versicn 2 Language Handbook
WRITING DEVICE DRIVERS

REQUIREMENTS FOR OSINIT :

On entry X contains the address of the descriptor and A contains
the mode (only the text, interactive, and break bits are valid,
all others are zerol. The Y register must not be altered by this
entry point. The mode must be stored in PSMODE, PS$ERR must be
cleared, and the address of the device driver must be stored in
PSDRV. If this is a driver for a device that has an implicit open
(such as the standard devices) you must also set the appropriate
status into PSMODE, set PSELNT, and setup any extra buffers or
flags as required., If the break bit (MS$SBK) bit is set this
indicates that the compiler {$B+} option was on during the
initialization of this device. If so, then normally you would
clear ocut this bit in PSMODE and would set a flag of some sort to
indicate this option is effective,

REQUIREMENTS FOR OSXFQT :

On entry X contains the address of the descriptor and A contains
the writeln flag (text devices only). If A = $01 then a Writeln
should be performed on the device. If A = $00 then the data in
the element buffer should transferred to the device. If A = S$FF
then the B register contains a byte count and the U register
points one byte below the data to be transferred. The byte count
indicates how many bytes starting at (U + 1) are to be
transferred to the device. This entry point is used for writing
strings to a text device. If any errors occur during the transfer
then PSERR should be set to the appropriate value (System
dependant) .

REQUIREMENTS FOR OSXFPIN :

On entry X contains the address of the descriptor. If MSEQF is
set in PSMODE then runtime error ESEQF should be set into PSERR
and no transfer should take place. Data should be transferred
from the device and stored in the element buffer. If end of file
was encountered on that transfer then MSEQOF should be get in
PSMODE. If this is a text device and the current element is an
end of line then MSEOLN should be set in PSMODE or cleared
ctherwise. If this is a text device and the current element is a
ASCII null then a new transfer should take place (ignore nulls).
M$VAL should be set in PSMODE o indicate that the contents of
the element buffer are valid. If MSEOF or MSEOLN are set in
PSMODE of a text device then the element buffer must be set to a
space (§20).

10-4

OmegaScft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

This chapter is meant for those of you are very familiar at
assembly language programming. Custom device drivers are useful
when you have some I/0 device that would fit in well with the
Pascal I/0 procedures and functions. Examples of possibilities
include : printers, plotters, custom disk systems, modems,
memory-mapped crts, and networking systems.

When designing your drivers it is recommended that you look over
the drivers that came with your system for the standard devices
and make sure you understand what they do and how they do it.

H

device~type [interactive] [packed] device [[extra-allocc 1]
[at address ! of (type | text)
extra—-alloc = (unsigned-integer-constant | hex-constant)

- address = {unsigned-integer~constant | hex-constant)

«wnm-lﬁ(interactive
L‘@—" extra-=alloc -@(Y@ -! address
i

L—'@ -I type :

Devices are the entity that represent I/0 devices in a system. As
is true with all types, PACKED has no meaning in this compiler
and is ignored. If INTERACTIVE is specified it sets the MSINT bit
in the mode byte which will affect the meaning of the EOF and
EOLN flags. If the integer/hex constant in brackets iz specified
it is the amount of extra stack space to be allocated for the
device descriptor in addition to the minimum amount reguired.
This is normally used to reserve space for flags or buffers that
are normally device and/or system dependant. If the integer/hex
constant is specified following the word "at"™ it is the address
of the device driver vector table. If this value is not specified
the device type name is used preceded by a period as the address
of the table.

On the following pages is the format of the device descriptor andg
the function of each entry point in the device driver.

10-1

OmegaScoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

FORMAT OF A DEVICE DESCRIPTOR :

byte #] 1 2 3 4 5 6 N

PSMODE is the current mode/flags

PSERR 1is the error status of the device

PSDRV is the address of the device driver vector table
PSELNT is the length (in bytes) of the element

PSELMT is the element

There may be additional bytes after the element £o hold flags or
buffers. '

FORMAT OF THE MODE BYTE :
bit # 7 6 5 4 3 2 1 0

[MSINT [MSEOLNIMSEOF [MSBK IMSVAL |IMSTEXT! status !

MSINT device is interactive if set

MSEQLN current element is end of line if set
MSEQF current element is end of file if set
M3$BR break occurred on device if set

M$VAL current element ig valid if set
MSTEXT device is text device if set

status has four possible states

i

MSCLCS device is closed

MSIN device is open for input

~ MS0UT device is open for output

MSUPDT device is open for input and output

WO
1

i0-2

OmegaSoft Pascal Version 2 Language Handbook
INTERRUPT PROCEDURES

Interrupts are not explicitly handled by OmegaSoft Pascal. The
interrupt mask is not modified by the Pascal or by any of the
runtime routines. We considered being able to define at the
Pascal level 'Interrupt Procedures' but due to the many ways
interrupts can be handled (You have NMI, IRQ, FIRQ, possibility
cf one device per interrupt, priority interrupt controllers, .
interrupt polling, many different type of operating system
interrupt restrictions, etc.) it was decided to let you do it
yourself!

The procedure used to handle an interrupt (assuming it is not all
done in assembly language) must be given the entry attribute and
be at lexical level 2. When an interrupt occurs the base register
must be loaded with the global stack mark and accumulator A is
loaded with ~1 (you are calling lexical level 2 from lexical
level 1 (globall) and the procedure is called. This is followed
by a RTI assembly language instruction. As an example the
following routine will read a port to clear the interrupt flag
and update a timer to be used as a delay mechanism in the main
Pascal program.

procedure rtcirqg ; entry ;

var

dummy : byte ;
begin

dummy := port { read port to clear interrupt }

if time <> 0

then
time := pred (time) { update timer if not zero }

end ; '

Assembly language support :

IRQVEC LDY #global stack mark

LDA #-1
LBSR RTCIRQ
RTT

OmegaSoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

else { control character }
Case Character of
CR : Xpos := 0
LF : begin
Ypos := succ (Ypos) ;
If Ypos > Y¥Ymax
then
Ypos = 0 ;
Xtemp := Xpos ;
For Xpos := 0 to Xmax do
Store {space) :
Xpos := Xtemp
BS : If Xpos <> O
"~ then
begin
Xpos := pred (Xpos)
Store (space)
end

.
[

.
r

end
Set _cursor
End ;

Begin { CRT }
Init
Repeat
Read (Keyboard, ascii)
Crt_out (ascii)
Until false
End .

-
7

10-9

OmegaSoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

The following is a table used to initialize the crt controller
chip. Note how this table was accessed by defining it as pcr in
the Pascal program.

NAM CRTINT
TTL INIT TABLE FOR CRT CONTROLLER
%*

XDEF INITPA
*

* INIT PARAMETERS FOR MC6845
*
INITPA EQU *
FCB $62 HORIZONTAL TOTAL
FCB $50 HORIZONTAL DISPLAYED
FCB $54 H. SYNC POSITION
FCB $02 H. SYNC WIDTH
FCB $§14 VERTICAL TOTAL
FCB $7 V. TOTAL ADJUST
FCB $10 VERTICAL DISPLAYED
FCB $12 V. SYNC POSITION
FCB $0 INTERLACE MODE
FCB $B MAX SCAN LINE ADDRESS
FCB $B CURSOR START
FCB $B CURSOR END
FDB $0 START ADDRESS
FDB $0 CURSOR ADDRESS
END

To link these two files together with the runtime library one
would have the following load command for the linker

LOAD=CRT.CA CRT.PA CRTINT

10~10

OmegaSoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

The second example uses the approach of writing the drivers in
assembly language as an actual device driver. The advantages of
doing this are the ability to use the standard Write and Writeln
statements and reduced program size and higher transfer speed.
The disadvantage is of programming in assembly language thereby
increasing programming and debugging time.

Program video {(Reyboard) ;

{
Echo characters from the keyboard to the crt. Shown here using
A device driver to handle the memory-mapped screen. The cursor
can be moved to anywhere on the screen by using a :
Seek (Crt, <236*Ypos + Xpos>).

var
ascii : char ;
crt : Device (2] of char
Begin
Repeat
Read (Keyboard, ascii) ;
Write {crt, ascii)
Until false
End.

~e

The following is the actual device driver code that would be
linked with the above Pascal program.

NAM VIDEOL

TTL DEVICE DRIVER FQOR CRT
*

INCL PASEQU

*
P3XPCS EQU 7 THESE ARE THE TWQO EXTRA BYTES RESERVED
PSYPOS EQU & BY THE DECLARATION DEVICE [2] OF TEXT ;
BS EQU $8

XDEF .CRT

DRIVER VECTOR TABLE HAS 4 ENTRIES

INITIALIZATION
OUTPUT

INPUT

SETUP

+ + + +
Wi O
(I |

i

& % o % N W F B

0
d
3

BRA CRINIT
RMB 1

BRA CROUT
RMB 1

RTS

RMB 2

LBRA CRSET

10-11

*

OmegaSoft Pascal Version 2 Language Handbock

* INIT CRT

*

CRINIT PSHS Y

CRIN1

CRIN2

*

CRA
STA
CLR
LEAY
STY
LDY

STY PSELNT,X BASIC ELEMENT IS CHARACTER

CLR
CLR

- LEAY

CLRB
STB
LDA
STA
INCB
CMPB

WRITING DEVICE DRIVERS

#M$QUT OPEN FOR OUTPUT DURING INIT
PSMODE , X
PSERR,X

.CRT,PCR ADDRESS OF VECTCR TABLE
PSDRV,X
#l

PSXPOS,X
PSYPOS,X SET TO LEFT TOP OF SCREEN
INIT,PCR VALUES FOR MC6845

$F804
B,Y
$F805

$#16

BLO CRIN1 SETUP FIRST 16 REGISTERS

LDA
LDY
STA
CMPY
BLO
PULS

#SPACE
#$E000
0,¥+ SPACE OUT SCREEN MEMORY
#$E00Q+1280
CRIN2
X,PC

* QUIPUT CHARACTER IN ELEMENT BUFFER

*

CROUT
CROT1

NCTL1

CTLl

(1 BYTE)

LDA PSELMT,X GET IN ACCUM FOR REST OF ROUTINE

CMPA #SPACE

BLO CTL]l HANDLE CONTROL CHARACTERS
LBSR STORE PUT IN SCREEN MEMORY

LDA PSXPOS,X

CMPA #79 SEE IF ON LAST COLUMN

BNE NCTL1 NCPE

LDA #CR

BSR CROTLI BRING BACK TC START OF LINE
LDA #LF

BSR CROT1 AND DOWN TO NEW LINE

BRA CROTZ2 FOR AUTC CR/LF AT END OF LINE
INC PSXFUS,X NEXT CHARACTER POSITION
BRA CROT2Z2

CMPA #CR

BNE CTL2

CLR PSXPOS,%¥ MOVE TO FRONT OF LINE

BRA

CROT2

10-12

OmegaSoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

CTL2 CMPA #LF
BNE CTL3
INC PSYPOS,X MOVE TO NEXT LINE
LDA PSYPOS,X
CMPA #16 SEE IF GONE TOO FAR
BLO CTL4 NOPE
CLR P$YPOS,X START BACK AT TOP OF SCREEN
CTL4 LDA P$SXPOS,X SAVE CURRENT X POSITION
PSHS A
LDB #80
CLR PS$SXPOS,X
CTL5 LDA #SPACE
PSHS B
BSR STORE CLEAR OUT NEW LINE WITH SPACES
PULS B
INC P$XPOS,X NEXT CHARACTER
DECB FOR FULL 80 COLUMNS
BNE CTLS
PULS A
STA PSXPOS,X RESTORE ¥ POSITION
BRA CROT2
CTL3 CMPA #BS
BNE CROT2
TST P$XPOS,X SEE IF CAN BACKUP
BEQ CROT2 NOPE, AT START ALREADY
DEC P$XPOS,X
LDA #SPACE
BSR STORE AND WIPE OUT OLD CHARACTER
CROT2 BSR CALC GET BUFFER OFFSET IN.ACC. D
PSHS B
LDB #14
STB $F804
STA SF805 MS BYTE OF CURSOR ADDRESS
INCB
STB SF804
PULS A
STA S$F805 LS BYTE OF CURSOR ADDRESS
RTS
*

* PUT CHARACTER IN ACC. A INTO SCREEN MEMORY
*
STORE PSHES X,A
BSR CALC
ADDD #S$E000 ADD TO START OF MEMORY
TFR D,X
PULS A
STA 0,X
PULS X,PC

16-13

OmegaSoft Pascal Version 2 Language Handbook
WRITING DEVICE DRIVERS

*

* CALCULATE OFFSET INTO SCREEN MEMORY, RETURN IN D
*
CALC LDA PSYPOS,X
LDB #80
MUL _
ADDB P$XPOS,X
ADCA 0
RTS
% .
* HANDLE SEEK - SET X AND Y TO CORRESPOND TO RELATIVE
* SCREEN POSITION
*
CRSET CMPA $#STSSEX SEE IF REALLY SEEX
BNE CREX NOPE, IGNORE ANY OTHER REQUEST
LDD 2,Y GET LS 16 BITS OF 32 BIT NUMBER
STA PSYPOS,X MS IS Y POSITION
STB P$XPOS,X LS IS X POSITION
CREX RTS
*

* INIT PARAMETERS FOR MC6845
*
INIT EQU *
FCB $62 HORIZONTAL TOTAL
FCB $50 HORIZONTAL DISPLAYED
FCB $54 H. SYNC POSITION
FCB $02 H. SYNC WIDTH
FCB $14 VERTICAL TOTAL
FCB $7 V. TOTAL ADJUST
FCB $10 VERTICAL DISPLAYED
FCB $12 V. SYNC POSITION
FCB $0 INTERLACE MODE
FCB $B MAX SCAN LINE ADDRESS
FCB SB CURSOR START
FCB $B CURSOR END
FDB $0 START ADDRESS
FDB $0 CURSOR ADDRESS
END

To link these twe files together with the runtime library one
would have the following lcad command for the linker

LOAD=VIDEC.CA VIDEC.PA VIDEOL
Another gocd source of information on device drivers is to look

at the standard device drivers that came with the runtime
package. These will be in files SD1-SDx.

10-14

OmegaScft Pascal Version 2 Language Handbook

abs

INDEX

b

absolute procedures

addition

addr

I

b

and

arccos

arcsin

arctan

i

array

assembly language

assignment statement
automatic redirection

I

base register

H&wmmm?wmumm
4 b 00 = b b g b= s 0O B

i

o]

1

block

boolean

break

byte

i
Lol R L R

carriage returns

0 h)ﬁ‘h)h‘“)

I

case statement

1

¢har

chr

cline

closge

command line

comment

-

compatibility

—-

compound statement

concat

constant declaration

coenstants

conversion

conversion checks

coS

!

create

ST YR Oy W O = O OY N b B
P20 4 WD WD U B L)) et et e b L)

del

deverr

device

device descriptor

M~ O
o i
[T

device driver

10-

device mode

10~

devinit

7-2

direct page variable

2-2

11-1

2-9, 3-5, 3-6, 4-3,

-

5”4;

72

¥ 8‘2

7 3"4, 3“5} 4—51 4“7] 6“4, 7_8
Sf 6—9 ’

r 2“4

1

2"4; 3“4; 3“5’ 6*4; 7“8
3, 6-5

2{ 7“6

2, 7"6

lf 1“12, l_l4p 1“15; 1“16
’ 4—3’ 5“4

2

r 2”3(8-2

6

r 2-14, 2~15, 3-6, 7-2
Z

1, 10-3

2

]

OmegaScft Pascal Version 2 Language Handbook

INDEX
D
dispose 7-12
div 3-4
division 3-4
dynamic array 5-4
E
else 4-4
entry procedures 5-7,
entry variable 2«21,
enum 6-5 -
enumerated 2-5
eof 6-10,
eoln 6-10,
eor 3-4
equal 3-5
exit statement 4-8
exp , 6-2
exponentiation 3-4
expression 3-1,
extended addressing 2=19
external procedures 5-7
external variable 2-20,
F
factor 3-2,
£locr 65
for statement 4-6
forward procedures 5-6
function declaration 1-5,
function return 54
G
get 73
global 8-2,
goto statement 4~-8
greater than 3-5
greater than or equal 3-5
grogeno G-7,
H
halt 7=-13
heap 6-10,
hex 2-1,
7-9

(%:J-h
e

~1~J
t
W
- -

L
i
h

0
!
L

7=-12
2"6 r

2-17,

3“4 ¢

3""5 ¥

6—5 ¥

OmegaSoft Pascal Version 2 Language Handboock

INDEX

I
if statement 45
in 3-5
include file 1«15, 8-2
indenting 1-12
index 6-12
inline statement 411
integer 2"1; 2""5; 3"'2; 3"'4, 3"""5’ 6"‘"6; 7-9
interactive T-4, 10~-1
interrupts 9-5
I/0 checks 1-16

L

. label declaration

1"5 r 2"2! 8“2

labels

2-1 r 4"’11 r 4“"'8

length

less than

6-13

less than or equal
lexical level

$
i
~1

listing

1§, Y

1n

log

longhex

longinteger

8, 32, 3~4, 3~5, 6-6, 7~7,

loop

§
A WHMNMNNE LT,

- ™

b (a2

-4, 3-5, 6=6, 7-7, 7~9
-8

[S VR
i

-3 b

- ™

1.

mark

memavail

[3]

mod

modular compilation
module

multiplication

Won 0o WOy ~3 b a*.-t?qmc\mwl—aww

1
A bt bt B

new

=

3%

not

nct equal

null statement

[}

|
B O b b

odd

open _

Qr

ord

3 r 6”7

otherwise

BRWIT O kW~

]
B L~

11-3

OmegaSoft Pascal Version 2 Lancguage Handbook

INDEX
P
packed 2=7, 10~-1
page 7-4
parameters 5-2, 5-3
pcr variables 220
period 1-11
pointer 2=-17, 3=-6, 6-14
precedence 3-6
pred 6—-14
printer : 2=16, 7-4
procedure call 4-10
procedure declaration 1-5, 5-1, 8~2
procedures g~-1, 9-3
program 1-4, 8-1
put T
R .
random 6-2
random access -4, 7-7
range 6-11
range checks 1-16
read 7-4
readln 7-4
real 2-2, 2=7, 3-2, 3-4, 3-5, &6-7,
7=10
recerd 2=-10, 3-5, 3-6, 4-9, 7-2
reiease 7-13
repeat statement 4-7
reset 7-6
rewrite 7=-6
round 67
scope -21
Seek -
semicolon -11
set -1, 2-12, 3~5, 8-1
shift left -

shift right
side effects
simple expression
sin
sizeof
spaces
sqr
sqgrt
stack
standard /0

=

7 7""6; 7""'8

1

R OO H WU W W RN e -1 1473
i
(P2 B - S VROV E S el R R VIR S o i 3 S]
~
L
i
N

l_gf 2"16; 7—1,; 7-’3_: 8_3,

PO
-~ {ad =

statement

-
I
—

1i-4

OmegaSoft Pascal Version 2 Language Handbook

INDEX
5
subrange 1-14, 2-6, 4-3
substr 6-13
subtraction 3-4
succe 6~15
T
tan - 6-3
term 3=-1, 3-6
text 7-4, 7~8
then 4=5
trunc 6=8
type declaration 1-5, 2-4, 8=2
U
upshift 6-13
v
value parameters 5-3, %=1
variable 3-2, 3-6
variable declaration 1-5, 2-1%, 8-2
variable parameters 5~3, 9-1
W
while statament 4=7
with statement 45
write 7-8
writeln 7=8

11-5

6_8p 7-.10,

91

OmegaScft Pascal Version 2 Language Handbook

APPENDIX

APPENDIX A - COMPILATION ERRORS

1

11

Invalid token

* A character was encountered in the source that is not a
valid pascal character.

Invalid char

* Something other than a valid integer or hex number
followed the "#" character.

Invalid integer
Invalid hex

* Value exceeded SFFFEP,

Invalid longhex

* Value exceeded S$FFFFPFPFFF.

Invalid longinteger
_Invalid real

* Real number too large.

. expected

* After the end of the global block or after the modend of
a module there should be a period.

Identifier expected

* The syntax calls for an identifier, either defined or
undefined.

* In a record variant declaration an identifier must be
present as the tag type or variable.

* In a variable declaration or procedure parameter list at
least on identifier must be provided before the colon.
expected

* After the program or module name there should either be a
left paren or a semicolon.

* In a record variant declaration a left paren is expected
after the colon the follows the case constant.

* A left paren is expected to start the parameter list
reguired.

expected

* In a record variant declaration a right paren is expected
after a field list.

* In an enumerated type declaration either a comma or a
right paren was expected to close the enumeration.

* In a procedure parameter list a right paren must close
the parameter list.

* A right paren was not found after the expression of a
nested factor.

* A right paren was not found after the parameter of an
exit statement.

* A right paren was not found after the parameter llst for
a standard procedure or function.

12 Error in parameter list

* The program parameter list was not correctly terminated
by a right paren.

12A-1

13

14
15

17

18

OmegaSoft Pascal Version 2 Language Handbook
COMPILATION ERRORS

; expected
* After the program parameters a semicolon should appear.

~* In the label declaration syntax either a comma or
semicoclon should appear here.
* In the constant declaration syntax a semicolon should be
found after each constant value. _
* In the type declaration syntax a semicolon should be
found after the type definition.
* In the variable declaration syntax as semicolon should be
found after the type definition.
* In a procedure declaration a semicolon should be found
after the parameter list (if provided) or else after the
procedure name.
* After the block of a procedure should appear a semicolon.
* A semicolon should separate statements in a compound or
repeat statement. ‘

Invalid string
* string crosses a line boundary.

Identifier declared twice
* In a definition an identifier was used that has already
been defined and cannot be re-defined at this lex level.
* In a record variant declaration the tag variable
identifier is already defined in the record.
* In an enumerated type declaration a name was repeated.
* In a procedure declaration the procedure name was already
defined but was not forward.

= axpected
* In the constant declaration syntax an egual should occur
after the identifier. -
* In the type declaration svntax an equal should occur
after the identifier. '
* An equal sign was expected in the expression rather than
the assign symbol found.

Invalid constant
* In the constant syntax a valid expression was found but
it was not constant.

Undefined identifier
* The identifier referenced was not found in the symbol
table.
* At the start of statement an integer was found but was
not declared as a label.
* The destination integer for a GOTO was not defined as a
iabel.
* The identifier as not valid as the start of a factor.

12a-2

19

20

21

22

23

24

25

OmegaScft Pascal Version 2 Language Handbook
COMPILATION ERRORS

Identifier not appropriate class
* In a record variant declaration the token found for the
tag field type was not a type.
* A record selector was found that is not part of the
record.)
* The token should of been a variable but was not.
* The argument of a with statement must be a record.
* The parameter for the sizeof function must be a variable
or type.

END or ; expected
* In a compound statement either an end to terminate it or
a semicolon to extend it was not found.
* In a record declaration either a new field list or end of
record was expected.
* In a case statement either a new case constant list, an
else/otherwise clause, or an end was expected.

.. expected
* In a simple type declaration the ".." was not found after
the first constant.

Error in simple type
* Where a simple type was expected something else was
found.

Incompatible subrange types
* In a simple type declaration the type of the second
constant did not match that of the first constant of the
subrange.

Low bound exceeds high bound
* In a simple type subrange declaration the first constant
had a higher wvalue than the second constant.

Invalid subrange type
* In a simple type declaration a constant of a type that
cannot have a subrange was foundg.
* The two expression types found in a subrange set
constructor do not match.
* The constant type is not valid for & subrange case
constant.

122-3

26

27

28

29
30

31

32

OmegaScoft Pascal Version 2 Language Handbook
COMPILATION ERRORS

OF expected

OF expected in record variant declaration.

In a set declaration OF was expected.

In a device declaration OF was expected.

In an array declaration QOF was expected.

* An OF is expected after the selector in a case statement.
expected

* In an array declaration a left paren was expected to
start an indices declaration.

expected

* In a device declaration a right paren was expected after
the extra stack space specification.

* In an array declaration a right paren was expected after
the indices declaration.

* In a string declaration a right paren was expected after
the size specification.

* In array indexing a right bracket was not found to
terminate the indexing.

* A right bracket was not found after the expression in
string indexing.

* A right bracket was expected to close a set constructor.

* * * A

Errer in type
Integer expected .

* In a device declaration either an integer or hex number
was expected for a extra stack space specification.

* In a device declaration either an integer or hex number
was expected for the absolute init address.

* In a string declaration an integer was expected as a size
specification.

* The token following a GOTO must be an integer.

* The expression for string indexing must be an integer.

* The parameter of an exit statement must be an integer.
expected

* In a record variant declaration a colon is expected after
the case constant.

* In a variable declaration or a procedure parameter list a
colon is expected after the variable list and before the
type definition.

* In a function declaration a colon is required after the
parameter list and before the function return type
definition.

* A colon must appear after the constant list in a case
statement.

Stack allocation overflow

* While allocating stack space for a variable the
allocation counter overflowed.

33 Wrong index type

34

* The array index expression type does not match the
declaration.

Invalid index type

* The type declared as an array indices type cannot be
used.

12a-4

35
36

37

38

40

41

42
43

44

45

46

47

OmegaSoft Pascal Version 2 Language Handbook
COMPILATION ERRORS

Error in variable
:= expected
* An assignment symbol should appear after the variable
specification in an assignment or for statement.
Type conflict .
* The expression found does not have an acceptable type.
* The expression type is not compatible with the variable
type of an assignment or for statement.
* The two sides of an expression do not have matching
types.
* The constant type does not match the selector type in a
case statement.
* The parameter for the mark or release procedure must be
integer or hex.
* The parameter for a read or write procedure to a non-text
device does not match the device declaration.
* The parameter of the random function must be a real.
Value is out of bounds
Invalid type of operand
* The not operation was applied to an incorrect type.
* An incorrect type was used for set constuction.
* The operand(s) type cannot be used with the specified
operator.
Address must be integer or hex
* In a variable or procedure declaration the constant
following the "at" was not integer or hex.
Zero string not allowed '
* In a string declaration a size of zero was specified.
Operator expected
r expected
* In array indexing neither a comma or a right bracket were
found after the index expression.
* In a parameter list more elements are in the declaration
and a comma is expected to separate the next expression.
Error in type o¢f standard procedure parameter
* This is general catch=-all for errors in the parameter
lists of standard procedures. Re-read the documentation for
the procedure where this error occurs.
Undeclared or incorrect standard I/0 device
* A default device was used for a standard procedure or
function and the default device was not declared in the
program parameter list.
Error in type of standard function parameter
* This is general catch-all for errors in the parameter
lists of standard functions. Re-read the documentation for
the function where this error occurs.
Invalid type of expression
* A boolean expression must be used for the while, repeat,
and if statements. Ny
* The expression type is invalid for a for statement.
* The expression type is invalid for a case statement
selector.

12A~5

48

49
50
51

52

53
54

55

56
57

58
58

60
61
62

63

OmegaSoft Pascal Version 2 Language Handbook
COMPILATION ERRORS

DO expected
* DO should be after the expression of a while statement.
* DO should be after the second expression of a for
statement, .
* DO should be after the argument list of a with statement.

THEN expected
* After the expression of an IF statement a THEN should be
found.

Number of parameters incorrect
* A user defined procedure was called with the incorrect
number of parameters.

Invalid parameter substitution
* A user defined procedure call encountered a parameter
that does not match the definition.

Backtrack error
* Error in symbol table management - contact OmegaSoft if
you ever get this error.

File value parameter not allowed

TO/DOWNTO expected :
* A TO or DOWNTO is expected after the first expression in
a for statement.

Max string length is 126
* A string was defined with a length in excess of 126
characters. The length was set to 126.

Too many set elements
* The maximum ordinal value for a base element is 1007.

Invalid base type .
* A pointer was declared to an invalid base type.
* A set was declared with an invalid base type.

FATAL ERROR - SYSTEM STACK OVERFLOW
* Expressions or statements are nested too deep.

FATAL ERRCR - SYMBOL TABLE OVERFLOW
* Too many user defined identifiers or excessive expression
or statement nesting.

FROGRAM expected
* The words program or module must be the first non-comment
token in the file.

Case constant type conflict
* In a record variant declaration the case constant doces
not match the selector type.

Exit outside of loop
* Not nested deep enough in loops te exit the number of
loops specified.

Forward pointer reference not defined
* At the end of a type declaration, variable declaration,
or procedure parameter declaration there was a reference to
but no declaration for the named identifier as a pointer
base type.

12A-6

64

63

66

€7

68

69

70

71

72

73

74

OmegaScft Pascal Version 2 Langﬁage Handbook
COMPILATION ERRORS

Compiler out of sync or no "."
* End of file was encountered before the compiler expected
it. Either the period was left off of the end of the
program or the compiler has gotten out of sync due to a
syntax error and not been able to restore itself to proper
parsing.
Wrong lexical level
* In a variable declaration either absolute, external,
entry, or per addressing was specified at a non-global
level.
* In a procedure declaration either absolute, external, or
entry addressing was specified at a non-global level.
Invalid GOTO to label
* Cannot jump into a syntax that has temporary values on
the data stack (such as a for loop).
Constant out of range
* The value to be assigned to a subrange variable is out of
range.
* The index expression for a variable was beyond the range
"of the declaration.
FATAL ERROR - VARIABLE CODE BUPFFER OVERFLOW
* Code in excess of what the buffer would allow was
generated to access the variable of an assignment
statement.
Forward buffer overflow
* Too many pointer type declarations in this declaration
section.
* Too many variables or procedure parameters defined to be
pointer types in this declaration.
* Too many GOTO statements with destination declared after
the GOTO in this block.
Variable buffer overflow
* In a variable declaration or a procedure parameter list
too many variable names were listed before the type
definition.
* Too many arguments £or or nested with statements.
Program parameter buffer overflow
* There are too many identifiers in the program parameter
declaration for the compiler to handle.
Statement expected
* Where a statement was expected the token found does not
represent a valid start of statement.
Invalid function return type
* A function return type was specified that has a size of
over 127 bytes.
BEGIN expected
* The block syntax expected a begin to start a compound
statement.

12a-7

OmegaSoft Pascal Ve

rsion 2 Language Handbook

APPENDIX '

APPENDIX B - RUNTIME ERRORS

There are four types of runtime errors : range, 1/0, conversion,
and stack. The first three are individually maskable using the R,
I, and C controls in the comment syntax. Stack errors are not
maskable since they represent a limit exceeded and that the
necessary information on the stack may no longer be valid enough
to continue execution. Error codes 4 through 22 are defined for
all systems and are listed here.

RANGE ERRORS

range

——

Number Error Where generated

et +

I 4 | Overflow | Integer add, subtract, mul. |
I | | and negate. Hex mult. Real |
i ! | add, subtract, mult, divide.l
i ! | Log functions, Arcsin/cos |
! f . ! I
' 5 | Truncation | Chr func. Character mult. !
I] | Real to integer conver. |
I ! ! !
| 6 | Divide by zero | All div, mod operations and |
I ! | real / l
! ! i |
I 7 | Invalid argument for | Square root, logs f
! | square root or log i l
| ! | l
b8 | Dynamic length assign | String/set assignment |
! | error | size adjust (String/set I
f f | value parameters) String {
I ! | concat. !
l [| [
I8 | Array index invalid | Array indexing '
| | t !
I 10 | String index invalid | String indexing, substr f
I ! ! l
I 11 | Subrange error | assignment to subrange var, |
! l - ; !
| 12 | Set element out of | set construction I
' ! I]
: + + +

12B=1

OmegaScft Pasca

CONVERSION ERRCRS

1 Version 2 Language Handbook
RUNTIME ERRORS

Number Error Where generated

tm———— R o o o e o e +
| 13 | Integer conversion err.| Read of integer or longinteger,|
! l | integer or longinteger functionl
i I | with string parameter. !
! I i ' |
| 14 | Hex conversion error | Read of hex or longhex, hex or |
t | | longhex function -~ string param!
! | | |
I 15 | Real conversion error | Read of real, real function !
! . ' | !
| 16 | Boolean conversion err | Read of boolean, boolean func. |
Fo———— = e o e e e e e e e R e +
I/0 ERRORS

Numberz Error Where generated

o e s e e ot 20 o e e e et e e e e +

I 17 | Device open/closed | Get, Put, Read, Readln, Pagel

l I incorrect [Write, Writeln, Open, Create!

I ! | Seek, Del l

l | ! |

| 18 | Device hit EOF | Get, Read, Readin I
e - - e e ———————— e e +

STACK ERRCRS

Number Error Where generated
e e e e e e e e e e e e s e +
i 18 | Heap overflow | Heap crashed into data stack|
| l ! or heap limit during NEW !
I ! I |
|l 20 | Data stack overflow | Data stack crashed intoe heap!
| ! [or data stack limit during |
| I | stack alliccation I
i | | {
| 21 | System stack overflow 1| System stack crashed into |
! ! | system stack limit during !
| ! | Proc/Func calling |
o e e e e e o +
USER GENERATED ERRORS

- Number Error Where generated
Fm———— e e e e e e +
| 22 | Program operation error| Halt(22) or Halt (#22) !
e e e e e e e e +

OmegaSoft Pascal Version 2 Langquage Handbook
APPENDIX

APPENDIX C = RUNTIME ENVIRONMENT

.The are four memory areas used during the execution of a Pascal
program, two of which may be the same area.

The first is the actual program code, this may be in Ram or Rom
(or any other type of memory that is read only, or read-
writeable). -

The second is the system stack which is used for calling
procedures, functions, and the assembly language routines in the
runtime library. Temporary values may also be stored on the
system stack by the runtime routines. Interrupts will alsc extend
the stack if used, extra room should be allocated for those if
used. Some of the 6809 operating systems use software Interrupts
for system calls, these can increase the system stack
requirements drastically.

The third and fourth areas are for the data stack and the heap.
These can be separated into two areas (as long as the heap is
below the data stack) but are more commonly shared in one block
of memory. In this case the heap starts at the lower limit of
this memory area and builds up when the NEW procedure is called.
The data stack starts at the high limit of this memory and builds
down as variable space is allocated and as expressions are
evaluated. An error will occur if the data stack collides into
heap peinter or if the heap pointer collides into the data stack.

We now present the heap/data stack areas graphically :

+ - ~~=+<{- high
| global stack frame I
global stack mark =->+ - +<= high=16
f global stack frame !
e e e s e e e +<- high=26

{ global variables |

data stack pointer =>+——- ———— l
} data stack grows down for I

| local variables and expr. I

[

I

| evaluation. Heap grows up
| for dynamic variable alloc.
heap pointer =->+ - —

<~ low

12C-1

OmegaSoft Pascal Version 2 Language Handbook
RUNTIME ENVIRONMENT

global stack frame :

fmm e ———— +

| RSKEY | pointer to keyboard descriptor (if declared)
e e + <- +14

I RSAUX | pointer to auxout descriptor (if declared)
o s e e + <= +12

| RsOOT | pointer to ocutput descriptor (if declared)
e ——————— + <~ +10 '

I RSIN [pointer to input descriptor (if declared)
Fomm—————— - 8

| RS$SPARM | pointer to start of string for CLINE function
fm———————— + <= +6

| RSRANG | flag for range function/variable

o e e e + <= +b

I RSCONV | flag for conversicn function

T + <= +4

| RSHPPT | heap pointer

+ + <~ +2

| RSHPLM | heap limit

From o e + <= +0 from global stack mark

! RSDLIM | data stack limit

e e e e e + K= =2

! RSSLIM | system stack limit

e o e + <= -4

I RSGLOB | global stack mark address

e o e e + <~ -§

| RSEFLG | error mask

Pt (= =T

I RSLSP | spare

e + <~ =8

! RSRDWR | read/write descriptor address

o e + <~ =10

Procedure/Function stacking :

e e e e e et e e e e +

! parameters !

e +

f function return temp |

o s e e e e e e m + <= local stack mark

! local stack frame !

e e e e e e e e e + <= =10 from local stack mark

| local variables and expr. |
I evaluatien. I

l2¢c=2

OmegaSoft Pascal Version 2 Language Handbook
RUNTIME ENVIRONMENT

local stack frame :

fm e g (= = £from local stack mark
| RS$SLNR | static link

.

t=

+ <= =2

| RSDLNE | dynamic link

e s e o e + = =4

| RSGLOB | global stack mark. address
ottt e e b e o

| RSEFLG | error mask

e e o e + <= =7
I RSLSP | spare
e o e + <= -8
| RSRDWR | read/write descriptor address
o e e e e + <- ~10

format of error mask

5

LI] 3 2 l 0

- -

not used { RSECORN

—+— -+
RSEIOE | RSERNG |

4+ — 4+

-

Range errors (4~12) disabled if RSERNG zero (RSRANG is set if
range error regardiess of the state of RSERNG).

I/0 errors (17.,18) disabled if RSEIQE zero.

Conversion errors (13-16) disabled if RSECON zerc (RSCONV is
updated regardless of the state of RSECON).

The static link is the address of the stack mark of the level
enclosing this one (lexical) so that variables can be accessed
properly at other levels, The dynamic link is the address of the
stack mark of the caller. This is restored as the stack mark when
this called procedure/function returns.

The CPU

PC ~

o< am
i

registers are used as follows during runtime :

program counter - program execution address
system stack pointer

data stack pointer

stack mark (base register)

general purpose address and data register
general purpose data register

12C-3

OmegaSoft Pascal Version 2 Language Handbook
APPENDIX

APPENDIX D —~ RUNTIME ROUTINES

Entry point to file cross reference :

entry file entry file entrv file entrv file
FNC00 : 801 FNCOl1l : SF15S FNC02 : SF22 FNC0G3 -« SF22
FNCO4 : SF20 FNC09 : SF18 FNC10 : SFl6 FNC1l : SFlé
FRC12 : SFlé FNC13 : SP13 PNC20 : SF1 FNC2]1 : SFl

FNC22 : SF1 FNC23 ¢ 8F21 FNC24 : SF21 FNC25 ¢ s5F21
FNC26 : SP20 FNC30 : S03 FNC31 : sSr4 FNC32 : SF4

FNC33 : S8F5 PNC34 : 38F6 FNC35 : SF7 FNC36é : SF7

FNC37 : SF8 FNC38 : SF7 FNC39 : SFr9 FNC40 : SFS

FNC4]l : SFl4 FNC42 : SF15 PNC50 : SFlo PNC51 : S8SFlo
FNC33 : BFlQ FNC60 : SF11 FNC61 : SPll FNC62 : SP12
FNC63 : SFl2 FNC64 : SF13 PNC65 : SF13 FNC66 : SF19
FPNCE7 : SFl9 PRC68 1 SPFP23 FNC6S : 5F23 FNC70 : SF17
FNC71 : 8F24 FNC72 : SF24 FNC73 : SF26 FNC74 : SF26
INTOO0 : sU4 INTOl : 8U7 INTO2 : SUS INTO3 : 8U8

INT0O4 : S06 INTOS : sSU2 INTO6 : SF1 INT07 : SF1

INTOS : S03 INTIO : S02 INT1l : 803 INT12 : S03

INT14 : SP7 INT16 : SF2 INT17 : SF2 INT18 : SF3

INT20 : sU8 INT21 : 802 INT22 : SU2 INTZ23 : sUS8

INTZ24 : 5U3 INT25 : 8Su3 INT26 : SUS8 INT27 : S8U3

INT28 : SU3 INT29 : 5U3 INT30 : SU9 INT31 ¢ 8U9

INT32 : 8Ul2 INT33 : SU10 INT34 : S06 INT35 : sUll
INT36 : SUll INT37 : 8012 INT38 : SU7 INT40 : 5F20
INT41 : BF290 INT42 : SF21 INT43 : SF21 INT44 : 8SF25
INT45 : SF25 INTF8 : 85Ul INTF9 : sU1 INTFA ¢ 8U1

INTFBR : SUl INTFC : SU1 INTFD : SUlL INTFE : 85Ul

INTFF : 8Ul OPRO2 : S01 OPRC3 : 801 CPRO4 ¢ S01

@PROS : S0O11 CPRO6 : 5011 QPRO7 : S012 OPRO8 : 8012
OPROS : S012 OPR1C : 8011 OPRI11 : 8011 QPRILZ : 802

OPR13 : 802 OPR14 : S02 QPRl1& : SO8 OPR17 : 508

OPR20 : S03 OPRZ1 : S03 OPR2ZZ2 : 803 OPR23 : S03

OPRZ24 : 8F7 OPR25 : 504 CPR26 : 803 OBR30 : 506

OPR31 : S06 QPR32 : 807 OPR33 : 807 QPR35 : S06

CPR36 : SQ10 OPR37 : 5010 OPR38 : 5010 OPR3% : solo
OPR40 : 3509 OPR41 : 5013 OPR42 : 8013 OPR43 : S013
OPR44 : S0l4 OPR45 : 5014 QPR46 : 80153 OPR47 : 8013
OPR48 : SO15 QOPR49 : 5015 OPRSG ¢ SO05 OPR51 : 8016
OPR52 : 8016 OPR53 : 8016 BRCOC : SP1O PRCO1 : SPl1O
PRCOZ2 : SP11 PRCC3 : SP11 PRCC4 : SPI12 PRCOS : 8P12
PRCO6 : SP8 PRCO7 : SP8 PRCO8 : SP9 PRC0S : sSPY

PRCIC : SP6 PRC11l : sP6 PRCl2 : 8P7 PRC13 : SPl4
PRC1S : SP1 PRC16 : 8P1 PRC1E : 8P3 PRC18 : SP3

PRC20 : 823 PRC21 : SP4 PRC2Z : 8PS PRC23 : 8P2

PRCZ25 : 5Pl4 PRC26 : SPl4 PRC31 : SP2 PRC32 : sP2

PRC34 : 8P2 . PRC35 : 8P2 PRC36 : SPp13 PRC37 : 8P13
PRC38 : sP13: PRC39 : sP13 PRC40 : SPIO PRC42 : sP11
PRC44 : sP12 PRC46 : 8PB PRC48 : SP9 PRCSQ : 5P6

PRC52 : SP15 PRC54 : s8P15 PRCES : 8P15 PRCS0 : 8pP17
PRC6L s SP16 PRCE2 : SPls PRC63 : 8SpP18 PRCE64 : SPLB
PRC6ES : 8SP18

12p-1

OmegaScft Pascal Version 2 Language Handbook
APPENDIX

APPENDIX E - ISO VALIDATION REPORT

D 1 g £ .

Host Computer : Smoke Signal Broadcasting Chieftain 9522812W10
running the 0S-3% operating system.

Host Computer Requirements : MC6809 processor, minimum of 56k
bytes of memory, 2 or more disk drives, running the 0S-%, MDOS,
XDO8, or FLEX operating system.

Processor : OmegaSoft Pascal version 2.10

: ~onditi

Tester : R.D. Reimiller

Date : June 1982

Validation Suite Version : 3.0

The OmegaSoft Pascal compiler was developed to provide the users
of the 6809 processor with a fast and efficient way to develop
code capable of running on the host development system or
installed into a target system. The compiler is aimed primarily
at industrial applications such as process control and
instrumentation. Due to the nature of these applications many
extensions were added such as byte arithmetic, long integers,
dynamic length strings, modular compilation, and versatile
variable addressing. As a secondary requirement it was desired
that the compiler be able to accept a Pascal program written in
IS0 standard Pascal wherever possible.

Conformance Tests

Number of tests passed = 145
Number of tests failed = 11 (8 reasons)

L {1 ¢ pailed T
Test 6.4.2.3-3 : If an enumerated type is defined in the
index declaration part of an array its values cannot be
referenced until the array declaration is complete.

Test 6.4.2.3~4 : If an enumerated type is defined in a record

its values cannot be referenced until the record declaration
is complete. ‘

12E-1

OmegaSoft. Pascal Version 2 Language Handbook
IS0 VALIDATION REPORT

Tests 6.6.3.1-4, 6.6.3.4-1, 6.6.3.4-2, and 6.6.3.5-1 :
Procedures and functions cannot be passed as parameters.

Test 6.6.5.4-1 : Pack and Unpack procedures are not
supported.

Test 6.7.2.2-3 : Failed on MOD using a negative dividend. The
Jenson/Wirth "remainder after division™ method is used rather
than the method specified in the ISO standard.

Test 6.8.2.4=1 : Non-local GOTO's are not allowed.

Test 6.8.3.9~1 : Assignment to the control variable of a FOR
loop occurs after the evaluation of the first expressiocn.

Test 6.9.3.5.1-1 : Real numbers written out in floating point
format always have six digits to the right of the decimal
point.

Deviance Tests

Number of deviations correctly detected = 83

Number of tests showing true extensions = 45 (22 reasons)

Number of tests not detecting erronecus deviations = 9 (6
reasons}

{3 £ .

Test 6.1.5-4 : No digits are needed after the decimal point
in a real number.

Tests 6.1.6-4 and 6.1.6-5 : Labels may be an positive integer
constant.

Tests 6.1.7-5, 6.4.3.1-3, 6.4.3.1-4, 6.6.3.3-5, 6.9.3.2-2
All variables are packed at the byte level, the reserved word
"Packed" is ignored in any type declaration.

TeStS 60].e7"'6r 6-1.7-.'7’ 6.}.-7-8(6.4&3.2"'5 H StringS;
characters, and arrays of less than 127 elements are all
compatible.

Tests 6.1.7-11 and 6.4.5-12 : Strings are dynamic length,
allowable length is from 0 (null string) to 126.

12E-2

OmegaSoft Pascal Version 2 Language Handbook
IS0 VALIDATION REPORT

Tests 6.2.1-8 and 6.2.1-10 : Label, const, type, and var
declaration sections can be in any order and repeated
multiple times until a procedure/function declaration or
"begin®™ is encountered.

Test 6.3-9 : In any context where a constant is acceptable an
expression with a constant value may be used.

Test 6.4.2.3«5 : All enumerated type values are compatible.
Test 6.4.3.3-8 : The values of the case constants in a record
variant declaration are not used, access is provided to all
variants at all times.

Test 6.4.5~7 : All subranges of the same type are compatible.

Test 6.4.5-8 and 6.4.5~13 : Arrays of the same size are
compatible.

Test 6.4.5-9 and 6.4.6-7 : Records of the same size are
compatible.

Test 6.4.5-10 : All pointers are compatible with other
pointers or the type "Hex".

Test 6.6.2-5 : Any type with a size of less than 128 bvtes
can be used as a funétion return type.

Test 6.6.6.3~-2 : Trunc and round can have integer parameters.

Test 6.7.2.3=-2 : Logical operators are valid for character
and integer expressions.

Test 6.7.2.5-6 : Arrays of the same size can be compared.
Records of the same size can be compared.

Test €.8.2.4-2 : GotO between branches of an If statement are
dllowed.

Test 6.8.2.4-3 : Goto between branches of a Case statement
are allowed.

Test 6.8.3.5-7 and 6.8.3.5~8 : Subrange Case statement
constants are allowed.

Tests 6.8.3.9-5, 6.8.3.9-6, 6.8.3.9-7, 6.8.3.9-10, 6.8.3.9~
12, 6.8.,3.9-13, 6.8.3.9~-14, 6.8.3.9~15, 6.8.3.9-16, 6.8.3.9-
17 : No restricticns are placed on For statement control
variable.

12E-3

OmegaScft Pascal Version 2 Language Handbook
IS0 VALIDATION REPORT

Test 6.8.3.9~8 and 6,8.3.9~9 : If a For statement is entered
and exited normally the control variable will be valid and
contain the final value. If a For statement is not entered
then the control variable will be valid and contain the
initial value.

{1 - deviati
Test 6.1.8-3 : A number can be terminated by a letter.

Test 6.2.1-5 and 6.2.1~6 : Multiple siting for labels is not
checked, nor are labels required to be sited at all.

Tests 6.2.2-8, 6.3~6, 6.4.1-3 : Error in scope rules.

Test 6.6.1-7 : Unresolved forward function or procedure
declaration is not detected.

Test 6.6.3.3-4 : Use of a field selector as a parameter is
not detected.)

Test 6.10-4 : No check is made for duplication of program
parameters.

Error—nandling

Number of errors correctly detected = 19
Number of errors not detected = 31 (13 reasons)

£ail : ; 3

Tests 6.2.1-11, 6.4.3.3~11, 6.4.3.3-12, 6.4.3.3-11, 6.5.4-2,
6.6.2-9 : No checking is made to verify whether or not a
variable is accessed that has an undefined value, Instead the
variables are guaranteed to contain garbage unless
initialized.

Tests 6.4.3.3~-1, 6.6.5.3-8, 6.6.5.3-9, 6.6.5.3-10 : Any
tagfields or selector variables in a record variant are
irrelevant to which variants can be accessed.

Test 6.4.6-10 : No subrange chécking on parameter passing.

Tests 6.4.6-12, 6.4.6-13, 6.7.2.4-4 : Overflow checking is
done on sets based on byte count - not per element.

Tests 6.5.4-1, 6.6.5.3-4, 6.6.5.3-5, 6.6.5.3~11 : Pointer
value 1s not checked before use.

12E-4

OmegaSoft Pascal Version 2 Language Handbook
IS0 VALIDATION REPORT

Tests 6.5.5-2, 6.5.5-3, 6.6.5.3-6, 6.6.5.3-7 : There are no
restrictions on the use of pointers or file buffer variables
which are currently parameters or elements of a with
statement, '

Test 6.6.5.2-5 : To support random files a "get”™ is not
executed until called as a procedure or when accessing the
file buffer without a valid element ~ not at the time of
"reset".

Test 6.6.6.4~7 : Char and Hex variables "roll over®™ from
maximum value to zero - it is not considered an error.

Test 6.6.6.5-=7 ¢ If eof is true - so is eoln - it is not
considered an error to check eoln if eof is true.

Tests 6.8.3.5-10 and 6.8.3.5-11 : If no match in case
statement, falls through with no error.

Test 6.8.3.9~18 : No restrictions on the control variable of.
.4 For loop.

Test 6.8.3.9-1 : At the completion of a For loop the control
variable is valid and has the final value.

Tests 6.9.3.2-5 and 6.9.3.2-5 : Writing of real numbers with
no digits past the decimal point is permissible.

Quality Measurement
Number of tests run = 52
Number of tests incorrectly handled = 5

Resulfs of tesis
"Synthetic Benchmark™ - execution time 1 minute, 10 seconds.

"GAMM measure® - execution time 1 minute, 40 seconds for N =
1000

procedure calls - execution time 40 seconds

identifiers are significant up to 120 characéers.
source lines may be up to 120 characters.
. no reasﬁnable limit on number of real literals allowed.

no reasonable limit on number of strings allowed.

12E-5

OmegaSoft Pascal Version 2 Language Handbook
ISO VALIDATION REPORT

if a line of code is incorrectly part of an unclosed comment

the compiler will signal that no code was generated for the
line.

at least 50 types may be declared in a program.

no reasonable limit on number of labels, but there can be a
maximum of 8 forward referenced goto's in a block.

at least 128 constant definitions are allowed per constant
declaration part.

at least 128 procedures are permitted in a program.

maximum size for an array or record or for any variable
section is 32750 bytes.

at least 8 index types can appear in an array type.

at least 128 case-constant values are permitted in a variant
record.

at least 50 record-sections can appear in the fixed part of a
record.

at least 30 distinct variants are permitted in a record.

"Warshall's algorithm" procedure size = 270 bytes, execution
time = 9.7 seconds.

considerably less than 300 identifiers are allowed in a
declaration list (actual number depends on length of
identifier).

at least an 8 dimensicnal array is allowed.

procedures may be nested to at least 15 levels.

at least 30 formal parameter sections can appear in one
parameter list,

the dispose in the standard heap manager will only set the
pointer to nil, it will not restore memory.

deeply nested function calls are allowed (at least 6).
deeply nested compound statements are allcwed (at least 25).
a procedure may have at least 300 statements.

deeply nested if statements are allowed (at least 25).

at least 256 case constants are allowed.

128-6

OmegaSoft Pascal Version 2 Language Handbook
IS0 VALIDATION REPORT

at least 300 constants are allowed in a case-~constant list.
case statements can be nested to at least 15 deep.
repeat loops can be nested to at least 15 deep.
while loops can be nested to at least 15 éeep.
for loops can be nested to at least 15 deep.
with statements can be nested to at least 15 deep.

recursive I/0 can be used with the same file for the second
I/0 action.

at least 30 variable-accesses can appear in a read or readiln
parameter list.

at least 30 write-parameters can appear in a write or writeln
parameter list.

data written on the output file appears regardless of the
omission of a line marker.

] on-defined

Number of tests run = 12
Number of tests incorrectly handled = 1

Tests 6.1.9-5 and 6.1.9-6 : alternate symbols are available
for comments, array indices, and pointers.

Test 6.4.2.2-10 : Maxint is 32767

Test 6.4.3.4-5 : maximum range of set elements is 0..1007
Test 6.6.6.2~11 : Base = 2, Bits of mantissa = 24, not
rounding, minimum value = 2.710506E-20, maximum value =

9.223372E+18 '

Tests 6.7.2.3-3 and 6.7.2.3-4 : Boolean expressions are fully
evaluated.

Test 6.8.2.2-1 and 6.8.2.2-2 : In an assignment statement
evaluation of the expression is done before the selection of
the variable.

Test 6.8.2.3-2 : When a procedure is called the parameters
are evaluated in forward order.

12E-7

OmégaSoft Pascal Version 2 Language Handbook
ISO VALIDATION REPORT

Test 6.9.3.2-6 : Default field widths are : Integers = 10,
Boolean = 6, Real = 16, Longinteger = 16, Hex = 6, Longhex =
10.

Test 6.9.3.5.1-2 : Real values written in floating point
format have 2 exponent digits.

Test 6.9.3.6-1 : Boolean values written in the default
fieldwidth have the format as shown (between guotes) " TRUE"
and " FALSE".

s of . 1y handled

Test 6.6.6.1-1 : functions are not alliowed to be passed as
parameters to a procedure.

Level 1 Tests - Not applicable

Extensions
Extensions present = 1
Resuplt of extensiocn

Test 6.8.3.5-16 : An otherwise clause is allowed on a case
statement.

12E-8

CmegaSoft Pascal Version 2 Language Handbook
APPENDIX

APPENDIX F - CONVERTING FROM OLDER VERSIORS

To provide the best possible product it is sometimes necessary to
abandon previously used methods in favor of new methods. This
sometimes results in the need to modify one's code for
compatibility with the new methods. As an aid in making this
transition, this appendix will describe the changes that are
required if the code was written under an older version of the
compiler.

Changes from 2.0 to 2.1

1) If using the break function then the compiler comment option
{$b+} must be inserted before the standard input device is
declared in the program parameters. If the b option is not
enabled then a break on the input device will use the normal
operating system "crash” mode. It is good practice to turn off
the b option after declaring the standard input device if you
have turned it on. -

2) The S compiler comment option must be enabled if code is to be
generated for verifying subrange checking, array indexing, string
indexing, and assignments and reads to subrange variables. The R
option will now only affect the condition of the runtime error
masking flag.

3} The Deverr function returns a byte instead of an integer.

4) The € symbol was used for absolute addresses, it has now been
replaced by the standard identifier "at™. The € is now a
equivalent symbol to the ~.

5) The eof function will return true if the device is opened for
output only.

6) The eoln function will return true if the device is opened for
output only.

7) Variables declared as "external®™ in 2.0 programs must be
declared as "pcr"™ in 2.1 programs. This dees not affect procedure
declarations.

8) The memavail function now returns a hex value rather than an
integer.

9) Numbers entered without a decimal point or exponent between
32768 and 2147483647 will be longintegers, not real.

12r-1

OmegaSoft Pascal Version 2 Language Handbook
CONVERTING FRCM OLDER VERSIONS

10) In the reset procedure, if a string expression is not
supplied then a default file name will be used. If the device
being reset has its name in the program parameters then the
command line argument corresponding with its placement in the
program parameter list is used as the file name. If the
variable's name is not declared in the program parameters then a
null string will be used. In any case if the device is already
open then it will be closed before being reset. *

11) The rewrite procedure is changed like the reset procedure.

12) In the runtime environment the global and local stack frames
have an additional 2 byte entry 10 bytes below the stack mark.
This affects the stack setup code (.ps file).

13) In the with statement record variables are searched in the
reverse order that they are listed in the with statement. In the
case of nested with statements, the innermost with is searched
first.

14) In the write and writeln procedures the default fieldwidth
for boolean is 6. If the fieldwidth for boolean, hex, or string
value is not sufficient to hold its representation then the value
will be truncated on the right (the field will not be expanded).

Changes from 2.1 to 2.2

1) The type conversion functions : enchar, floorl, hexint,
roundl, sex, str, truncl, valb, valh, vali, vall, and valr, have
been removed. They have been replaced by a consistent method of
type conversion that uses the desired type as the function name.
The following function calls are equivalent to those available in
2.1 :

a) enchar (character) «~>» enum (character)
b) enchar (enumerated) -> <c¢har (enumerated)
c) floor {(longinteger) =-> integer (longinteger)

d) floorl (real) ' -> longinteger (real,floor)

e) hexint (integer) ~> hex (integer)

£) hexint (hex) ~> integer ({(hex}

g) round (lenginteger) =-> integer (longinteger)

h} roundl (real) -> longinteger (real) or
longinteger (real,round)

i) sex (byte) -> integer (byte)

j) str (type) -> string (type)

k} trune¢ (longinteger) =~> integer (longinteger)

1} truncl (real) ~> longinteger {real,trunc)

m) valb (string) ~> boolean (string)

n) valh (string) => hex (string)

o) vali (string) -> integer (string)

p) vall (string) -=> longinteger (string)

q) valr (string) => real (string)

12F~2

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

Program printer ;

{ System purpose : :

This system is used to connect three computers to one printer
on an allocation basis. All three computers and the printer
use a Centronics interface. After restart of the system no
computers are allocated to use the printer. To get allocated
a control code is sent from the computer to the system. This
control code consists of two fields ; function and time. The
time field is the lower four bits of the code and indicates
number of minutes that may elapse without printing from the
aliocated computer before the computer is automatically de=-
allocated. The function field is the upper four bits and is
as follows :

$8 : request allocation at 6 LPI line spacing.
$9 : request allocation at 8 LPI line spacing.
$A : de—allocate me immediatly.

If the computer wants de-allocation then the time field must
be zero. If the computer requests allocation then the time
field will be the number of minutes unless it is zero, in
which case the system default time will be used. Even if the
computer is not allocated the system will acknowledge his
regquests (within one second) but the select line to the
computer will not be activated until that computer is
actually allocated to the printer. If the printer is not
selected then none of the computers will be selected and the
system will not acknowledge their data transfers.

System configuration : _
1) ROM : gty. 2 4K * 8 chips at SE000 and $F000 (cne used)
2) RAM : gty. 2 2K * 8 chips at $D000 and $D800
3) I/0 : gty. 2 PIA (6821) at S$AQ0C and SAQl4
Printer PIA configuration ($A014) :
1} PBO-PB7 are data lines to printer
2) PAO is select input from printer (active high)
3} PAl is form feed pushbutton (active low)
4) CBl is ACK input, interupt bit set high on active low
transistion
5) CB2 is DS output, pulsed low for lus after write to PBQO-
PB7

13~1

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

Computer PIA configuration ($A0QC) :
1) PBO-PB7 are data lines from enabled computer
2) PAQO-PAl are computer enable lines

e

PAO = 0, PAl = 0 = computer one
PAO = 1, PAl = 0 = computer two
PAO = 0, PAlL = 1 = computer three

3) PAZ is used to reset the enabled computer's select latch -
indicating that it is not allocated {pulse active low)

4} PA3 is used to set the enabled computer's select latch -
indicated that is is allocated (pulse active low)

5} PA4 is used to ACK the enabled computer (pulse active low)

6) PA5 is used to reset the enabled computer's DS latch
(pulse active low)

7) PA6 is used to read the enabled computers DS latch
(active high)

8) CAl is the real time clock input at 10hz }

{FEIEE IR A KKk R R IR hk kX Rd k% CONSTANTS **A*Akkkkhkhbkkrkh bk kkkn}

Const
Print_sel = #$1 ' select from printer on PAQ }
Print_ff = %2 H form feed button on PAl }
Print_ack = #$80 ; printer ACK on CB1l }

Print_dira = #0
Print_dirb = §S$FF

data direction, side A }
data direction, side B }

Print_cntrla = #4 control code, side A }
Print_cntrlb = $#s$2C control code, side B 1}
Compl_enable = #0Q enable computer one }
Comp2_enable = #1 enable computer two }
Comp3_enable = %2 enable computer three }

Comp_deselect = §4
Comp_select = #8
Comp_ack = #8810
Comp_ds_reset = $320
Comp_ds = #5440

deselect cemputer }

select computer }

ACX computer 1}

reget computers DS latch }
read computers DS latch }

Comp._dira = #$3PF data direction, side A }
Comp_dirb = #0 data direction, side B }
Comp_cntrla = §5 control code, side A }
Comp_cntrlb = #4 control code, side B }
Comp_data_a = #s53C normal state for Comp_aux }
rtc = #$80 real time clock interupt bit }
Pia_init = #0 initialization for both Pias 1}
Qmax = 2999 max element of queue }
Max_comp = 3 maximum computer number }

Null = %0 ASCII null character }

LF = #3A ASCII line feed character }

CR = $#$D ASCII carriage return character }

Form_feed = $#3C
Cntrl_F = 46
FF_delay = #5
Sample_time = $10
Minute = 600
Sys_default_time = 2
Active = #1

ASCITI form feed character }

ASCII control F character }

half a second debounce }

{non allocated computer sample time}
{ number of interupts per minute }
{number of minctes if not specified}
{ comp _stat indicating active comp. 1}

A ey ey ey by ey ey ey ey oy el ey ey ey ke ey pde ey ey ey by Ry Ry Ry ey Ry ey Ry ey ey

A MR NS WE M R Wma ME e S g MB Sy WD Wy ME Wy MNP g NE ma TR ma ME Me WS Ma NS WS WE ey

13-2

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

Idle = %0
Max ASCII = #s7F

; {comp_stat indicating idle computer:}
; { highest valid ascii character }
Release = $3A0 ; { computer release code }
Request = §$80 ; { computer request code base }
Request_mask = #SEQ ; { mask to detect any request code }
Eight_mask = #$10 + { mask to check for 8 LPI command }
Timemask = #SF ; { mask to leave time from command }
Enable_mask = #SFC ; {mask to remove old computer enable}

{Fhkthhhkhhkhkhhhhkhhdhtdshw VARIABLES ****************‘k*******}

Var
Print_aux : char at $AQl4
Print_controla : byte at $AQ0Ll5
Print_data : char at $AQ16
Print_controlb : byte at $A01l7

Pia data = side a }
Pia control - side a }
Pia data - sgside b }
Pia control - side b 1}

“s WD wmp we
ot W s W N e Y

Comp_aux : char at SAQ0C ; { Pia data = side a }
Comp_controla : byte at S$SAQ0OD ; { Pia control - side a }
Comp_data : char at SAQOE ; { Pia data - side b }
Comp_controlb : byte at S$SAQOF ; { Pia control - side b }
Empty : boolean { Queue empty }

Full : boclean { Queue full 1}

Select : boolean { Printer selected }

Allocated : boolean
EightLPI : boolean
Comp_aux_set : char
Dummy : char
Control : char

FF : byte
Sample_delay : byte

{A computer is allocated}

{Space at 8 lines/inch}

{ default for Comp_aux }

{ Temp storage £or data }

{ Last control code }

{form feed buttom timer}

{ timer for un=-allocated
computers }

{put next character}

{get next character:?

{no print time out timer}

{ Timeout time allowed 1}

{ computer allocated now }

mE MB mg ME wa A ws SE mg A

Qin : integer

Qout : integer

Timeout : integer

Timelimit : integer

Current_comp : integer

Comp_stat : Array [0..Max_comp]
of byte ; {status for each computer}

Q : array [0..Qmax}l of char ; { character queue } :

e O wma we WMy

{r*XEKK XXX IKT XXX XX %%* INITTALIZATION *¥hhdhhthrhkhearadns }

Procedure Init_ IO ;
Begin
Print_controla := Pia_init
Print_controlb := Pia_init
Print_aux := Print_dira :
Print_data := Print_dirb ;
Print_controla := Print_cntrla ;
Print_contrelb := Print_cntrib :

~ W

13-3

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

Comp_controla := Pia_init ;

Comp_controlb := Pia_init ;

Comp_aux := Comp_dira ;

Comp_data := Comp_dirb ;

Comp_contrela := Comp_cntrla ;

Comp_controlb := Comp_cntrlb
End ; { Init_IO }

Procedure Init ;

vVar
Comp_init : byte ;

Begin
Init IO ;
Select := false ;
Empty ::= true ;
Full := false ;
Allocated := false :

Control := null ;
EightLPI := false ;
FP = 20 '
Qin = 0 ;

gout = 0

Timeout := 0 ;
For Current_comp := 0 to Max_comp Do
Comp_stat [Current_compl] := Idle ;
Sample_delay := #0 ;
Comp_init := Comp_data_a and not
(Comp_ds_reset or Comp_deselect) ;

Comp_aux := Comp_init or Comp3_enable ;
Comp_aux := Comp_init or Comp2_enable ;
Comp_aux := Comp_init or Compl_enable ;
Comp._.aux := Comp_data_a

End ;

{********************* QUE{JE HANDLERS *********t*t*******}

Procedure Insert (new_char : char) ;

Begin
QIQinl := new_char :
Qin := gucc (Qin) ;
If Qin > Qmax

then
Qin := 0

Full := Qin = Qout ;
Empty := false ;
Timeout :=

End

13-4

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

Functicn Remove : char ;
Begin
Remove := Q[Qout] :
Qout :+ succ (Qout)
If Qout > Qmax
then
Qout := §

Empty := Qin = Qout
Full := false

-

L

End ;
Procedure Force_BLPI ;
Begin
Qout := pred (Qout) ;
If Qout < 0
then

Qout := Qmax
QIQoutl := Cntrl_F
Full := Qin = Qout
Empty := false

LY T

End ;
Procedure Put_string (line : string [401) ;
vVar
cent : integer ;
Begin

For ccnt := 1 to length (line) Do
Insert (line{cecntl)
End ;

{¥**%kkkwx%4%% REAL TIME CLOCK INTERUPT HANDLER **###*%*%%%%)

Procedure rteirqg ; entry ;
Var
Comp_clear : byte ;
Begin
Comp_clear := Comp_aux ; { clear interupt !}
If Select
then
begin
If FF <> %0
then
FF := FF - %1 :
If Sample_delay <> #0
then
Sample_delay := Sample_delay - #1 ;
If Allocated and empty
then _
Timeout := Timeout + 1
end
end ; { RTCIRQ }

Procedure setirqg ; external
Procedure irqoff ; external

~a

~ao

13-5

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

SRS AR R AT EE COMPUTER PORT SUPPORT ******************}

Procedure Select_mode (Mode : byte) ;
Begin
If Allocated
then
begin
Comp_aux_set := Comp_data_a +
chr (Current_comp =1) ;
Comp_aux := Comp_aux_set and not Mode ;
Comp_aux := Comp_aux_set
end
End ; { Select_mode }

Procedure Allocate (Comp_num : integer ; C_code : byte) ;
Begin

Current _comp := Comp_num ;
Allocated := true ;
Comp_stat [Current_compl] := Active ;
Select_mode (Comp_select) ;
EightLPI := C_code and Eight_mask <> #0 ;
C_code := C_cocde and timemask ;
If C_code = %0

“then

Timelimit := Sys_default_time * Minute
else

Timelimit := ord (C_code) * Minute ;

I

Timeout := (
2nd ; { Allocate }

Functicon Fetch (Default : bvte) : char ;
Begin
irgoff ;
Fetch := Comp_data ;
Comp_aux := Default and not
(Comp._ds_reset or Comp_ack) ;
Comp_aux := Default ;
setirg
End ;

13-6

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

{hkdkkdhkhhhdhkhdhhbdkk ALLOCATED COMPUTER HANDLER ****************}

Procedure Check_allocated ;
var
EOJ : String [301 ;
- ccnt : integer ;
Begin
If Timeout > Timelimit
then
Control := Release :
If Control <> null

then
begin
If Control = Release
then
begin
EightLPI := false ;
For cent := 1 to 40 Do
begin
Insert (CR) ;
Insert (LF)
and ;
Put_string ('******************************')
Put_string (' END OF JOB -~ COMPUTER &')
Insert ('0' + chr(Current_comp)) ;
Put“string (T *******************‘k*********l)
Insert (CR) ;
Insert (LF)
Insert (Form_feed} ;
Select_mode (Comp_deselect) ;
Allocated := false ;
Comp_stat [Current_compl := Idle
end ;
If Control and Request_mask = Regquest
then

Allocate (Current_comp, Control) :
Control := null
end
End ; { Check_allocated }

13~7

CmegaScft Pascal Version 2 Language Handbook
EXAMPLES

{FrEEk Rk Lk kkKxk** UNALLOCATED COMPUTER HANDLER #***kk#hskhddkhss)

Procedure Check_unallocated ;

Var
Comp._.scan : byte ;
Idle_scan : integer ;
Begin '

Sample_delay := Sample_time ;
For Idle_scan := 1 to Max_comp Do
If Comp_stat [Idle_scan] <> Active
then
begin
Comp_scan := Comp_aux and enable_mask or
: chr (Idle_scan =~ 1) ;

w2 B

Comp_aux := Comp_scan ;
If Comp_aux and Comp_ds <> #0
then
begin

Control := Fetch (Comp_scan) ;
If Control = Release
then
Comp_stat [Idle_scan] := Idle
else
If Control and Request_mask
= Request
then
Comp_stat [Idle_scanl := Control
end ;
Control := Comp_stat {Idle_scanl ;
If (Control and Request_mask = Request)
and not Allocated
then
Allocate (Idle_scan, Control)
end 7
Comp_aux := Comp__aux_set ;
Control := null
End ; { Check_unallocated }

13-8

OmegaScoft Pascal Version 2 Language Handbook
EXAMPLES

{Fhhkhkhthkhhkhkhrthkkhkhkkhhk MAIN PROGRAM **********************}

Begin { Printer 1}

Init
setirqg
Comp_aux_set := Comp_data_a ;
Repeat
If Select
then
If Print_aux and Print_sel <> #0
then
begin :
If not Full and (Print_aux and Print_ff = %0)
then ‘
Begin
If FF = #0
then
Insert (Form_£feed) ;
FF := FF_delay
End ; -
While not Empty and (Print_controlb and Print_ack
<> #0) do
begin
Dummy := Print_data ; { clear interupt 1}

Dummy := Remove ;
Print_data := Dummy ;
If (Dummy = LF) and EightLPI
then
Force_B8LPI
end ;
If Allccated
then
begin
While (Comp_aux and Comp_ds <> #0)
and not Full Do
begin
Dummy := Fetch (Comp_aux_set) ;
If Dummy <= Max_ASCII
then
Insert (Dummy)
else
Control := Dummy
end
Check_aliocated
end ;
If Sample_delay = #0
then

Check_unallocated
end

13-8

CmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

else
begin
Select := false ;
Select_mode {(Comp_deselect)

end
else .
If Print_aux and Print_sel <> %0
then .
begin
Select := true ;

Select_mode (Comp_select) ;
Print_data := Null
end
Until false
End. { Printer }

The next section is the stack setup code, modified from what was
output from the linkage creator.

NAM START
XDEF START
LZREF PRINTE

START LDS #5D100 SET SYSTEM STACK
LDU #$DFE6 SET DATA STACK
LEAY 10,0 SET GLOBAL STACK MARK
LDX #3$D10O
STX =-2,Y SET DATA STACK LIMIT
STX 2,Y SET HEAP POINTER
LDX #s$D000
STX -4,Y SET SYSTEM STACK LIMIT
STY -6,Y SET GLOBAL MARK PCINTER
CLR -7,Y DISABLE RUNTIME ERROR CHECKING
LBRA PRINTE
END

The next section handles the two assembly language procedures for
turning on and off the interupt mask and the code for handling
the interupt.

NAM PSUP
TTL PRINTER SUPPORT
XDEF SETIRQ,IRQVEC,IRQOFF
XREF RTCIRQ
SETIRQ ANDCC #SEF
RTS
IRQCFF ORCC #8510
RTS
IRQVEC LDY #$DFF0 SET GLOBAL STACK MARK
LDA #-1 CALLING LEX2 FROM LEX1
LBSR RTCIRQ CALL PASCAL PROCEDURE
RTI
END

13-10

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

The last part specifies the interupt and restart vectors

NAM INTRPT |
TTL INTERUPT VECTOR FOR PRINTER

* THIS CODE MUST RESIDE IN ROM STARTING AT S$FFFS8

XREF START,IRQVEC
XDEF RESET,IRQ
IRQ FDB IRQVEC
FDB C,0
RESET FDB START
END

The runtime error printing device was changed to :
.ERROR JMP [SFFFE]

which of course will restart the program. Using the OmegaSoft
linker the commands looked like :

STRP=§F000

LOAD=PRINTER.PA PRINTER.CA PSUP
LIB=RL

CURP=S$FF8§

LOAD=INTRPT

OBJA=PRINTER

MAPSM

EXIT

13~11

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

program rotate_page (input, output) ;
type
line = record
link : "line ;
str : string
end
var
start_frame : "integer ;
page_st, page_ptr : “line ;
i, longest : integer ;
begin
repeat
mark (start_frame) ;
new (page_st)
page_ptr := page_st :
"writeln ('Enter lines (return to rotate, / to exit)')
longest := 0 ; '
readln {(page_ptr”.str) :
if page_ptr”.str = '/
then
exit ;-
while page_ptr”.str <> '' do
begin
new (page_ptr~.link) :
page_ptr := page_ptr”.link ;
readln (page_ptr”.str) ;
if length (page_ptr”.str) > longest
then
longest := length (page_ptr”.str)
end
page_ptr®.link := nil ;
for i := 1 to longest do
begin
page_ptr := page_st ;
while page_ptr <> nil do

begin
if 1 > length (page_ptr”.str)
then
write (' ')
else

write (page_ptr~.str [i],' ') :
page_ptr := page_ptr”.link
end ;
writeln
end ;
release (start_frame)
until false
end.

13~-12

CmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

program runtime (output);

{
this program reads a merged runtime library file and sorts
the file by subroutine name. then it prints the contents with
the corresponding module/file name. This program is designed
to run under 0S-9, however with a few changes it will also
run under DOS69 and FLEX. This program was donated by K.E. of
. Smoke Signal Broadcasting, makers of really fine stuff.
}
type
struc = record
sub_name : stringlé6l;
mod_name : stringi6]
end;

sptr = “struc;

var
count : byte;
loop : integer;
first, current, last : “struc;
table_start, table_end, ptr : “sptr;
name : stringl6l;
line_buf : stringll1261;
£ : file of byte;

procedure build_iist;
begin
line_buf := substr (line_buf, 2, 126);
while {(line_bufl0] > %0) do
begin
case line_buf(ll of
#0 : line_buf := substr (line_buf, 18, 126);
#$30 : line_buf := substr (line_buf, 8, 126):
#5524
begin
new (last);
with last”™ do

begin
sub_name := substr (line_buf, 2, 6):
mod_name := name;

end;

line_buf := substr (line_buf, 10, 126}
end
end
end

end:

13~13

CmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

procedure sort;

procedure exchange (ptrl, ptr2 : “sptr);

var
temp : “sptr;
begin
temp := ptri”;
ptrl” := ptr2”;
ptr2” := temp
end;

procedure quick (lo, hi : “sptr);

var
i, 3, pivit : “sptr;
begin
if 1o < hi
then
begin
i := lo;
j = hi;
pivit = j;
repeat

while (i < j)
and (1"".sub_name <= pivit™".sub_name) do
I = 1 + $2;
while (3 > i)
and (j"".sub_name >= pivit™".sub_name) do
1=] - $2:
if 1 <3
then
exchange (i, j);
antil i >= j;
exchange (i, hi);
if i = lo < hi - i
then
begin
gquick (lo, i = $2);
guick (i + $2, hi)
end
else
begin
guick (i + $2, hi):
gquick (le, i - §2).
end
end
end:;

13-14

OmegaScft Pascal Version 2 Language Handbook
EXAMPLES

begin
mark (table_start):
for ptr := $0 to (last - first)
div hex(sizeof (struc)) do
begin
new (table_end); .
table_end” := ptr * hex(sizeof(struc)) + first
end; _
gquick (table_start, table_end)
end;

begin
mark (first);
ilast := nil;
reset (£, cline(l));
while not eof (£) do
begin
read (£, count);
read (£, count):
for loop := 1 to ord (count + #1) do
read (£, line_buflloopl);
‘line_bufl0] := chr (loop - 2);
case line_buffill of
*2' : name := substr (line_buf, 3, 6);
'3' : build_list
end
end;
¢lose (f);
if last <> nil
then
begin
sort;
writeln; writeln;
ptr := table_start:
loop := 0;
repeat
current := ptr”;
with current” do

begin
write (sub_name, ' : ', mod_name, ' ‘')
locp := succ (loop);
if loop = 4
then
begin
writeln:;
loop := 0
end
end;

ptr = ptr + $2
until ptr > table_end;
page
end
end,

L3=15

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

program avail (input, output) ;

{
This example demonstrates the effect of subroutine calls

on the size of the free heap space

var
max _level : integer ;

procedure recurse (call_level, max_level : integer) ;
begin
writeln ('Entering procedure level
- ', heap space available = §
if call_level < max_level
then
recurse (call_level + 1, max_level) ;
writeln {'Exiting procedure level ', call_level:0,
', heap space available = $', memavail:4)

y call. level:,
', memavail:d) ;

end

cegin
write ('Enter maximum procedure nesting level : ') ;
read (max_level) ;
if max_level > 0
then
recurse {1, max_level)
end.

function to convert a 3 byte array into a longinteger {used to
cenvert 0S-~9 byte counts into longinteger for seek parameter).

function convert (arry : array [0..2] of byte) : longinteger :
type
trick = record
case boolean of
false : (ary : record

i : byte ;
j : array [0..2]1 of byte
end) ;
true : {long : longinteger)
end ;
var
trec : trick ;
begin

trec.ary.i := #0 ;

trec.ary.j = arry ;

convert := trec.long
end

13-16

{

OmegaSoft Pascal Version 2 Language Handbook
EXAMPLES

Example of duplicating a text path (such as the standard
output path) except making it a file of char instead.

var
dup : file of char ;

procedure set_path ;
type
descriptor = record

mode : byte ;
err : byte ;
drv : hex ;:

elnt : integer ;

elmt : char ;

path : byte {for 08-9 only!

end ;
var
main, copy : “descriptor ;
begin

main := addr (ocutput) ;

copy := addr (dup) ;

copy” = main” ;

copy” .mode := main”.mode and #%11111011 {turn of MSTEXT}
end ;

13-17

OmegaSoft Pascal Version 2 Language Handbook

DEBUGGER

DEBUGGER COPERATION
Command line syntax :
DB <program file name> {<module file name>} [D=<hex>] [H=<hex>]

The D option will override the default debugger symbol table
size. The H option will override the default Heap start address
(see chapter 15 for operating system specifics).

The debugger operates in two phases to maximize the amount of
memory available for your program. At the start of phase one the
available memory area is divided into sections by the kernel,
refer to chapter 15 in this manual if you are interested in this
segmentation. The debugger table size is defaulted to a reaso=-
nable size or may be specified using the D command line option.
If the debugger table size changes, the code area will change by
the reverse amount. Making the debugger table smaller will allow
mere room to be shared by your program and its heap/data stack.

The first f£ile specified in the command line must be a Pascal
program compiled using the compiler 'D' command line option. Any
additional files specified must be Pascal modules compiled using
the compiler 'D' or 'I' command line option. The files specified
on the command line are assembled into the code area in one pass.
A large disk buffer is used to speed this operation.

After assembly is completed the module linker will be
executed. If there was more than one file specified on the
command line the linker will resolve any references (external and
entry procedures or variables) between modules. The number of
still unresolved references is then displayed and a menu of
options is supplied. If you are not using any assembly language
support for your program (other than the standard runtime
routines) then there will be no unresolved referencesg and you can
simply type a carriage return, skip the following discussions an
proceed to the "Debugger Commands" section of this manual.

14-1

OmegaSoft Pascal Version 2 Language Handbook
DEBUGGER OPERATION

In response to the menu prompt the following responses are
accepted (all terminated by a carriage return)

1) display unresolved symbols -~ names of symbol references
that have no matching definitions are displayed. These would
include variables declared as external that do not have a
matching variable declared as entry in another module, variables
declared as pcr, or procedures declared as external that do not
have a matching procedure declared as entry in another module.

2) display resolved symbols - names, addresses, and relocation
type. In the case of external variables the relocation type will
be 'A' for absolute and the address listed will be its stack
offset. In the case of external procedures or pcr variables the
the relocation type will be 'P' for program relative and the
address listed will be its actual address.

3) set display path - allows entry of a device or file name to
be the destination of future display commands. This path remains
in effect until either this phase is exited or by using this
command to change the path.

4) read symbol file - allows entry of a file name that
contains the names and addresses of symbol definitions. This
feature is useful when you must make changes in a Pascal program
and debug frequently using the same already loaded assembly
language routines. The file must be a standard text file with
lines in the following format :

NAME=HEX ADDRESS

5) read symbols from terminal -~ allows entry ¢f symbol
definitions from the terminal. Entry is terminated by entering a
iine that contains only a carriage return. The format is one line
at a time in the form :

NAME=HEX ADDRESS

CR} exit this phase - loads the debugger overlay and starts
phase two (actual debugging). If you enter this command while
there are still unresolved symbcls then it will not be allcwed to
proceed to phase two, you can either go back and resclve those
symbols or exit the debugger.

Refer to the chapter 15 for more information regarding use of
assembly language routines with the debugger on your operating
system.

14-2

OmegaScft Pascal Version 2 Language Handbook
DEBUGGER COMMANDS

BREAEKPOINT
Format: B [line #]

This command will set a breakpoint or display the current
breakpoints. If no number (or zero) is entered, then the current
breakpoints are displayed. If a non-zero number is entered then a
breakpoint is set at the Pascal line if it is an executable line.
Executable lines are marked with an "*" (instead of ":") after
the line number on the Pascal compilation listing. If a break=-
point is hit while running the program, the message :

Breakpoint encountered at line <line#>

is displayed and the debugger is entered. The breakpoint is not
removed from the table. The maximum number of breakpoints that
can be set at any one time is 16.

CBANGE VARIABLE
Format: Cx <expression>

The change command is used to change a variable. Refer to the
'Display Variable' section for the allowable values of 'x' and
the format of the expression. The new value for the variable is
entered on the next line. For the common variable types the new
value should be entered exactly as if were being read by a Pascal
program using the "read” statement (because it is). A byte
variable is entered as one hex byte. A structured variable is
entered as a sequence of hex bytes separated by spaces {only one
line may be input). Sets are entered (or modified) using a menu-
driven scheme that allows :

l) add elements = element values entered are added to the set.
2) remove elements - element values entered are removed from
the set. '
3) make empty set - the set is set to no elements present.
4) display current set - displays what you have so far.
CR} done - exits change command.

The set elements may be entered as decimal numbers, hex numbers
(preceded by a §), or characters (preceded by a ').

14-3

OmegaSoft Pascal Version 2 Language Handbook
DEBUGGER COMMANDS

DISPLAY VARIABLE
Format: Dx <expression> [:lengthl

where x can be : blank « use default type of variable

B - boolean C - char .
H - hex I -~ integer
L ~ longinteger ‘R = real

8 - string T - set

U - byte X - structure
E ~ longhex

{expression> may contain variable names, integer numbers, hex
numbers (preceded by $), the symbol "€" which represents the
results of the last expression, the operators "+%,"-","*%®_ and
""" (pointer dereferencing and device element display), and
parenthesis. The precedence is :

highest: ()

”~

*
lowest: 4+ -

Operators of the same precedence are evaluated from left to right
except *"" which binds from right to left.

If [:lengthl] is specified it must be an integer and only affects
how many bytes of a structure are displayed.

Only variables that are valid at the current line number in the
program can be displayed (following standard scoping rules). If
any operators are used in the expression the variable name should
be the first value in the expression - since this is what sets
the default display type. '

'x' defines the format of the variable to be displayed. Sets are
displayed by listing the elements which are present in the set.
You have the option of displaying those elements as integers, hex
numbers, or characters. The display structure format is similar
to a memory dump in many monitors. The start address is
displayed followed by a maximum of 16 bytes (in hex) per line,;
followed by the byte's ASCII equivalent characters (Non-printable
characters shown as '.'). This format is normally used to display
arrays, records, or devices. Byte variables are displayed in both
hex and integer. This form is useful for displaying enumerated
types and string or set dynamic lengths. Character and string
variables are displayed surrounded by single quotes.

14-4

OmegaSoft Pascal Version 2 Language Handboeck
DEBUGGER COMMANDS
ENTRY PLAG
Format: E "ON®" or ¥"OFF® or "+® or *-*®
This command turns the Procedure entry print flag on (ON or +)
and off (OFF or ~). 1If the flag is on, then when entering a
procedure the following message is printed :

Enter Procedure <procedure name>

The enter message is displayed before the first executable line
in the procedure. The state of this flag is displayed as part of

@

the Debugger status message (see Status).

GO
Format: G

Go starts execué&on from the beginning of the program.
HEL?
Format: H

This command displays the following helpfulness:

Debugger command summary

General control General display Variable display
Go Status : Dx variable accessing
Proceed Help expression {:lengthl
Quit N <proc name> X can be :
Trace one E ON, E OFF, blank - use default type
Trace N E+, E- procedure B - boolean C = char
or function H - hex I - integer

Breakpoints entry display L - longint R - real

- L ON, L, OFF, § = string T - set
B display all L+, L= line U -~ byte X - structur
B N set number display E = longhex
R remove all Update Cline Cx Change variable

R N remove

14-5

OmegaSoft Pascal Version 2 Language Handbook
DEBUGGER COMMANDS

LINE FLAG

Format: L "ON®" or “OFF" or ®+" or *-®
This command turns the line number print flag on (ON or +) and
off (OFF or =~-}). 1If the flag is on, then the line number is
printed before the line is executed in the following format

Line #<liine number>

The state of this flag is displayed as part of the Debugger
status message (see Status)
NUMBER

Format: N <procedure name)> or <PROGRAM>
This command displays the line number of the specified procedure
or program's first executable line (Begin). This is useful when
debugging a program using a non~current listing.
FROCEED

Format: P
Proceed continues execution of the program from the current iine.
The program must have previously encountered a breakpoint or a

trace completion (must not have exited the program normally or
encountered a runtime error).

QUIT
Format: @

Quit causes the debugger to exit.

REMOVE BREAKPOINT

Format: R {line #1
This command removes breakpoints from the breakpoint table. If no
numper (or zero) is entered, then all breakpoints are removed, If

a non-zero number 1s entered, then only the breakpcint at that
line ig remcved.

l4-6

OmegaSoft Pascal Version 2 Language Handbook
DEBUGGER CCOMMANDS
STATUS
Format: S
This command displays the status of your program and the

debugger. The status of the program is not displayed if the
program isn't being executed. The program status contains :

Current line number <integer>
Lex level <integer>
Trace count <integer>
Current location <hex>
Stack <hex>
Local stack mark <hex>
Global stack mark <hex>
Heap pointer <hex>

Current line number (and corresponding current location) is where
your program last hit a breakpoint or a trace completion. If the
debugger was entered by an error in your program then the line
number may contain "??7?" indicating that it is not at the start
of a line. Lex level is the current lexical level (Global is lex
level 1). Stack is the current value of the User data stack.
Local stack mark is the current base of any local variables,
whereas Global variables are referenced from the global stack
mark. The trace count is zero if there is not a trace in
progress, otherwise it is the number of statements to complete
the trace.

The debugger status contains :

Procedure entry/exit "on" or "off"
Line number display "on®™ or "off"

Cline ('contents') 'string®
Program start <hex>
Program end <hex>

Code area <integer>%
Debugger table {integer>%

Procedure entry/exit and Line number display reflect the state of
the flags set by the Entry (E) and Line (L) commands. Cline is
the current value of the command line (can be modified by the
Update Cline command). Code area is the percentage of the
allowable memory used by your program. The area available is
determined by the total system memory size and the size of the
debugger table. Normally the heap pointer is set right past the
end of the program (unless set by the heap command line option).
This unused area beyond the actual end of the program is added to
the space available for the heap and data stack. Debugger table
is the percentage of the allowable memory used by the debugger
table. The area available is determined by the "D" debugger
command line option or defaulted by the debugger.

l4-7

CmegaScft Pascal Versicn 2 Language Handbook

DEBUGGER CCOMMANDS

TRACE
Format: T [Trace count]

This command traces cne or mose statements from the occurrence of
a breakpoint or previcus trace completion and then returns to the
debugger. If no trace count (or zero) is entered, then one
statement is traced, otherwise the specified trace count is used.
The current trace count is displayed as part of the debugger
status message. When the end of the trace is reached =Zhe
following message is displayed and the debugger is entered

Trace finished at line number <Line %>

UPDATE COMMAND LINE -
Format: O

This command changes the current command line. The command line
is set to the string entered on the next line. The current value
cf the command line is displaved as part of the debugger status
message. This string is accessed when your program executes the
Cline Zfunction or opens a f£ile using the default file name (file
listed in program parameters).

14-8

