PASCAL
ON
POLY

=t

POLY

VERSION 2

MAY 1983

S s R

......
v rewdtd andonre
..............

(2]

5P ITOPDOY |

voosoe¥er et

X3 XN A AN RN}
PeoveveeT
YIRS
vieeetve Y
eQYBOT OOV D

.....

pad
@
=
N

emandLhnHed

The material presented in this document
has been expressly prepared by POLYCORP
New Zealand Limited.

No part of this publication may be
reproduced, stored in a retrieval
system, transmitted in any form or by
any means, electronic, - mechanical,
photocopying, recording oOr otherwise,
without prior permission of POLYCORP New
Zealand Limited.

COPYRIGHT MARCH 1983
POLYCORP NEW ZEALAND LIMITED

Progeni House, 14/18 Pretoria Street :
Telephone (04) 693-302, P.O. Box 30-243, Lower Hutt
Telex PO LHT NZ3740 Attn Progeni

CONTENTS

; PAGE

! 1. INTRODUCTION 1
%
%

% 2 PREPARING A PASCAL PROGRAM ' 2

% 3. STANDARD PASCAL : : 3

4. TRYING OUT PASCAL 5

5. OMEGASOFT PASCAL ON POLY B 7

5.1. Changes made to Omegasoft Pascal _ 7

5.2. Character set 7

6. TEXT SCREEN CONTROL CHARACTERS ‘ 8

6.1. Use of Teletext colours 8

6.2. ASCII Control Codes 9

7. APPENDICES , 10

7.1. Unpackaged Omegasoft Pascal | ' 10

7.2, Using Software Interrupts in Pascal 13

7.3. Current Restrictions of Omegasoft Pascal
Version 2.03 o : 15
/.4. Runtime Options 16

7.5. Input/Output Example : : 17

:
.
.
.
.
i

§
Q
:
.

1. - INTRODUCTION

Omegasoft Pascal is supplied for POLY in two forms:

(i) A single-command method of compilation which is easy to
use and requires the minimum of user interaction.

(i) For users with a more extensive knowledge of the
_processes involved, there is a version which allows
more flexibility. However, the compilation process is.
much more complex than with the singie-command method.
(See Appendix 7.1).

There is no difference in the Pascal language supported, on1y in
the compilation process

Omegasoft Pascal programs are written using the text editor
resident on the POLY. The programs are then SAVEd on d1sk and the
Pascal compiler executed

Compilation of a Pascal program consists of three phases:

- 1. Compiling the Pascal source code into assembler code.

2. Cohverting the assembler code 1into 6809 relocatable
machine language object code.

3. Linking the machine ‘language program with the system
subroutines used in the program.

As the Pascal program is compiled into 6809 machine Tanguage, the
resulting compiled program executes extremely quickly.

P PREPARING A PASCAL PROGRAM

The POLY Text Editor is described in the POLYSYS Utilities
Manual. Basically the steps to use it are:

1. Load the text editor.
This is done by entering
TEXT
from either DOS or BASIC
Ready
is displayed in CYAN.
2. Type in the Pascal program.
The editing commands are described fully in the POLYSYS
Utilities Manual. Note that the 1ine numbers shown on the
screen are for editing purposes only and are removed when
the program is SAVEd onto disk.
3. SAVE the program onto disk.

Use the SAVE command. This saves the program as
filename.TXT. ‘ :

For example:

SAVE "MYPROG"

saves your program as MYPROG.TXT..

.
.
5
L

e

3. : STANDARD PASCAL

The files supplied for the standard Pascal are:

PASCAL.CMD A DOS command which sets the standard options
and controls the complete compilation
process. : ,

LL.CMD The Tlinking loader.

PASLNK.RO A linking file.

PC.CMD The Pascal compiler.

RA.CMD B The relocatable assembler.

RE.CMD The reenter command.

RL.RO The subroutine library.

These files occupy approximately 320 sectoré on disk and must be
resident on the disk being used for the compilation.

To compile a Pascal program, enter DOS mode and run the Pascal
compiler. The syntax of the command is:

PASCAL filename [SI[DI[L]

The filename is the name of the source file previously saved on
disk. The default extension is .TXT. - The resulting machine
language program will be stored as a file with the name
filename.CMD.

If S is specified then the compiler checks the program for syntax
errors and no machine language program is produced.

If S is not specified and errors are found during the .compile,
then the machine language program is not created.

If L is specified, then a listing of the compilation on the
~printer is made.

If D is specified as well as L, then the listing is displayed on

the screen, not the printer.
For example:
PASCAL MYPROG SL

Compi]es the source file MYPROG.TXT checking for syntax
errors. A listing is produced on the printer.

PASCAL MYPROG.TXT LD

compiles the source file MYPROG.TXT, and if no errors are

found, the object program MYPROG.CMD will be created.

Following compilation, the object program-may be run by simply
entering the filename. : A

3

For example:

MYPROG

After a program has been run, it may be re-run by ‘using the
re-enter command.

For example:

MYPROG

RE

will run MYPROG twice.

4. TRYING QUT PASCAL

The following Pascal program is supplied on disk:

program fastprimes(INPUT,OUTPUT);
(* find the first 1229 primes *)
const n=1229; nl=35; (* sqrt of n *)
var i,k,x,inc,lim,square,lin: integer;
prim: boolean;
p,v: array(.0..n.) of integer;
begin
writeln;
write(2:8,3:8); 1in:=2;
x:=1; inc:=4; lim:=1; square:=9;
for i:=3 to n do
begin (* find next prime *)
repeat x:=x+inc; inc:=b-inc;
if square<=x then :
begin 1im:=Tim+1;

v{.1im.):=square; square:=p(.lim+l .)*p(.Tim+l .

end;
k:=2; prim:=true;
while prim and (k<1im) do
begin k:=k+1;
if v{.k.)<x then v(.k.):=v(.k.)+2*p(.k.);
prim:=x<>v(.k.)
end
until prim;
if i<=nl then p(.i.):=x;
write (x:8); lin:=lin+l;
if 1in=9 then
begin writeln; 1in:=0
~end
end;
writeln
end.

This program is stored on disk as PRIMES.TXT.
To edit the program, enter

TEXT,PRIMES
When complete enter

LIST

The file will be displayed on the POLY with line numbers.

Move

the cursor up to line 2, change 1229 to 1000 and press <ENTER>.

Repeat for line 3. Then, enter
SAVE "NEWPRIME"

and the altered file will be saved as NEWPRIME.TXT.

Enter

PASCAL NEWPRIME L

When the compilation is complete
DoS

is displayed. Enter
NEWPRIME

to run the program.

Shift <EXIT> may be pressed at any time 1o terminate the program
and return the POLY to DOS mode.

e

OMEGASOFT PASCAL ON POLY

5.1. Changes made to Omegasoft Pascal

The device AUXOUT documented in the Omegasoft Pascal Manual as
the printer, has not been implemented. To print on the printer,
open a text file with .PRT as the extension. When the file is
closed, it is printed and deleted.

5.2. Character set

The POLY does not have square or curly brackets in the character

set. Instead use (* and *) in place of curly brackets, and (. and

.) in place of square brackets.

The Teletext hash (#) on POLY is the equivalent of the ASCII
underline (), while the Teletext pound sign (£) is the
equivalent of the ASCII hash (#).

When writing comments curly brackets should be replaced with (*
and *).

For example:
(* this is a comment *)

When using subscripts or sets the square brackets should be
replaced with (. or .).

For example:

character:= instring(. 2 .)
digits:= (. '0'..'9"' .)

When declaring identifiers, the Teletext hash should be used in

place of the ASCII underline.
For example:
var input#string : string;

When designating a byte constant, a Teletext pound sign should be
used in place of the ASCII hash.

For example:

const enter =£13

TEXT SCREEN CONTROL CHARACTERS

6.1. Use of Teletext colours

The screen is displayed using the Teletext conventions but Pascal
programs execute in ASCII mode. In order to use the Teletext
control characters, a shift must be made into. Teletext mode
before using the Teletext control characters, and a shift back to
ASCII after using them. The example below shows how the CHR
function is used to incorporate these in an expression.

The teletext control characters are:

ASCII DECIMAL FUNCTION
VALUE
0 Not used
1 Start RED characters
2 Start GREEN characters
3 Start YELLOW characters
4 Start BLUE characters
5 Start MAGENTA characters
6 Start CYAN characters
7 * ‘Start WHITE characters
8 Start FLASHING
9 * End FLASHING
10 Not used
11 Not used
12 * Normal height
13 Double height
14 Shift to ASCII
15 Shift to Teletext
16 Reverse video on
17 Start RED graphics
18 Start GREEN graphics
19 Start YELLOW graphics
20 Start BLUE graphics
21 Start MAGENTA graphics
22 Start CYAN graphics
23 Start WHITE graphics
24 CONCEAL display on rest of line
25 * Contiguous graphics
26 Separated graphics
27 . Reverse video off
28 * No background to characters
29 Set background to current colour
30 Print graphics characters over
control characters
31 * _ Print space for control characters

Each of the control characters occupies ONE screen position
except the reverse video on character, the reverse video off
character, the ASCII to Teletext shift character, -and the
Teletext to ASCII shift character. These characters do not
require screen positions. A1l control characters are reset at the
beginning of each line of the screen to those with an . * beside

8

them.

Double height characters extend down to the following line. If
double height is used anywhere on a line, the following 1line fds
not displayed.
For example:
program colour(output);
var
num : integer;
red,si,so : char;
begin
red:= chr(l);
si:= chr(l4);
so:= chr(15);
for num:=1 to 100 do
writeln(si,red,so,num);
end.
This prints out the numbers 1 to 100 in red. Note the shift to
and from Teletext before and after the red control code.
6.2. ASCII Control Codes
ASCII DECIMAL FUNCTION
VALUE -
7 Beep _
8 Move the cursor 1 space to the Teft
9 Move the cursor 1 space to the right
10 Move the cursor down 1 line
11 Move the cursor up 1 line
12 Clear screen and move the cursor
' to the home position
13 - " Move cursor to the start of the 1ine (RETURN)
14 "~ Shift to ASCII mode :
15 Shift to Teletext mode
16 Reverse video on
27 Reverse video off
30 Clear to the end of the line

APPENDICES

7.1. Unpackaged Omegasoft Pascal

To use the unpackaged Pascal, additional manuals and utilities
are required.

The extra manuals are:

Omegasoft Pascal Utilities Manual.

Omegasoft Relocatable Assembler and Linking Loader
manual.

Pascal Configuration Manual for FLEX (The POLY
operating system is compatible with the FLEX operating
system).

The extra utilities are:

CHAIN.CMD The linkage creation control program.

DB.CMD The debugger.

LB.CMD Librarian for the runtime routines.

LC.CMD The Tlinkage-file creator.

To compile a Pascal program use the following steps:

1. Run the Pascal compiler.

2. Run the Linkage Creator.

3. Run the Linkage.

The syntax for the Pascal compiler for normal use on the POLY is:

PC <source-file [>output-file 0] [>>print-fiie L]

Source-file is the file containing the Pascal program, the

default extension is .TXT. The output-file is the compiler

output file for the next phase of the compilation. The
-~ print-file is the compiler listing.

The syntax for the Linkage Creator for normal use on the POLY is:

LC

10

The Linkage Creator prompts the user for various parameters for
the assembling and linking of the program.

The syntax for CHAIN (the last phase of the compilation) is

CHAIN filename

 where filename is the output file from the 1linkage creator
(the default extension is .CF)

Shown below is an example showing the steps used to compile
PRIMES using the unpackaged method (user input are shown
underlined). '

PC <PRIMES >PRIMES 0 >>PRIMES L
Pascal Compiler Version 2.03
Copyright 1981 by Omegasoft

LC :

Tinkage Creator Version 2.00

Copyright 1982 by Omegasoft

Pascal compiler output file name : PRIMES
Pascal program name : FASTPRIMES
Auto setup ? Y

System stack size : 512

Starting load location : 100 : :
Library drive number : <ENTER> (current drive used)
Additional files to load : <ENTER> (no extra files)
Additional Tibrary files : <ENTER> (no extra files)
Load options : <ENTER> (no Toad options)

Map options : <ENTER> (no map options)

CHAIN PRIMES

Chain version 2.00

Copyright 1982 by Omegasoft

RA <PRIMES.CO >PRIMES.CA O
Relocatable Assembler version 1.20
Copyright 1982 by Omegasoft

Total errors : 0 Psct size : 029D Table usage : 26
RA <PRIMES.PS >PRIMES.PA O
Relocatable Assembler version 1.20
Copyright 1982 by Omegasoft

Total errors : 0 Psct size : 002E Table usage : 5
LL

Linking Loader version 1.20

Copyright 1982 by Omegasoft
?STRP=$0100

?LOAD=PRIMES.PA PRIMES.CA

"7L1B= RL

?20BJA=PRIMES.BIN

IMAPC :
PSCT SIZE=098F START=0100 END=0A8E
SYMBOL TABLE USAGE: USED=45

MODULE TABLE USAGE: USED=16 OUT 0OF=58
2EXIT ‘ :

11

End chain

The above example will result in a file PRIMES.BIN, which would
be identical with PRIMES.CMD produced by the command:

PASCAL PRIMES L

12

7.2. Using Software Interrupts in Pascal

- Pascal has no command that can directly call software interrupts.
Software interrupts must be called from Assembler code which may
be directly imbedded in a Pascal program.

For example:

program swifexample(input,output);

(* example program using software
interrupts duplicates the first
example for SPLIT in the POLYBASIC

v Manual *)

procedure cursor(row,column:integer);

(* position the cursor at specified text
row and column. If the values
supplied are outside the screen
then the cursor is not moved *)

begin

! PSHS D,X,Y,U Save registers _

! LEAU 8,U Skip over the linkage data

! LEAU 1,U Point to low order byte of column

! LDB 0,U++ Load B with the Tow order byte of column
! LDA o,u Load A with the low order byte of row

! SWI Position cursor

! FCB 9

! PULS D,X,Y,U Restore the registers

end;

procedurevsp]it(sp1itat:integer);

(* Split the screen into two separate
scrolling sections. The parameter
is the row at which the split is
to be done. If the parameter is
0 or >24 then split is turned off *)

begin

A PSHS D,X,Y,U Save the registers

! LEAU 8,U Skip over the linkage data

L LDD o,u Load D with the 16 bit split-row value
! EXG A,B ~ Swap byte positions of D

! SWI Split screen

! FCB 13

! “PULS D,X,Y,U Restore the registers

end;

procedure wait{milliseconds:integer);

(* wait for the specified number of
milliseconds *)

begin : -

! PSHS D,X,Y,U Save the registers

! LEAU 8,U Skip over the linkage data
! - LDD 0o,U Load the time to wait

! SWI Wait for x milliseconds

13

! FCB 19
! PULS D,X,Y,U

procedure numberprint;

var
loop: integer;

begin
for loop:=1 to 21 do
writeln(loop:2);
~ wait(20);
end;

begin (* mainline *)
page;
sp1it(10);
numberprint;
cursor(10,0);
numberprint;
wait(500);
split(0);

end.

Restore the registers

14

|
|
2
.
L
.
L

Sosessimiii i R e

;
g
;

 7.3. Current Restrictions of Omggasoft Pascal

Version 2.03

Omegasoft has documented the following restrictions:

1.

Long integers are currently not supported. The standard
identifier longinteger and any other identifiers that are
associated with long integers will not be recognised by
the compiler.

Structures may not. include devices as part of the
structure. This includes arrays of devices or records
containing devices. If this type of structure is desired
it is possible to define the array or vrecord as
containing pointers to a device and using the addr
function to set the pointer.

There are only two of the possible six modes available
for opening a file. The last parameter of an open or
create procedure is not currently used.

The two modes for opening a file are:

(i) RESET - open an existing file on disk

(i) REWRITE - open a new file on disk.

Random access files are not currently supported by
Omegasoft. :

15

7.4, Runtime Options

Runtime options are set at compile time and affect the execution
of the program. The options that can be selected are

C - Conversion checks
I - Runtime input-output checks
R - Runtime range checks

These options are enabled or disabled by placing the option in
the Pascal source file. For further information see the entry for

"comments" in the Omegasoft Pascal Manual.

16

7.5. Input/Output Example

Listed below is a simple example showing the method for disk
input/output using Omegasoft Pascal.
program inputoutput(input,output);
var
eofflag : boolean;
filename,buffer : string;
filel : text; '

begin
eofflag:=false;
write('Enter file name: ');
readIn(filename);
(* open the file for output *)
rewrite(filel,filename);
(* put data into the file *)
 repeat
readin(buffer);
(* if the first character of the
input string is a "#" then input
is complete *)
if buffer(.1.)="'#' then eofflag:=true
else :
writeln{filel,buffer);
-until eofflag;
(* data input complete, close file *)
close(filel);
(* -open the new file input *)
reset(filel,filename);
(* read the data back from the
file and display it on screen *)
while not eof(filel) do '
begin
readIn(filel,buffer);
writeln(buffer);
end;
end.

%
%
g
%

SR)

Sl

O e e e e R e

17

