POLYBASIC
%ﬁﬁNﬁAL

VERSION 2
MAY 1983






TERnTEFRrReaw -
St mmws BHP
-

New Zealand Limited

The material presented in this document
has been expressly prepared by POLYCORP
New Zealand Limited.

Mo part of this publication may be
reproduced, stored in a retrieval
system, transmitted in any form or by
any mWeans, electronic, mechanical,
. photocopying, recording or otherwise,
without prior permission of POLYCORP New
Zealand Limited.

CQPYRIGHT MARCH 1983
POLYCORP HEW ZEALAND LIMITED

Progeni House, 14718 Fretoria Street
Témphona(Od)ﬁQ&GOZ%?O.80x3&?43;L0we{Hun
Tolow POYE HT NZ3740 Afn Progeni '






CONTENTS

THE POLY SYSTEM

1.1. SYSTEM MODE

1.2. STANDALONE MODE

1.3. THE POLY KEYBOARD

1.4. THE POLY SCREENS

1.5. SWITCHING ON

1.6. DESCRIPTION CONVENTIONS

PROGRAMMING IN BASIC
2.1. IMMEDIATE MODE
2.2. PROGRAM MODE
2.3. CONVENTIONS
2.4. THE POLY ERITOR
2.4.1. Entering new lines
2.4.2. Using the AUTO command
2.4.3. Looking at Tlines already entered
2.4.4. Altering lines
2.4.5. Deletion of lines
2.4.6. Renumbering of lines
2.4.7. Saving the edited file on disk
2.4.8. Loading files from disk
2.4.9. Merging files from disk
2.4.10. Deleting the file being edited
2.5. COMPILED POLYBASIC
2.6. STORAGE AND RETRIEVAL OF FILES (Summary)

PAGE

w o oo 00

10
10

11
12
14
14






2.7. VARIABLES

2.7.1. Floating Point Variables
2.7.2. Integer Variables
2.7.3. String Variables
2.7.4. Arrays or Tables
© 2.8. LITERALS AND CONSTANTS
2.8.1. String Literals
2.8.2..Nuﬁeric Constants
2.9. TYPES OF OPERATORS
2.9.1. Arithmetic Operaters
2.9.2. Relational Operators
2.9.3. Logical Operators
2.9.4., String Operators
2.10, EXPRESSIONS
2.10.1. Functions
2.11. STATEMENTS AND COMMANDS
2.12, FILE CCONSIDERATIONS
2.13. MULTIPLE SCREENS
2.14. CHOOSING COLOUR
2.14.1. Text
2.14.2. Graphics
2.14.2.1. Colour Choice .
2.14.2.2. Colour Size
2.15. RESETTING THE POLY UNIT AND WARM STARfS
2.16. USING THE CALC KEY
2.17. ERROR MESSAGES
2.18. USING THE HELP KEY

17

i4

16
16
17
17
18
18
19
19
19

21

21
22
22
23
23
24
24
25
25
25
25
26

. 26

27

- 27

27






2.19. DOS COMMANDS

3. POLYBASIC

3.1. FUNCTIONS

3.1.1.
3.1.2.
3.1.3.
3.1.4,
3.1.5.
3.1.6.
3.1.7.
3.1.8.
3.1.

Y=}

3.1.10.
3.1.11.
3.1.12.
3.1.13.
3.1.14.
3.1.15.
3.1.16.
3.1.17.
3.1.18.
3.1.19.
3.1.20.
3.1.21.
3.1.22.
3.1.23.

ABS
ASC
ATH
CHRS
CLOCK
cos
CVf
DATES

. DPEEK

ERL
ERR
EXP
FILES
FRE
HEX
INCHS
INSTR
INT
KVAL
LDESS
LEFTS
LEN
LOG

27

25
29
29
29
30
30
31
31
32
33
33
33
34
34
34
35
35
36

37

37
38
38
39
40
40






3.2.

3.1.24.

3.1.25.
3.1.26.
3.1.27.
3.1.28.
3.1.29.
3.1.30.
3.1.31.
3.1.32.
3.1.33.
3.1.34.
3.1.35.
3.1.36.
3.1.37.
3.1.38.
3.1.39.
3.1.40.
3.1.41.
3.1.42.
3.1.43.
3.1.44,

MID$

NAMES
PEEK
Pl
POINT
POS
PTR
RIGHTS
RND
SGN
SIN
SQR
STRS
STRINGS
SHI
TAB
AN
TEXTS
TIMES
USR
VAL

STATEMENTS AND COMMANDS

3.2.1.
3-2!2‘

3.2.3.

3.2.4,
3.2.5.

AUTO
BACKG
BASIC
CHAIN
CLEAR

iv

40

41
41
42

42

42
43
44
44
44
45
45
45

46

46
46
47
47
47
48
45
50
50
80
50
51
51






3.2.6. CLOSE
3.2.7. CLS
3.2.8. COLOR
3.2.9. COLOUR.
3.2.10. COMPILE
3.2.11. CONT
3.2.12. CONVERT
3.2.13. DATA
3.2.14. DEF FN
3.2.15. DEL
3.2.16. DIGITS
3.2.17. DIM
3.2.18. DISPLAY
3.2.19. DOS
3:2.20. DPOKE
3.2.21. DRAW
3.2.22. DRAWG
3.2.23. DRIVE
3.2.24. ELSE
3.2.25. END
3.2.26. ERROR
3.2.27. EXEC
3.2.28. FETCH
3.2.29. FIELD
3.2.30. FILL
3.2.31. FILL®
3.2.32. FOR

52
52
53
53
54
55
55
55
56
57
57
57
58
59
59
59
60
61
61
62
62
62
63
63
64
66
66






3.2.33.

3.2.34.
3.2.35.
3.2.36.
3.2.37.
3.2.38. .
3.2.39.
3.2.40.
3.2.41.
3.2.42,
3.2.43.
3.2.44.,
3.2.45.
3.2.46.
3.2.47.
3.2.48.
3.2.49.
3.2.50.
3.2.51.
3.2.52.
3.2.53.
3.2.54.
13.2.55.
3.2.56.
3.2.57.

3.2.58.
3.2.59.

GET#

GOSUB
GOTC
IF THEN
INPUT
INPUT#

INPUT LINE
INPUT LINE#

KILL
LET
LINE
LIST
LOAD
LOAD#
LOCK
LOGOFF
LPRINT
LSET
MEM
MERGE
MIX

NEW
NEXT

ON END
ON ERROR

ON GOSuB
ON GOTO

vi

68

68
69
69
70
7
72
72
73
73
73
75
75
76
76
76
76
77
77
78
78
79
79
80
80

8l
82






3.2.60. ON KEY
3.2.61. ON SEC
3.2.62. OPEN
3.2.63. POKE
3.2.64. PRINT
3.2.65. PRINTG

3.2.66. PRINT USING

3.2.67. PRINTE@ USING

3.2.68. PRINT#

3.2.69. PRINT# USING

3.2.70. PUT#
3.2.71. RANDOM
3.2.72. READ
3.2.73. REM
13.2.74. RENAME
3.2.75. RENUM
3.2.76. RESET

3.2.77. RESOFF -~ RESON

3.2.78. RESTORE
3.2.79. RESUME
3.2.80. RETURN
3.2.81. RSET
3.2.82. RUN
3.2.83. SAVE

3.2.84. SAVE#
3.2.85. SCROLL
3.2.86. SELECT

vii

82
85
85

- 87

87
89
89
91
91
91
92

92

93
93
93
94
§4
95
95

96
97
97

98
98
99
99






3.2.87. SET

3.2.88. SOUND
3.2.89. SPLIT
3.2.90. STOP
3.2.81. STORE
3.2.92f SWAP
3.2.93. TEXT
.2.94, TROFF
.95. TRON

NN

.96. UNLOCK

(8 S 75 e

.2.97. WAIT

APPENDICES

4.1. ERROR MESSAGES

4.2. TELETEXT SCREEN CONTROL CHARACTERS
4.3. ASCII SCREEN CONTROL CHARACTERS
4.4, SPECIAL FUNCTION KEYS

4.5. SOUND FREQUENCIES AND THE MUSICAL SCALE

4.6. TELETEXT CHARACTERS AND GRAPHICS.
4.7. DIAGRAM OF POLY KEYBOARD

4.8, SCREEN LAYOUT CHART
4.9. RESERVED WORDS

viti

107
107
109
110
111
112
113
114

115
ile






1. THE POLY 'SYSTEM

POLYBASIC incorporates the standard BASIC constructs (with many
enhancements) and extensions to control the special features of
the POLY System (such as multiple screens, colour and graphics).
This manual is a reference manual which describes the POLYBASIC
programming language.

A POLY operates in either System or Standalone mode.

'1.1. SYSTEM MODE

In System mode, each of the POLY units is connected via a
communications 1ine to a central disk unit on which programs and
data may be stored. Al1 commands and staiements are available in
System mode.  Within System mode, the POLY may be in BASIC mode,
TEXT mode or DOS mode. This manual describes BASIC mode. TEXT and
DOS modes are described in the POLYSYS Utilities Manual.. Within
BASIC mode the POLY may also operate in courseware mode when
menus are displayed and programs executed depending on menu
sejection. Menu operation 1is described in the POLY System
Operating Manual and in more detail in the POLYSYS Utilities
Manual.

1.2. STANDALONE MODE

In Standalone mode, the POLY is not connected to other units or

any disk unit. 0n1y restricted POLYBASIC is available as the disk
extensions cannot be loaded.

1.3. THE POLY KEYBOARD

The POLY keyboard has been specifically designed tc¢ handie the
special requirements of educational computing. It contains a

standard "QWERTY" keyboard with special keys added on the right
hand side. See Appendix 4.7.

Special keys include:-

1. Cursor control keys. These arrow keys may be used to move
the cursor around the screen and are used extensively
when editing. As well, they may be programmed t0 the
user's requirements.

2. The character insert and delete keys may also be used to
“edit source and are programmable.



3. The line insert key may be used to move lines down the
screen enabling a new line to be entered. The Tine delete
key may be used to remove lines from the screen (they are
not removed from the file}. Both keys are
user-programmable.

4. 1f the POLY is waiting for input, pressing the <CALC> key
allows calculations to be performed on the bottom line of
the screen.

For example:
2*2 <ENTER> gives &
To exit calc mode, press the <CALC> key again.

5. The <HELP> key may be used following the display of a
error message to display a more detaijed explanation. It
may also be programmed.

6. The <PAUSE> key is used to temporarily stop the operation
of a POLYBASIC program or a 1isting when using either the
LIST or +LIST command. Operation is restaried by pressing
any key. Tf the <PAUSE> or the <SPACE> har is pressed,
the program lines are executed or listed one by one.

7. The <EXIT> key halts the current program. Execution may
he restarted from where the program left off by entering
the command CONT. In mest teaching moduies the <EXIT> key
is trapped and causes the MENU program 1o pe executed.
Pressing the <EXIT> key when paused during a 1listing
(with LiST but not +LIST) will cause the 1listing to be
terminated.

8. The <NEXT>, <BACK> and <REPEAT> keys are used extensively
in the teaching modules and way be programmed  as
required.

9. The numeric keypad returns the digits O to 9 but may also

be programmed for special functions as well as being able
to be set to return any ASCII value.

1.4. THE POLY SCREENS

The POLY system has the unique feature of multiple screens. These
may be compared to a series of transparencies one benind the
other. There are two text screens, twe graphics screens and &
half intensity background screen. The individual screens may be
switched ON or OFF as reguired, and have a fixed display priority
of 1, 2, 3, 4, Background.  Screens 1 and 3 are the text screens
and 2 and 4 are the graphics screens.

The text screens contain 24 rows of 40 characters, the rows being
numbered 0 to 23 from the top of the screen, and the columns
being numbered O to 39 from the Teft hand side.

[




The Teletext character generator is used to'dispiay on the text
screens and  the Teletext control character c¢onventions are
therefore followed.

-Control characters are printed onto the screen to achieve colour,
flashing, double height, and chunky graphics. On the text
screens, the chunky graphics have six blocks per character
position and may be set by wusing special control characters
foltowad by the printing of one of the characters which has a
chunky graphics equivalent. Individual chunks may be set using
SET and RESET.

The text screens may be SPLIT at any row so that the upper and
lower sections may be used independentiy, each with its own
scrolling.  Alternatively, the scrolling may be turned off.
Specific sections of the screen may be printed using PRINTE.

The graphics screens each contain 204 rows of 240 pixels, the
rows being numbered 0 o 203 from the top of the screen, and the
columns O to 239 from the left of the screen (to be consistent
with text screen numbering). Coordinates for all screens are
specified in the order row, column. '

Each graphics screen is capable of displaying four colours at a
time. These are either:

red Biue Green White
or Red Magenta Yeliow HWhite
or Magenta Blue Cyan White
or Yetiow  Cyan Green White

These colours are selected using the COLOUR and MIX commands.

Finer graphics may be achieved by using screen 5. This combipes
graphics screens 2 and 4 and gives 204 rows of 480 pixels. Any of
the 4 colour sets given above are avaiiable. The 480 graphics
screen has the same priority as screen 2.

As well as using SET and RESET for displaying particular points
on the screen, LINE, DRAW, DRAW@, FILL and FILL® provide simple
means of displaying more complicated graphics. .

1.5, SWITCHING CN

The POLY System Operating Manual describes the plugging in and
switching on procedures.  When the system is connected up, each
POLY unit is switched on using the switch on the back of the
unit. The magenta LOGON screen immediately appears.

In System mode, the user types in his initials and a password.

' These determine the security level for file access. A menu will

usually appear depending on the disk being used. Pressing <HELP>
on the menu screen will indicate how to enter POLYBASIC mode.



|7

Should STANDALONE BASIC appear when connected to the disk, enter
LOGOFF, and wait 5 seconds hefore attempting to LOGON again.

in Standalone mode, the user logs on as with System mode, and the

user is immediately placed in the restricted BASIC programming
mode.

1.6. DESCRIPTION CONVENTIONS

In the syntactic descriptions of POLYBASIC

(1) Janguage entities are undertined

{i1) reserved words are capitalised

{111) optional components are enclosed in square
brackets

(iv) . gdenotes that the last optional

component wmay be repeated an arbitary
number of times.




Z. PROGRAMMING IN BASIC

POLYBASIC commands and programs may be entered and run whenever
the yellow prompt Ready or the cursor appears. PCLYBASIC commands
and statements may be entered in either Immediate or Program
mode. :

2.1, IMMEDIATE MODE

BASIC commands and statements when entered from the keyboard
without a Tine number, are executed immediately the <ENTER> key
is pressed. :
For example:

PRINT 24 * 6

prints the answer 144 on the screen.

This statement has béen executed in Immediate mode.

2.2. PROGRAM MODE

When a statement is preceded by & Vine number it becomes part of
a program as soon as the <ENTER> key is pressed. This program is
stored in the memory of the POLY unit and is not executed until a
RUN command is entered.
For example: ,
10 PRINT 24 * 6
does not print out the answer until RUN is entered.

A program is executed in Program Mode.

2.3, CONVENTIONS

a. A program Tine may contain several statements separated
by coions {(:).

b. The maximum length of any line, including the line
number, is 255 characters.

¢. Line numbers must De integers between 1 and 65535, and
are deijmited by blanks.



d. Execution of a POLYBASIC program starts at the Tlowest
1ine number {unless a specific line number is indicated}.

e. Wnen writing programs, line numbers should be allocated

in steps of 10 or more, 10 allow later insertion of new
lines. Spacing within lines makes them easier to read.

2.4. THE POLY EDITOR

The POLY system provides a full screen editor which can be used
to edit either BASIC or TEXT files.

BASIC mode is available whenever POLYBASIC is 1oaded. The prompi
Ready will appear printed in yellow. The default extension for
Files is .BAS.  In BASIC mode line numbers are part of the file.
In BASIC mode, whenever a program is edited, all variable values
are reinitialised and any files Teft open are closad.

TEXT mode is entered from BASIC or DOS via the TEXT command. The
prompt Ready is always printed in cyan. The gefault extension for
files is .1XT. ln TEXT mode 1ime numbers are not part of the
file, they are added to the limes when 1oading (starting at 10,
with intervals of 10) and deleted when saving. In TEXT mode line
numbers are used to reference lines for listing, deleting and
inserting.

2.4.1. Entering new lines

A1l new lines are entered with a line number at the start which
indicates the position in the file into which the line is to be
inserted. If the line number is omitted the line is treated as an
jmmediate command. Entering a line is the act of typing the line
and pressing the <ENTER> key.

The cursor may be moved back to an incorrect tine and the line
corrected. The 1ine is re-inserted into the file on pressing the
<ENTER> key. 1§ <ENTER> is not pressed, the 1ine is only stored
on the screen and is not updated in memory.

2.4.2. Using. the AUTO command

The AUTO command is used to save time when entering new lines, it
automatically sets up the 1¥#ne numbers.

Syntax:- AUTO [start-line] [,increment]

The start-line is the first line number at which the automatic
numbering will start. If not specified, 10 is used.

The increment is the amount added to each 1ine number to get the
next number. If not specified, 10 is assumed.



For example:
AUTC

starts automatic line numbering at 10 with an increment of
10, i.e. 10 20 30 40 ...

AUTO 100, 200

starts automatic 1ine numbering at 100 with increments of
200, i.e. 100 300 500 ...

in BASIC mode, the next Tine number 1is displayed, as soctn as
<ENTER> has been pressed for the previous line.

In TEXT mode, the line numbers are not displayed on the screen
but are incremented in memory each ftime <ENTER> is pressed.

To exit from AUTO mode either enter a null line (i.e. Jjust press
<ENTER> at the start of a new line) or press <EXIT>.

AUTO will not aliow the entering of lines with line numbers the
same as those already entered.

2.4.3. Looking at Tines already entered

The LIST command displays text already entered, on the screen.

Syntax:- LIST [startlinel [-] Lendline]

Startline and endline refer to the line numbers as entered. If
startline is not specified, then the 1listing starts at the
beginning of the file. 1f endiine is not specified the Tisting
will stop at the end of the file. The <PAUSE> is used to halt the
Tisting at any time. To restart the listings, press any key. If
the <SPACEBAR> is pressed following <PAUSE>, then the lines are
listed one at & fime. If the <EXIT> key is pressed, then the
listing is terminated.

If only the startline number is specified then only that line 1is
displayed.

For example:
LIST
- displays the whole file.
LIST 100

displays only 1ine 100.
LIST 100~



displays all lines from 100 to the end.
LIST -100

displays all Tines up to 100.
LIST 100-200

displays lines 100 to 200 inclusive.

2.4.4, Altering lines

To alter a line, list it on the screen gysing LIST, move the
cursor up to the line using the arrow keys, make the alterations
necessary, and press <ENTER>.

While changing a line, the <CHAR IN&> and the <CHAR DEL> keys may
be used for insertion and deletion of characters on that line.

<ENTER> may be pressed when cursor ig anywhere on the 1ine, it
does not necessarily need to be at the end of the Tine.

The <LINE INS> and <LINE DEL> keys enable lines to be inserted
and deleted on the screen but do not cause changes 1o the file.

2.4.5. Deletion of lines

A line may be deleted by either:
(i} entering the line number with no data following it, or
{i1) by use of the DEL command.

The DEL command may be used to either delete individual tines or
a group of lines from memory.

Syntax:- DEL startline [-endlinel

The startline must be given. 1f the -endline is missing, only the
startline is deleted.

For example:
DEL 280
deletes line 280.
DEL 280 - 1000
deletes Yines 280 to 1000 inclusive.

NOTE that the following forms are NOT atlowed:



DEL 280-

or

DEL -1000

2.4.6. Renumbering of lines

At times, all available line numbers in a particular sequence may
have been used. Alternatively, ‘due to a large number of
insertions and deletions the 1ine numbers may be  badly
distributed. In both these cases, it is advisable 10 use the
RENUM command to renumber the file.

Syntax:- " RENUM [startline] [,increment]

Renumbering a BASIC file not only changes the line numbers but
also changes all references to them in GOTC, GOSUB and other
statements.  RENUM may also be used to renumber part of a file
{see the description of the RENUM command}.

Renumbering a TEXT file only changes the line numbers.

The startline is the first line number allocated. If not given,
10 is used.

The increment is the amount added to each succeeding Tine number.
If not given, 10 is used.

For example:

RENUM

renumbers the file from line 10, in increments of 10, i.e.
the new Vine numbers are 10, 20, 30, 40 ...

RENUM 100

renumbers the file frowm 100 in increments of 10, i.e. the
new 1ine numbers are 100, 110, 120, 130 ...

RENUM ,100

renumbers the file from 10 in increments of 1006, d.e. the
new Tine numbers are 10, 110, 210, 310 ...

~ RENUM 1000,10C

renumbers the file from 1000 in increments of 100, i.e. the
new tine numbers are 1000, 1100, 1200 ...



2.4.7. Saving the edited file on disk

At any stage during editing, the file may be saved using the SAVE
command. A BASIC file is saved with line numbers, a TEXT file is
saved without line numbers. ‘

Syntax:- SAVE "filename”
SAVE

The filename may specify the extension and the drive number.
For example:
SAVE "O.MYFILE.TXT"

1f the drive number is not given then the file is written to the
current drive for that POLY.

1f the extension is not given thenm a BASIC file fis given the
extension .BAS and a TEXT file the extension .TXT.

Following a SAVE, the file is still in the POLY memory and
further editing may be performed.

For exampie:
SAVE "MYFILE"

iIf the POLY is in TEXT wode and the current drive is 0, then
the file will be saved on drive U as MYFILE.TXT.

SAVE may be used without & file name if +the filte has been
previously LOADed from disk. In this case the user wiil be
prompted with ' :

Save filename (Y/N) ?

where filename is the name of the file that was LOADed.

2.4.8. Loading files from disk

A file stored on disk is loaded into POLY memory using the LOAD
command. This clears any program or file currently in  POLY
memory, and loads the file from disk.

Syntax:- LOAD "filename"

The filename may specify the drive number and the extension.
For exampie: |
LOAD “1.MYFILE.BAS"

will. load MYFILE.BAS from the disk in drive 1.

10



I1f the drive number is not given, then the file 1is Jlcaded from
the current drive for that POLY.

If the extension is not specified then .BAS is used in BASIC mode
and .TXT in TEXT mode.

When a TEXT file is loaded, line numbers are added, starting at
10 and incrementing in steps of 10.

For example:
LOAD “MYFILE®
If entered on a POLY with the current drive as 1 and in TEXT

mode, then the file 1.MYFILE.TXT will be ‘loaded into POLY
memory, starting at line 10 and incrementing in steps of 10.

2.4.9. Merging files from disk

The MERGE command merges a file from disk into the file currently
being edited. BASIC files are merged on line number such that
where the same line exists in both files, the new 1line replaces
the old Tine.

In TEXT mode, the disk file is appended onto the end of the file
being edited and Tine numbers above those currently in use are
allocated. -

Syntax:- MERGE "filename"

The filename may specify the drive number and the extension.

If the drive number is not given, then the file is loaded from
the disk on the current drive for that POLY.

If the extension 1is not specified then, for BASIC .BAS is
assumed, and for TEXT, .TXT is assumedf '

For example:

If a POLY (in BASIC mode) contains the following file:
10 CLS
20 FOR row- = 0 T0 10
30 PRINT @{row,0} “11Q"
&0 NEXT row

and the file MYFILE.BAS on disk contains:
30 PRINT 8(row,0) * R";
50 REM DRAW A CAR
60 REM etc... '

then when the command:

11



MERGE “"MYFILE™
is entered, the resulting file in the POLY will be:

10 CLS

20 FCR row = 0 70O 10

30 PRINT @{row,0) " R";
40 KEXT vrow

50 REM DRAW A CAR

60 REM etc...

1f a POLY {in TEXT mode) contains the following file:
100 THIS IS A TEXT FILE
200 CONTAINING ONLY
300 3 LINES
and the file MYTEXT.TXT contains:
THIS 1S MYTEXT

FILE WHICH HAS
OnNLY 3 LINES

then following the command:
MERGE "MYTEXT"

the POLY file bhecomes:
100 THIS IS A TEXT FILE
200 CONTAINING CONLY
300 3 LINES
310 THIS IS MYTEXT

320 FILE WHICH HAS
330 ONLY 3 LINES

2.4.10. Deleting the file being edited

The NEW command deletes the file currently being egited from
memory .

For example:

NEW

If tne file being edited has not been changed' the Ready prompt
will appear on the screen. If the file has peen changed since the
last SAVE the user will be prompted with

Save (Y/H) 7 T
or

~ Save filename (Y/N) ?



The filename will appear only if the file was LOADed. in the
first case if Y is typed, the NEW is aborted; if N is fyped, the
NEW is executed. In the second case, if Y is typed the file will
be SAVEd and NEW executed; if N is typed, NEW will be executed.
Only Y,y,H or n will be accepted.

13



—

2.5. COMPILED POLYBASIC

A POLYBASIC program has two forms - sOurce and compiled. These
are stored on disk with the file extensions .BAS and .BAC
respectively. The compiled form is best used for execution as it
is more efficient and being in an encoded form which cannot be
1isted, provides some form of security.

2.6. STORAGE AND RETRIEVAL OF FILES (Summary)

To SAVE a file on disk enter
SAVE “filename”

To SAVE a file on disk and create a backup copy of the original
file, enter

SAVE BACK “filename"
The hackup file has the same filename with a .BAK extension.
To LOAD a file from disk enter

LOAD "filename”

Tnis erases any previous file stored in the POLY memo

.
R

To COMPILE a BASIC source program enter
COMPILE “filename”

The BASIC source program in memory will be compiled and saved on
disk.

To RUN a BASIC program, whether it is stored on disk as source or
compiled form, enter

RUN "filename”
_BAC is the default file extension for RUN.
To MERGE a file with the file currently in POLY memory enter

HERGE “filename"

2.7. VARIABLES

A variable is a "box" into which different values may be placed.
Each "box“ {or variable) is assigned a name, and the contents may
be later referred to or changed by using this name.

14




For example:

A variable named BOX may have the value 66 placed in it by
the statement:

LET BOX = 66
or simply by:
BCX = €6

Variable names must begin with a Tetter (A-Z} and may be followed
by other letters or numbers. Variable names may be any length.
Yariable names containing lower case letters are different from
those containing upper case. The following are valid variable
names:

A, AB, NAME, P1234, address, Sub0

Words that form part of the BASIC language are referred to as
reserved words {e.g. EW, IF, TO - these are listed in Appendix
4.9).  Such words may be written using both upper and lower case
letters. :

For example:

LET, Let, let are all representations of the same reserved

word.  However, as mentioned above, BOX, Box, box are

different variable names and thus represent different
- variables.

Yariable names may not, in gesneral, contain reserved words.

For example:

Neither HEWT nor KNEW are valid.
Nor is STOAT, nor STIFF.
Nor BILLET, nor LETTER

To avoid this, the BASIC command RESCFF enables variable names to
contain reserved words other than at the beginning of the name.
In this mode a variable must be separated by a space from an
immediately foliowing reserved word.

By choosing meaningful variable names, programs are more easily
understood.

There are three types of variables in POLYBASIC {cerresponding to
three types of constant} - integer, floating point or real, and
string. The first two types are used io store numeric values, the
string type is used to store sequences of characters.

s
[y



2.7.1. Floating Point VYariables

Floating point variable names are formed as described in the
previous section.  These variables are used for holding either
numbers containing decimal points, or numbers too large or 100
small to store as integer variables. The number of digits
disptayed can be set by the DIGITS command. Unless reset in &
program, only 6 digits are printed. _
For example:
-0.00000123 is displayed as -1.23E-06
Yalid fioating point variable names are:
AB, X1, X, amount, Sum, nib48
Valid floating point values are:
-3.2, 79.1, 1E-06, 32768

Note the use of scientific notation for very small and very large
numbers.

For example:

-0.0000123 will be displayed as ~1.23£-05
17632468 will be displayed as 1.76325E+07

Each floating point variable (and constant) uses & bytes of
memery .

2.7.2. Integer Variables

Integer variable names are formed using a valid variabte name
followed by & % sign. Integer variables may only contain whole
numbers in the range -32768 to 32767. If an integer variable is
assigned a value in the range 32768 to §5535, it is converted to
two's complement by - subtracting 65536 from it. This ajlows
address values in this range to be handied by integer variables.

Fach integer variable uses 2 bytes of memory, s¢ where possible,
use integer rather than floating point variables. Use of integer
variables will also allow the program fo run faster.
For examplie:
Valid integer variable names are:
A%, X2%, ab%, GROSS%, Tax1982%

Valid integer values are:

27, =201, 32767

16



2.7.3. String Variables

String variable names are formed using a valid variabie name
followed by a $ sign. Strings may contain up to 65535 characters,
depending on the available memory space. The function FRE(-1)
returns the size of the largest string which may be allocated at
a given point in a program.

For éxample:
Valid string variable names are:
Ab$, AS, X1$, address$
Yalid striné values are:
A$=:Ihis is a string 1iteral”
?2; CHR$(3)+"Yellow"+CHR$(1)+"Red"

D$="12345 is part of a string”
E$="licYellow}jaRed"

Each string variable {and constant) uses 4 bytes of wmemory plus
the memory required for the string.

2.7.4, Arrays or Tables

Tables of values may be stored using a single variable name as an
array. Individual elements of an array are selected using
subscripts (or indexes).
 For example:
A table of 5 integers are to be stored in an array called
A%. The items in this array are referenced as A%(0), A%(l),
A%(2), A%(3) and A%(4).
The index of the first item in any array is ailways zero. Prior to
the use of an array name, the size of the array must be defined
using a DIM statement.
For example:
DIM A%{4} -

defines an array containing 5 integer values, A%Z{(0) to
A%(4).

Multi-dimensional arrays may also be defined and individual
elements referenced using more than one subscript.

For example:

DIM BRANCHS$(2,4)

17



sets up a two dimensional string array containing 3 rows
(rows O, 1 and 2) and 5 columns (columns C, 1, 2, 3, and 4).

BRANCHS{1,2) is the string held in row 1, column 2:

Columns
0 1 2 3 4
Row O X X X X X
Row 1 ¥ x 0 x X
Row 2 X OX X X X

Arreys may have any number of dimensions.
For example:
DIM MULTI(4,4,4,4)
defines & 4 four dimensional floating point array.
Note that this would take 5 * 5§ * 5 * § * 8 = 5000 bytes of
Memory . rare must therefore be taken fo ensure thatl arrays
will it into available memory.
Variable names within each type of variable must be unique, but
the same variable name may be used for different types of
variable.
For exampie:

FINAL, FINAL%, FINALS, final$, Final and FINALS(6)

all represent different variables.

'2.8. LITERALS AND CONSTANTS

2.8.1. String Literals

Any string of characters encicsed in double quotation marks (or
single quotation warks, as Jong as they match} 1is a string
literal. Single quotation marks may appear in strings delimited
by double quotation warks and vice versa. A null string s
written as ",

For example:
PRINT"ABCDEF1234"
displays ABCDEF1234 on {he sCreen.
POLY uses the Teletext conventions for specifying coentrol
characters. ~ Within strings, these may be represented by a H

followed by the character corresponding to the control character
where: '

18



A or jia =1
B or jjo =2
iz or.uz = 26

For example:
-To print a red Hello, the string may be written either as
| PRINT CHRS(1);"Hello"
or as

PRINT "[iAHel10"

2.8.2. Numeric Constants

Numeric constants are stored in either integer or floating point
form. Integers are stored in 2 bytes, floating point numbers in 8
bytes. :

For example:
Valid integer constants are:
32767
2
-7
Valid floating point constants are:
32768 Too big for integer

1.2 Decimal point
~3.4E+8 Scientific notation

2.9. TYPES OF OPERATORS

2.9.1. Arithmetic Operators

These are:
SYMBOL MEANING EXAMPLE MEANING ANSWER
+ Add 6 + 2 Add 6 and 2 8
- Subtract 6 - 2 Subtract 2 frem 6 - 4
* Multiply 6 * 2 Multiply 6 by 2 12
/ Divide 772 Divide 7 by 2 3.5
MOD Remainder 7 MoD 3 The integer remainder 1
_ {Modulo) when 7 is divided by 3
DIV -Integer 7 DIV 3 The integer result 2
Divide of 7/3 :
T<EXP> key Exponentiation 64 2.1 6 to the power of 2.1 43.064

18



When an arithmetic expression containing several of the abow
symbols is evaluated, it is processed in the reverse order Th
that shown in the list above. That is, exponentiation first,
followed by multiplication and division (3nc1ud1ng MOD and DIVY

and addition and subtraction last., Where there i3 equa1 priority.

_an expression is evaluated from left to right.

For example:

6+4%2-9/2 2 |
= 6+4%2~-9/4 {exponentiation evaluated
= 6+ 8 - 2.25 ~ {* and / evaluated) :

11.75 (+ and - evaluated)
Parentheses may be used to alter the order of eva?uat1on
Expressions within parerhheseb are evaluated first. -
For example:

(6 + 4} * 2
10 *

oo
]

Provided &1l values invoived do not contain decimai points, an
that the result is in the range -32768 to 32767 and is a whol
number, then the result will be an integer. Otherwise 1t will be
converted to floating point. .

For examﬁ}e:
5/ 2 =25
gives a fioating po&n; result.

Fiocating point results will be truncated when they are assigne
to integer variables

For examplie:

1%
o
0

2.6 will set 1% = 3
-3.1 will set 1% = -4

o

20



2.9.2. Relational Operators

These allow the testing of the relationship between a values. The
relational operators available in POLYBASIC are:

SYMBOL MEANING EXAMPLE MEANING
= Equal X = 4 X is equal to 4
<> Not equal X < 4 X is not equal to 4
< Less than X <4 X is less than 4
> Greater than X >4 X is greater than 4
<= Less than or equal X <=4 X is less than or
' _ equal to 4
> Greater than or equal X >= 4 X is greater than or
egual to 4

The relational operations are performed after the arithmetical
operations. T

For exampie:
| 3+2>4
is TRUE.
See also the section on String Operators.

A TRUE result has the value -1 whiie a FALSE vresult has thé
valtue Q.

For exampie:
PRINT 8>2
prints the result as -1 as it is TRUE.
It is sometimes useful to set up variables TRUE = -1 and FALSE =

0 which may be used throughout the program to  improve
readability.

2.9.3. Logical Oberators

These allow combinations of relationships and are as follows:

- SYMBOL EXAMPLE MEANING
OR X=40RX=10 X is equal to either 4 OR 10
AND X > 4 AND X < 10 X is greater than 4

AND X is less than 10
4 AND NOT Y = 3 X is equal to 4
AND Y is NOT equal to 3

NOT X

i

Logical operations are performed after the arithmetical and
relational operations. Priority of logical operators is NOT, AND,
then OR. If there is equal priority the expression is evaluated
from left to right.

21



For example:

AND NOT Z=3 THEN GOTO 2100
2 AND {NOT Z=3)) THEN GOTO 2100

15 2

are identical in operation.

2.9.4. String Operators

+ may be used te join {or concatenate} two strings together.
For example:

XXX

BS + "ABC"

B3
AS

H

After this operation, AS has the value "XXXXABC".
Relational opserators may be used to compare strings.
For example:

IF AS$ < "M" THEN GOTO 800

The < indicates that the first string preceeds the second string
in alphabetic order.

fhe = indicates that the strings are egual. Note that "AB " is
equal to "AB".

The > indicates that the first string follows the second string
in alphabetic order.

NOTE: The alphabetic order referred to is as shown in Appendix
4.6, - Note that the upper case letters precede the lower case

Jetters, and that certain special characters precede the
alphabetic characters.

2.10. EXPRESSIONS

Expressions are any valid seguence of constants, variables,
functions and operators that yield a value upon evaluation. They
may generally be used wherever numbers or sirings are expected.
For example:

3*4+5/6

is an expression yielding a floating point value.

AS + FXXXX" + BS

22




is a string expression.
PRINT@(AZ + C%/2, SQR(B%)) A$ + B$ + LEFT$(C$,5)

shows expressions used within the PRINTE statement.

2.10.1. Functions

Functions providing commonly used routines are specially provided
in POLYBASIC to return the appropriate values.  They may thus be
used within expressions.
For example:

X1 = SQR{25) + 2

SQR is a function which returns the sqguare -root of its
argument {(or parameter, in this case 25).

The functions available in POLYBASIC are described in Section 3.

Single line functions may be programmer-defined using DEF FN.
Such functions may only be used within the program in which they
are defined.

2.11. STATEMENTS AND COMMANDS

Statements and commands are instructions to the computer and may
generally be used either in Program mode or in Iimmediate mode.

For example:

100 PRINTE(10,5}"This is a program statement.”
PRINT®(10,5)"This is an immediate command.”

Statements form the building blocks of a program. The most common
statement is the assignment statement which has already been used
in examples. Other statements are usually formed using reserved
words and are described in section 3. Commands are more likely to
be used in Immediate mode.
For example:

AUTO 10,5

AUTO may only be used in immediate mode.

23



2.12. FILE CONSIDERATIONS

File names may be up to 8 characters long.  The first character
must be alphabetic and the remainder must be alphanumeric. File
names may be followed by a "." plus a 3 letter extension. If an
extension is not given it will default to: :

BASIC source files BAS
BASIC compiled files .BAC
Data files LDAT
Print files .PRT
Operating system files .SYS
Operating system commands .CMD
Text files LTXT

1f the file is associated with a specific drive then the drive
number may be added to the filename either at the beginning or
the end.
For example:
0.PROGL.BAS or PRGGL.BAS.O
both refer to the file PROGL.BAS on drive 0.

It is possible to protect files by associating a password with
them using the PROT command (see the POLYSYS Utilities Manual).
For a discussion of file types, see section 3 under the
description of the OPEN statement. '

2.13. MULTIPLE SCREENS

The POLY computer has 4 screens which are dispiayed in the
foliowing order :

1 - TEXT
2 - GRAPHICS (240 pixels across)
3 - TEXT

4 - GRAPHICS (240 pixels across}
The BACKGROUND is displayed at half intensity behind these.

At any time one screen may be selected for writing to. This 1s
initially screen 1 but may be changed &t any time by using SELECT .
which selects the current screen for writing but does not display
it. To display a screen, the DISPLAY statement must be used. Any
combination of screens may be disptayed.

 Note the difference between SELECT and DISPLAY - screens may be
written to while being displayed or not. The packground may be
changed at any time using the BACKG statement.

Ts enable the use of fine graphics a further screen is available.

24



5 - GRAPHICS (480 pixels across)
Screen 5 utilizes both screens 2 and 4 to enable fine graphics.

Note that the selection of screen 2 will not affect the available
memory Space but the selection of screen 4 does. Screen 4
requires 8K bytes which is allocated from the user's available
memory. .

If PRINT commands are used while the current (i.e. selected)

screen is & graphics screen, the text is written and displayed on
screen 1 {whether or not it was currently being displayed).

2.14. CHOOSING COLOUR

2.14.1, Text

Colour on the text screens is selected by printing a colour
control character before the data. :

For exampie:
PRINT CHR$(1};"POLY SYSTEM"
or |
PRINT ““APOLY SYSTEM"

Section 4.2 contains a complete 1ist of the control characters.
2.14.2. Graphics

2.14.2.1. Colour Choice

Fach graphics screen is capable of displaying 4 colours at &
time. Initially these are

RED, BLUE, GREEN and WHITE
Cther colours may be obtained in either of two ways using MIX:
{a) MIXing screens.
The first option in MIX,'a31ows the colours on screens 2, 3 and 4
to be mixed. To understand this, the way the secondary colours
are obtained must be understood. Each dot on the screen is made

up of 3 coloured beams, Red, Blue and Green. The colours obtained
are:

RED = RED
BLUE = BLUE
GREEN = GREEN
RED + BLUE = MAGENTA

25



RED + GREEN = YELLOW
BLUE + GREEN = CYAN
RED + BLUE + GREEK = WHITE

Wwhen MIX is ON, the beams for each dot on the screen are mi xed
with those at the same point on the other screens, and the
composite displayed. That is, to gel YELLOW, Screen 2 wust
display a particular dot in RED and Screen 4 the same dot in
GREEN {or vice versa). COLOUR ailows the secondary colours to be
celected and when one is selected, Screen 4 is written on (and
thus selected) as well as Screen Z.

(b) Additive MIX

Each of the graphics screen may have & particular colour beam
added to all dots switched on.  This means that instead of RED,
BLUE, GREEN and WHITE being displayed, when

RED is added then RED, MAGENTA, YELLOW, and WHITE
are displayed,

BLUE is added then MAGENTA, BLUE, CYAN and WHITE
are displayed,

GREEN is added then YELLOW, CYAN, GREEN and WHITE
are displayed.

2.14.2.2. Colour Size

On each of the graphics screens, a colour code controls the
colour of the next 6 pixels each of which may be on or off. Any
that are on will thus be the same colour. This is not a severe
restriction (in practice multiple screens are extremely useful)
and is economical with respect to memory space.  When an attempt
is made to set a pixel in a set of 5 to a different colour, then
all pixels in that group are furned OFF and only the pixel in the
new colour displayed. If screen 5 is used then 1Z pixels in a row
are controlled by the same colour code.

2.15. RESETTING THE POLY UNIT AND WARM STARTS

At any time, the POLY unit wey be reset to the magenta LOGON
screen by pressing the reset button on the back of the unit.

When programming it is possibie.to'pfagram a Toop s¢ that there
is no exit. If the <EXIT> key is deactivated {with an ON KEY 10)
then the only way to get out is to press the reset button.

By holding down the W key while the reset is pressed, & WARM
START back to POLYBASIC is made.  HNeither ~the source .nor the
current variables are lost. A WARM START after a reset or a
LOGOFF will (fortunately) restore the most recent program.

26



2.16. USING THE CALC KEY

The <CALC> key is activated whenever POLY is waiting for input
{i.e. in Immediate mode or when the program currently running
requests input). Pressing the <CALC> key at this time will enable
calcutations to be made on the bottom line of the screen. To
return to the program the <CALC> key must be pressed again. To
exit while in calculator mode, press <EXIT>.

2.17. ERROR MESSAGES

If an error occurs in a courseware module an error screen will be
displayed listing diagnostic information. On pressing <NEXT> the
program will CHAIN to the MENU.

IT an error occurs in a program which does not have a special
error routine, a short error message with an error number and the
line number at which the error occurred will be displayed and the
program will return to BASIC mode. Varjables will not be reset,
so their values can be examined.

2.18. USING THE HELP KEY

After an error message has been displayed, pressing the <HELP>
Key will cause a description of the error to be displayed
(provided that the file ERRORS.SYS is on the system disk).

2.19. DOS COMMANDS

Some Disk Operating Commands are available in immediate mode by
preceeding The command with & +. The commands available are:

CAT
cory
DATE
rASTCOPY
FORMAT
KILL
LINK
LIST
PRINT
PROT

These commands are described in full in the POLYSYS Utilities
Manual.

For example:

27



+CAT

+PRINT

Onty one of these commands may appear per 1ine, all others are

ignored.

28




3. POLYBASIC

The following section describes POLYBASIC functions, statements
and commands.  The reserved words described in the following way
not contain blanks and may be written using either upper or lower
case letters. POLYBASIC accepts most standard BASIC commands but
some additions and enhancements have been made in order to handle
the special features of the POLY System.  Functions differ from
statements in that functions return values.

3.1. FUNCTIONS
3.1.1. ABS

Syntax:- ABS{numeric-expression)

The absolute value of X is returned, i.e. if X is positive then
the value returned is X, If X is negative, the vaiue returned is
its positive value.
For example:
If A% has the value 16 then
| B% = ABS(AZ)
piaces the value 16 in B%.
If A% has the value -18&, then
B% = ABS(A%)
also places the value 16 in B%.
Thé statement
IF ABS(X) < 4 THEN GOTC 100 |
will cause a branch to line 100 only +if X 1is between
-4 and +4. :
3.1.2. ASC

Syntax:- ASC{string-expression)

Returns the ASCII code (in decimal form) of the first character
of the specified string. (See Appendix 4.3 for the ASCII values
of characters.) If the string is a null string, then 0 is
returned.

29



For example:
A% = ASC("A")
assigns A% the value £5.
When A$ = "POLY" then
A% = ASC{A%)
assigns A% the vaiue 80 (the ASCIT decimal value of PJ.
This function is useful for converting between upper and lower
case as lower case is simply the upper case ASCII value plus 32.

Decoding is also simpler.

For example:

1f the values "A", "B", "C" and "p" are expected as input it
is easier {and faster) to use

ON ASC{A$)-64 GOSUB 150, 200, 300, 450

than to test for the individual values separately.

3.1.3. ATN

Syntax:- ATN{numeric-expression)

The angle whose tangent is X is returned. The returned angie
value is in radians.
To change an angle in radians to degrees, multiply by 180/P1.
For example:
PRINT ATN{1)
displays the value , 785398 {in radians).
PRINT ATN{1)} * 180/PI

displays the vatue 45 {in degrees).

3.1.4. CHRS

Syntax:- CHRS (numeric-expression)

CHR$ performs the opposite of the ASC function, creating a single
character string containing the character represented by the
ASCII value {in decimal form) ~specified. The numeric expression
must have a value between 0 and 255 inclusive. Non-integer values
are truncated. Any value ocutside this range causes an error. This

function may be used when setting up Teletext control characters
for the screen.

30



For example:
PRINT CHR${4); "POLY"

dispiays the word POLY on the screen in blue characters.
Appendix 4.2 T1ists the Teletext contrel characters.

10G A$ = INCHS
110 IF A$ <> CHR$(13) THEN 100

Line 100 uses the INCHS function to test the keyboard for a
key depression.  If any Key other than the <ENTER> key
(CHR${13)) has been pressed it is ignored. o
In order to abbreviate the insertion of teletext control
chracters into strings, they may be written IIx as part of the
string. x is 1 character in Tength, where
la or {IA is CHR$(1)
b or {IB is CHR$(2)
etc.
The full list is given in Appendix 4.2.
~ For example:
100 PRINT "JJaPOLY SYSTEM"

writes POLY SYSTEM in red.

3.1.5, CLOCK

Syntax:- CLOCK

CLOCK returns a value in the range -32768 to 32767 indicating 10
millisecond intervals.

For example:

106 A% = cLock

200 B% = CLOCK
210 IF A% <= B% THEN T = B% - A%
ELSE 7 = B% + 65535 - A%
220 PRINT "TIME TAKEN = ";T/100;"SECONDS®

3.1.6. C0S

Syntax:- COS{numeric-expression)

COS returns the COSine of ¥ where X is in radians. To convert
degrees to radians, wmultiply by PI/180.

31



For exampie:
X = C0S{60 * P1/180C)

assigns X the value CG.5. i.e. COS (60 degrees) = 0.5
3.1.7. CVT

Syntax:- CVT%S{numeric-expression)
CVT$%istring-expression|
CVTFS{numeric-expression)

- CVTSF(string-expression)

The CVT functions store numeric data in strings, and vice versa,
using integer or floating point formats. Integer values are
stored in 2 bytes while floating point values take 8 bytes. These
functions should not be confused with STR$ and VAL.

For example:

CVi%$ moves an integer value intc a 2 character string
(% to $).

CVT$% moves a 2 character string value back into an integer
($ to %).

CVTFS moves a floating point number dntoe an 8 character
string (F to §). '

CVT3F moves an 8 character string value back into a floating
point number ($ to F).

If a string is longer than required only the first 2 or 8
characters are taken, depending on whether CVT specifies integer
or floating point. These functions allow fast storage of numeric
values in strings and are especially useful for the storags of
numeric data in records on a file as they pack them intc the
minimum of disk space.

For example:
100 A% = CVT%5(25665)
Tnis stores the 2 byte integer wvalue 25665 1in the 2
character string A$.  1f printed out the string A$ would
appear as:
dA
as the first character would have the ASCII decimal value

100 (25665/256) and the second character the ASCII decimal
value 65.

32



3.1.8. DATES

Syntax:- DATE$ [(1)]

Returns the current date in either of two forms. The date is set
when the first POLY unit logs ontc the system.

For example:
IT the current date is thé 14 January 1583, then
| 100 PRINT DATES
displays the date in the form 14-JAN-83.
200 D$ = DATES(1)
assigns to D§, as a 6 character string, the current date 1in
the form YYWMMDD. Dates used in this form can be immediately
compared numerically.
100 A = VAL{DATES${1))
gets the date and converts it to thg corresponding numeric

valuse.

3.1.9, DPEEK

Syntax:- DPEEK (address)

DPEEK returns the integer ({2 character} value held at the
specified address. The address must be between 0 and 65535. While
in BASIC, the operating system and screen areas (except screen §)
cannot be accessed using this command.

For example:

A%=DPEEK(1165)
puts into A% the value held in addresses 1165-1166.

Note that addresses in the range 32768 to 65535 may be placed in

integer variables and used, but if printed out will print as the
2's complement, i.e. with 65536 subtracted from them.

3.1.10. ERL

Syntax:»'ggg

ERL returns the line number on which a program stops when an
error is encountered provided ON ERROR has been set. The 1ine
number may be checked within the ON ERROR routine and the
appropriate action taken.

33



For example:
5000 IF ERL<3000 QR ERL>3200 THEN RESUME
This line would occur within an ON FRROR routine and enables

errors occurring between lines 3000 and 3200 to be processed
by the following statement.

3.1.11. ERR

Syntax:- ERR
ERR returns the error number after an error has occurred. This is
useful in an ON ERROR routine in sending back appropriate error
messages. A full Tist of error numbers js given in Appendix 4.1.
For example:

1000 IF ERR<50 THEN RESUME 2200 ELSE PRINT ERL;ERR:END

This statement would probably occur within an ON  ERROR

routine. Errors with numbers less than 50 are sent to &
routine at line 2200.

3.1.12. EXP

Syntax:- EXP{numeric-expression)

EXP returns e to the power of X.  The maximum value of X allowed
is 88. EXP is the inverse of the LOG function i.e. X=EXP{LOG{X))
where LOG(X) is the natural lYogarithm of X.
For example:

Y=EXP{1}

sets Y to 2.7182818, the value of e.
3.1.13. FILES

Avaitability:- Mot available in Standalone mode

Syntax:- FILES ("filename")

FILES returns a null string if the specified file does not exist.
If the specified file does exist FILES returns & string of length
12 centaining the following information:

DDMMYY - Date of creation { 6 bytes )
R or S - Random or sequential
NNNNN ~ Size of file in sectors

34



3.1.14. FRE

Syntax:- FRE(()
FRE(T)
FRE(-T)

FRE(C} returns the number of bytes of free memory. To get the
maximum amount available with no program loaded enter

NEW
PRINT FRE(Q)

The memory displayed is the amount available for a BASIC program.
When a BASIC program is loaded, it takes up part of this area. As
it runs it uses further memory for storing strings and other
pointers and may run out of memory during operation. Should this.
occur it is necessary to reduce the size of the program and/or
the amount of memory used in strings, arrays etc. Suggestions to
achieve this are:

~improve your coding.

-When a string is no longer needed reset it to null.
-Do not define oversize arrays. :
-Divide your program in two and use CHAIN.

-Compile your program.

-Stop using graphics screen 4.

FRE(1) returns the value of the current high address for memory
{See MEM).

FRE(-1) returns the maximum number of Characters that a new
string may have. This will always be less than the maximum amount
of memory left as returned by FRE{O}. By checking FRE{-1} it is
possible to stop errors occurring due to lack of free space.
However, note that FRE(-1) will return different values depending
on the context of its call (e.q. if nested in function calis).

3.1.15. HEX

Syntax:- HEX (string-containing-Hex-value)

HEX converts a hexadecimal string into its decimal equivalent.
For exampte:
PRINT HEX("100")
displays 256,

35



"3.1.16. INCHS

Syntax:~ INCHS [{channel}]

INCHS reads a character from the specified channel. If a
character has been input then that character 1is returned,
otherwise CHR$(0) is returned.

(NOTE: CHR$(O) is a string containring one null character, it is
not the same as "" which is an empty string.)

If ro channel number is specified, then the keyboard is scanned
to see if a key has been pressed. The most useful way to use this
function is to test the keyboard during a loop while some other
action is going on. :

INCHS neither displays a cursor nor the character received.

For example:
This example continues lcoping until any key is pressed.

100 IF INCHS$ = CHRS{0} THEN 100
200 Continue processing

The following example repeatedly tests for characters A,B,C,
throwing away any other characters received.

100 AS = INCHS '

200 IF A$ < "A" OR A$ > "C" THEN 100
300 ON ASC (A$)-64 GOSUB 500, 600, 700
400 GOTO 100

500 REM "A" SUBRCUTINE

550 RETURN

600 REM “B" SUBROUTINE

650 RETURH

700 REM "C" SUBROUTINE

750 RETURN

INCH3{0) is a special form of INCHS. It also scans the keyboard,
but waits until a key has been pressed before returning a value.
The cursor is displayed. It is not necessary to press <ENTER> to
terminate the entry.

For example:
10 CLS
20 A% = INCHSE(0)

25 PRINT AS,
30 GOTO 20

is & program which allows continuous typing and display of
the characters typed. :

36



3.1.17. INSTR

CSyntax:- INSTR(start-position, string-name, sub-string)

INSTR looks for a sub-string in a string starting at the
start-position. The character position at which the sub-string is
found is returned. Zero is returned if the sub-string 1is not
found. The first character position in the string is 1.

ror example:
10 A$="ABCDEFGHIJ"
20 B%= INSTR{3,AS$,"G")
30 PRINT 8%

A$ is searched for “G" starting at the third character. The
value 7 put into B%.

40 PRINT INSTR(1,A$, “DEF")

would print the value 4.

3.1.18. INT

Syntax:- INT{numeric-expression)

INT truncates a numeric expression to the integer less than or
equal to the expression.

For example:

INT(9) returns 9
INT{6.7} returns 6
INT(-1.1) returns -2
INT{X*10+.5)/10 returns X accurate to one decimal place.

Note: In division, DIV may be used in place of / and INT to give
the integer result. Similarly, division performed with integer
variables gives an integer result.
For example:
The fellowing all give the same integer result.
INT(B/C)

L=
L% = B/C
Z=8DIVC

37



3.1.19. KVAL

Syntax:- KVAL

KVAL returns the ASCII value of the key pressed to cause transfer
to an ON KEY routine. KVAL gives the value of the key pressed. If
<A> was pressed KVYAL would give the value 65,

For example:

10 ON KEY GOTO 1000

1000 1F KVAL=65 THEN END
1010 RESUME

If a special key is specified (see ON KEY) then KVAL will return
the ON KEY value, NOT the ASCII value.

For example:

10 ON KEY 4 GOTO 1000

1000 PRINT KVAL
1010 RESUME

prints the value 4 if special key 4 is pressed, not 52 (the
ASCII value of special key 4).

3.1.20. LDESS

Availability:- Not available in Standalone mode

Syntax:- LDESS {line-description)

LDES$ sets up a graphics 1line description as a string. The
tine-description consists of a list of coordinates, each pair
optionally surrounded by brackets. The coordinates are in
row,column order.
For example:
100 A$ = LDES$({0,0),(100,0),(100,100},(0,100},(0,0})
describes & box 100 pixels square.
This may also be written as: .

100 A$ = LDESS${D,0,100,0,100,100,0,100,0,0)

or

38



100 A$ = LDES$((0,0){100,0)(100,100)(0,100)(0,0))

If @ 5 is used in place of a , between coordinate pairs, then the
Tine is broken at that point and a new line started.

- For example: .

The following statement stores the line description of the
box given above in a single string, such that only the left
and right sides are drawn.

100 A$ = LDES${(100,0)(100,100);(0,100),{0,0))

If the line is to be used as a boundary in FILL or FILL@G, the
points must be specified in a clockwise order.

- Two strings assigned using LDESS may be added together and then
usad in a DRAW or FILL. If line is to be continucus, one of the
centre end points must be duplicated in the other string.

For example:

10 A$=LDES$(0,0,0,5,1,7,2,10,5,12,8,14,10,7,
11,8,12,4,14,2,9,4,8,6)
20 B3=LDESS(8,6,7,4,5,3)

30 C3=A%$+B3
Note that the coordinate pair (8,6) 1is repeated at the
beginning of BS.

3.1.21. LEFTS

Syntax:- LEFT${string, numeric-expression)

LEFT$ returns the first n characters of the given string, where n
is the value of the numeric expression.

For example:

10 A$="ABCDEFGHIJKLM"
20 X$= LEFTS$(AS,5)

This puts the value “"ABCDE® into X5.

The numeric expression must be between zero and 32767.
Non-integer expressions are truncated.

IT n>LEN{string) the result is padded on the right with spaces up
to length n. _

39



s

3.1.22. LEN

Syntax:- LEN(stringname)

LEN returns the length of the specified str1ng including spaces
and control characters.

For example:

10 b$="asd fghjk"
20 L=LEN(DS$)
This sets L to the length of D§, i.e. 10.

3.1.23. LOG

Syntax:- LOG{numeric-expression)

LOG is the natural logarithm. To calculate logs for other bases
use;
L0G of X to base Y = LOG(X}/LOG{Y)

In particular, for common logs:
LOG of X to base 10 = LOG(X)/L0G(10}

For example:
10 PRINT LOG(2)
This prints .693147 .
The inverse of LOG(X} is EXP(X) i.e. X= LOG(EXP{X})

3.1.24. MID$

Syntax:- MiD$(string,start-pesition[,numeric-expressionl])

MID$ returns & sub-string from the given string of Tlength n,
where n is the value of the numeric expression.

If the numeric expression is not specified, then all of the
string from the start position to the end is returnad.

If the start position plus the numeric expression {s >
LEN{string), the result is padded on the right with spaces up to
.
For example:

10 X$="ABCDEFGH1"

20 M1$=MID$(X$,3,5)
30 M235=MID$(X3,4)

40



gives ML$="CDEFG" and Mz$="DEFGHI"
MIDS is also available on the left hand side of assignment
statements. The string must be a string variable. The string
resulting from the evaluation of the right hand side vreplaces a
string of the same Tlength ( equal to the same number of

 characters if specified ) beginning at start-number in the string
variable.

For example:
10 A$ = "ABCDEFG"
20 MID$(A$,3) = "XY"
30 PRINT A$

This prints ABXYEFG
3.1.25. NAME$.

Syntax:- NAMES
NAMES returns the initials entered when +he POLY was logged on.
For exampie: |
If the user logged on with the initials DAM then
PRINT NAMES
would dispiay

DAM
3.1.26. PEEK

Syntax:- PEEK{address)

PEEX returns the single character value held at the address. The
address must be between O and 65530. The value returned will be
between 0 and 255 inclusive. See DPEEK.
For example:

A% = PEEK(llGl}

This assigns to A% the value of the data stored at address
116l.

41



3.1.27. P1

Syntax:- Pl

Pl returns the value of PI (the number of digits depends on
DIGITS ~ for six, PI is 3.14159).

For example:
A = PI*R*R

The area of a circle is calculated.

3.1.28. POINT

Syntax:- POINT [{Jrow,columni)]

POINT is used to check to see if a graphics pixel is switched on.
If the current screen is a text screen, then POINT will return 1
if the chunky pixel for the specified coordinates 1is on,
otherwise it will return 0.
1f the current screen is a graphics screen, Cthen POINT will
return the value corresponding to the colour of the specified
pixel if the pixel is on, otherwise it will return a value of 0.
For example:

10 SELECT 2

20 COLOUR 2
30 SET (100,200)

90 PRINT POINT (100,200}
This would print the value Z.
3.1.29. POS

Syntax:- POS{channel}

POS returns the current column PGSition of the cursor on the
specified channel. Positioning starts at zero. Channel numbers
must not be greater than 12. :

For exampie:

10 CLS
20 PRINT TAB(10);
30 X=P0S{0)
40 PRINT X

42



Channel G is the screen, so this program dispiays the number
10 starting din column 10 {numbers have preceding and
trailing spaces). Note that the ";" is essential otherwise
the position returns to O on the next line. The POS s
calculated from the beginning of the line, or from the start

" cotumn of a PRINT@ statement.
- For example:

10 CLS

20 OPEN NEW "EX3" AS 12
30 AS="AAAAAA"

40 PRINT#12,AS;

50 X=P0S{iz)

60 PRINT X

70 CLOSE 12

This OPENs a NEW sequential file, PRINTs A$ into it, then
displays the number 6. :

POS{-1} returns the current row number of the cursor on the
screen.

For example:
20 row = POS{-1)
30 column = POS{0)
A0 PRINT row, column
This prints the position of the cursor on the screen at the
start of the program.

3.1.30. PTR

Syntax:- PTR{variable)

PTR returns the memory address of the specified variable.
Floating point variable values are stored zs 8 bytes and PTR
returns the address of the first of these bytes.

Integers are stored as 2 bytes and PTR returns the address of the
first of these.

A string is held as a 4 byte pointer and the actual string ‘in a
different area. The first 2 bytes of the pointer contain the
start address and the last two bytes the length of the string.
PTR returns the address of the first byte of the string peointer.

For example:
10 A$="ABCDEFGHIJ"
20 A%=PTR{AS)

30 PRINT A%
40 PRINT DPEEK(A%);DPEEK(A%+2)

43



This might display (depending on memory locations)

4206
4215 10

The 4 byte string descriptor is stored in bytes 4206-4209

The string itself begins at address 4215 . and is 10 bytes
tong.

3.1.31. RLIGHTS

Syntax:- REGHT$(string,numeric~expression)

RIGHTS returns the last n characters of the given string, where n
is the value of the numeric expression.

For example:

10 A$="ABCDEFGH"
20 AAS=RIGHTS{AS,4}

The value assigned to AAS$ is "EFGH".

If n>LEN(string), then the entire string is returned {unpadded).
3.1.32. RND

Syntax:- RND{numeric-expression)

1f the numeric-expression is greater than 0 and less than 1, this
function returns a random number in  that range. If  the
numeric-expression is negative then RND returns the same random
number sequence (>=0 and <1) each time (for testing purposes). If
the numeric expression is greater than or equal to 1, a random
number between 1 and the value of the numeric-expression s
returned.

For example:

RND{5) returns values of 1,2,3.4,5 each with 20%
probability.
RND{.1) might return .293104 _
RND(-1} might return .630542, .720439,... - {for
example)
3.1.33. SGN

Syntax:- SGN{numeric-expression}

SGN returns 1 if X is positive, 0 if X is 0, and -1 if X is
negative. :

44



For example:

10 A=-2 :

B=0 : C=14
20 PRINT SGN(

[{A);SGN{B};SGN{C)
This will print out the values:

-101
3.1.34. SIN

Syntax:- SIN{numeric-expression)

This is the SiNe function with X in radians. Multipiy degrees by
PI/180 to convert to radians. '

For examplie:
PRINT SIN{3C * PI/180)

will print the value .5
3.1.35. SQR

Syntax:- SQR{positive-numeric-expression)

SOR returns the square root of X. Negative X values will cause an
error. _

For example:
PRINT SGQR(S)

prints the square root of 9 i.e. 3

3.1.36. STRS

Syntax:- STR$(numeric-expression)
STR$(numeric-expressicn,string-expression)

STR$ turns a numeric expression into a string, the string is
constructed exactly as it would be printed but without a trailing
space.

For exampie:

10 A=-.999 : B = 3.0678
20 PRINT "X";STR${A};"X";STR$(B);"X"

This prints:

45



X-.899X 3.678X
If a string-expression is included, the string 1is constructed
exactly as it would be printed by
PRINT USING string-expression,numeric-expression.
For example:

num = STR{1.2395,"+##.#4#")

would assign +1.24 to num.
3.1.37. STRINGS

Syntax:- STRING${numeric-expression [, character])

STRINGS creates a string containing numeric-expression
characters. The default character is a biank. The character may
be specified either as a string or as its ASCII decimal value.

For exampie:
16 PRINT STRINGS$(30)
20 PRINTG{10,5)STRINGH(3C,"")
30 PRINT STRING$(30,42)
Line 10 prints 30 blanks
Line 20 prints 30 asterisks

Line 30 prints 30 asterisks too, 42 1is the ASCII decimal
code for the asterisk

3.1.38. SWI

Syntax:- SWI (intno[,paralf,para2{,para3ill)

SWI acts identically to USR except that it calls a software
interrupt function in the POLY unit system ROM. A full list of
these and their parameters is given in the POLYSYS Utilities
Manual.

NOTE: For advanced programmers only.

3.1.39. TAB

Syntax: -~ TAB{numeric-expression) -

TAR is used in PRINT or PRINT# statements to move the cursor 1o
the column specified. If the cursor is already in, or past the
column specified by numeric-expression then the cursor does not
move. TAB may not be used in any other string statements.

46



For example:

5 X=8.9 : Y=222222
10 PRINT TAB(10),X,Y,"RESULTS"

This displays: _
8.9 222222 RESULTS _
The 8 is in column 17. The TAB moves the PRINT position to

column 10, the comma moves it on to 16, and there is a
leading blank before the number.

3.1.40. TAN

Syntax:~ TAN{numeric-expression}

This returns the TANgent of the numeric expression which is

expressed in radians. To convert degrees to radians multiply by
PI/180.

For example:
T=TAN{45 * P1/180)

will assign the value 1 to the variable T.

3.1.41. TEXTS

Syntax:- TEXT$ (row, column[,lengthl)

TEXT$ returns the biock of data on the current text screen
starting at the specified row, column of the specified length. If
the length is not given, the single character at the current
cursor position is returned.
For example:

10 AS = TEXT$(20,0,40)

places row 20 of the current screen in AS.
3.1.42. TIMES

Availability:- Not available in Standalone mode
Syntax:- TIMES[(1}] |

TIME$S returns the current time. If used without a parameter the
time is returned in the form:

47



HH:MM: SS

where HH is a 24 hour clock. With a parameter the time 1is
returned without the colons.

For example:

10 A% = TIMES : BS = TIMES(1)
20 PRINT A$ : PRINT BS

wouild print

11:57:33
115733

for 57 minutes and 33 seconds after 11 o'clock. In the
second form times can be compared numerically.

3.1.43. USR

Syntax:- USR{address [,fparalll,(para?
USR{stringvari,(parallt,lpars

[,Ipara3ill)
10,0 para3ill)

USR calls a machine language function stored at the specified
address, or stored in the named string. Up to 3 parameters may be
handed over to the subroutine. Each parameter, if not specified,
defaults to vaiue -1 (hex FFFF). Each parameter may be an integer
value in the range -32768 to 65530,

]
2

Parameter 1 is piaced in the
Parameter 2 is placed in the
Parameter 3 is placed in the

- > D
s 3

The return value must be placed in the D register. If the
function has to flag an errer, the carry flag must be set and the
error number returnmed in the D register. This causes an error 10
occur in the BASIC.

For example:
7% = USR{AS, 48, BY%)

calls a subroutine stored in A$ and hands over 1wo
parameters, 48 and B%. The return value is placed in I%.

To place the subroutine in A any string operations may. be
used, such as writing it as DATA statements containing the
decimal value of each byte of the subroutine, and READing by
noran 1% : AS = AS + CHR$(I%)".  Or by loading it from a
hinary file - the first two bytes must be the length.

NOTE: For advanced programmers only.

48



3.1.44. VAL

Syntax:- VAL{string-expression)

VAL takes a string, evaluates it and returns its numeric value.
The string wmay be any legal BASIC expression, not containing
undefined variables.
For example:

A= VAL({"-2.3")

F$="3.5" : D = VAL(F$)
E$="6*2+43" + “¥5" : E = VAL(ES$)

These 1ines assign A = -2.3, D = 3.5, E = 27

10 A%=6
20 PRINT VAL{2*A%)

will print 12, but
10 PRINT VAL{2*B%)
where B% is undefined wiil print 2.

Since variable names are not held in compiled programs, the
Tirst example if compiled will print 2.

If the string is illegal, VAL evaluates zs much as it can
from left to right.

For examplie:

B3=VAL{"1234G")
Co=VAL{"r123")

will assign B%=1234, C%=0

49



3.2. STATEMENTS AND COMMANDS

3.2.1. AUTO

Availability:- Not Available ir Program mode .

syntax:- AUTO [start-linel [, increment]

AUTO will automatically number lines of a BASIC program OF TEXT
file being entered. Line numbering will start at the first
parameter value and proceed in incrementis as given by the second
parameter. The default value for both parameters is 10. In BASIC
mode, the line numbers will be printed automatically. In TEXT
mode they are not printed. AUTO will not allow lines to be
ertered which will replace existing 1ines. To exit from AUTO
mode, enter a null Tine.

For example:
AUTO
AUTO 30,5

AUTO ,5
AUTG 20

3.2.2. BACKG

Syntax:- BACKG numeric-expression

BACKG sets the half intensity background ON or OFF. The numeric
expression specifies the colour where:

off

red
green
yellow
blus
magenta
cyan
white

I I 1 T ]

0 oH

~m BN O

For example:
BACKG 4

sets the background to blue.
©3.2.3. BASIC

Syntax:- BASIC
BASIC is used to return the user from TEXT mode to BASIC { see

TEXT ). An option to SAVE a loaded file is given {see the NEW
statement),

50




3.2.4. CHAIN

Availability:- Not available in Standaldne mode

Syntax:- CHAIN string-expression,expression-1ist]

CHAIN terminates the current program and loads and runs the
program designated in the string-expression. The chained program
may be either a BASIC or machine language program. The displayed
screens are not switched off but the current screen becomes
screen 1. A1l variables except those specified in  the
expression-1ist are lost. FETCH may be used to feich these values
into the chained program.

If no filename extension is specified, .BAC is assumed. Source
(.BAS) files may aiso be chained, but the .BAS extension must be
specified.

For example:

90 A% ="FILEA"
100 CHAIN AS

~ This chains to program FILEA.BAC. A1l variables in the
current program are jost.

1200 CHAIN “NEXTP.BAS", AS, B%, AX*B, D$(4)

This cha{ns to program NEXTP.BAS saving the values of the
specified expressions.

The program NEXTP.BAS must have a first statement in the
form

10 FETCH A$, A%, A, ALS$

to fetch the saved values, where, although variable names
need not match, the types must.

3.2.5. CLEAR

Syntax:- CLEAR

CLEAR sets the current screen to 1, and displays it. A1l other
screens are turned OFF, current colour is set to white and MIX
mode is set OFF. - The screen SPLIT is 24 and scrolling is turned
ON. The background is turned OFF. A1l variables and dimensioned
arrays are cieared. All returns are cleared. Hence do not use
LEAR within FOR...NEXT loops, subroutines or in ON ERROR, ON SEC
or ON KEY routines as the return line number will be cleared. A1}
open files are closed. It is possible that after an error has
occurred (for example, disk full) that files will remain open. In
order to close t hese, issue a CLEAR. LEAR should also be used
if the error "Illegal file Control block specified” appears.

51



3.2.6. CLOSE

Availability:- Not available in Standalone mode
Syntax:~ CLOSE [KILLI [#lchannel [,[#Iichannet]
CLOSE terminates input/ouiput between BASIC and a file and makes
the channel available for another file. The channel must have an
integer value between 1 and 12, and must match @ channel number
specified in an OPEN statement. An error occurs if the specified
channel is not OPEN.
For exampie:
160 CLOSE 3

CLOSEs the file which was OPEN on channel 3.
Files should be OPEN for as short a fime as possible, as they
maintain a buffer area in memory which is returned to the work
area on CLOSING the file.
The KILL option, if present, causes the file to be removed from
disk. 1f a file with the same name, but with the extension .BAX
exists on the disk then it will be renamed with an extension the
same as the file being closed. # is optional before the channel
numbher.
For example:

100 CLOSE KILL 2

The file which was open on channel 2 is closed and deleted.
If a new serial file is opened but never writien to, it will
automatically be deleted on CLOSE (or END).
3.2.7. CLS

Syntax:- CLS

CLS clears the current screen, and puts the cursor 1in positian'
(0,0]. _

For example:
90 SELECT 1
100 CLS
110 SELECT 2
120 CLS

This clears both screens 1 and 2.

52




3.2.8. COLOR

Syntax:~ COLOR colour

See COLOUR.

3.2.9. COLOUR

Syntax:- COLOUR colour

COLOUR selects the current colour for SET, FILL, LINE and DRAY on
the graphics screens. The colour codes are:

BLACK
RED
GREEN
YELLOW
BLUE
MAGENTA .
CYAN
KHITE

O LR N O
VT S B TN S I

For example:
100 COLOUR 2
selects the current colour to be green.
1f no colour has been selected then WHITE is the default.

The secondary colours CYAN, MAGENTA and YELLOW wmay be obtained
only by using MIX in either of two ways as follows: :

1. By combining the colours on the two graphics screens. In this
case, the drawing is put onto both screens 2Z and 4 with one
colour on 2 and the other on 4. The coicurs are then MIXed to
give the secondary colour. In order 10 see the secondary colour,
both screens 2 and 4 must be DISPLAYed, and MIX must be ON.
(Remember screen 4 requires 8K of user memory.)

For example:

70 DISPLAY 2

80 DISPLAY &

90 MIX ON

100 COLOUR 3
110 SELECT 2
120 SET 100,220

This sets point (100,220) on screen 2 in red and on screen 4
in green. The MIX command mixes the 2 colours to give yeilow
(cotour 3}. For yellow the red is set on the current screen
and green on the other graphics screen

53



When secondary coiours are selected, the colour displayed s
formed as follows:
Current Graphics Other Graphics

Screen -Screen
Yellow Red Green
. Magenta Blue Red
Cyan Green Blue

2. To each of the graphics screens, a c¢olour may be added to give
a further set of colours. This is achieved by using MIX in the
second form.

The colour sets avaitable are:

No colour added Red Green tue White
Red added Red Yeliow Magenta White
Green added Yellow Green  Cyan White
Blue added Magenta Cyan Blue White

Wnen using MIX in this form the primary colour is specified by
COLOUR and the overiay colour fo be added, is specified in MIX.

For exampie:
70 DISPLAY 2
80 SELECT 2
90 COLOUR 1
160 MIX 2,2
110 SET (100,210}
This sets the peint (100,210} on screen 2 in yellow.
Remember that the primary colours are:-

RED GREEN BLYUE

YELLOW = RED + GREEN
MAGENTA = RED + BLUE
CYAN = BLUE + GREEN
WHITE = RED + BLUE + GREEN

3.2.10. COMPILE

Availabiiity:- Net availabie in Standaione mode

Syntax:- COMPILE "filename"

COMPILE saves the program currently +in memory on disk in compiied
form. The filename should be specified in quotes. 1f no filename
extension is specified, .BAC is assumed. A compiled program may
be loaded later either with a RUN, LOAD or CHAIN. A compiled
program generally takes less storage than a source file and aiso
loads faster. -A compiled program cannot be listed.

54



For exémp?e:
COMPILE “NENPRM"
This compiles the BASIC program currently in memory onto the

current default disk as NEWPRM.BAC.

3.2.11. CONT

Syntax:- CONT

CONT is used to restart a program after it has been stopped by a
STOP statement, by pressing the <EXIT> key, or by an error. The
restart 1s made at the statement following STOP, at the next
statement after <EXIT>, or at the start of the statement causing
the error.

CONT will not restart the program if any edfting is performed
while the program is stopped.

3.2.12. CONVERT

Syntax:- CONVERT string-variablel TO string-variable2

CONVERT changes a line description stored in a string into a
boundary description (see FILL). FILL converts a 1ine description
to a boundary description each time a FILL is performed, but for
efficiency a line description may be CONVERTed prior to the wuse
of FILL.

For example:

100 CONVERT A$ TO A$
110 CONVERT X§ TO 1§

If 1ine descriptions have been set up in A$ and X§ then line
1060 converts A3 to a boundary description and 1line 110
converts X$ to & boundary description storing it as Z$.

3.2.13. DATA

Syntax:- DATA value [,value]...

The DATA statement enabies data o be stored inside a program and
10 be accessed by a READ statement when it is required. Each item
in the 1ist must be separated by a comma. = Each time a READ is
encountered, the next item in the list is read.

Strings do not need to be encliosed in quotes unless they include

embedded commas or colons. Strings and numeric data may be mixed
in the same DATA statement.

b5



Muitiple DATA statements may be used and need not be placed
together in the program. When all the data has been read from one
DATA statement, access will be made to the next DATA statement. A
DATA statement must be the only statement on a line.

RESTORE may be used to set the line number of the BATA statement
from which the next READ is to access.

For example:

50 DIM Array$(3)
100 DATA JAN, FEB, MAR, APR, MAY
200 DATA ™. 100", ™ 100C", "10,000"
300 DATA 50,40,30,20
400 RESTORE 200
500 FOR 1% =1 T0 3
600 READ Array$(1%}
700 NEXT 1%

This sets up Array$ with the 3 string values of 10C, 1000
and 10,000.
3.2.14. DEF FN

Syntax:~ DEF FN variable-name {dummy-variable] = expression

DEF FN allows the user-definition of single line functions
containing one argument and returning a floating point value.

The function name is formed by preceding the variable name in the
definition by FH.

For exampie:
DEF FNA(B} = SQR{B) / 2 + 10

defines the function FMA which takes the square root of the
argument, divides it by 2 and adds 10.

FNA could then be used in an expression such as:
A = FNA(16) + FNA(36)}
wnich would give A the value 12 + 13 = Zb.
In the example, B is a dummy variable that may be used within the
expression. 1Its value is determined when the function is called.
The returned value will be floating point. String functions
cannot be included within the expression.

NOTE: DEF FN must be the last statement in a line.

56



3.2.15. DEL

Avai]abi]ity:é Not available in Program mode.

Syntax:- DEL line-range [, line-range]

DEL deletes lines as specified by the parameters. A line range
may be a single 1ine, or a starting line number followed by a
hyphen, foliowed by an ending line number specifying a group of
consecutive lines.
~ for example:

DEL 10, 30-100
Deletes line number 10, and all Tines between 30 and 100
inciusive. :

3.2.16. DIGITS

Syntax:- DIGITS total-number [,number-of-decimal-places]

DIGITS specifies how many digits to print in standard numerical
notation. The number must be in the range 1-10. If no number is
specified, the default prints a total of 6 digits. The second
argument specifies the maximum number of decimal places, and must
be less than or equal to the total number. The default second
parameter is equal to the first parameter. If a number will not
fit the format it is printed in scientific notation. If DIGITS is
not specified a number with more than 6 digits before or after
the decimal point will be printed in scientific notation.

For example:

10 DIGITS 5,4
20 PRINT 2.7182818285

will print 2.7183

10 DIGITS 2
20 PRINT 999

will print 1E+03 because of rounding.

3.2.17. DIM

Syntaxf« DIM variable{size) [,variable{size}]...

DIM sets the number of items allowed in each of the dimensions in
an array. All arrays must be dimensioned before they can be used.
There is no limit to the number of dimensions. '

57



For exampie:

100 DIM AS(1C), B%(4,2)
200 DIM C$(2,2,2,2,2)

Line 100 sets up a one dimensional string array with
subscript elements 0 - 10, {i.e. 11 elements) and a two
dimensional integer array with elements 0,0 to 4,2.

Line 200 sets up a 5 dimensional string array with elements
0 to 2 in each dimension.

Arrays cannot be redimensioned within a program.

3.2.18. DISPLAY

Syntax:- DISPLAY screen-number [ON]
DISPLAY screen-number [OFF ]

DISPLAY is used to turn screens ON and OFF. The screen numbers
are

1 - Text screen
2 - Graphics screen (240 by 204)
3 - Text screen
4 - Graphics screen (240 by 204}
5 - Fine graphics screen (480 by 204)
For example:
DISPLAY 1

displays the top text screen.
DISPLAY 4 OFF
turns off the second graphics screen.
0 may be used to represent all screens.
For example:

DISPLAY ©
DISPLAY O OFF

displays and turns off all screens.

Following a RUN, NEW, CHAIN or CLEAR, all screens except screen 1
are turned OFF but not cleared.’

Screen 5 cannot be used as we}1fas screen 2 or 4 since it s
formed by combining both of these graphics screens. -

Screen 5 has the same priority as screen Z.

58



3.2.19. DOS

Availability:- Not available ih Standalone mode

Syntax:- DOS

This places the POLY unit in the Disk Operating System . (DOS)
mode. A description of operation in this mode, -along with a
description of the full set of DOS utilities is contained in the
POLYSYS Utilities Manual. ° An option to SAVE a loaded file is
given (see NEW statement).

To return to POLYBASIC from DOS enter BASIC.
3.2.20. DPOKE

Syntax:- DPOKE address,value

DPOKE puts the 2 byte integer value at the specified address. The
value must be in the range { to 65535.

For example:
DPOKE 1165, 2456
puts into memory locations 1165-1166 the value 24585.
Care must be taken in using this statement to ensure that the

values changed are at iocations where the meaning of the contents
are known.

3.2.21. DRAW

Availablility:- Not available Tn Standalone mode

Syntax:- DRAW string-variable
DRAW # channe]
DRAV # "FiTe-name"

DRAW places onto the current screen the line whose coordinates
have been defined using LDESS and put in 3 string variable or
onto a file, or a screen dump which has been stored in a variable
or file using STORE.

A line is drawn in the current colour, on the current sCreen, at
the place it was defined.

For a screen dump, the current screen must be a graphics screen.
The screen dump is placed in the same place on the screen: from
which it was stored in the original colours.

For example:

5%



10 CLS

100 Car$ = LDFS$(115,0,115,20,100,20,100,
70,130,70,130,0,115,0)

110 SELECT Z:CLS:DISPLAY 2

120 DRAW Cars

This draws the car as specified on screen Z.

130 STORE (100,0)(130,70)Cars
135 CLS

140 SELECT 4 : DISPLAY 4

150 DRAW Car$

This stores the car as a screen dump in Car$, clears screen
2 and dumps it onto screen 4 in the same place.

If a screen dump is stored on disk using STORE# the file (which
may contain several screen dumps) may be opened and the screen
dumps drawn using DRAW#.

For example:

100 OPEN OLD "DIAGRAMS" AS 1

110 CLS : SELECT 2 : CLS : DISPLAY 2
120 FOR HNumber = 1 70 5

130 DRAW #1

140 NEXT

150 CLOSE 1

This reads 5 diagrams off the disk file ODIAGRAMS.DAT and
displays them on screen Z. :

If there is only one screen dump in the file then DRAWF"filename”
may be used to avoid the OPEN and CLOSE statements.

3.2.22. DRAWE

Availability:~ Not available in Standalone mode

Syntax:- DRAWG(row, column) string-variable
DRAWE(row, column) #channel
DRAWG{vow, column) # 71]e~name"

DRAWG shifts the coordinates relative to the specified row,
column and DRAWs the diagram in the new position.

For example:

50 CLS _

100 Car$ = LDES${115,0,115,20,100,20,100,

70,130,70,130,0,115,0)

110 SELECT 2 : CLS : DISPLAY 2 : COLGUR 1
120 FOR Col = 240 T0 -2 STEP ~10 :
130 CLS
140 DRAW@(115,Col)Car$
150 NEXT Coi

60




This causes the car to move from right to Tleft across the
screen. :

3.2.23. DRIVE

Availability:- Not available in Standalone mode

Syntax:- DRIVE drive-number

DRIVE reassigns the current default drive for a “particular POLY
unit. The drive number should be in the range 0 to 3.

For example:
DRIVE 1

This allows a particular POLY unit to be working on a different
drive from other units using the system. :

3.2.24. ELSE

Syntax:- IF condition [THEN] stmt [:stmtj...ELSE stmt [:stmt]...

ELSE must always be used in conjunction with an IF statement. All
statement{s} on the same line following the ELSE are performed if
the condition is FALSE. The ELSE must not be immediately preceded
by a colon. :

A 1ine number immediately following ELSE is read as ELSE GOTO
linenumber.

For examptle:
The following are valid constructs:
100 IF A%>3 OR B%<2 THEN GOTO 200 ELSE GOTG 300
200 IF A=4 THEN B=0 :C=0 ELSE D=0 :E=0
300 IFC<X {=X:D=0ELSEIFC<YTHENC=Y:D=1ELSEC=Z:D=Z
400 IF AL%=4 PRINT A% ELSE 2000

The latter two examplies are poor. THEN should always be used
as it improves readability.

The following are NOT valid constructs:
500 IF A%>4 GOTO 100C : ELSE GOTO 2000

600 IF A%=4 AND B%=6 ELSE C%=0

61



3.2.25. END

Syntax:- END

END ferminates program execution. It may be placed anywhere in
the program. If the last statement to be executed is also the
physically last statement 1in a program, END need not be
specified.

For example:
100 IF A% > 100 THEN END
Following END, a program cannot be restarted by wsing CONT, but

may be RUN again. The end of a program causes the display of all
screens except screen 1 to be switched off.

3.2.26. ERROR

Syntax:- ERROR numeric-expressioh

ERRCR allows an error to be simulated dﬂring testing. ERR and ERL
are set up as if the error had occurred and the ON ERROR branch
is taken as if it has been set.
For exampie:
ERRCR &
makes the program act as if error 4 had occurred.
In the error routine, RESUME NEXT rather than RESUME must be

specified as RESUME will Just cause repetition of the ERRUR
statement.

3.2.27. EXEC

Availability:- Not available in Standalone mode

Syntax:- EXEC "filename”

EXEC loads and executes the machine language program contained in
filename. Care must be taken to ensure that the program loaded
does not interfere with the BASIC program running. Utilities
which run in the utility command space may be executed with this
command. Following execution:of the program, control is returned
to the BASIC program.

i

For example: p

100 EXEC "CAT 1"

67




- This displays the catalogue on the screen.

A complete description of utilities 1is given in the POLYSYS
Utitities Manual.

3.2.28. FETCH

[ —————

Availability:- Not available in Standalone mode

Syntax:- FETCH variablel [,variabie2]...

When a BASIC progrem is run from another program by the use of
CHAIN, all variable values are reset. However expressions may be
passed to the program being CHAINed using the FETCH statement.
The expressions in the CHAIN 1ist and the variables in the FETCH
1ist must match by type. FETCH must be the first executable
statement in the CHAINed program.

For example:
CHAIN “NEXTPROG",Address$,NO%
might CHAIN to a program in which the first statement is:

FETCH Address$,NUMBER%

3.2.29. FIELD

Availability:- Not available in Standalone mode

Syntax:- FIELD #channel, fieldsize AS stringnamel
[, fieldsize AS stringnamez]...

FIELD s used with random access file statements PUT and GET, <o
specify string subfields within the record buffer.

For example:

10 OPEN OLD RANDOM “TRIAL" AS 1
20 FIELD#1, 10 AS A$, 4 AS X5, 8 AS DS
30 GET #1

Line 16 opens the file TRIAL on channel 1.
Line 20 assigns A$ as the Tabel for the first 10 bytes
{(characters) in the record buffer of channel #1, whatever
these may contain, X$ as the next 4 characters, and D$ as
the last & characters. .

Line 30 reads the next record of the file into the record
buffer, which will assign values to AS,X$ and DS.

After GETting a record, a FIELD statement may be used to reassign
the fields within the record. If you want to retain the value of
a variable which is in the buffer you must store it in another
variable before reassigning the fields.

63



For example:
40 FIELD#L, 23 AS 1§, 10 AS A$, 4 AS X3, 8 AS DS

reassigns the labels Z$, AS, X$ and D$'to the buffer, while
the data in the buffer is unchanged.

if it is reguired to store numeric fields in the record, the CV7
function can be used to convert them.

For example:

5 DIM A%(125)

10 OPEN OLD RANDOM "TRIALL" AS 9
20 GET #9

30 FOR 1=0 to 125

40 FIELD #9, I*2 AS X§, 2 AS A$
50 A%{1}=CVT$%(AS)

100 NEXT 1

This program GETs a single record from TRIALLI.DAT 1into the
record buffer and breaks it into 126 2 character fields.
These are then stored as integers in the array Ak. X§ is a
dummy string to put successive A$ labels at the right
places. Further processing can then be done with the values
stored in the array. :

To store records in a random access file, FIELD, LSET, RSET and
PUT are used. :

For example:

10 OPEN NEW RANDOM{50} “"TRIALZ" AS 1Z
20 FIELD #12,20 AS A$, 30 AS BS

30 LSET A$="AAA"

40 LSET B$="BBB"

50 PUT #12, RECORD 3

60 CLOSE 12

Lines 30 and 40 assign the strings “AAA + 17 spaces” and
“BRB + 27 spaces” inio A$ and B$ respectively. The FIELD
statement in line 20 assigns these to the first 50 bytes of

the buffer. Line 50 PUTs the contents of the buffer into .

RECORD 3 of the new file TRIALZ.DAT.

It is possible to use FIELD and GET { but not PUT )} with
sequential files in a stmilar manner provided no RECORD option is
specified for the GET.

3.2.30. FILL

Avaiilability:- Not available in Standalone mode

Syntax:- FILL [USING pixels[,shiftl;} string
FILL [USING pixelsL,shifti;] #channel
FICC [USING pixelsl,shiftl; ] # fife-name”

64



ALt Thils ¢ Gevined area oh A 4rapnics screen witn  a  sbeCified
pattern in the current colour. The string { whether from a disk
file or not ), wmay be a boundary description or a line
description ( see CONVERT ).  When using LDESS to create a line.
description to be FliLlLed, the points must be described in a
clockwise direction. The pattern is described by two values, the
pixels, and the shift. The pixels are set up in groups of & which
are represented by the decimal value of their binary pattern. If
the pixels are not specified, 63 is used. If the shift is not
specified no shift is assumed. ‘

For exampie:

If the pattern required is 101010 then the equivalent
decimal value 42 is used. The easjest way io convert from
binary to decimal is by assigning values to each digit and
adding them up.

1 01 0 1 0-=4z
0 1 11 0 1=29
0 00 C 0 1=1

Shift is the number of pixels each row is shifted to the right.
For examp?e:

With pixels 000001 a shift of 1 gives the following patterns
on Successive rows:

Rowl 000001
RowZ 100000
Row3 010000
Rowd 0GC1000
Rowb 000100

A diagonail effect is obtained.

10 SELECT 2

20 CLS

30 DISPLAY 2

40 A$=LDES${{2,0)(2,100){50,100}(50,10){2,0))
50 COLOUR 4

60 FILL USING 1,1;A$

This selects screen 2, clears and displays it and fills the
rectangie defired with blue diagonal lines.

The FILL is executed in two stages, the line description is first
converted to a boundary description and then the area s filled.
If the same line description is to be filled repeatedly, a time
saving may be made by converting the line %o a boundary
description using CONVERT, and storing this in a string.

For example:



10 A$ = LDES$(2,0,2,100,50,100,50,10,2,0)
20 CONVERT A$ TO A$
30 SELECT 2 : CLS : DISPLAY 2
40 FOR 1% = 1 70 100
50 Col = RND(4) : IF Col = 3 then Col =7
60 COLOUR Col
70 FILL AS
80 KEXT I%

This fills the box with a solid random colour 100 times.
3.2.31. FiLLG

Availability:- Not available in Standalone mode

Syntax:- FILL@(row,column} [USING pixeis[,shift];]1] string
FILLB row,calumn) LUSING pixeis[,shitcl; )l #channel
FILLG(row,column) [USING pixels[,shiftl;1i # file-name"

This transposes the area to be filled to start at the row, column
specified, operating similiarly to DRAWE.

For example:
100 FILL®(10,30) USING 21,1;A$
If A$ is as specified in the FILL example, then all points
are moved by the difference between (10,30} and (2,0). That
is the rows have 8 added to them and the columns 30.
{10,30){10,130)(58,130){58,80)(10,30)

This area is then filled.
3.2.32. FOR

Syntax:- FOR variable = start-value T0 end-vaiue [STEP increment]

FOR starts a locp so that a sequence of program stalements can be
executed over and over again. The loop must be terminated by a
NEXT statement. The specification of the variable in the HNEXT
statement is optional.

For exampie:

10 FOR 1% = 1 T0 6
20 PRINT I%:
30 NEXT 1%

is the same as writing

10 PRINT 1,
20 PRINT 2;
30 PRINT 3;
40 PRINT 4;
50 PRINT 5;

66



60 PRINT 6;

The start and end values may be either constants, variables or
expressions. . The variable in the FOR statement is to count the
number of times the loop is executed and care must be taken if
this is changed within the Joop.

For example:

100 FOR N%=1 TO 1C
110 N%=NZ*2
120 NEXT

Lines 1ike 110 which change the value of the control
variable should be used with caution.

STtP specifies the amount to be added to the counter variable at
the end of each loop. It may be positive or negative and may
centain a decimal point. If not specified, 1 is assumed. At the
end of each loop, the counter is tested. If the value obtained on
incrementing the counter by the step size is ‘greater than the

inal value the pragram goes on and executes the siatement after
the KNEXT. (If the STEP is negative, the test is less than the
final value). The value of the counter after the NEXT statement
is the 1atest value not to have fajled the test.

A FOR toop Pay be exited by a GO TO from within the loop but a GO
T0 should never reenter the middle of a FOR loop {unless it has
previously exited using a G0 T0}.

FOR loops may be nested, i.e. placed one inside another.
For example:

5 X=0.4

10 FOR I=1 TO X*7 STEP C. 5
20 PRINT "QUTER LOOPY; 1
30 FOR J=1 TG 2

35 PRINT "INSIDE LOOP"

40 NEXT

50 NEXT 1

This would print

GUTER LOOP 1
INSIDE LOOP
INSIDE LOCOP
OQUTER LCOP 1.5
INSIDE LOOP
INSIDE LOOP
QUTER LOOP 2
INSIDE LOOP
INSIDE LOOP
QUTER LOOP 2.5
INSIBE LOCP

- INSIDE LOOP

67



Using integer values for variables saves time and memory space. A
FOR loop is always executed at least once.

3.2.33. GET#

- Availability:~- Not available in Standalone mode

_ Syntax:- GET #channel [,RECORD record-number]

GET reads a specific record from a random file and places it in
the record buffer for that channel. To access the data in that
record, a FIELD statement must be used. If a record number is
spec1f1=d that record is read from the file. If it 1is not
“specified, then the next record on the file is read.

For example:

10 OPtN OLD RANDOM “TEST" AS 4
20 GET #4, RECORD 24

30 FIELD #4, 100 AS A, 10 AS BS
40 CLOSE 4

Line 10 OPENs TEST.DAT on channel 4.

Line 20 reads record 24 into the buffer.

Line 30 designates the first 100 bytes of the buffer as A},
the next 10 as B$.

Line 40 CLOSEs the file.

See FIELD for further exampies. GET may be used with sequential
files provided the RECORD option is not specified.

3.2.34. GOSUB

Syntax:~ GOSUB linenumber
GOSUB expression

GOSUZ transfers program control to the subroutine beginning at
the specified line number. When a  RETURN  statement is
encountered, control is returned to the statement following the
GOSUB.  When an expression is used it must not start with an
integer value e.g.  GOSUB 20*I will be interpreted as GOSUB 20
followed by *I. However GOSUB I*20 is valid.

For example:
150 IF I%=1 THEN GOSUB 1000
160. PRINT “RETURN FROM SUBROUTINE®
170 END

1000 PRINT "SUBROUTINE”
1010 RETURN :

With 1% set to 1 this would display

68



SUBROUTINE
RETURN FROM SUBROUTINE

A subroutine may be used over and over again from various places

in a program.

3.2.35. GOTC

[

Syntax: GOTO 1inenumber
GOTO expression

GOTO may also be written as two words i.e. GO T0. GOTO transfers
program control to the specified line number. The 1ine number may
be given as an expression which will be evaluated. When an
expression is used it must not start with an integer value e.g.
GO TC 20*I will be interpreted as GO TO 20 followed - by *I.
However GO TO 1*20 is valid. |

For eXamp!e:

100 PRINT "a®;
120 G0OTO 100

This would result in a continuous Tloop with the computer
~displaying A's. To stop the program it would be necessary o
press the <EXIT> key.

100 PRINT "A";
- 110 GO TO 1000
1000 PRINT “B"
This simply transfers control to line 1000 and would display

AB, because of the ";". Lines between 110 and 1000 are
irreievant to this example.

Syntax:- IF condition [THEN] stmt [:stmt] ...

If the result of evaluating the condition s TRUE,  the
statement(s) immediately following, or following the THEN on the
same 1ine are executed. If the expression is FALSE, control jumps
te the matching ELSE statement (if there is one) or to the next
Tine. See the ELSE statement.

A line number immediately after the THEN statement is interpreted
as THEN GOTO linenumber. If THEN §s omitted and an assignment
{e.g. A=24) appears following the condition, a space must follow
the condition.

69



For example:

100 IF A%<4 AND B%=2 THEN GOSUB 1000

200 IF X>127 THEN B%=3 : C% = (¢ : GOTO 30C
210 IF Z>256 INPUT AS

220 IF X%=1 THEN X%=998%

. The following lines all perform the same action

300 iF A$ = “END" THEN GOTO 2C00
400 IF A$ = "END" GOTO 2000
500 IF A$ = "END" THEN 2000

However it is good practice to always include THEN.

3.2.37. INPUT

Syntax: INPUT ["message";] variable [,variable]...

INPUT causes the program to wait until the specified number of
fields are entered on the keyboard. The input statement may
specify a 1ist of string or numeric variables to be input. The
items in the Tist must be separated by commas. When typing the
strings, fields need not be enclosed in quotes unless Jeading or
traiiing spaces are to be included or the string includes a *,".
<ENTER> must be pressed to terminate input.

It is an error to input a non-numeric value to a numeric
variable.  To trap such an error and vreturn to the INPUT
statement, ON ERROR may be used and the error tested.

INPUT displays a ? followed by the cursor in the next PRINT
position. To positicn an INPUT to a specified place on the
~ screen, the INPUT statement should be preceded by a PRINT®{row,
cotumn) and a semi-colon.

For example:

100 PRINT@{20, 15);
200 INPUT AS

A "prompting message” may also be included din the INPUT
statement. This will be printed before the ? prompt. The
statement must be enclosed in quotes and followad by a ";".

3
For exampie:

100 INPUT "NAME"; N$ :
110 INPUT “AGE IN YEARS, HOUSE NUMBER"; A%,H%

The following would be displayed on the screen. The data
entered in is underlined. : :

NAME? JIM
AGE IN YEARS, HOUSE NUMBER? 15,113

70



If insufficient fields are entered, further ? prompts are given
until ‘all the recguested values have been entered.

An empty input field, produced by typing a comma or <ENTER> with
nothing between it and the previous comma or the ? prompt, leaves
the previocus value in the variable unchanged. '

Entering Spaées only followed by a comma or <ENTER> sets a string
variable to null (zero tength), and a number to zero. (To set a
string variable to & space, enter " " with quotes). In other
cases, leading spaces are ignored when inputting into & string
and all spaces are ignored when inputting intc a number.
For example:
10 INPUT A%
Entering
& <SPACE> <SPACE>
is equivalent to entering

? 60

If <ENTER> is the only key pressed, then the variable is left
with the value it had before the INPUT statement.

3.2.38. INPUT#

Availability:~ Not available in Standalone mode

Syntax:- INPUT #channel, variable [,variablel...

INPUT# reads the next seguential record from a disk file on the
specified channel and assigns values contained in it to the
variables specified in the variable list. INPUT#0 works the same-
as the ordinary INPUT statement except that no ? prompt is given.

The disk file must first be OPENed and later CLOSEd. The disk
file must previcusly have been created to match the form in the
variable list. See PRINT#. To test for the end of the file, an ON
END. trap may be used.

For example:

INPUT and Yist all the records from file “NAMES.TXT".  The
records each contain 3 fieids.

10 OPEN OLD "NAMES.TXT" AS 1
20 ON END #1 GOTO 1000

30 INPUT #1, A$,B%,C

40 PRINT AS$

50 PRINT B%,C

60 GO TO 30

1000 CLOSE 1°

71



3.2.39. INPUT LINE

Syntax:~ INPUT LINE [(length}] string-variable

INPUT LINE inputs all data typed in up until <ENTER> 1I1s pressed
and places it in the string variable. Only one string is allowed.
Data typed in may include commas (unlike INPUT, where the comma
specifies the start of a new field);. Any prompting text must be
printed by a previous statement. If a length is specified this is
the maximum length of the string that may be entered. When the
" user types a line in response to INPUT LINE the cursor will
refuse to move past the column of the last character which will
be accepted into the string. :

For example:

100 PRINT@{10,0) "TYPE IN YOUR NAME AND ADDRESS"
110 INPUT LINE A$

On the screen this would appear as:

TYPE IN YOUR NAME AND ADDRESS
7 JOHN SMITH, 246 BERKLEY GROVE, WADESTOWN

A1l of the name and address entered by the user is assigned
to A$, inciuding the commas.

200 INPUT LINE (8} X$
This will accept no more than 8 characters. If the user
types "JOHN SMITH", the "1" will be overwritten by the "T%,
then the "H".
If a2 null string is entered, the string will be set to & Tlength
of zero; it will not be left with its previous vaiue (as it is
for a null item using INPUT}.
If the length required is zero, then the string will be set to

zero length without waiting for the user to input a null line. A
negative maximum length is an error.

3.2.40. INPUT LINE#

Availability:- Not available in Standalone mode

Syntax:- INPUT LINE [{length}] #channel , string-variable

INPUT LINE# works exactly like INPUT LINE but the string comes
from the disk fite which is CPEN on the specified channel. The
input takes all characters up to the first line feed or up to the
length specified ( see INPUT LINE ).  INPUT LINE#0 dnputs data
from the keyboard similiar to INPUT, but does not give a prompt.

12




3.2.41. KIiLL

Availability:- Not available in Standalone mode

Syntax:- KILL "filename"

KILL deletes a file frém disk. The defaults are the working drive
and .BAS extension. '

For example:
100 KILL "I.XXXX.AAA"
Line 100 KILLs file AXXX.ABA which is found on drive 1.

3.2.42. LET

Syntaxi- [LET] variable = expression

LET assigns a value to a variable. The word LET may be omitted.
The variable and the expressicn must both be numeric or both be
strings. A real value assigned to an integer variable will be
truncated {see the INT function).

For example:

5 DIM 6(8,8)

10 LET X%=7

20 LET C$="ABCDEF"
30 D=SQR(5)*7.8+9
40 G(0,8])=6

50 A%="ABCDE"

Line 30 LET has been teft out.

Line 40 assigns an array element.

Line 50 is an invalid statement because you cannot assign a
string to a numeric variable.

3.2.43. LINE

Syntax:- LINE line-description

LINE s used to draw lines on to the current screan.

LINE may be used on any of the screens but if used on the text
screens, the programmer must ensure that the graphics control
characters are printed on the rows before using this command.

A1} points are specified as coordinates in the form {(row,
column).  The coordinates may be specified with or without
surrounding parentheses. If parentheses are used, the comma
between points may be omitted. If parentheses are omitted, then
all commas must be included.

73



For example:

LINE (10,10)(20,15)(30,20}(40,10)
LINE {(10,10),(20,15},(30,20), (40 10)
LINE 10,10,20,15,30,20,40 ,lG

are ali legitimate forms of specification and draw a 1line
joining the points.

Lines may be stopped and started by using a ; in place of the
comma between points. The points on either side of the ; are not
joined.
For example:
LINE (10,10} {20,15);(30,20)(40,10)
or

LINE 10,10,20,15;30,20,40,10

would draw 2 1ines, one joining (10,10} to ({20,15) and a
second line joining (30,20) to (40,10).

Use of LINE on the graphics screens

COLOUR G {BLACK) may be used to remove a iiﬂe;

The colours YELLOW, MAGENTA and CYAN can only be obtained by
using MIX, either by adding a colour to the current screen or by
mixing the tw0d sCreens. -

If a point outside the screen is specified, then the line is
drawn to the edge of the screen as if it was Jjoined to that
point.

Use of LINE on the text screens

On teletext screens, the user must ensure that graphics control
characters have been written prior to using LENE A simple loop
to insert these is:

10 FOR 1%=0 TO 23: PRINT@{I%,C)"[R";:NEXT 1%

which prints "R" or CHR${18) in column O of all rows on the
screen.

Because the graphics control character is placed in coiumn O,
chunky pixels cannot be placed in chunky graphic co]umns 0 or 1
on the text screen.

For example:

10 SELECT 1 : CLS
20 FOR I%=0 TG 23: PRINTO(I

(12,0} “QR“;:NEXT 1%
30 LINE {14,10},{42,78),(0,0)

74



draws a line joining the 3 points screen 1 in green.
For example:
10 SELECT 2 : DISPLAY 2
20 COLOUR 1
30 LINE (0,0),{203,0},(203,239),(0,239),(0,0)
40 A$=INCH${C) :REM DISPLAY UNTIL KEY PRESSED

draws a red Tine around the boundary of the screen.
3.2.44. LIST

Syntax:~ LIST [start line[- end 1ine]]

LIST displays a single program line, a group of lines, or the.
whole program. A long listing may be stopped for examination at
any time by vressing <PAUSE>.,  Use of the <SPACE BAR> or the
<PAUSE> key allows stepping through the 1isting, 1line by line.
Pressing <EXIT> terminates the 1listing.

For example:

LIST Lists the whole program.
- LIST 10-90 Lists Tines 10 to 90.
LIST 83 Lists line 83.
LIST -200 Lists lines 1 to 200.
LIST 2060~ Lists from line 200 to the end of the
program. :

To list a program on the printer, simply enter
SAVE "filename.PRT"

(.PRT files are automatically listed on the printer and the
file is deleted after printing.)

3.2.45. LOAD

Availability:- Not available in Standalone mode

Syntax:- LOAD “"filename"”

LOAD loads a BASIC source program or a text file from disk into
memory. The defaults are the working drive and .BAS.

For example:
LOAD"ARARAAY _
Toads AAAAAA.BAS from the working drive.
LOAD"1.BBBB.TXT"

75



loads BBBB.TXT from drive 1,

IT the POLY s in TEXT mode, the default extension is .TXT .

'3.2.46. LOAD#

Availability:- Not available in Standalone mode

channel, string-name
“tile-name”, string-name

Syntax;- LOAD
LOAD

e
T

LOAD# Toads strings previously stored as disk files using SAVE#
or STORE#.  In the first form, the specified channel must have
already been OPENed (GLD}. In the second form, the specified file
1s opened { as an OLD GRAPH file ) and closed automatically.
LOAD# may also be wused to load binary files into a string
(possibly to execute as an assembler subroutine).

3.2.47. LOCK

—————

Availability:~ Not available in Standalone mode

Syntax:- LOCK #channel

LOCK causes the random file atlached to the specified channel to
be "Tocked", i.e. no other user will be able to access the file
( either read or write ) until it s "unlocked®,

3.2.48. LOGOFF

Syntax:- LOGOFF

LOGOFF returns the POLY unit to the LOGGN state.

3.2.49. LPRINT

Availability:- Not available in Standalone mode

Syntax:- LPRINT print-list

LPRINT outputs the data specified to a sequentfa? disk file which
will automatically be printed on completion of the pregram, or if
the program is stopped. i : _

It is not necessary to specify a channel number, nor to open  and
close the disk file. (For a description of the print-Tist see
PRINT.)

For example:

76




10 A= 1.2 : B%= 2 : C$= "SS555558"
20 LPRINTA;B%,CS
30 END

This prints on the 1ine-printer:

1.2 2 SSS888S
3.2.50. LSET

Syntax:- LSET string-variable = string-expression

LSET stores a new string value in an en1stang string storage
location. The value is either truncated if it is too long, or has
spaces added to it if it is too short (Compare RSET).

LSET {or RSET} is the only way to put a value into a variable in
the 1/0 buffer before writing it to a disk file.

For exampie:

10 OPEN OLD RANDOM "XXXX" AS 9

20 FIELD#G,5 AS A$,6 AS BS, 5 AS C$
30 LSET AS$= "AAAAAXXX"

40 LSET B$="BBB"

50 LSET C$="CCC"

60 PUT#9,RECORD 10

70 CLOSE 9

Line 10 OPENs file XXXX.DAT on channel 9. Line 20 assigns
positions in the buffer to A$,B$ and C$. Lines 30-50 puu the
va?ues into the strings in the buffer as follows:

A$="AABRAA", B$="BBB ', C$="CCC "
Line 60 PUTs the contents of the buffer intoe RECORD 10 1in
the disk file XXXX.DAT .

3.2.51. MEM

Syntax:- MEM [high-memory-address]

MEM resets the top of memory address of the BASIC programs
working area. This is useful when a protected area is required
for a machine ianguage subroutine. The current memory address can
be obtained using FRE{(1). If the address is not specaf1ed it is

~reset to the initial system value.

MEM should not be used within GOSUB routines, ON ERROR routines,
ON KEY routines or ON SEC recutines as the stack containing the
return address - is stored just below high memory.

For example:

17



10 S% = FRE{1)
20 MEM S$% - 100
30 REM SAVES 100 BYTES

10000 REM END OF PROGRAM
10010 MEM

This "protects” 100 bytes of memory and later releases it.
3.2.52. MERGE

Availability:- Not available in Standalone mode

Syntax:- MERGE “fflename“

MERGE Toads a BASIC program source file from disk 1into memory,
merging it with the BASIC program already in memory { if -any ). A
Tine from the file being merged will overwrite a line 1in nemory
17 they have the same line number. Defaults are .BAS and the
working drive. In TEXT mode, .TXT is the defauli extension.

3.2.53. MIX

Syntax:- MIX [ON]
FIX [OFF]
. MIX screen, colour

MIX is used for controlling:-
a) The mixing of the colours on screens 2, 3 and 4.
b) The adding of a colour to pixels ON within screens 2 or 4.

MIX ON specifies that the beams on screens 2, 3 and 4 are to be
MIiXed. 1 the current COLOUR is either YELLOW, CYAN or MAGENTA,
then DRAW, FILL and LINE will draw on both screens 2 and 4, and
if both screens 2 and 4 are dﬂspfgyed, then these colours will be
¢ispiayed MiXed.

MIX OFF switches MIX mode GFF so that the screens display in
their priority order

MIX screen, colour, adds the cojour to all pixels ON on the
specified graphics screen { see COLOUR for examples ).

Mixing Colours

The colour of each pixel on the screen is determined by which of
the 3 colour beams - red, blue, and green - are switched on.
These are the primary colours. The secondary colours reqguire 2 or
wore beams on such that:

78



Red + Green = Yellow
Red + Blue = Magenta
Green + Blue = Lyan
Red + Green + Blue = White

Al1 7 colours are available on the text screens, but the graphics
screens have only the primary colours immediately available. The
secondary colours are created using the MIX command. When two
colours are mixed the resulting colour is the composite of the
two colours. '

For example:
Red + Red + Blue

Red + Blue
Magenta

Red + Magenta

[N HI H

Note that if a beam is repeated in the MIX, it is not doubled in
intensity. '

3.2.54. NEYW

Syntax:- KNEW
NEW deletes the current program from the POLY unit. I the file
in memory is a source program {or a text file} that has been
altered, the user will be prompted with

Save (Y/N)7
or

Save filename {Y/N)?
The filename will appear only if the file was LOADed. In the
first case if Y is typed, the NEW is aborted; if N is typed the
NEW is executed. In the second case if Y is typed the file will

be SAVEd and NEW exscuted; if N is typed, NEW will be executed.
Only Y, ¥, N, or n will be accepiad. '

3.2.55. NEXT

Syntax:- NEXT [Toop-variable]

NEXT terminates a FOR Toop. The loop variable name need not be
specified.

For exampie:
16 FOR N%=1 TO 12

20 PRINT N%
30 NEXT N%

79



This prints a list of the first 12 integers.

3.2.56. ON END

Avaitability:- Not available in Standalone mode

Syntax:- ON END #channel GOTO Tine-number

ON END allows the user to set a line number to which control will
be passed when an attempt to read the file on the specified
channel fails because there is no more data to be read. The file
must be open when ON END s set. RESUME is not necessary after an
ON END.

Warning:~ When using ON END with string files saved with SAVE# or
STORE#, several null strings may bz input at the end of the file
before ON END causes a branch. '

For exampie:

10 OPEN OLD "FILLY.TXT® AS #2
20 ON END #2 GOTO 1000

30 INPUT LINE #2,A$

40 PRINT AS

50 GOTO 30

1000 CLOSE #2

1010 END

Line 10 OPENs FILLY.TXT on channel 2.

Line 20 sets the ON END Tine number for channe] 2.

Line 30 INPUTs 2 line from the file.

Line 40 PRINTs the line from the file.

Line 50 causes the program to GOTO 30 for another INPUT.
Line 1000 CLOSEs the file and will only be executed once end
of file is detected.

3.2.57. ON ERROR

Syntax:- ON ERROR GOTO 1inenumber

ON ERROR allows the user to trap errors and carry out whatever
action is reguired. When an error occurs in a program without an
ON ERROR GO TO, or the 1line number given 1is 0, the program
terminates with a message 1ike

ERROR 74 IN LINE 210

When an ON ERROR routine is included, the program will go to the
specified Tine when an error occurs. The error number is saved in
ERR and the line number on which the error occurs is saved in
ERL.  The ON ERROR statement must be executed prior to the Tine
causing the errors. After an ON ERROR routine, control is passed
back to the main program with a RESUME statement.

80



For example:

10 ON ERROR GO TO 1000

200 FOR 1%=1 TO 300

210 READ A(1%)

220 NEXT 1%

230 REM program carries on

1000 iF ERL=210 AND ERR=91 THEN RESUME 230 ELSE
RESUME 1010
1010 PRINT ERR,ERL

This program READs from DATA 1ists. When all data has been
read inte array A error 91 will occur in line 210. This has
been trapped and processing will resume at line 230. Qther
errors will be reported in line 1010.

The ON ERROR routine does not trap errors within itself.

ON ERROR routines may be tested by simulating errors using ERROR.

I¥ an ON KEY is trapped during an ERROR routine, the ON KEY

routine is not executed until AFTER resumption from the ERROR
routine.

3.2.58. ON GOSUB

Syntax:~ ON numeric-expression GOSUB tinel,line]...

ON GOSUB aliows different subroutines to be called from the same
statement. Control will RETURN to the statement following the ON
GOSUB statement.

For example:

100 ON N GOSUB 110,120,130,140,150
105 REM ....

I N =1 control goes to the subroutine at Tine 110.
= 2 contrel goes to the subroutine at line 120 etc.

ete

If N<Oor N> 5 contro] goes.to the next statement, in
this example, line 105.

Non-integer values for the numeric expression are truncated.

Values less than or greater than the number of items in the 7list
Cause the program to continue at the following statement.

81



3.2.59. 0N GOTO

Syntax:- ON numeric-variabie GOTO linel,line]...

ON GOTO is similiar to ON GOSUB except that control is not
RETURNed to the statement following the ON GOTO statement.

I¥ the numeric-variablie has a value less than 1 or greater than
the number of items in the 1ist, then the program continues at
the following statement.

For example:

50 ON N% GOTO 200, 210, 220

60 REM ...
If N% = 1 control goes to the statement at line 200.
If N% = 2 control goes to the statement at line 210.
If N% = 3 contrel goes to the statement at line 220.
If N% < 0 or N% > 3 the program continues onto the 1line
following 1ine 50.

3.2.60. ON KEY

Syntax:~ ON KEY [key-no~11[T0 key-no-2] GOTO [1inenumber]
ON KEY keynumber AS new-value

ON KEY allows the functions performed by specific keys to be
proagramned.

82



Programming the Special Keys

The special keys include the numeric keypad, the cursor keys, the
editing keys and other special purpose keys. These are ail
assigned a special ON XEY number as follows:

Key{s) ON KEY value
Numeric keypad numbers 0-9 0-9
EXIT 10
PAUSE 11
ENTER iz
NEXT _ 13
REPEAT 14
BACK 15
HELP 16
CALC 17
back arrow 18
forward arrow 19
down arrow 20
up arrow 21
INS CHAR 22
DEL CHAR 23
INS LINE 24
DEL LINE _ 25
.« on keypad 26
SHIFT PAUSE 27
e 28
X 25
ExXp : 30

ﬁ 31

The ON KEY procedure works in a similar way to an ON FRROR
procedure in that as soon as the key specified is pressed, a
special routine in the program is performed.  Control must be
returned using RESUME.

During the ON KEY routine the ON KEY vaiue of the key pressed is
in KVAL. To turn off the ON KEY interrupt use:

ON KEY [key-no-11 [TO key-no-2] GOTO ¢

For example:

20 ON KEY 12 G0 TO 1000
30 REM other_statements

1000 CLS
1010 RESUME

This would cause the program to clear the current screen
whenever <ENTER> was pressed. The program would RESUME
normal operation at the statement following that during
which <ENTER> was pressed. The Keyboard is checked after
every statement,

83



For exampie:

20 ON KEY 10 GO TO 1000

1000 RESUME

This disables the <EXIT> key. The ON KEY routine at line
1000 does nothing except continue when the <EXIT> key is
pressed.

For example:

10 DIM a%{9)
15 count = 0
20 ON XEY 0 TO 9 GOTC 1000

1000 a%{count) = KVAL

1010 count = count +1

1020 IF count > 9 THEN ON KEY 0 TO 9 GOTO O
1100 RESUME .

This routine allows up to 10 numeric keys to be pressed
during other processing. The vaiues of these keys are stored

in the array ak. When 10 keys have been pressed, the ON KEY
is switched OFF.

The whole keyboard may be trapped by ON KEY by omitting' the
key-number.

For example:

20 ON KEY GO TO 1000

1000 IF KVAL < 65 OR KVAL > 90 THEN RESUME

In this case KVAL contains the ASCII value of the key
pressed.

In this example, whenever any key is pressed, the ON KEY
routine fs executed. In line 1000, if the key pressed is not
a capital letter, processing continues. Note ON KEY GOTO ©
resets the whole keyboard trap but not the special key trap.

Changing the ASCII values of the numeric keypad

ON KEY may also be used to assign a new ASCII vaiue to the keys 0
to 9 of the numeric keypad.

84



For example:

It is required to. enter from the keyboard the teletext
characters 1/4, 1/2 and 3/4 as these are not on the
keyboard. The numeric keypad numbers 1, 2 and 3 are assigned
for entering these characters.

20 ON KEY 1 AS 123
30 ON KEY 2 AS 92
40 ON KEY 3 AS 125

If a KEY is trapped during a KEY, SEC or ERROR routine, the ON
KEY routine for that key is not executed until after resumption
of the main code foliowing completion of the routine. Multiple
KEY traps are stacked.

3.2.61, ON SEC

Syntax:~ ON SEC [intervall GOTO 1ine-number

- ON SEC acts in a manner similar to ON ERROR or ON KEY except that
the ON SEC routine is performed at specified time intervals. The
Cinterval is specified in seconds.

For exampie:

100 ON SEC 5 GOTO 1000

1000 PRINTG(0,32)TINES;
1010 RESUME

buring this program, the time would be displayed every 5
seconds on the top line of the screen.

3.2.62. QPEN

Availability:- Not available in Standalone mode

Syntax:- OPEN OLD [RANDOM [{record-iength)1] "filename"
AS [#]channel
OPEN NEW.- TBACK] TGRAPHI [RANDOM[{record-length)]]
"filename" AS [Flchannel :

In general before a file may be used in BASIC, it must be OPENed.
Sequential files are either written from beginning to end ( NEW )
or read from beginning to end { OLD ), whereas RANDOM files may
be read or written in any order and may previously exist or not.
Sequential files are accessed using PRINT# and INPUT#. For RANDOM
files, a record length (an expresion yielding an integer between
1 and 252) may be specified. PUT and GET then refer to buffers of
this length rather than 252. . :

- 8b



A BACK option is available when a NEW file is opened. If BACK is
not specified and the specified file already exists, then it will
be detfeted. If BACK is specified and the specified file already
exists then it will be renamed with a .BAK extension { if a .BAX
file with the same name also exists it will be deleted ). If the
NEW file is not written to, only the .BAK file will exist.

If the GRAPH option is specified when opening a sequential file,
space compression will be turned off.  This mode is necessary if
control characters are tc be input or cutput. The GRAPH option is
onty allowed to be used with seguential files. Conirol characters
can be input and output from RANDOM files without any special
considerations.

t is possible to have up to 12 files open (for both read and
write) at any given time. The OPEN statement associates the
specified file with an input/output channel. :

The # is optional before the channel number.
For example:

10 QPEN NEW YAABAY AS 7

20 A$="DDY : B=%.2 : £%=99
30 PRINTE7,AS,",".B,",",0%
40 CLOSE 7

50 QPEN OLD “AAAA"™ AS 2

60 INPUT#2,WS,X,Y%

70 PRINT WS,X,Y%

80 CLOSE 2

The display shows:
DD 9.2 99

Line 10 OPENs a new file on channel 7.

Line 30 PRINTs data inte the file.

Line 40 CLOSEs the fife on channel 7.

Line 50 OPENs an existing file on channel Z.
Line 60 INPUTs data from the file.

Line 70 PRINTs the cata on the POLY screen.
Line 80 CLOSEs the file on c¢hannel 2.

The variable names are not stored with the data. Default
extensions are the working drive and .DAT .  Channel numbers may
be variables or expressions with & value between 1 and 12
inclusive.

Random files must be OPENed with the RANDOM option. Random files
are accessed using GET# and PUT#.

The use of PUT# and GET# 1s shown in the foiloﬁing example.
For example:

10 OPEN OLD RANDOM (20) "EXAMPLE" AS 11

20 GET#11,RECORD 2

30 FIELD#L1,5 AS AS$,1ib AS BS

4G PRINT AS%;BS

86



50 LSET A$="AAA"
60 LSET B$="BBB"
70 PUT#11,RECORD 2
80 CLOSE 11

The old file EXAMPLE.DAT is opened, record 2 is read into
the buffer and the fields within it are defined. Strings
A$ and B$ are printed then new data is moved to them in the
buffer. Then the whole contents of the buffer is PUT back in
to the same record on the disk. Lastly the file is closed.

NOTE (i) If no data is written to a new seguential file before it
is closed, then when it is CLOSEd {by CLOSE or END) it wil]l
be removed from disk. If no data is written to a new random
file before it is closed, it will exist. '
{11} GET and FIELD may be used with sequential files (but
not PUT).

3.2.63. POKE

Syntax:~ POKE address, numeric-expression

POKE stores a single character integer value at the specified
address.  The address must be between 0 and 65535.  The
numeric-expression must have a value betwean 0 and 255 inclusive.
See DPOKE.
For example:

POKE 1161,1

This puts the value 1 into address 1161.

3.2.64. PRINT

Syntax:- PRINT print-list

The print-1ist is a 1ist of items to be printed.  PRINT causes
items in the print-list to be displayed starting at the current
PRINT position. This position may be varied by the punctuation in
the PRINT statement. ? may be used as an abbreviation for PRINT.

No punctuation after an item causes the current position to move
to the start of the next line.

For example:
10 PRINT "AAAY
A comma after an'item causes the next item’to be PRINTed starting

in column 0,8,16,24, etc {whichever is the next column). ~ On the
sCreen, column 40 is the same thing as column O of the next line.

87 -



For example:
20 PR:{NT Hoﬂ ,“8“ ,“16“ ’H.24H ’l|32n

This displays the numbers each starting in the given column.
i.e.

¢ 8 16 24 32

' g_semi*coion after an item causes the next item to be PRINTed
immediately following the previous one.

For example:
30 PRINT "A“;“B“
This will display
AB
with no spaces betwean.
An exclamation mark causes the next data to be printed on the

next 1ine starting in the same column as the start of the last
data printed.

For example:

20 PRINT®(10,10)"Line 1%}
30 PRINT"Line 2"!
40 PRINT "Line 3"

would be printed as, starting on line 10, in column 10.

Line 1
Line ¢
Line 3

Commas, semi-colons and exclamation marks may be mixed in a
singie PRINT statement.

Numbers are printed with one trailing space, and one Jleading
space uniess this is filled with & minus sign. All strings,
including '‘number' strings, have no leading or trailing blanks.

For example:
100 X$="ABC" : B=4.2 : C%=-7
110 PRINT X§ : PRINT B : PRINT C%
120 PRINT X§,8,C%
130 PRINT X§;B:C%

This program displays:

ABC

4.2

7

ABC 4.2 ~7

ABC 4.2 -7

88




3.2.65. PRINTE

Syntax:- PRINT®(row,column)[,Iprint-1ist

PRINTE specifies the point where the PRINTing starts. The rows
are numbered from 0 to 23, and the columns from 0 to 39. When
printing on row 23 a semi-colon is necessary to stop scrolling of
the screen.

For example:
10 X=555
20 PRINT@(10,4)"X =";X
30 PRINT@({23,0)"This is the bottom line";
This displays: "X = 555" starting at position (10,4); and
“This is the bottom 1ine" starting at position (23,0}.

3.2.66. PRINT USING

Syntax:- PRINT USING string, print-list

PRINT USING uses various special strings to format the data
displayed. The string is an image of the required output, but

‘with special characters in place of the actual characters. The

print list is similar to that of the PRINT statement. Literal
Characters, i.e. ones that are not special, may be inserted in
front of the string of special characters. Special characters

are: 1,7 ,#,8,%,!, and sometimes a comma.
For example:
10 PRINT USING"! ! !" "Joe","E","Bloggs"
This prints the initial letters with a single space between
each pair. f.e. J E B. The "!" denotes a single character
string field.

20 PRINT USING"!:1!",“Joe","E","Bloggs"

This prints the initial letters without spaces. i.e. JEB

30 PRINT USING"%1234%","ABCDEFGH"

This prints the first 6 letters of the string i.e.  ABCDEF.
The pair of "%"'s denote a string field with a length equal
to the total length of the image string. The middle
characters are arbitrary.

40 PRINT USING"####. 284", 123.4567
This prints 123.457 in a total field width of 8. The "4

characters denote a number field. Decimal points are lined
up and the number is rounded to fit the format.

89



NOTE:
sign

50 PRINT USING"$###.##",-9.87

This prints § ~9.87 4in a total field width of 7 {(a dollar
sign, up to 3 digits, one of which may be used for a minus
sign, a decimal point and 2 digits).

50 PRINT USING"$S##. #4" -0.87
This prints -$9.87 i.e. the dollar sign is moved right to be
immediately in front of the first digit when two dollar
signs are used. "$$#4.#4" will handle numbers up to 999.99,
Just as "S##4.##" will, the second dollar sign acts as a ”#“
in reserving space for a digit.

60 PRINT USING"S$S###.#4-",-10.1234
This prints $10.12- .

70 PRINT USING"**###,#",1.23

]

This prints ****1.2 . Two asterisks cause all leading spaces

to be filled.

70 PRINT USING"*#*g## " .1.25

This prints ***-1.3,

80 PRINT USING"$**##4, ##" 67.89
This prints §%%%67.89 . The $ 4is a 'literal' character
preceding the asterisks.

S0 PRINT USING"###,#.44",2345.67
This ?rints 2,345,687 . A single comma embedded somewhere in

the numeric field will causs the number to be printed out
with commas separating every three digits.

100 PRINT USE&““T.##F ??f”,123%56

This prints 1.235E+05. Four uUp arrows are needed after the
numeric field to print in scientific notation.

If the number is too big to fit into a given format a %
will be printed followed by the number in a format as close

as possible to that specified.

90



3.2.67. PRINT® USING

Syntax:- PRINT@(row,célumn} USING string, print-list

PRINTG may be combined with USING. Refer to PRINT USING.

For example:

10 AS="### ##" : X=4.5
20 PRINT®{10,15)USING AS,X

This will print 4.50 in row 10 with the decimal point in
column 18. :

3.2.68. PRINT#

Availability: Not available in Standalone mode

Syntax:- PRINT#channel, print-list

PRINT# outputs the data specified to a sequential access disk
file. The print-list format is as described in PRINT.

For example:
10 OPEN NEW"ARAA™ AS &

20 PRINT#5 A$,",“,B,”,”,C%
30 CLOSE 5

Be careful to insert “," between variables if the file is to be
read using INPUT, because INPUT expects commas to separate
fields. This is very easy to overiook.

Note that channel 0 corresponds to the screen.

3.2.69. PRINT# USING

Availability:- Not available in Standalone mode

Syntax:- PRINT#channel, USING string, print-list

PRINT# may be combined with USING. Refer to PRINT USING and
PRINT#.

For exampie:
10 OPEN NEW"AAAAM™ AS 5
20 A=1 : B=23.456 : C=206
30 PRINT#5, USING "$###.##", A,",",B,",".C
40 CLOSE 5

Be careful to insert "," between variables if the file is to be
read using INPUT.

91



3.2.70. PUT#

Availability

Syntax:- PUT

:~ Not available in Standalone mode

fchannel [, RECORD numeric-expression]

PUT# is used
disk fiie.
RSET must be

For example:

10
20
30
40
50

to PUT data from an I/0 buffer into a random access
FIELD is used to define the buffer area and LSET and
used to place the data in the buffer.

OPEN NEW RANDGM "NNNNN" AS 3
FIELD#3,6 AS G$,5 AS HS,4 AS I$
LSET G$="GG" : LSET H$="HHH" : LSET I$="1IIIII"
PUT#3,RECORD 8 ) -
CLOSE 3 :

This has now PUT into record 8 of fi}e NNNNN'the_data:

"6G

HHH IIII"™

Each time a PUT or GET statement is actioned and the RECORD

number is not

increased by
For example:

10
20
15
30
40
45
50

This PUTs the same three. strings into the f

RECORDs
GET# is used

specified, the RECORD number 1is automatically

one.

OPEN 'NEW RANDOM{i8} "PPPP" AS 6
FIELD#6, 5 AS X§, 6 ASYS, 7 AS I3
FOR N%=1 TO 10

LSET X&="XX" 1 LSET vys="YY"
PUT#6

NEXT N%

CLOSE &

s LSET Z§="77°

£

irst 18 bytes of

1 to 10.

to read the data from the file.

3.2.71. RANDOM

Syntax:- RANDOM

RANDOM generates a new seed for the RND functﬁbn.'Thfs'means that

each time RANDOM is. used,

started.

For exampie:

a‘ new sequence of RND values fis

20 PRINT RND(10)

will always give the same result each time after switching
the POLY unit ON

92



10 RANDCM
20 PRINT RND{10)
ensures that the value is different each time.

3.2.72. READ

Syntax:- READ variable-1ist

READ 1s used to READ data specified in DATA statements and place
it in specified variables. The data must match the variable type.

For example:

300 READ A,B%,C$
500 DATA 32.4,55,AARA

This will take the next 3 items in a DATA list and store
them in variables A, B% and CS. :

Trying to READ DATA items when there is no more data causes an
error. - This may be trapped by using ON ERROR GO TO and testing

for ERR = 81. To use the same data again the RESTORE statement
may be used. _

3.2.73. REM

Syntax:- REM [remarks]

Any text in a REMark statement is ignored by the program and is
used purely for documentation to make the program more
understandable. :
For example:

230 REM Put explanations here ...

240 X%=0 : REM X% counts sheap

3.2.74. RENAME

Availability:- Not available in Standalone mode

Syntax:- RENAME “fiienamel“,“filenamez“

RENAME may be used to change the name of a file on disk. The
default drive is the work drive. The default extension for
filenamel 1is (DAT; the defeult for filename2 is  whatever
filenamel had.

For example:

93



RENAME "1.AAAAY,"1.BBBB.BAS”
RENAME"AB123","AB10CO"

File 1.AAAA.DAT is renamed 1.BBBB.BAS and file ABLZ22.DAT s
- renamed ABLOO.DAT.

3.2.75. RENUM

Availability:- Not available in Program mode
Syntax:-

RENUM [start-Tinel,increment[,first-T1inel-last-1ine]l]]

RENUM will renumber the lines of a BASIC program commencing at
the 1ine number given by the first parameter ( default 10.), and
proceeding fn 1increments as given by the second parameter
( default 10 ).

The last two parameters specify that part of the program to be
renumbered, ( defaults are the actual first line and last line of
the program i.e. the whole program }.

Renumbering will not take place if interleaving and duplication
of Tine numbers would occur. It is not possible to re-order the
program with RENUM, use MERGE 1o do this.

A1l Tine numbers contained within the program are changed to
their corresponding new 1ine numbers. Line numbers within
statements that do not have a corresponding line will be listed
and left unchanged, { they would ultimately give rise 1o errors
when the program is run ).

For example:

RENUM

RENUM 10,5

RENUM 100,10,60,400
Warning:- Use of line numbers in expressions {e.g. in a
comparison with ERL) will not be tocated.

3.2.76. RESET

Syntax:- RESET [{irow,columniy]

RESET switches off the specified pixel. On text screens, RESET
switches off the chunky graphic pixel. (See SET)

For example:

100 RESET 24,26
200 RESET (24,27)

94



3.2.77. RESOFF - RESON

Syntax:- RESOFF or RESON

RESCFF  will allow variable names to  contain sequences  of
characters corresponding to a reserved word, except at the
beginning of the variable name. RESON cancels RESOFF and is set
by default. With RESOFF a variable must be separated from an
immediately following word by & space,.

For example:
With RESOFF, XLEN and AGOTO are valid variable names, LENX
1s not. With RESON none are valid variable names.

3.2.78. RESTORE

Syntax:- RESTORE [1ine-number]

If the same DATA is to be READ in more than once, a RESTORE
statement will allow the program to go to the beginning of the
DATA, or to the first DATA item after the specified tine number.

For example:

200 READ A,B,C

210 READ D,E,F

220 RESTORE 280

230 READ G,H,I

240 RESTORE

250 READ J,K,L

260 PRINT A,B,C,D,E,F,G,H,1,J,K,L
270 DATA 2.3,3.4,4.5

280 DATA 6.7,7.8,8.9

This program reads in the 6 data.items on lines 270 and 280
and assigns them to variables A to F. The data is RESTOREd
to line 280, so G, H, and I take on the values 6.7, 7.8, 8.9
respectively. The data is then RESTORED to the first DATA
statement so J, K, and L take on the values 2.3, 3.4, and
4.5, :

'3.2.79. RESUME

Syntax:- RESUME [1ine-number]
RESUME NEXT
RESUME TTIRE

The trapping of an error, processing of a- trapped key, or expiry
of a certain amount of time are known as interrupts.  Interrupts
may be thought of as occurring at the beginning of a BASIC
statement (i.e. if a statement contains an error, the interrupt
may be thought of as occurring at the beginning of the statement
containing the error).

g5



ON ERROR, ON KEY and ON  SEC  routines are  known as interrupt
routines and RESUME must be used to return control  from Such
interrupt routines.

If the Tine number is omitted or is 0, contro] will be returned
to the point at which the interrupt occurred. For QN ERROR, the
Statement containing the error will thus be re-executed. For ON
KEY and ON SEC, statements will continue to be executed in
sequence.

If a Tine number is specified, then control is returned to the
Tine specified.

If LINE §s specified, then control is returned to the beginning
of the line on which the interrupt occurred. :

If HEXT s specified, then control  is returned to the next
statement. For ON ERROR, the statement containing the error wil]
thus be omitted. For ON KEY and ON SEC, the next statement wil]
be omitted and since this is Tikely to be undesirable, RESUME
NEXT should not be used with ON KEY or ON SEC.

For example:

20 ON ERROR GO TO 300
30 READ AS
40 REM Process data

150 G608 70 30
300 IF ERR=91 THEN PRINT "NO MORE DATA"
310 RESUME 320
320 REM End Data
REM ...
For example:

20 ON KEY 0 60TO 1000
30 REM rest of the program

1000 RESUME

This disables the 0 on the numeric Keypad.

3.2.80. RETURN

Syntax:~- RETURN

When a subroutine ig completed, control is returned to the main
program  with RETURN.  This sends  control to  the statement
following the corresponding GOSUB.

96




For example:

100 GOSUB 2000
2000 REM SUB 2000 STARTS HERE
2060 IF R=99 THEN RETURN

2060 REM rest of subroutine...

3.2.81. RSET

Syntax:~ RSET string-variable = string-expression

RSET is similar to LSET except that the inserted string is right
justified, i.e. it is packed on the left with spaces to make it
fit. Truncation is the same as for LSET.

For example:

10 OPEN OLD RANDOM "FFFF" AS 4
20 FIELD#4, 6 AS AS, 6 AS BS
30 X$="123" : Y$="12345678"

40 RSET A$=X$

50 RSET B$=Y$

60 PUT#4.

70 CLOSE 4

This sets A$=" 123" and B$="123456" 1in the disk file
buffer area. This is then written into the file FFFF.DAT.
3.2.82, RUN

Syntax:~ RUN [“fi]ename“]{1inenumbar3

After LOADing a BASIC source program from disk into a POLY unit
it may be RUN without specifying the filename. Specifying the
filename causes a program to be loaded from disk and started
automatically. The filename extension defaults are .BAC and the
working drive. After a RUN, all screens except screen 1 are
switched OFF and variables are reinitialized.

For example:
RUN | .
Executes thé BASIC program loaded in PﬁLY memory .
RUN"AAAA"

97



Loads the compiled program AABA.BAC from disk and executes
it.

RUN 100

Executes the BASIC program loaded in POLY memory starting at
1ine 100. :

3.2.83. SAVE

Availability:- Not aﬁai]ab?e in Standalone mode

Syntax:- SAVE [BACK] ["filename"] [startlinel-endlinel]

After creating or editing a file (BASIC or TEXT) it may be SAVEd
on disk. If BACK is not specified, any existing file of the same
name will automatically be deleted. If BACK is specified, any
existing file of the same name will be renamed with the extension
-BAK (if one of these .BAK files also exists it will be deleted).
The default drive is the working drive and the default extension
is .BAS from BASIC mode and .TXT from TEXT mode. If a Tine number
range is specified, only those lines will be SAVEL.

For example:
SAVE"1.AAARAA. "
This SAVEs file AAAAAA.BAS on the disk in drive one.
SAVE BACK "XYZ" 100-200

This SAVEs file XYZ.BAS, lines 100 to 200 and renames any
existing XYZ.BAS as XYZ.BAK.

SAVE may be used without a filename if the file has previously

- been LOADed from disk. In this case the user will be prompted
with

Save filename {Y/N) ?

where filename is the name of the file that was LOADed.

3.2.84, SAVE#

Syntax:~ SAVE# channel, string'
SAVER "file-pame”, string

Any string may be saved on disk using the SAVE# statement. Note
that only one string is permitted in the argument iist. In the
first form, the specified channel must have been already OPENed
(NEW). It is possible to write more than one string into a given
channel using more SAVE# statements. In the second form, the
specified file is opened (as a NEW GRAPH file, the old file with
the same name, if any, being deleted) and closed automatically.
SAVE# is especially useful for saving text screens.

98




For example:
20 SAVE# “TEXT1", TEXT$(10,0,44)

Note that strings written onto disk files using SAVE# and STORE#
are preceded by two bytes representing their length.  Also since
such strings may contain control Characters, files should be
GRAPH files.  The LOAD# statement may be used to reload strings
previousiy saved using SAVE#.

3.2.85, SCROLL

Syntax:- SCROLL ON
SCRQLL Efﬁ

If SCROLL is OM, when the bottom of the page 15 reached, during
printing or with the cursor arrow, then all . lines mOYe up one
Tine and the top line is lost. Moving off the top of the screen
with the up arrow causes the lines to SCROLL down.

When SCROLL is OFF, when the bottom of the screen  is  reached,
printing continues at the top of the screen. The cursor arrows
simply move the cursor from the bottom line of the screen to the
top line {or vice versal. S
SCROLL is turned ON on a RUN, CHAIN, CLEAR or NFW.
For example:

100 SCROLL OFF

Rlso see examplies in SPLIT.

3.2.86, SELECT

Syntax:- SELECT screen-number

SELECT sets the current screen for writing. The screens available
are

1 Top Text Screen {24 by 40)

2 Top Graphics Screen (204 by 240)

3 Bottom Text Screen {24 by 40)

4 Bottom Graphics Screen {204 by 240)
> Fine Graphics Screen (204 by 480)

At the start of a program, the current screen is always 1. SELECT
does not DISPLAY the screen.. This must be done with a separate’
command. :

The graphics commands SET, RESET, LINE and DRAW refer to the

current screen. If the current screen is a graphics screen, PRINT
may still be used to display text. It is placed onto screen 1.

99



At the END of a program, all screens except 1 are turned OFF but
not cleared.

On an error or <EXIT>, all screens are left exactly as they are.
Commands may be typed in and these are displayed on screen 1, but -
if the current screen is screen 3, the displays they produce are

placed on screen 3.

For example:

10 CLS
20 SELECT 2

30 CLS

40 DISPLAY 2 |

50 COLOUR 1 7
60 LINE 0,0,0,239,203,239,203,0,0,0 |
70 PRINT@(10,10) "SCREEN 1"

80 GOTO 80

Line 10 clears screen 1

Line 20 selects the graphics screen 2

Line 30 clears screen 2

Line 40 displiays screen 2

Line B0 selects the colour rad

Line &0 draws a box around the screen in red on
screen 2

Line 70 prints on screen 1, the words SCREEN 1

Line 80 loops so that display is not turned off

The use of screen 4 reduces the available program memory. If
creen 4 i3 selected late in a program it may be found to have
‘noise’ on it since the memory space was already being used as a
working area. Either select screen 4 at the start of the program
or clear screen 4 with CLS immediately after selection.

'3.2.87. SET

Syntax:- SET [(Jrow,columnl)]

SET switches on the specified pixel on the current screen. On
graphics screens, the pixel is turned on in the current colour.
If the colour is a secondary colour, the specified pixel is alsc
turned on in the other graphics screen.  MIX must be ON and both
screens 2 and 4 dispiayed for this to be displayed in the correct
colour (See COLOUR and MIX). '

On text screens, a teletext graphics control character must have
previously been placed on the start of the Jline. If this is
missing the character equivalent of the graphics character is
displayed. The colour is as ;set up in the graphics control
character. _

For pixels to be displayed usih§ SET

Rows should be between 0 and 71 for screens 1 and 3.
Rows should be between O and 203 for screens 2, 4 and 5.
Columns should be between 2 and 79 on screens 1 and 3.
Columns should be between O and 479 on screen 5.

100




For example:

100 CLs

110 FOR row = 0 TO 23:PRINT®(row,0)" LU INEXT row
120 SET 15, 20

130 SET (64,70)

140 SELECT 2:CLS:DISPLAY 2

(150 SET (120,230)

160 COLOUR 1

170 SET 121,230

Line 110  prints graphics  green  control characters
on screen 1

Lines 120-130 set points on

Line 140 selects, clears and displays screen 2

Line 150 sets a point on in WHITE

Line 160 sets COLOUR to red

Line 170 sets a point on in RED

3.2.88. SOUND

Syntax:- SOUND[pitch [, length]]

SOUND without parameters prodices & beep. With parameters, SOUND
produces & pitched sound of the specified length. The parameter
"pitch" should be calculated as {602400/frequency)-1 e.g. to get
a 200Hz frequency for- 1 second you  could write  "“SOUND
(502400/200)-1,100" or "SOUND 2511,100". Equivalent musical note
values are given in Appendix 4.5. The Tength must be specified in
10 miitisecond lengths. ‘

For example:

10 C=1519:G=1281:A1=1141:B1=1016:C1=959

100 SOUND ¢,50
110 SQUND C,50
120 SOUND 6,50
130 SOUND G,50
140 SCUND A1,25
150 SOUND B1,28
160 SOUND C1,25
170 SOUND Al,25
180 SOUND 6,100

This plays the first line of “BAA BAA BLACK SHEEP".

101



3.2.89. SPLIT

Syntax:- SPLIT number-of-lines!,cursor-action]

Each of the text screens may be spiit into 2 independently
scrolling screens.

The number-of-lines specifies the number of Tlines in the top
section of the screen.

The cursor-action, if specified must contain either 0 or 1. 1f
this is 0 or not defined, then the cursor is left in place after
each PRINT. iIf 1 is specified, after each PRINT, the cursor is

returned to the top section of the screen to where it was after
the Tast PRINT.

For example:

100 CLS @ SPLIT 10
110 GOSUB 200

120 PRINT@(10,0);
130 GOSUB 200

140 END

200 FOR I = 0 TO 20
210 PRINT I

220 NEXT

230 RETURN

Line 100 splits the screen

Line 110 Prints the numbers 0 to 20 in the top section

Line 12C moves the cursor to the top line of the bottom
section

Line 130 Prints the numbers 0 to 20.  This shows the
independant scrolling of the two sections. If the line

105 SCROLL OFF

is inserted, then the return to the top of each section can
be seen.

With a split screen, CLS only clears the section of the screen on
which the cursor is currently placed.

For example:
Add the line
135 CLS

to the program in the above example and only the bottom
section of the screen is ¢lcared. _

For example:

100 CLS : SPLIT 23,1
110 FOR' T = 0 70 100
120 PRINT 1

130 PRINT@(23,0) I,
140 NEXT 1

102



Line 100 clears the screen, placing the cursor in {0,0) and
then splits the screen specifying that the cursor is to
return to the top section. In the loop (lines 110-140), the
number is printed in the top section and then in the bottom
section. Following the PRINT®(23,0) in the bottem section,
the cursor is returned to its position in the +tfop section
for the next PRINT in line 120.

On a RUN, NEW, CHAIN or CLEAR, SPLIT is reset to SPLIT 24,0.
3.2.90. ST0P

Syntax:- STCP
The program terminates and a STCP AT LINE message will be
displayed. The program can be restarted from just after the STOP
statement with a CONT command.  STOPs are useful for diagnostic
purposes.
For exampie:

250 IF X=10 THEN STOP ELSE PRINT X

If X = 10 the program will halt dispiaying STOP AT LINE 250.

3.2.891. STORE

Availability:- Not availabie in Standalone mode

Syntax:- STORE (rl,cl),{r2,¢2} string-name
STORE ( ri,cl),(r2,c2)#channa1
STORE(r1,ci),{r2,c2i% file-name"

STORE allows a rectangular area of a graphics screen to be stored
in a string and then be redrawn anywhere on ‘the screen using
either DRAW or FILL. It will store the rectangle between ri,cl
and r2,c2 either in the string named, in the NEW file opened on
the specified channel, or in the file specified { opening and
closing is automatic in this last case ). After drawing a
comp1xcated picture on the screen 1t may be stored and reprinted
anywhere on the screen. _

For example:
1000 STORE {0,0),(20,40) house$
1010 CLS ;
1020 DRAWS{40,100) house$

Diagrams stored on disk may be retrieved and re-displayed on the
screen by using DRAWF.

For example:

103



10 CPEN NEW "ABC" AS 1
20 STORE (0,0),(20,40)#1
30 CLOSE 1

40 CLS

50 OPEN OLD "ABC" AS 2
60 DRAW#2

70 CLOSE 2

3.2.92. SHAP

Syntax:- SWAP variablel, variablel

SWAP exchanges the values of two variables of the same type 1i.e.
2 strings or 2 reals or 2 integers.

For example:
10 SWAP A3,BS

This exchanges the contents of the two strings.
3.2.93. TEXT

Syntax:- TEXT

TEXT is used to enter TEXT mode sc that text files may be edited.
rollowing a TEXT command an option to SAVE a Jloaded file s
given.

Normally after entering TEXT mode an AUTC or a LOAD command would
be used. If the AUTO command is given 1lines of text may be
entered one after the other. Line numbers wiil not be displayed
on the screen. Once the text has been entered, a null line will
exit AUTO mode. A LOAD command will cause the specified file 4o
be loaded . LISTing a file in TEXT mode will display line numbers
but these are not really part of the fiie they are for use in
editing, { e.g. overwriting existing jines and deleting lines ).
Lines may be added by using line numbers. A SAVE command in TEXT
mode causes the program to be stored on disk without Tline
numbers.  To return to normal BASIC mode, use the BASIC command.
In TEXT mode, defaults for SAVE, LOAD and MERGE are .TXT .

After each Tine press <ENTER>,

For example:
TEXT
Ready
AUTO
program SHOW(INPUT, OUTPUT)
begni
watch {'TEST PROGRAM')
end.
<null line to exit AUTO mode.»

104



LIST -

10 program SHOW(INPUT, OUTPUT)

20 begni

30 watch ('TEST PROGRAM')

40 end.

20 begin
<Will fix this one>

35 WatCh ( I kgdkkhhkdrrrs | }
<Will add a line>

SAVE"TEST.PAS" |
<Wi1l save the program without 1ine numbers.>

LOAD"TEST. PAS"
<Will load it again>

BASIC
<Goes to BASIC>

Ready
BOS <Goés to DOS>
Dos

3.2.94. TROFF

Syntax:- TROFF

This turns the TRace OFF. See TRON.
3.2.95. TRON

Syntax:- TRON

TRON turns the TRace ON.  The trace displays the line numbers as
the program is executed and can be useful during debugging. When
the trace is on, text will scroll out of sight but fine graphics
will not.move. Use the <PAUSE> key and <SPACEBAR> to examine the
execution of the program 1ine by Tine. These numbers are printed
one after the other, from wherever the cursor happens to be.

For example:
The screen might appear as follows:
<1500><1501><1502><400><401><402><1503>

The program has gone to and returned from a subroutine at
Tine 400. _

105




3.2.96. UNLOCK

Availability:- Not available in Standalone mode -

Syntax:- UNLOCK#channel

UNLOCK causes the random file
to be "unlocked", i.e. it may

3.2.97. WAIT

Syntax:- WAIT length

WAIT suspends the program
mitlisecond intervais.

For example:
120 WAIT 100
suspends the program for

Interrupts occurring during a
of the next statement.

attached to the specified channel
be accessed by other users.

£

for the specified number of 10

second.

[

wait are gqueued until the beginning




4. APPENDICES

4.1. ERROR MESSAGES

NUMBER MEANING

EXIT key pressed

I1legal file request

The requested file is in use

The file already exists

File could not be found

System- directory error

System directory full

A1l disk space has been used

End of file error

Disk file read error

Disk file write error

File or disk is write protected
File is protected, access denied
Itlegal file control block specified
I1legal disk address encountered
I1legal drive number specified
The disk drive is not ready

Fite is protected, access denied
File not opened in the correct mode
Data index range error

File management system inactive

PO bt b Fd bed et b bk fent et 3 ‘
QWSO WM OO0~ P N O

21 Invalid filename syntax

22  File close error

23 Sector map overflow, the disk is too segmented

24 = Non-existent record number specified’

25  Record number match error or the file is damaged

26  Syntax error in command

27 Lost communications with the disk drive

31 Iilegal software interrupt function

32 Disk drive door was opened while file open for write

33 Cannot lock a sequential file

34 File is locked, access denied

36  Pirated software !

40  Unbalanced parentheses

41  Illegal character in statement

42 Seurce file is not present in memory

43 The Yine is too tong, 255 characters is the limit
44  Syntax error on compile

50 Invalid syntax

51  Invalid syntax in function

52  An invalid character is present at the start of line
53 An invalid statement start

54 An invalid statement terminator

556 A label was expected

56 A numeric result was expected

57 A string result was expected

58 A left parenthesis "{" was expected

59 A comma "," was expected.

60 A right parenthesis ")" was expected

61 Missing or invalid item in expression

107



151

String and numeric expressions mi xed

Too many temporary strings

The array subscript is negative or out of range
Incorrect number of subscripts with array reference
Undimensioned array referenced or misspelt function
The expression result is <0 or >255

a string variable was expected

Different string lengths

RETURN without a corresponding GOSUB

NEXT without a corresponding FOR

RESUME is not in an interrupt routine

Cannot continue, variables have been re-initiaiised
The 1ine number was not found

Auto mode will not overwrite existing Tines

Line number too large

Fatal renumbering error

Arithmetic overfiow has occurred

The real number is too large to convert 1o an integer
Cannot calculate the LOG of zero or a negative number
Cannot calculate the SQR of a negative number
Cannot divide by zero

Argument too large

Argument out of range

Out of data for READ

Data type mismatch in PRINT USING

111egal format-string in PRINT USING

Attempt to access outside texi screen ared

SWAP arguments must be the same type of variable

An invalid paramster in a SWI or USKR function call
The array has already been dimensioned

The FN function has not been defined

The array dimension was negative or too Targe

The clock is not running

No room for stack, program is too large for memory
The memory limit has been set too low or 100 high
Not enough room for a new string or array
Non-numeric data in input

Number input is toc large for integer variable
Number input is too large for integer variable
Specified file is not a compiled file

An invalid channel number was specified

The specified channel was noi open

The specified channel is already in use

Invalid use of the FETCH statement

Compilted files cannot be merged

sum of field sizes exceeds the declared record size
I11egal DOS command from BASIC or TEXT mode

Cannot access vandom files with sequential methods
Sequential files cannot be accessed by random methods
Random or graphic files cannot have a .PRT extension
A graphics screen has not been selected

Cannot use a null 'string for graphics

108



4.2. TELETEXT SCREEN CONTROL CHARACTERS

ASCII Decimal Representation Function

Value In Strings
0 @ or space HNot used
1 A or a Starts RED characters
2 Borb Starts GREEN characters
3 Corec Starts YELLOW characters
4 Dord Starts BLUE characters
5 Eore Starts MAGENTA characters
6 Forf Starts CYAN characters
7* Gorg Starts WHITE characters
8 Horh Starts FLASHING
g9 * Iori Ends FLASHING
10 J or j Not used
11 K ork Not used
12 * L oor ] Normal height
13 Morm Double height (see below)
14 N or n Shift into ASCII characters
15 * 0oro Shift into Teletext characters
16 Porp Reverse video on '
17 g or g Starts RED graphics
18 Rorr Starts GREEN graphics
19 Sors ‘Starts YELLOW graphics
20 Tort Starts BLUL graphics
21 Uoru Starts MAGENTA graphics
22 Vory Starts CYAN graphics
23 Worw Starts WHITE graphics
24 X or x CONCEAL display om rest of line
25 * Y ory LContiguous graphics
26 Zorz Separated graphics
27 * - Or Reverse video off
28 * Y% or < No background to characters
29 - or = Set background to current colour
30 tor > Print graphics characters over
control characters
31 * 4 or ? Print space for control characters

EACH CHARACTER MUST BE PRECEDED BY A .

To include a single {l in a print string useli{l.

Each of the control characters takes up ONE screen position
except the reverse video on and off characters and the shift
characters for ASCII. ‘ :

All control characters are reset at the beginning of each line to
those with an * beside them. Reverse video is switched off at the
end of each PRINT. '

The control characters in strings are always converted to the
first of the two options listed above, i.e. "“[la" is converted to
!.l :_AN .

DoubTe height may be used on screen 1 but not screen 3. Double
height characters extend down to the following line. If double
height is used anywhere on a line the following 1line is not
displayed. Anything printed on screen 3 "behind" a 1line
containing a double height character will be displayed in normal
height on both rows.

1G9



T

4,3. ASCII SCREEN CONTROL CHARACTERS

ASCII Decimal Function

Value

0 Not used

1 Insert character

V4 Delete character

3 Not used

4 Hot used

5 Scroll up

6 Scroll down

7 BEEPs the speaker

8 Moves cursor 1 space to the LEFT

9 Moves cursor 1 space to the RIGHT
10 Moves cursor 1 space DOWN and scrotl
11 Moves cursor 1 space UP and scroil
12 Clears screen and moves cursor to  HOME

position (0,0)

13 Moves cursor to start of screen line
14 Not used

15 Starts TELETEXT characters

16 Reverse yideo on

17 Not used

18 Not used

19 Not used

20 Not used

21 Not used

22 Not used

23 Not used

24 Mot used

25 Not used

26 Not used

27 Reverse video off

28 Not used

29 Not used

30 Clear to end of 1ine

31 Initialise line editor

NOTE

To use ASCLI screen control characters, they must be preceded by
Teletext control character 14 {Shift In} and followed by Teletext
control character 15 {Shift Qut).

110




4.4. SPECIAL FUNCTION KEYS

Function Key ON KEY Value  ASCII Decimal value

Numeric keypad 0 0 48 *

1 1 a9 *

2 2 50 *

3 3 51 *

4 4 52 *

5 5 53 =

6 6 54 *

7 7 55 *

8 8 56 *

- 9 5 57 *
Numeric keypad . 26 46
EXIT 10 26
PAUSE 11 28
ENTER i2 13
NEXT 13 19
REPEAT 14 20
BACK 15 21

HELP 16
CALC 17

- 18 08
- 18 09
v 20 24
t 21 25
CHAR INS 22 01
CHAR DEL 23 02
LINE INS 24 17
LINE DEL 25 18
SHIFT/PAUSE 27 27
8 28 64

£ : 29 35
$ or EXP 30 54
o _ 31 124

The function keys marked with * may be assigned "soft key" values
by using ON KEY <exp> AS <exp>

e.g. ON KEY 4 AS 16

This assigns a new ON KEY value, key 4 now “looks Tike" a key
with the ASCII value of 16.

The HELP and CALC keys cannot be tested by checking their ASCII
- values. To disable or trap these keys use QN KEY.

111




4.5, SOUND FREQUENCIES AND THE MUSICAL SCALE
This scale has the A above widdle C defined as having a frequency
of 440 Hz. N1 is the 'pitch' value to be used with the SOUND
statement.

Note Freqg N1 Freg N1
A 55 9134 880 570
A# 58 8621 932 538
B 62 8137 588 508
C €5 7680 1047 479
C# 69 7248 1109 452
3 i3 6842 1175 427
D# 78 6458 1245 403
E 82 6096 1318 380
F 87 5753 1397 359
F# 92 5430 1480 338
G 98 5126 1568 319
G# 104 4838 1661 301
A 110 4566 1760 284
A# 117 4310 1865 - 268
B 123 4068 1976 253
C 131 3840 2083 239
C# 139 3624 2217 226
3 147 3421 2349 213
D# 156 3229 2489 201
E 165 3047 2637 190
F 175 2876 2794 179
F# 185 2715 25960 169
G 196 2562 3136 158
G# 208 2418 3322 150
A 220 2283 3520~ 147
A# 233 2154 3729 134
B 247 2033 3951 126
Cimiddle) 262 1818 4186 119
C# 277 1812 4435 112
D 254 1710 45659 106
D# 311 1614 4978 100
E 330 1523 5274 54
F 348 1438 5588 89
F# 370 1357 5920 84
G 392 1281 6272 7
G# 415 1208 6645 75
A 440 1141 7040 70
A# 466 1677 7459 66.
B 494 1016 75902 63
C 523 959 8372 59
C# 554 905 8870 56
D 587 854 9357 52
D# 622 806 9856 49
£ 659 761

F 698 718

F# 740 678

G 784 640

G# 831 604

112




4.6.

TELETEXT CHARACTERS AND GRAPHICS

ASCIT ASCII ASCIT |

DECIMAL  CHAR-  GRAPHICS |DECIMAL  CHAR- | DECIMAL  CHAR-  GRAPHICS

VALUE  ACTER VALUE  ACTER | VALUE  ACTER
32.  SPACE [ 64 & 96 - [d
33 s H 65 h 97 : s
34 n 66 B 98 S
35 £ n 67 C 99 e B
36 $ 3l 68 D 100 i B
37 % E] 69 E 101 e &
38 & E 70 F 102 f o
39 ' 2 71 6 103 g 2
40 ( E 72 H 104 h I
41 ) e 73 1 105 i 1}
42 . L 74 J 106 j I
43 + = 75 K 107 k &
a4 , = 76 L 108 1 =
45 - B 77 M 109 m =
46 : B 78 N 110 N B
47 / i 79 0 111 o g
48 0 £l 80 p 112 P b
49 1 4 81 Q 113 9 i)
50 2 hy 82 R 114 r ks
51 3 ! 83 S 115 s =
52 8 B 84 T 116 ¢ Ed
53 5 85 U 117 y ol
54 6 B 26 v 118 v 78]
55 7 4] 87 W 115 W E
56 8 & 88 X 120 x pra
57 g & 89 Y 121 y &
£8 2 90 i 122 z =
59 ; 91 < 123 5
60 < 92 % | 124 i =1
61 - 93 > 125 s, B8
62 > 94 4 126 - B
63 ? 95, # 127 e







4.7. DIAGRAM OF POLY KEYBOARD

114







4.8. SCREEN LAYOUT CHART

§ I 1 | | i fe N.N.
rerf U RN OO O N B U A e ] _ . . N

TR RS RN SO S SN N N Y N SO . - SN S N ISV SUMIY N I . -
SN TN RO ISUF DU O B | y
ul

115

E

e

e e

™=

o

O

D

i i i
P1El 21 11 0 4

¢ Y2 s e te

ivdlds
by wb vt et be |/

o
o

ly O€ ¢e 12 ucol wl L1 9161






- 4.9, RESERVED WORDS

Words which are used in POLYBASIC commands, statements or
functions must not be in general included in variable names (see
RESON, RESOFF).  Reserved words may be in either upper or lower
Case, and must not contain spaces.

The following is a 1ist of the reserved words.

116

ABS END LPRINT RND
AND ERL LSET RSET
AS ERR MEM RUN
ASC ERROR MERGE SAVE
ATN EXEC MID$ SCROLL
AUTO EXP MIX SELECT
BACK FETCH MOD SEC
BACKG FIELD NAMES SET
BASIC - FILE NEW SGN
CHAIN FILL NEXT SIN
CHRS FN NOT SOUND
CLEAR FOR OFF SPC
CLOCK FRE OLD SPLIT
CLOSE GET ON SQR
CLS GO OPEN STEP
COLOR GOSUB OR STOP
COLOUR GOTO PEEK STORE
COMPILE GRAPH PI STR
CONT HEX POKE STRINGS
CONVERT IF PCINT SWAP
Cos INCHS POS SWI
CvT INPUT PRINT TAB
CVTF INSTR PTR TAN
DATA INT PUT TEXT
DATES KEY RANDGOM THEN
DEF KILL. READ TIMES
- BEL : KVAL RECORD 70
DIGITS LDESS REM TROFF
DIM LEFT$ RENAME TRON
DISPLAY LEN RENUM UNLOCR
DIV LET ReESET USING
DOS LINE RESOFF USR
DPEEK LIST RESON VAL
DPOKE LOAD RESTORE WALT
DRAW LOCK RESUME
DRIVE LCG RETURN
ELSE LOGOFF RIGHTS







