POLYBASIC
MANUAL

POLYBASIC
MANUAL

Version 3.0

. November 1984

LR T

A dE Foe &L o rTFEo S VT, WWEREFWRR NPEEEOE pavenw
SRATEAER ARAERSE LUR baw maR PRRSENR KBadTEw PARNSAE [T EE e
AWE Rk E ynd S¥N heA Ak aek Hkd IdE: kuw Nu® TRY A yaa wd
EERE AL seh AEE Fan Fehvany WE: Fh sma d8g REAXANS LAt i Ld
SHTHL AP phd HkR ARE apdhaur SR BaE hak AekbAd grahes
PSR E g mmm wan TEAYD RN Ewk AdE AR A AFRRRSE poebdn
L ad Tha BhkR mad R AL RES QWK NAE NRE EWR gxa
i SREERAE FhEAWEA bag ERGRatA ewhbsdd ARE Akd pwa
v kA Edt saAEAD xwn GEAwAAL RN RTRE DA KEE kmp
“ea CATBE AEEAEE 4aa rhwae wwhtw AR XE AR

The material presented in this document
has been expressly prepared by POLYCORP
New Zealand Limited.

No part of this publication may be
reproduced, stored in a retrieval
system, transmitted in any form or by
any means, electronic, mechanical,
photocopying, recording or otherwise
without prior permission of POLYCORP
New Zealand Limited.

COPYRIGHT OCTOBER 1984
POLYCORP NEW ZEALAND LIMITED

Progeni House, 14/18 Pretoria Street
Telephone (04) 693-302, P.O. Box 30-243, Lower Hutt
Telex PO LHT NZ3740 Attn Progeni

CONTENTS

THE POLY SYSTEM

1.1. SYSTEM MODE

1.2." STANDALONE MODE

1.3. THE POLY KEYBOARD

1.4, THE POLY SCREENS

1.5, SWITCHING ON

1.6. DESCRIPTION CONVENTIONS

PROGRAMMING IN BASIC

2.1. IMMEDIATE MODE

2.2. PROGRAM MODE

2.3. CONYENTIONS

2.4, THE POLY EDITOR

2.

2.

4,

4

1.

.4.8.
.9.

Entering new lines

. Using the AUTO command

. Looking at lines already entered
. A]tering Tines

. Deletion of lines

-b. Renumbering of lines

. Saving the edited file on disk

Loading files from disk

Merging files from disk

.10. Deleting the file being edited

2.5. COMPILED POLYBASIC

2.6. STORAGE AND RETRIEVAL OF FILES (Summary)

PAGE

10
11
12
13
14
14

2.7.

YARIABLES

2.7.1. Floating Point Variables

2.7.2. Integer Variables
2.7.3. String Yariables

2.7.4. Arrays or Tables

.8. LITERALS AND CONSTANTS

2.59.

2.8.1. String Literals
2.8.2. Numeric Constants
TYPES OF OPERATORS

2.9.1. Arithmetic Operators
2.9.2. Relational Operators
2.9.3. Logical Operators

2.9.4. String Operators

. EXPRESSIONS

2.10.1. Functions

. STATEMENTS AND COMMANDS
. FILE CONSIDERATIONS

. MULTIPLE SCREENS

. CHOOSING COLOUR

2.14.1. Text

2.14.2. Graphics
2.14.2.1. Colour Choice
2.14.2.2. Colour Size

. RESETTING THE POLY UNIT AND WARM STARTS
. USING THE CALC KEY
. ERROR MESSAGES

. USING THE HELP KEY

ii

15

16
16
17
17
18
18-
18
19
19
21
21
22
22
23
23
24
24
25
25
25
25
26
26
27
27
28

2.19. DOS COMMANDS

3. POLYBASIC

3.1.

FUNCTIONS

3.1.1.
3.1.2.
3.1.3.
3.1.4,
3.1.5.
3.1.6.
3.1.7.
3.1.8.
3.1.9.
3.1.10.
3.1.11.
3.1.12.
3.1.13.
3.1.14.
3.1.15,
3.1.16.
3.1.17.
3.1.18.
3.1.19.
3.1.20.
3.1.21,
3.1.22.
3.1.23.

ABS
ASC
ATN
CHR$
CLOCK
CoS
CVT
DATES
DPEEK
ERL
ERR
EXP
FILES
FRE
HEX
INCHS
INSTR
INT.
KYAL
LDESS
LEFTS
LEN
LOG

28

28
29
29
24
30
30
31
31
32
33
33

34
34
34
35
35
36
37
37
38

39
40

40

3.2.

3

3.

.1.24,

.1.25.
.1.26.
.1.27.
.1.28.
.1.29.
.1.30.
.1.31.
J1.32.
.1.33.
.1.34,
.1.35.
.1.36.
.1.37.
.1.38.
.1.39.
.1.40.

.1.41
1.42

.1.43,
.1.44,

1.45.

MID$

NAMES
PLEK
P1
POINT
POS
PTR
RIGHTS
RND
SGN
SIN
SQR
STR$
STRINGS
SWi
TAB
TAN
TEXTS
TIMES
UPCASES
USR
VAL

STATEMENTS AND COMMANDS

3
3

Lad

2.1,
2.2,

2.4,

AUTO
BACKG

.3. BASIC

CHAIN

iv

40

41
41
42
42
42

44
44
44
45
45
45
46
46
46
47
47
47
48
48
49
50
50
50
50
51

. CLEAR
. CLOAD

./. CLOSE

8. CLS

.10,

A1

2.12.
.2.13.
.14.
.15,
J16.
17,
.18.
.2.19.
. 2.20.
21,
.22,
.23,
.24.
.25,
.26,
27,
.2.28.
.29,
. 30.
.31,

. COLOR

COLOUR
. COMPILE
CONT
CONVERT
CSAVE
DATA
DEF FN
DEL
DIGITS
DIM
DISPLAY
HIN
DPOKE
DRAW
DRAKW®
DRIVE
ELSE
END
ERROR
EXEC
FETCH
FIELD

51
52
52
53
53
54
56
56
56
57
57
58
5§
58
59
60
60
bl
61
62
62

64
o4
65
65
66

.2.32.

.2.33.
.2.34,
.2.35.
.2.36.
.2.37.
.2.38.
.2.39.
.2.40.
.2.41,
.2.42.
.2.43,
.2.44.
.2.45.
.2.46.
.2.47.
.2.48.
.2.49.
.2.50.
.2.51.
.2.52.
.2.53.
.2.54.
.2.55.
.2.56.
.2.57.
.2.58.

FILL

FILL®
FOR

GET#

GOSUB

GOTO

IF THEN
INPUT
INPUT#
INPUT LINE
INPUT LINE#
KILL

LET

LINE

LIST

LOAD
LOAD#

LOCK
LOGOFF
LPRINT
LSET

MEM

MERGE

MIX

NEW

NEXT

ON END

vi

67

€8
&9
70
7l
71

72
74
74
75
75
76
76
78
78
79
79
79
79
80
80
81
81
82
83
83

.2.59.
.2.60,
.2.61.
.2.62.
.2.63.
.2.64.
.2.65.
.2.66.
.2.67.
.2.68.
.2.69,
.2.70.
L2.71,
.2.72.
.2.73.
.2.74.
.2.75.
.2.76.
2077,
.2.78.
.2.79.
.2.80.
.2.81.
.2.82.
.2.83.
.2.84,
.2.85.

ON ERROR

ON GOSUuB

ON GOTO

ON KEY

ON SEC

OPEN

POKE

PRINT

PRINTE

PRINT USING
PRINT@ USING
PRINT#
PRINT# USING
PUT#

RANDOM

READ

REM

RENAME
RENUM

RESET

RESOFF - RESON
RESTORE
RESUME
RETURN

RSET

RUN

SAVE

vii

84
84
85
85
88
88
90
91
92
82
94
94
95
95
96
96
97
97
97
98
98
98
99
100
100
101
101

3.2.86. SAVE#

L¥8)

.2.87. SCROLL

LA}

.2.88. SELECT
3.2.89. SET
3.2.90. SOUND
3.2.91. SPLIT
3.2.92. STOP
3.2.93. STORE
3.2.94. SWAP
3.2.95. TEXT
3.2.96. TROFF
3.2.97. TRON
3.2.98. UNLOCK
3.2.99. WAIT

APPENDICES
4.1. ERROR MESSAGES

4.2. TELETEXT SCREEN CONTROL CHARACTERS
4.3. ASCII SCREEN CONTROL CHARACTERS

4.4, SPECIAL FUNCTION KEYS

4.5. SOUND FREQUENCIES AND THE MUSICAL SCALE
4.6. TELETEXT CHARACTERS AND GRAPHICS

4.7. SCREEN LAYOUT CHART
4.8. RESERVED WORDS
4.9, ADVICE

viij

102

103
103
105
106
106
107
108
108
105
110
110
110
110

112
112
114
115
116
117
118
119
120
121

1. THE POLY SYSTEM

POLYBASIC incorporates the standard BASIC constructs - (with many
enhancements) and extensions to control the special features of
the POLY 2 Learning System {such as multiple screens, colour and
graphics). This manual is a reference manual which describes the
POLYBASIC programming language.

A POLY operates in either System or Standalone mode.

1.1. SYSTEM MODE

In System mode, each of the POLY units is connected via a
comunications line to a central disk unit on which programs and
data may be stored. Within System mode, the POLY may be in BASIC
mode, TEXT mode or DOS mode. This manual describes BASIC mode.
TEXT and DOS modes are described in the POLYSYS Utilities Manual.
Within BASIC mode the POLY may also operate in courseware mode
when menus are displayed and programs executed depending on menu
selection. Menu operation is described in the POLY 2 Learning
System Manual.

1.2. STANDALONE MODE

In Standalone mode, the POLY is not connected to other units or
any disk unit. Only restricted POLYBASIC is available as the disk
extensions cannot normally be loaded. However, if the optional
Cassette interface is installed in your POLY, it is possible to
Toad the normally disk-based extensions via cassette. See the
description of the CLOAD statement.

1.3. THE POLY KEYBOARD

The POLY keyboard has been specifically designed to handle the
special requirements of educational computing and is described in
detail in the Poly 2 Learning System Manual.

Special keys include:

1. Cursor control keys. These arrow keys may be used to move
the cursor around the screen and are used extensively
when editing POLYBASIC source programs. As well, they may
be programmed to the user's requirements.

2. The character insert and delete keys may also be used to
edit source and are programmable.

3. The line insert key may be used to move lines down the
screen enabling a new 1ine to be entered. The line delete
key may be used to remove lines from the screen {they are
not removed from the file). Both keys are
user-programmable.

4. If the POLY is waiting for input, pressing the <CALC> key
allows calculations to be performed on the bottom 1ine of
the screen.

For example:
2%2 <ENTER> gives 4
To exit calc mode, press the <CALC> key again.

5. The <HELP> key may be used following the display of a
error message to display a more detailed explanation. It
may also be programmed.

6. The <PAUSE> key is used to temporarily stop the operation
of a POLYBASIC program or a listing when using either the
LIST or +LIST command. Operation is restarted by pressing
any key. If the <PAUSE> or the <SPACE> bar is pressed,
the program lines are executed or Tisted one by one.

7. The <EXIT> key halts the current program. Execution may
be restarted from where the program left off by entering
the command CONT. In most teaching modules the <EXIT> key
is trapped and causes the MENU program to be executed.
Pressing the <EXIT> key when paused during a 1isting will
cause the listing to be terminated.

8. The <NEXT>, <BACK> and <REPEAT> keys are used extensively
in the courseware modules and may be programmed as
required.

9. The numeric keypad returns the digits 0 to 9 but may also

be programmed for special functions using both the SHIFT
and CONTROL keys.

1.4, THE POLY SCREENS

The POLY system has the unique feature of multiple screens. These
may be compared to a series of transparencies one behind the
other. There are two text screens, two graphics screens and a
half intensity background screen. The individual screens may be
switched OK or OFF as required, and have a fixed display priority
of 1, 2, 3, 4, Background. Screens 1 and 3 are the text screens
and 2 and 4 are the graphics screens.

The text screens contain 24 rows of 40 characters, the rows being
- numbered 0 to 23 from the top of the screen, and the columns
being numbered 0 to 39 from the ieft hand side.

The Teletext character generator is used to display on the text
screens and the Teletext control character conventions are
therefore followed. '

Control characters are printed onto the screen to achieve colour,
flashing, double height, and chunky graphics. On the text
screens, the chunky graphics have six blocks per character
position and may be set by using special control characters
followed by the printing of one of the characters which has a
chunky graphics equivalent. Individual chunks may be set using
SET and RESET.

The text screens may be SPLIT at any row so that the upper and
lower sections may be used independently, each with its own
scrolling. Alternatively, the scrolling may be turned off.
Specific sections of the screen may be printed using PRINTG.

The graphics screens each contain 204 rows of 240 pixels, the
rows being numbered 0 to 203 from the top of the screen, and the
columns 0 to 239 from the left of the screen (to be consistent
with text screen numbering). Coordinates for all screens are
specified in the order row, column.

Each graphics screen is capable of displaying four colours at a
time. These are either:

Red Blue Green White
ar Red Magenta Yellow White
or Magenta Blue Cyan White
or Yellow Cyan Green White

These colours are selected using the COLOUR and MIX commands.

Finer graphics may be achieved by using screen 5. This combines
graphics screens 2 and 4 and gives 204 rows of 480 pixels. Any of
the 4 colour sets given above are available. The 480 graphics
screen has the same priority as screen 2.

As well as using SET and RESET for displaying particular points

on the screen, LINE, DRAW, DRAWG, FILL and FILLE provide simple
means of displaying more complicated graphics.

1.5, SHITCHING ON

The POLY 2 Learning System Manual describes the setup, start up,
and log on procedures. If the POLY is in System mode (i.e. on the
network) at start up, then after typing any key, the POLY
operating system, BASIC, and a BASIC program called LOGON.BAC
will be Toaded into the POLY from the disk in drive 0 of the
network controller. LOGON.BAC will then be executed.

If the POLY is in System mode at start up and STANDALONE BASIC
appears after typing any key, then enter LOGOFF and wait 5
seconds before attempting to start up again.

If the POLY is in Standalone mode at start up, then after typing
any key, the POLY is placed in restricted BASIC programming mode.

1.6. DESCRIPTION CONVENTIOQNS

In the syntactic descriptions of POLYBASIC

1. language entities are underlined,

2. reserved words are capitalised,

3. optional components are enclosed in square brackets, and

4, - denotes that the last optional component may be repeated
an arbitary number of times.

2. PROGRAMMING IN BASIC

POLYBASIC commands and programs may be entered and run whenever
the yellow prompt Ready or the cursor appears. POLYBASIC commands
and statements may be entered in either Immediate or Program
mode.

2.1, IMMEDIATE MODE

BASIC commands and statements when entered from the keyboard
without a lTine number, are executed immediately the <ENTER> key
is pressed.
For exampie:

PRINT 24 * ¢

prints the answer 144 on the screen.

This statement has been executed in Immediate mode.

2.2. PROGRAM MODE

When a statement is preceded by a line number it becomes part of
a8 program as soon as the <ENTER> key is pressed. This program is
stored in the memory of the POLY unit and is not executed until a
RUN command is entered.
For example:
10 PRINT 24 * 6
does not print out the answer until RUN is entered.

A program is executed in Program Mode.

2.3, CONVENTIONS
1. A program line may contain several statements separated by
colons (:).

2. The maximum length of any 1ine, including the 1ine number,
is 255 characters.

3. Line numbers must be integers between 1 and 65535, and are
delimited by blanks.

4. Execution of a POLYBASIC program starts at the Jlowest line
number (uniess a specific line number is indicated).

5. When writing programs, 1ine numbers are nomally allocated
in steps of 10 or more, to allow later insertion of new
1ines though a renumbering facility is available, if
required.

2.4. THE POLY EDITOR

The POLY system provides a full screen editor which can be used
to edit either BASIC or TEXT files. Files are further described
in the POLYSYS Utilities Manual.

BASIC mode is available whenever POLYBASIC is loaded. The prompt
Ready will appear printed in yellow. The extensions normally used
for BASIC files are BAS and BSC. In BASIC mode Tine numbers are
part of the file. In BASIC mode, whenever a program is edited,
all variable values are reinitialised and any files left open are
closed.

TEXT mode is entered from BASIC or DOS via the TEXT command. The
prompt Ready is always printed in cyan. The extension normally
used for text files s .TXT. In TEXT mode line numbers are not
part of the file, they are added to the 1lines when loading
{starting at 10, with intervals of 10) and deleted when saving.
In TEXT mode 1ine numbers are used to reference lines for
1isting, deleting and inserting.

2.4.1. Entering new lines

A1l new lines are entered with a Tine number at the start which
indicates the position in the file into which the 1ine is to be
inserted. If the line number is omitted the line is treated as an
immediate command. Entering a line is the act of typing the Tine
and pressing the <ENTER> key.

The cursor may be moved back to an incorrect line and the line
corrected. The line is re-inserted into the file on pressing the
<ENTER> key. If <ENTER> is not pressed, the line is only stored
on the screen and is not updated in memory.

2.4.2. Using the AUTO command

The AUTO command is used to save time when entering new lines, it
automatically sets up the 1ine numbers.

Syntax; - AUTO [start-Tine] [,increment]

The start-line is the first line number at which the automatic
numbering will start. If not specified, 10 is used.

The increment is the amount added to each line number to get the
next number. If not specified, 10 is assumed.

For example:
AUTO

starts automatic line numbering at 10 with an increment of
10, i.e. 10 20 30 40 ...

AUTO 100, 200

starts automatic 1ine numbering at 100 with increments of
200, j.e. 100 300 500 ...

In BASIC mode, the next line number is displayed, as soon as
<ENTER> has been pressed for the previous line.

In TEXT mode, the line numbers are not displayed on the screen
but are incremented in memory each time <ENTER> is pressed.

To exit from AUTO mode either enter a null line {i.e. just press
<ENTER> at the start of a new line) or press <EXIT>.

AUTO will not allow the entering of lines with line numbers the
same as those already entered.

2.4.3. Looking at 1ines already entered

The LIST command displays text already entered, on the screen.

Syntax:- LIST [startline] [-] [endline]

Startline and endline refer to the 1ine numbers as entered. If
startline is not specified, then the listing starts at the
beginning of the file. If endline is not specified the " Tisting
will stop at the end of the file. The <PAUSE> is used to halt the
Tisting at any time. To restart the listings, press any key. If
the <SPACEBAR> is pressed following <PAUSE>, then the 1lines are
listed one at a time. If the <EXIT> key is pressed, then the
listing is terminated.

If only the startline number is specified then only that line s
displayed.

For example:
LIST
disp]ays the whole file.
LIST 100

displays only line 100.

LIST 100-
displays all lines from 100 to the end.
LIST -100

displays all lines up to 100.
LIST 100-200

displays Tines 100 to 200 inclusive.

2.4.4, Altering lines

To alter 2 Tine, 1ist it on the screen using LIST, move the
cursor up to the T1ine using the arrow keys, make the alterations
necessary, and press <ENTER>.

While changing a line, the <CHAR INS> and the <CHAR DEL> keys may
be used for insertion and deletion of characters on that line.

<ENTER> may be pressed when cursor is anywhere on the line, it
does not necessarily need to be at the end of the line.

The <LINE INS> and <LINE DEL> keys enable 1ines to be inserted

and deleted on the screen but do not cause changes to the
POLYBASIC program or text file in memory.

2.4.5, Deletion of lines

A Tine may be deleted by either:
(i) entering the line number with no data following it, or
(ii) by use of the DEL command.

The DEL command may be used to either delete individua1 lines or
a group of lines from memory.

Syntax: - DEL startline [-endlinel

The startline must be given. If the -endline is missing, only the
startline is deleted.

For example:
DEL 280
deietes 1ine 280.
DEL 280 - 1000

deletes lines 280 to 1000 inclusive.

NOTE that the following forms are NOT allowed:
DEL 280-

or

DEL -1000

2.4.6, Renumbering of lines

At times, all available line numbers in a particular sequence may
have been used. Alternatively, due to a large number of
insertions and deletions the 1line numbers may be badly
- distributed. In both these cases, it is advisable to use the
RENUM command to renumber the file.

Syntax: - RENUM [startline] [,increment]

Renumbering a BASIC file not orly changes the 1line numbers but
also changes ail references to them 1in GOTO, GOSUB and other
statements. RENUM may also be used to renumber part of a file
{see the description of the RENUM command). :
Renumbering a TEXT file only changes the 1ine numbers.

The startline is the first line number allocated. If not given,
10 is used.

The increment is the amount added to each succeeding line number.
If not given, 10 is used.

For example:
RENUM

renumbers the file from line 10, in increments of 10, i.e.
the new 1ine numbers are 10, 20, 30, 40 ...

RENUM 100

renumbers the file from 100 in increments of 10, i.e. the
new line numbers are 100, 110, 120, 130 ...

RENUM ,100

renumbers the file from 10 in increments of 100, ij.e. the
new line numbers are 10, 110, 210, 310 ...

RENUM 1000,100

renumbers the file from 1000 in increments of 100, i.e. the
new 1ine numbers are 1000, 1100, 1200 ...

2.4.7. Saving the edited file on disk

At any stage during editing, the file may be saved using the SAVE
command. BASIC programs are saved with Tine numbers, TEXT files
are saved without line numbers.

BASIC programs may be saved in two forms, full text form and
encoded text form.Saving and loading BASIC programs in encoded
text form is extremely fast. Note that only the form on disk is
different, both have the same form when Toaded into memory. Only
the full text from of BASIC program may be +PRINTed or +LISTed.
Syntax: - SAVE “"filename"

SAVE

SAVE TEXT "filename"
SAVE TEX]

The filename may specify the extension and the drive number.
The latter two forms are available for BASIC files only.
For example:

SAVE "O.MYFILE.TXT"

SAYE "0.BASPROG.BSC"

SAVE TEXT "D.BASPROG.BAS"

If the drive number is not given then the file is written to the
current drive for that POLY.

A SAVE in TEXT mode always saves the file without 1ine numbers in
full text form. The default extension is .TXT.

A SAVE in BASIC mode always save the file with line numbers in
encoded text form. The default extension is .BSC.

A SAVE TEXT in BASIC mode always saves the file with line numbers
in full text form. The default extension is .BAS.

Following a SAVE, the file is still in the POLY memory and
further editing may be performed.

For example:
SAVE "MYFILE"

If the POLY is in TEXT mode and the current drive is 0, then
the file will be saved on drive O as MYFILE.TXT.

If the POLY is in BASIC mode and the current drive is 0,
then the file will be saved on drive 0 as MYFILE.BSC.

SAVE TEXT "MYFILE"

10

If the POLY is in BASIC mode and the current drive is O,
then the file will be saved on drive 0 as MYFILE.BAS.

SAVE and SAVE TEXT way be used without a file name if the file
has been previously LOADed from disk. In this case the user will
be prompted with

Save filename (Y/N) ?
where filename is the name of the file that was LOADed. The

extension will be .TXT for TEXT mode, .BSC if SAVE is used from
BASIC mode, and .BAS if SAVE TEXT is used from BASIC mode.

2.4.8. Loading files from disk

A file stored on disk is loaded into POLY memory using the LOAD
command. This clears any program or file currently in POLY
memory, and loads the file from disk.

Syntax: - LOAD “fitename"

The filename may specify the drive number and the extension.
For example:
LOAD “1.MYFILE.BAS"
will Toad MYFILE.BAS from the disk in drive 1.

If the drive number is not given, then the file 1is 1locaded from
the current drive for that POLY.

If the extension is not specified then .BSC is used in BASIC mode’
and .TXT in TEXT mode.

When a TEXT file is loaded, 1ine numbers are added, starting at
10 and incrementing in steps of 10.

For example:
LOAD "MYFILE"
If entered on a POLY with the current drive as 1 and in TEXT
mode, then the file 1.MYFILE.TXT will be loaded dinto POLY
memory, starting at line 10 and incrementing in steps of 10.
If entered in a POLY with the current drive as 1 and in
BASIC mode, then the file 1.MYFILE.BSC will be Jlpaded into
POLY memory with 1ine numbers.

Encoded BASIC files may be converted to full text form (for
example, for printing) by LOADing the .BSC file and then
performing a SAVE TEXT.

11

2.4.9. Merging files from disk

The MERGE command merges a file from disk into the file currently
being edited. BASIC files are merged on line number such that
where the same 1ine exists in both files, the new 1line replaces
the old 1ine.

In TEXT mode, the disk file is appended onto the end of the file
being edited and 1ine numbers above those currently in use are
allocated.

Syntax:- MERGE "filename"

The filename may specify the drive number and the extension.

If the drive number is not given, then the file 1is 1loaded from
the disk on the current drive for that POLY.

If the extemsion is not specified then, for BASIC .BAS is
assumed, and for TEXT, .TXT is assumed.

Encoded BASIC files from disk may not be merged.
For example:
If a POLY (in BASIC mode) contains the following file:

10 CLS

20 FOR row = 0 TO 10
30 PRINT @(row,0) "11Q"
40 NEXT row

and the file MYFILE.BAS on disk contains:

30 PRINT ®(row,0) " RY;
50 REM DRAW A CAR
60 REM etc...

then when the command:
MERGE "MYFILE"
is entered, the resulting file in the POLY wil] be:

10 CLS

20 FOR row = 0 T0 10

30 PRINT @{row,0} " R";
40 NEXT row

50 REM DRAW A CAR

60 REM etc...

If a POLY (in TEXT mode) contains the following file:
100 THIS IS A TEXT FILE

200 CONTAINING ONLY
300 3 LINES

12

and the file MYTEXT.TXT contains:

THIS IS MYTEXT
FILE WHICH HAS
ONLY 3 LINES

then following the command:
MERGE "MYTEXT"

the POLY file becomes:
100 THIS IS A TEXT FILE
200 CONTAINING ONLY
300 3 LINES
310 THIS IS MYTEXT

320 FILE WHICH HAS
330 ONLY 3 LINES

2.4.10. Deleting the file being edited

The NEW command deletes the file currently being edited from
memory .

For example:

NEW
If the file being edited has not been changed the Ready prompt
will appear on the screen. If the file has been changed since the
last SAVE the user will be prompted with

Save {Y/N) ?

or

Save filename (Y/N) ?
The filename will appear only if the file was LOADed. In the
first case if Y is typed, the NEW is aboried; if N is typed, the
NEW is executed. In the second case, if Y is typed the file will
be SAVEd and NEW executed; if N is typed, NEW will be executed.

Only Y,y,N or n will be accepted. The default extensions are .TXT
for TEXT files and .BSC for BASIC files.

13

2.5. COMPILED POLYBASIC

A& POLYBASIC program may have three forms - full text source,
encoded source and compiled. These are siored on disk with the
file extensions .BAS, .BSC and .BAC respectively. The compiled
form is best used for execution as it is more efficient and being
in an encoded form which cannot be listed, provides some form of
security.

2.6. STORAGE AND RETRIEVAL OF FILES (Summary)

To SAVE a file on disk enter
SAVE “filename" or SAVE TEXT "filename"

To SAVE a file on disk and create a backup copy of the original
file, enter

SAYE BACK "filename"
The backup file has the same filename with a .BAK extension.
To LOAD a file from disk enter
LOAD "filename"
This erases any previous file stored in the POLY memory.
To COMPILE a BASIC source program enter
COMPILE “filename"

The BASIC source program in memory will be compiled and saved on
disk. '

To RUN a BASIC program, whether it is stored on disk as source or
compiled form, enter

RUN “filename"

.BAC is the default file extension for RUN.

To MERGE a file with the file currently in POLY memory enter
MERGE "filename"

14

2.7. YARIABLES

A variable is a "box" into which different values may be placed.
Each "box" (or variable) is assigned a name, and the contents may
be later referred to or changed by using this name.

For example:

A variable named BOX may have the value 66 placed in it by
the statement:

LET BOX = 66
or simply by:
BOX = 66

Variable names must begin with a letter (A-Z) and may be followed
by other letters or numbers. Variable names may be any length.
Yariable names containing lower case letters are different From
those containing upper case. The following are valid variable
names:

A, A8, NAME, P1234, address, SubO

Words that form part of the BASIC language are referred to as
reserved words {e.g. NEW, IF, TO - these are listed in Appendix
4.9). Such words may be written using both upper and lower case
letters. :

For example:

LET, Let, let are all representations of the same reserved
word. However, as mentioned above, BOX, Box, box are
different variable names and thus represent different
variables.

Variable names may not, in general, contain reserved words.
For example:

Neither NEWT nor KNEW are valid.
Nor is STOAT, nor STIFF.
Nor BILLET, nor LETTER

To avoid this, the BASIC command RESOFF enables variable names to
contain reserved words other than at the beginning of the name.
In this mode a variable must be separated by a space from an
immediately foliowing reserved word.

By choosing meaningful variable names, programs are more easily
understood.

There are three types of variabies in POLYBASIC {corresponding to
three types of constant) - integer, floating point or real, and
string. The first two types are used to store numeric values, the
string type is used to store sequences of characters.

15

2.7.1. Floating Point Variables

Floating point varjable names are formed as described in the
previous section. These variables are used for holding either
numbers containing decimal points, or numbers too large or too
small to store as integer variables. The number of digits
displayed can be set by the DIGITS command. Unless reset in a
program, only 6 digits are printed.
For example:
~0.00000123 is displayed as -1.23E-06
Valid floating point variable names are:
AB, X1, X, amount, Sum, nl549
Valid floating point values are:
-3.2, 79.1, 1E-06, 32768

Note the use of scientific notation for very small and very large
numbers.

For example:

-0.0000123 will be displayed as -1.23E-05
17632468 will be dispiayed as 1.76325E+07

Each floating point variable (and constant) uses 8 bytes of
memory .

2.7.2. Integer Variables

Integer variable names are formed using a valid variable name
followed by a % sign. Integer variables may only contain whole
numbers in the range -32768 to 32767. If an integer variable is
assigned a value in the range 32768 to 65535, it is converted to
two's complement by subtracting 65536 from it. This allows
address values in this range to be handled by integer variables.

Each integer variable uses 2 bytes of memory, so where possible,
use integer rather than floating point variables. Use of integer
variables will also allow the program to run faster.
For example:
Valid integer variable names are:
A%, X2%, ab%, GROSS%, Tax1982%

Valid integer values are:

27, -201, 32767

16

2.7.3. String Variables

String variable names are formed using a valid variable name
followed by a $ sign. Strings may contain up to 65535 characters,
depending on the available memory space. The function FRE{~1}
returns the size of the largest string which may be allocated at
a given point in a program.

For exampie:
Valid string variable names are:
AbS, A3, X1$%, address$
Valid string values are:
A$="This is a string literal®
B$=It 1]
C3= CHRS(3)+"Yellow"+CHR$({1)+ "Red"”
D$="12345 is part of a string”
E$="lcYel JowliaRed"
Each string variable (and constant) uses 4 bytes of memory plus
the memory required for the string.

2.7.4. Arrays or Tables

Tables of values may be stored using a single variable name as an
array. Individual elements of an array are selected using
subscripts {(or indexes).
For example:
A table of 5 integers are to be stored in an array called
A%. The items in this array are referenced as A%{0), A%(1),
A%(2), A%(3) and A%({4).
The index of the first item in any array is always zero. Prior to
the use of an array name, the size of the array must be defined
using a DIM statement.
For example:
DIM A%(4)

defines an array containing 5 integer values, A%{0) to
A%(4).

Multi-dimensional arrays may also be defined and individual
elements referenced using more than one subscript.

For example:

DIM BRANCH$(2,4)

17

sets up a two dimensional string array containing 3 rows
(rows O, 1 and 2) and 5 columns (columns 0, 1, 2, 3, and 4).

BRANCH$(1,2) is the string held in row 1, column 2:

Columns
01 2 3 4
Row O X X X X X
Row 1 x x 0 x X
Row 2 X X %X X X

Arrays may have any number of dimensions.
For example:
DIM MULTI{4,4,4,4)
defines a 4 four dimensional floating point array.
Note that this would take 5 * 5 * 5 * 5 * 8 = 5000 bytes of
memory. Care must therefore be taken to ensure that arrays
will fit into available memory.
Variable names within each type of variable must be unique, but
the same variable name may be used for different types of
variable.
For example:

FINAL, FINAL%,.FINAL$, final$, Final and FINAL$(6)

all represent different variables.

2.8. LITERALS AND CONSTANTS

2.8.1. String Literals

Any string of characters enclosed in double quotation marks {or
single quotation marks, as 1long as they match) is a string
literal. Single quotation marks may appear in strings delimited
by double quotation marks and vice versa. A null string 1is
written as "".

For example:
PRINT"ABCDEF1234"
displays ABCDEF1234 on the screen.
POLY uses the Teletext conventions for specifying control
characters. Within strings, these may be represented by a §

followed by the character corresponding to the control character
where:

18

KA orlla =1
B or b = 2
Nz orltz = 26

For example:
To print a red Hello, the string may be written either as
PRINT CHR$(1);"Hello"
or as

PRINT "flAHel1o"

2.8.2. Numeric Constants

Numeric constants are stored in either integer or floating point
form. Integers are stored in 2 bytes, floating point numbers in 8
bytes. _
For example:
Yalid integer constants are:
32767
2
-7
Valid floating point constants are:

32768 Too big for integer
1.2 Decimal point
-3.4E+8 Scientific notation

2.9. TYPES OF OPERATORS

2.9.1. Arithmetic Operators

These are:
SYMBOL MEANING EXAMPLE MEANING RESULT
+ Add 6 + 2 Add 6 and 2 8
- Subtract b -2 Subtract 2 from 6 4
* Multiply b * 2 Multiply 6 by 2 12
/ Divide 772 Divide .7 by 2 3.5
MOD Remainder 7 MOD 3 The integer remainder 1
(Modulo) when 7 is divided by 3
DIV Integer 7 DIV 3 The integer result 2
Divide of 7/3
t <EXP> key Exponentiation 6 ¢ 2.1 6 to the power of 2.1 43.064

19

When an arithmetic expression containing several of the above
symbols is evaluated, it is processed in the reverse order to
that shown in the list above. That is, exponentiation first,
followed by multiplication and division (including MOD and DIV),
and addition and subtraction last. Where there is equal priority,
an expression is evaluated from left to right.

For example:

6+4*2-9/2 4 2

= 6+4%2 -9 /4 {exponentiation evaluated)
= b6+ 8 - 2.25 (* and / evaluated)
= 11.75 (+ and - evaluated)

Parentheses may be used to alter the order of evaluation.
Expressions within parentheses are evaluated first.

For example:

Honon
)

Provided all values involved do not contain decimal points, and
that the result is in the range -32768 to 32767 and is a whole
number, then the result will be an integer. Otherwise it will be
converted to floating point.

For example:
5/2=2.5
gives a floating point result.

Floating point results will be truncated when they are assigned
to integer variables _

For example:

1%
1%

3.9 will set 1% = 3
~3.1 will set [% = -4

[]

20

2.9.2. Relational Operators

These allow the testing of the relationship between a values. The
relational operators available in POLYBASIC are:

SYMBOL MEANING EXAMPLE MEANING

= Equal X =4 X is equal to 4

<o Not equal X < 4 X is not equal to 4

< Less than X <4 X is less than 4

> Greater than X>4 X is greater than 4

<= Less than or equal X <=4 X is less than or
equal to 4

>= Greater than or equal X >= 4 X is greater than or
equal to 4

The relational operations are performed after the arithmetical
operations.

For example:
3+2>4
is TRUE.
See also the sectién on String Operators.

A TRUE result has the value -1 while a FALSE result has the
value 0,

For example:
PRINT 8>2
prints the result as -1 as it is TRUE.
It is sometimes useful to set up variables TRUE = -1 and FALSE =

¢ which may be used throughout the program to improve
readability.

2.9.3. Logical Operators

These allow combinations of relationships and are as follows:

SYMBOL EXAMPLE MEANING
OR X=40R X =10 X is equal to either 4 QR 10
AND X > 4 AND X < 10 X is greater than 4

AND X is less than 10
4 AND NOT Y = 3 X is equal to 4
AND Y is NOT equal to 3

NOT X

1]

Logical operations are performed after the arithmetical and
relational operations. Priority of logical operators is NOT, AND,
then OR. If there is equal priority the expression is evaluated
from left to right.

21

For example:

IF X=1 OR Y=2 AND NOT Z=3 THEN GOTO 2100
IF X=1 OR {Y=2 AND (NOT Z=3)) THEN GOTO 2100

are identical in operation.

2.9.4, String Operators

+ may be used to join (or concatenate) two strings together.
For example:

"XXXXH
B$ + uABC"

BS
A$

Hou

After this operation, A$ has the value "XXXXABC".
Relational operators may be used to compare strings.
For example:

IF A$ < "M" THEN GOTO 800

The < indicates that the first string preceeds the second string
in alphabetic order.

The = indicates that the strings are equal. Note that "AB " is
equal to "AB".

The > indicates that the first string follows the second string
in alphabetic order.

NOTE: The alphabetic order referred to is as shown in Appendix
4.6. Note that the upper case letters precede the lower case

letters, and that certain special characters precede the
alphabetic characters.

2.10. EXPRESSIONS

Expressions are any valid sequence of constants, variables,
functions and operators that yield a value upon evaluation. They
may generally be used wherever numbers or strings are expected.
For example:
3*4+5 /6
is an expression yielding a floating point value.

A$ + "XXXX" + B$

22

is a string expression.
PRINT@(A% + C%/2, SQR(B%)) A$ + BS + LEFT${C$,5)

shows expressions used within the PRINT® statement.

2.10.1. Functions

Functions providing commonly used routines are specially provided
in POLYBASIC to return the appropriate values. They may thus be
used within expressions.
For example:

X1 = SQR{25) + 2

SQR is a function which returns the square root of its
argument (or parameter, in this case 25).

The functions available in POLYBASIC are described in Section 3.
Single Tine functions may be programmer-defined wusing DEF FN.

such functions may only be used within the program in which they
are defined.

2.11. STATEMENTS AND COMMANDS

Statements and commands are instructions to the computer and may
generally be used either in Program mode or in Immediate mode.

For example:

100 PRINT®(10,5)"This is a program statement.”
PRINT@(10,5)"This is an immediate command."

Statements form the building blocks of a program. The most common
statement is the assignment statement which has already been used
in examples. Other statements are usually formed using reserved
words and are described in section 3. Commands are more likely to
be used in Immediate mode.
For example:

AUTO 10,5

AUTO may only be used in immediate mode.

23

2.12. FILE CONSIDERATIONS

File names may be up to 8 characters Tong. The first character
must be alphabetic and the remainder must be alphanumeric. File
names may be followed by a "." plus a 3 letter extension. If an
extension is not given it will default to:

BASIC full text source files .BAS
BASIC encoded text files .BSC

BASIC compiled files .BAC
Data files .DAT
Print files PRT
Operating system files .SYS
Operating system commands .CMD
Text files LXT

If the file is associated with a specific drive then the drive
number may be added to the filename either at the beginning or
the end.

For example:
0.PROG1I.BAS or PROGL.BAS.O
both refer to the file PROG1.BAS on drive O.
It is possible to protect files by associating a password with
them using the PROT command (see the POLYSYS Utilities Manual).

For a discussion of file types, see section 3 under the
description of the OPEN statement.

2.13. MULTIPLE SCREENS

The POLY computer has 4 screens which are displayed in the
following order

- TEXT

GRAPHICS (240 pixels across)

- TEXT

GRAPHICS (240 pixels across)

BACKGROUND is displayed at half intensity behind these.

=] 3 PO

L2

h

At any time one screen may be selected for writing to. This is
initially screen 1 but may be changed at any time by using SELECT
which selects the current screen for writing but does not display
it. To display a screen, the DISPLAY statement must be used. Any
combination of screens may be displayed.

Note the difference between SELECT and DISPLAY - screens may be
written to while being displayed or not. The background may be
changed at any time using the BACKG statement.

To enable the use of fine graphics a further screen is available.

24

5 - GRAPHICS (480 pixels across) and TEXT
Screen 5 utilizes both screens 2 and 4 to enable fine graphics.

Note that the selection of screen 2 will not affect the available
memory space but the selection of screen 4 does. Screen 4
requires 8K bytes which is allocated from the user's available
memory .

If PRINT commands are used while the current (i.e. selected)
screen is a graphics screen, the text is written and displayed on
the most recently selected text screen (whether or not it is
currently being displayed).

2.14, CHOOSING COLOUR

2.14.1. Text

Colour on the text screens is selected by printing a colour
control character before the data.
For example:
PRINT CHRS$(1);"POLY SYSTEM"
or
PRINT "$APOLY SYSTEM®

Section 4.2 contains a complete list of the control characters.

2.14.2. Graghics

2.14.2.1, Colour Choice

Each graphics screen is capabie of displaying 4 colours at a
time. Initially these are

RED, BLUE, GREEN and WHITE
Other colours may be obtained in either of two ways using MIX:
1. MiXing screens.
The first option in MIX, allows the colours on screens 2, 3 and 4
to be mixed. To understand this, the way the secondary colours
are obtained must be understood. Fach dot on the screen is made

up of 3 coloured beams, Red, Blue and Green. The colours obtained
are:

25

RED = RED
BLUE = BLUE
GREEN = GREEN
RED + BLUE = MAGENTA
RED + GREEN = YELLOW
BLUE + GREEN = CYAN
RED + BLUE + GREEN = WHITE

When MIX is ON, the beams for each dot on the screen are mixed
with those at the same point on the other screens, and the
composite displayed. That is, to get YELLOW, Screen 2 must
display a particular dot in RED and Screen 4 the same dot in
GREEN (or vice versa). COLOUR allows the secondary colours to be
selected and when one is selected, Screen 4 is written on (and
thus selected) as well as Screen 2.

?2. Additive MIX

Each of the graphics screen may have a particular colour beam
added to a1l dots switched on. This means that instead of RED,
BLUE, GREEN and WHITE being displayed, when

RED is added then RED, MAGENTA, YELLOW, and WHITE
are displayed,

BLUE is added then MAGENTA, BLUE, CYAN and WHITE
are displayed,

GREEN is added then YELLOW, CYAN, GREEN and WHITE
are displayed.

2.14.2.2. Colour Size

On each of the graphics screens, a colour code controls the
colour of the next 6 pixels each of which may be on or off. Any
that are on will thus be the same colour. This is not a severe
restriction {in practice multiple screens are extremely useful)
and is economical with respect to memory space. When an attempt
is made to set a pixel in a set of 6 to a different colour, then
all pixels in that group are turned OFF and only the pixel in the
new colour displayed. If screen 5 is used then 12 pixels in a row
are controlled by the same colour code.

2.15. RESETTING THE POLY UNIT AND WARM STARTS

The POLY unit may be reset to the magenta start up screen by
pressing the reset button on the back of the unit.

When programming it is possible to program a loop so that there
1s no exit. If the <EXIT> key is deactivated {(with an ON KEY 10)
then the only way to get out is to press the reset button.

By holding down the W key while the reset is pressed, a WARM
START back to POLYBASIC is made. Neither the source nor the
current variables are Tost. A WARM START after a reset will
restore the most recent program.

26

Care must be exercised when turning on or resetting (either
normal or warm} a POLY that is part of an active network. While
the reset button is being depressed and for one second after it
is released all communications through a POLY are suspended. They
are also suspended for one second after a POLY is turned on. This
is to allow stabilisation of the circuitry. During this time,
POLYs on the daisy chain that are further away from the disk unit
than the POLY being reset or turned on, will be invisible to the
disk unit. If such POLYs are performing disk accesses {either
read or write) they may cccasionally hang up (because they do not
receive correct acknowledgement to their requests). If such a
hang-up occurs during a disk write, then the disk being written
to should be RECOVERed. To prevent this happening
1. ensure that all POLYs on a network are switched on at the
outset,
2. use LOGOFF rather than reset, and .
3. if it is necessary to reset, check what others on the
network are doing and don't depress the reset button for
longer than necessary.

2.16. USING THE CALC KEY

The <CALC> key is activated whenever POLY is waiting for input
{i.e. in Immediate mode or when the program currently running
requests input). Pressing the <CALC> key at this time will enable
calculations in the form of BASIC expressions to be made on the
bottom 1ine of the screen. To return to the program the <CALC>
Key must be pressed again. To exit while in calculator mode,
press <EXIT>.

2.17. ERROR MESSAGES

If an error occurs in a courseware module an error screen will be
displayed 1isting diagnostic information. On pressing <NEXT> the
program will CHAIN to the MENU.

If an error occurs in a program which does not have a special
error routine, a short error message with an error number and the
tine number at which the error occurred will be displayed and the
program will return to BASIC mode. Variable values will not be
cleared, so their values can be examined using immediate PRINT
commands. If a variable not contained in the program is specified
in the PRINT command, the error "Undefined variable referenced”
will be given but the existing variable values will not be
cleared. If the existing program is edited, all variable values
will be cleared and all open files will be closed.

27

2.18, USING THE HELP KEY

After an error message has been displayed, pressing the <HELP>
key will cause a description of the error to be displayed
(provided that the file ERRORS.SYS is on the system disk).

2.19. DOS COMMANDS

Most Disk Operating System (DOS} Commands are available in
immediate mode by preceding the command with a +.

DOS commands are described in full and the commands not available
from BASIC are indicated in the POLYSYS Utilities Manual.

For example:

+CAT

+PRINT
Only one DOS command may appear per line, all others are ignored.
DOS utilities may be copied into RAMdisk and executed using

either +4. followed by the utility name or the search RAMdisk
first capability {see the DRIVE command).

28

3. POLYBASIC

The following section describes POLYBASIC functions, statements
and commands. The reserved words described in the following may
not contain blanks and may be written using either upper or lower
case letters. POLYBASIC accepts most standard BASIC commands but
some additions and enhancements have been made in order to handle
the special features of the POLY System. Functions differ from
statements in that functions return values.

3.1. FUNCTIONS
3.1.1. ABS

Syntax: - ABS{numeric-expression)

The absolute value of X is returned, i.e. if X is positive then
the value returned is X. If X is negative, the value returned is
1ts positive value.
For example:
If A%Z has the value 16 then
B% = ABS(A%Z)
places the value 16 in BY.
_If A% has the value -16, then
B% = ABS(A%)
also places the value 16 in B%.
The statement
IF ABS(X)} < 4 THEN GOTO 100
will cause a branch to line 100 onty if X 1is between
-4 and +4,
3.1.2. ASC

Syntax:- ASC(string-expression)

Returns the ASCII code (in decimal form) of the first character
of the specified string. {See Appendix 4.3 for the ASCII values
of characters.) If the string is a null string, then 0 is
returned.

29

For example:
A% = ASC{"A")
assigns A% the value 65.
When AS$ = "POLY" then
A% = ASC(A$)
assigns A% the value 80 (the ASCIl decimal value of P).
This function is useful for converting between upper and Tower
case as lower case is simply the upper case ASCII value plus 32,
Decoding is also simpler.

For example:

If the values "A", "B", "C" and "D" are expected as input it
is easier {and faster) to use

ON ASC{A$)-64 GOSUB 150, 200, 300, 450

than to test for the individual values separately.
3.1.3. ATN

Syntax:- ATN{numeric-expression)

The angle whose tangent is X is returned. The returned angle
value is in radians.
To change an angle in radians to degrees, multiply by 180/P1.
For example:
PRINT ATN(1}
displays the value .785398 (in radians).
PRINT ATN(1) * 180/P1I

displays the value 45 (in degrees).
3.1.4. CHRS

Syntax: - CHR${numeric-expression)

CHRS performs the opposite of the ASC function, creating a single
character string containing the character represented by the
ASCII value {in decimal form) specified. The numeric expression
must have a value between O and 255 inclusive. Non-integer values
are truncated. Any value outside this range causes an error. This
function may be used when setting up Teletext control characters
for the screen.

30

For example:
PRINT CHR$(4); "POLY"

displays the word POLY on the screen 1in blue characters.
Appendix 4.2 lists the Teletext control characters.

106 A$ = INCHS$
110 IF A$ <> CHRS$(13) THEN 100

Line 100 uses the INCH$ function to test the keyboard for a
key depression. If any key other than the <ENTER> key
(CHR${13)) has been pressed it is ignored.
In order to abbreviate the insertion of teletext control
chracters into strings, they may be written x as part of the
string. x is 1 character in length, where
fla or BA is CHR$(1)
Hb or §B is CHRS$(2)
etc.
The full 1ist is given in Appendix 4.2.
For example:
100 PRINT "HaPOLY SYSTEM"

writes POLY SYSTEM in red.

3.1.5. CLOCK

———————

Syntax:~ CLOCK

CLOCK returns a value in the range -32768 to 32767 indicating 10
miltisecond intervals.

For example:

100 A% = CLOCK

200 B% = CLOCK
210 IF A% <= B% THEN T = B% - A%
ELSE T = B% + 65535 - A%
220 PRINT "TIME TAKEN = "“;T/100:"SECONDS"

3.1.6. COS

Syntax:- COS(numeric-expression)

COS returns the CO0Sine of X where X is in radians. To convert
degrees to radians, multiply by PI/180.

31

For example:
X = C0S{60 * PI/180)}

assigns X the value 0.5. i.e. COS (60 degrees) = 0.5
3.1.7. CVT

Syntax:- CVI%${numeric-expression)
CVI$%(string-expression)
CVIF${numeric-expression)
CYT3r(string-expression)

The CVT functions store numeric data in strings, and vice versa,
using integer or floating point formats. Integer values are
stored in 2 bytes while floating point values take 8 bytes. These
functions should not be confused with STR$ and VAL.

For example:

CVT%$ moves an integer value into a 2 character string
{% to $).

CVT$% m?ves a8 2 character string value back into an integer
($ to %}.

CVIF$ moves a floating point number into an 8 character
string (F to $).

CVIS$F moves an 8 character string value back into a floating
point number {$ to F).

If a string is longer than required only the first 2 or 8§
Characters are taken, depending on whether CVT specifies integer
or floating point. These functions allow fast storage of numeric
values in strings and are especially useful for the storage of
numeric data in records on a file as they pack them into the
minimum of disk space.

For example:
100 A$ = CVT%$(25665)
This stores the 2 byte integer value 25665 in the 2
Character string A$. If printed out the string A$ would
appear as:
dA
as the first character would have the ASCII decimal value

100 (25665/256) and the second character the ASCII decimal
value 65,

32

3.1.8. DATES

Syntax:- DATES [(1)]

Returns the current date in either of two forms. The date is set
when the first POLY unit logs onto the system.

For example:
If the current date is the 14 January 1983, then
100 PRINT DATES
displays the date in the form 14-JAN-83.
200 D$ = DATES(1)
assigns to D$, as a 6 character string, the current date in
the form YYMMDD. Dates used in this form can be immediately
compared numerically.

100 A = VAL(DATES${1))

gets the date and converts it to the corresponding numeric
value.

DATES will return null in Standalone mode.

3.1.9. DPEEK

Syntax:- DPEEK {address)

DPEEK returns the integer (2 character) value held at the
specified address. The address must be between 0 and 65535. While
in BASIC, the operating system and screen areas (except screen 4)
cannot be accessed using this command.

For example:
A%=DPEEK(1165)
puts into A% the value held in addresses 1165-1166.
Note that addresses in the fange 32768 to 65535 may be placed in

integer variables and used, but if printed out will print as the
2's complement, i.e. with 65536 subtracted from them.

3.1.10. ERL

Syntax: - ERL

ERL returns the line number on which a program stops when an
error is encountered provided ON ERROR has been set. The 1line
number may be checked within the ON ERROR routine and the
appropriate action taken.

33

For example:
5000 IF FRL<3000 OR ERL>3200 THEN RESUME
This line would occur within an ON ERROR routine and enables

errors occurring between lines 3000 and 3200 to be processed
by the following statement.

3.1.11. ERR

Syntax:- ERR
ERR returns the error number after an error has occurred. This is
useful in an ON ERROR routine in sending back appropriate error
messages. A full list of error numbers is given in Appendix 4.1.
For example:

1000 IF ERR<50 THEN RESUME 2200 ELSE PRINT ERL;ERR:END

This statement would probably occur within an ON ERROR

routine. Errors with numbers less than 50 are sent to a
routine at line 2200.

3.1.12. EXP

Syntax:- EXP{numeric-expression)

EXP returns e to the power of X. The maximum value of X allowed
is 88. EXP is the inverse of the LOG function i.e. X=EXP(LOG{X))
where LOG(X) is the natural logarithm of X. :
For example:

Y=EXP (1)

sets Y to 2.7182818, the value of e.
3.1.13. FILES

Availability:- Not available in Standalone mode

Syntax:- FILE$ ("filename")

FILES$ returns a null string if the specified file does not exist.
If the specified file does exist FILE$ returns a string of length
12 containing the following information:

DDMMYY - Date of creation { 6 bytes)

R or S - Random or sequential
NNNNK - Size of file in sectors

34

The default extension is .DAT.
3.1.14, FRE

Syntax:- FRE(Q)
FRE{-1}

FRE(Q) returns the number of bytes of free memory. To get the
max imum amount available with no program loaded enter

NEW
PRINT FRE(0O)

The memory displayed is the amount available for a BASIC program.
When a BASIC program is loaded, it takes up part of this area. As
it runs it uses further memory for storing strings and other
pointers and may run out of memory during operation. Should this
occur it is necessary to reduce the size of the program and/or
the amount of memory used in strings, arrays etc. Suggestions to
achieve this are:

-Improve your coding.

-When a string is no longer needed reset it to null.
-Do not define oversize arrays.

-Divide your program in two and use CHAIN.

-Compile your program.

-Stop using graphics screen 4.

FRE(1) returns the value of the current high address for memory
{See MEM).

FRE(-1} returns the maximum number of characters that a new
string may have. This will always be less than the maximum amount
of memory left as returned by FRE(O}. By checking FRE(-1) it is
possible to stop errors occurring due to lack of free space.
However, note that FRE(-1) will return different values depending
on the context of its call {e.g. if nested in function calls).

3.1.15. HEX

Syntax:- HEX (string-containing-Hex-value)

HEX converts a hexadecimal string into its decimal equivalent.
For example:
PRINT HEX{"100")

displays 256.

35

3.1.16. INCHS

Syntax:- INCH$ [{channel}]

INCHS reads a character from the specified channel. If a
character has been input then that character is returned,
otherwise CHR${0) is returned.

(NOTE: CHR${0)} is a string containing one null character, it is
not the same as "" which is an empty string.)

If no channel number is specified, then the keyboard 1is scanned
to see if a key has been pressed. The most useful way to use this
function is to test the keyboard during a loop while some other
action is going on.

INCH$ neither displays a cursor nor the character received.

‘For example:
This example continues looping until any key is pressed.

100 IF INCH$ = CHR$(0) THEN 100
200 Continue processing

The following example repeatedly tests for characters A,B,C,
throwing away any other characters received.

100 A$ = INCHS :
200 IF A$ < "A" OR A$ > “C" THEN 100
300 ON ASC (A$)-64 GOSUB 500, 600, 700
400 GOTO 100

500 REM "A" SUBROUTINE

550 RETURN

600 REM "B" SUBROUTINE

650 RETURN

700 REM "C" SUBROUTINE

750 RETURN

INCH$(0) is a special form of INCH$. It also scans the keyboard,
but waits until a key has been pressed before returning a value.
The cursor is displayed. It is not necessary to press <ENTER> to
terminate the entry.

For example:
10 CLS
20 A$ = INCH${0)
25 PRINT AS;
30 GOTO 20

is a program which allows continuous typing and display of
the characters typed.

36

3.1.17. INSTR

Syntax:- INSTR{start-position, string-name, sub-string)

INSTR Tooks for a sub-string in a string starting at the
start-position. The character position at which the sub-string is
found is returned. 7Zero is returned if the sub-string is not
found. The first character position in the string is 1.
For example:

10 AS="ABCDEFGHIJ"

20 B%= INSTR(3,A$,"G")

30 PRINT B%

A$ is searched for "G" starting at the third character. The
valtue 7 put into B%.

40 PRINT INSTR(1,A$, “DEF")

wouid print the value 4.
3.1.18. INT

Syntax: - INT{numeric-expression)

INT truncates a numeric expression to the integer less than or
equal to the expression.

For example:
INT(9) returns 9
INT(6.7) returns 6
INT{~1.1) returns -2
INT{X*10+.5)/10 returns X accurate to one decimal place.

Note: In division, DIV may be used in place of / and INT to give
the integer result. Similarly, division performed with integer
variables gives an integer result.
For example:
The following all give the same integer result.
= INT(B/C)

JA
% = B/C
L =8 DIV

37

3.1.19. KVAL

Syntax:~ KVAL [(0)]

KVAL returns the ASCII value of the key pressed to cause transfer
to an ON KEY routine. KVAL gives the value of the key pressed. If
<A> was pressed KVAL would give the value 65. KVAL(O) returns the
state of the SHIFT and CONTROL keys when a key 1is pressed. If
neither SHIFT nor CONTROL is pressed, KVAL(Q) will return 0. If
only SHIFT is pressed, KVAL(0) will return 64. If only CONTROL is
pressed, KVAL{0) will return 128. If both SHIFT and CONTROL are
pressed, KVYAL{0) will return 192.

For example:

10 ON KEY GOTO 1000

1000 IF KVAL=65 THEN END
1010 RESUME

If a special key is specified {see ON KEY) then KVAL will return
the ON KEY va1ue, NOT the ASCII value.

For example:

10 ON KEY 4 GOTO 1000

-

-

1000 PRINT KVAL, KVAL{O)
1010 RESUME
will print
4,0 if special key 4 is pressed (not 52, the ASCII
value of special key 4);
4,64 if SHIFT/special key 4 is pressed;
4,128 if CONTROL/special key 4 is pressed; and
4,192 if SHIFT/CONTROL/special key 4 is pressed.

3.1.20. LDESS

Availability:- Not available in Standalone mode

Syntax:- LDES$ (line-description)

LDESS$ sets up a graphics line description as a string. The
line-description consists of a 1ist of coordinates, each pair
optionally surrounded by brackets. The coordinates are in
row,column order.

For example:

100 A$ = LDES$((0,0},(100,0),{100,100),(0,100),(0,0))

38

describes a box 100 pixels square.
This may also be written as:

100 AS

LDES$(0,0,100,0,100,100,0,100,0,0)

or

100 A$ = LDES$((0,0)(100,0)(100,100)(0,100)(0,0))

If a ; is used in place of a , between coordinate pairs, then the
line is broken at that point and a new line started.

For example:
The following statement stores the line description of the
box given above in a single string, such that only the left
and right sides are drawn.
100 A$ = LDES$((100,0}{100,100);(0,100),{0,0)})

If the 1ine is to be used as a boundary in FILL or FILLE, the
points must be specified in a clockwise order.

Two strings assigned using LDES$ may be added together and then
used in a DRAW or FILL. If line is to be continuous, one of the
centre end points must be duplicated in the other string.

For example:

10 A$=LDESS(0,0,0,5,1,7,2,10,5,12,8,14,10,7,
11,8,12,4,14,2,9,4,8,6)
20 B$=LDESS$(8,6,7,4,5,3)

3

30 C$=A$+BS
Note that the coordinate pair (8,6) is repeated at the
beginning of BS$.
3.1.21, LEFTS

Syntax:- LEFT${string, numeric-expression)

LEFT$ returns the first n characters of the given string, where n
is the value of the numeric expression.

For example:

10 A$="ABCDEFGHIJKLM"
20 X$= LEFT$(A$,5)

This puts the value "ABCDE" into X$.

The numeric expression must be between zero and 32767.
Non-integer expressions are truncated.

39

If n>LEN(string) the result is padded on the right with spaces up
to Tength n.

3.1.22. LEN

Syntax:- LEN{stringname)

LEN returns the Tength of the specified string including spaces
and control characters. _

For example:
10 D$="asd fghjk"
20 L=LEN(DS)
This sets L to the length of D$, i.e. 10.
3.1.23. LoG

Syntax:- LOG{numeric-expression)

LOG is the natural logarithm. To calculate iogs for other bases
use:
LOG of X to base Y = LOG(X)/LOG(Y)

In particular, for common logs:
LOG of X to base 10 = LOG(X}/L0G{10)

For example:
10 PRINT LOG(2)
This prints .693147 .
The inverse of LOG(X) is EXP{X) i.e. X= LOG{EXP(X))

3.1.24. MID$

Syntax: - MID$(string,start~position[,numeric«expressionll

MID$ returns a sub-string from the given string of length n,
where n is the value of the numeric expression.

If the numeric expression is not specified, then all of the
string from the start position to the end is returned.

If the start position plus the numeric expression js >
LEN(string), the result is padded on the right with spaces up to
n.

For example:

40

10 X$="ABCDEFGHI"

20 M1$=MIDS$(X$,3,5)

30 M2$=MID$(X$,4)

gives M1$="CDEFG" and M2$="DEFGHI"

MID$ is also available on the left hand side of assignment
statements. The string must be a string variable. The string
resulting from the evaluation of the right™hand side replaces a
string of the same length (equal to the same number of
characters if specified) beginning at start-number in the string
variable,
For example:

10 A$ = “ABCDEFG"

20 MID$(A$,3) = "xy"

30 PRINT AS

This prints ABXYEFG
3.1.25, NAMES

Syntax: - NAMES$

NAMES returns the initials entered when the user logged on to the
POLY (using the standard LOGON program).

For example:
If the user logged on with the initials LKT then
PRINT NAMES
will display
LKT

3.1.26. PEEK

Syntax:- PEEK(address)

PLEK returns the single character value held at the address. The
address must be between 0 and 65536. The value returned will be
between 0 and 255 inclusive. See DPEEK.
For example:

A% = PEEK(1161)

This assigns to A% the value of the data stored at address
1161.

41

3.1.27. PI

Syntax:- PI

PI returns the value of PI (the number of digits depends on
DIGITS - for six, Pl is 3.14159).

For example:
A = PI*R*R

The area of a circle is calculated.

3.1.28, POINT

Syntax:- POINT [{lrow,columni)]

POINT is used to check to see if a graphics pixel is switched on.
If the current screen is a text screen, then POINT will return 1
- if the chunky pixel for the specified coordinates is on,
otherwise it will return 0.
If the current screen is a graphics screen, then POINT will
return the value corresponding to the colour of the specified
pixel if the pixel is on, otherwise it will return a value of C.
For example:

10 SELECT 2

20 COLOUR 2
30 SET (100,200)

90 PRINT POINT (100,200)

This would print thé value 2.
3.1.29. POS

Syntax: - POS{channel)

POS returns the current column POSition of the cursor on the
specified channel. Positioning starts at zeroc. Channel numbers
must not be greater than 12.

For example:
10 CLS
20 PRINT TAB(10);

30 X=P0S(0)
40 PRINT X

42

Channel O is the screen, so this program displays the number
10 starting in column 10 (numbers have preceding and
trailing spaces). Note that the ";" is essential otherwise
the position returns to O on the next line. The PQS is
calculated from the beginning of the line, or from the start
column of a PRINT@ statement.

For example:

10 CLS
20 OPEN NEW "EX3" AS 12
30 A$="AAAAAA"

40 PRINT#12,AS8;
50 X=P0S(12)
60 PRINT X

70 CLOSE 12

This OPENs a NEW sequential file, PRINTs AS into it, then
displays the number 6.

POS(-1) returns the current row number of the cursor on the
sCreen.

For example:
20 row = POS(-1)
30 column = POS(0)
40 PRINT row, column

This prints the position of the cursor on the screen at the
start of the program.

3.1.30. PTR

Syntax:- PTR{variable)

PTR returns the memory address of the specified variable.
Floating point variable values are stored as 8 bytes and PTR
returns the address of the first of these bytes.

Integers are stored as 2 bytes and PTR returns the address of the
first of these.

A string is held as a 4 byte pointer and the actual string in a
different area. The first 2 bytes of the pointer contain the
start address and the last two bytes the length of the string.
PTR returns the address of the first byte of the string pointer.

For example:

10 A$="ABCDEFEHIJ"

20 AZ=PTR(AS)

30 PRINT A%

40 PRINT DPEEK(A%);DPEEK(A%+2)

43

This might display (depending on memory locations)

4206
4215 10

The 4 byte string descriptor is stored in bytes 4206-420% .
The string itself begins at address 4215 and is 10 bytes
long.

3.1.31. RIGHTS

Syntax:- RIGHT$(string,numeric-expression)

RIGHTS returns the last n characters of the given string, where n
is the value of the numeric expression.

For example:

10 A$="ABCDEFGH"
20 AAS=RIGHT${AS,4)

The value assigned to AA$ is “EFGH".

If n>LEN(string), then the entire string is returned (unpadded).

3.1.32. RND

Syntax: - RND{numeric-expression)

if the numeric-expression is greater than 0 and less than 1, this
function returns a random number in that range. If the
numeric-expression is negative then RND returns the same random
number sequence (>=0 and <1) each time (for testing purposes). If
the numeric expression is greater than or equal to 1, a random
number between 1 and the value of the numeric-expression is
returned.

For example:

RND(5) returns values of 1,2,3,4,5 each with 20%
probability.

RND(.1) might return .293104

RND (-1} might return .630542, .720439,... (for
example)

3.1.33. SGN

Syntax:- SGN{numeric-expression)

SGN returns 1 if X is positive, 0 if X is 0, and -1 if X is
negative. '

44

For example:

10 A=-2 : B=0 : (=14
20 PRINT SGN{A);SGN(B);SGH(C}

This will print out the values:

101
3.1.34. SIN

Syntax: - SIN(numeric-expression)

This is the SINe function with X in radians. Multiply degrees by
P1/180 to convert to radians.

For example:
PRINT SIN(3C * PI/180)

will print the value .5
3.1.35. SQR

Syntax: - SOQR(positive-numeric-expression)

SQR returns the square root of X. Negative X values will cause an
error.

For example:
PRINT SQR{9)

prints the square root of 9 i.e. 3

3.1.36. STRS

Syntax:- STR$(numeric-expression)
STR$(numeric-expression,string-expression)

STR$ turns a numeric expression into a string, the string s
constructed exactly as it would be printed but without a trailing
space.

For example:

10A=-,999 : B = 3.678
20 PRINT "X";STR${A);"X":STR${B): X"

This prints:

45

X~.999X 3.678X
If a string-expression is included, the string is constructed
exactly as it would be printed by
PRINT USING string-expression,numeric-expression.
For example:
num = STR(1.2395,"+##, ##")

would assign +1.24 to num.
3.1.37. STRINGS

Syntax: - STRING$(numeric-expression [, character])

STRINGS creates a string containing numeric-expression
characters. The default character is a blank. The character may
be specified either as a string or as its ASCII decimal value.

For example:

10 PRINT STRING${30)
20 PRINT@(10,5)STRINGS${30, "*")
30 PRINT STRINGS${30,42)

Line 10 prints 30 blanks
Line 20 prints 30 asterisks

Line 30 prints 30 asterisks too, 42 is the ASCII decimal
code for the asterisk

3.1.38. SWIL

Syntax:~ SWL (intnol,parall,para2[,para3]]])

SW1 acts identically to USR except that it calls a software
interrupt function in the POLY unit system ROM. A full list of
these and their parameters is given in the POLYSYS Utilities
Manual.

NOTE: For advanced programmers only.
3.1.39. TAB

Syntax:- TAB(numeric-expression)

TAB is used in PRINT or PRINT# statements to move the cursor to
the column specified. If the cursor is already in, or past the
cotumn specified by numeric-expression then the cursor does not
move. TAB may not be used in any other string statements.

46

For example:

5 X=8.9 : Y=222222
10 PRINT TAB(10),X,Y,"“RESULTS"

This displays:
8.9 222222 RESULTS
The 8 is in column 17. The TAB moves the PRINT position to

column 10, the comma moves it on to 16, and there is a
leading blank before the number.

3.1.40. TAN

Syntax:~ TAN(numeric-expression)

This returns the TANgent of the numeric expression which is
expressed in radians. To convert degrees to radians multiply by
P1/180.

For example:
T=TAN{45 * P1/180)

will assign the value 1 to the varijable T.
3.1.41. TEXTS

Syntax:- TEXT$ (row, columnl,length])

TEXT$ returns the block of data on the current text screen
starting at the specified row, column of the specified Jength. If
the Tength is not given, the single character at the current
cursor position is returned.
For example:

10 A$ = TEXT$(20,0,40)

places row 20 of the current screen in AS.
3.1.42. TIMES

Syntax:- TIMES[(1)]

TIMES$ returns the current time. If used without a parameter the
time s returned in the form:

HH:MM:SS

47

where HH is a 24 hour clock. With a parameter the time is
returned without the colons.

For example:
10 A3 = TIMES : B$ = TIMES{1)
20 PRINT A$: PRINT B$
would print
i1:57:33
115733

for 57 minutes and 33 seconds after 11 o'clock. In the
second form times can be compared numerically.

3.1.43. UPCASES

Availability:- Not available in Standalone mode.

Syntax:- UPCASES${string-expression)

UPCASES returns a string which 4is the same as the
string-expression but with all lower case alphabetic characters
converted to upper case.
ror example:
PRINT UPCASE$("A cat")
will print

A CAT
3.1.44. USR

Syntax:- USR(address [,[paralll,[para2](,[para31]])
USR(stringvarl,lparalll,[para2il,[para3]il)

USR calls a machine Tanguage function stored at the specified
address, or stored in the named string. Up to 3 parameters may be
handed over to the subroutine. Each parameter, if not specified,
defaults to value -1 {hex FFFF). Each parameter may be an integer
value in the range -32768 to 65536.

Parameter 1 is placed in the D register.
Parameter 2 is placed in the X register.
Parameter 3 is placed in the Y register.

The return value must be placed in the D register. If the
function has to flag an error, the carry flag must be set and the
error number returned in the D register. This causes an error to
occur in the BASIC.

48

For example:
7% = USR(A$, 48, B%)

calls a subroutine stored 1in A$ and hands over two
parameters, 48 and B%. The return value is placed in 7%.

To place the subroutine in A$ any string operations may be
used, such as writing it as DATA statements containing the
decimal value of each byte of the subroutine, and READing by
"READ 1% : A$ = A$ + CHR${I%}". Or by loading it from a
binary file - the first two bytes must be the length.

NOTE: For advanced programmers only.

3.1.45. VAL

Syntax: - VAL{string-expression)

VAL takes a string, evaluates it and returns its numeric value.
The string may be any. legal BASIC expression, not containing
undefined variables.
For example:
A = VAL("-2.3")
F$="3.5" : D = VAL(F$)}
E$="6%2+3" + "*5" . E = VAL{ES$)
These lines assign A = -2.3, D = 3.5, E = 27

10 A%=6
20 PRINT VAL{2*A%)

will print 12, but
10 PRINT YAL(2*B%)
where B% is undefined will print 2.

Since variable names are not held in compiled programs, the
first exampie if compiled will print 2.

If the string is illegal, VAL evaluates as much as it can
from Teft to right.

For example:

B%=VAL("1234G")
C%=VAL("r123")

will assign B%=1234, C%=0

49

3.2, STATEMENTS AND COMMANDS

3.2.1. AUTO

Availability:- Not Available in Program mode.

Syntax:- AUTO [start-line] [, increment]

AUTC will automatically number 1ines of a BASIC program or TEXT
file being entered. Line numbering will start at the first
parameter value and proceed in increments as given by the second
parameter. The default value for both parameters is 10. In BASIC
mode, the line numbers will be printed automatically. In TEXT
mode they are not printed. AUTO will not allow lines to be
entered which will replace existing Tines. To exit from AUTO
mode, enter a null line.

For example:
AUTO
AUTO 30,5

AUTO ,5
AUTO 20

3.2.2. BACKG

rr—————

Syntax: - BACKG numeric-expression

BACKG sets the half intensity background ON or OFF. The numeric
expression specifies the colour where:

off

red
green
yellow
blue
magenta
Cyan
white

Ho o nmoa 1B 8oy

~NOOT W - O

For example:
BACKG 4

sets the background to blue.

3.2.3. BASIC

Syntax:- BASIC
BASIC is used to return the user from TEXT mode to BASIC { see

TEXT). An option to SAVE a loaded file is given (see the NEW
statement).

50

3.2.4. CHAIN

Availability:- Not available in Standalone mode

Syntax:- CHAIN string-expression[,expression-1ist]

CHAIN terminates the current program and Toads and runs the
program designated in the string-expression. The chained program
may be either a BASIC or machine language program. The displayed
screens are not switched off but the current screen becomes
screen 1. A1l variables except those specified in the
expression-1ist are lost. FETCH may be used to fetch these values
into the chained program.

If no filename extension is specified, .BAC is assumed. Source
(.BAS and .BSC) files may also be chained, but the extension must
be specified.

For example:

90 A$ ="FILEA"
100 CHAIN AS

This chains to program FILEA.BAC. Al1 variables in the
current program are lost.

1200 CHAIN "NEXTP.BAS", AS, B%, AX*B, D$(4)

This chains to program NEXTP.BAS saving the values of the
specified expressions.

The program NEXTP.BAS must have a first statement in the
form

10 FETCH AS$, A%, A, Al$

to fetch the saved values, where, although variable names
need not match, the types must.

3.2.5, CLEAR

Syntax:- CLEAR

CLEAR sets the current screen to 1, and displays it. All other
screens are turned OFF, current colour is set to white and MIX
mode is set OFF. The screen SPLIT is 24 and scrolling is turned
ON. The background is turned OFF. A1l variables and dimensioned
arrays are cleared. All returns are cleared. Hence do not use
CLEAR within FOR...NEXT loops, subroutines or in ON ERROR, ON SEC
or ON KEY routines as the return line number will be cleared. Al]
open files are closed. It is possible that after an error has
occurred (for example, disk full) that files will remain open. In
order to close these, issue a CLEAR. CLEAR should also be used if
the error "I1legal file Control block specified" appears. This
message normally follows a user error when files are accidentally
Teft open. CLEAR ensures that these are closad. It is not done
automatically because when debugging, users often wish to

51

interrogate variables, etc.

Sometimes users wish to load a program from disk into the POLY
memory, disconnect the POLY and then run the program {which
clearly cannot use disk files). If this is to be carried cut,
issue a CLEAR command prior to disconnecting the POLY.

3.2.6. CLOAD

Syntax:- CLOAD

CLOAD causes a BASIC program or a text file to be 1lcaded from
tape through the optional cassette interface.

A prompt to start the tape is issued, then the tape 1is searched
for the beginning of a file, the header string {see CSAVE) is
printed, and the BASIC program or text file is Tloaded into
memory .

CLOAD will only load BASIC programs and text files that have been
saved using CSAVE.

During loading, an asterisk is printed every 256 characters
received to indicate that Toading is taking place.

On completion of loading, Ready is displayed. CLOAD may be
terminated at any stage using EXIT. If the tape is not read
correctly (error checking is implemented), the message READ ERROR
will be displayed. If this occurs try again. If it still occurs,
check the volume setting of the tape recorder and/or clean the
tape heads.

It is possible to Tload RAM-based POLYBASIC extensions via
cassette recorder. These generally reside on disk (in the
BASIC.CMD and POLYSYS.SYS files) but are available on special
cassettes obtainable from POLYCORP. Thus full POLYBASIC (except
disk-referencing commands) may be used from standalone mode.
Using disk-referencing commands will cause the POLY to await
communication with the disk drive and you will have to reset.

3.2.7. CLOSE

Availability:- Not available in Standalone mode

Syntax:- CLOSE [KILL] [#Ichannel [,[#Ichannel]

CLOSE terminates input/output between BASIC and a file and makes
the channel available for another file. The channel must have an
integer value between 1 and 12, and must match a channel number
specified in an OPEN statement. An error occurs if the specified
channel is not OPEN.

For example:

52

100 CLOSE 3
CLOSEs the file which was OPEN on channel 3.
Files should be OPEN for as short a time as possible, as they
maintain a buffer area in memory which is returned to the work
area on CLOSING the file.
The KILL option, if present, causes the file to be removed from
disk. If a file with the same name, but with the extension .BAK
exists on the disk then it will be renamed with an extension the
same as the file being closed. # is optional before the channel
number,
For example:
100 CLOSE KILL 2
The file which was open on channel 2 is closed and deleted.

If a new serial file is opened but never written to, it will
automatically be deleted on CLOSE {or END).

CLOSE#0 will cause the file created using LPRINT to be printed.
3.2.8. CLS

Syntax:- CLS

CLS §1ears the current screen, and puts the cursor in position
{0,0).

For example:
S0 SELECT 1
100 CLS
110 SELECT 2
120 CLS

This clears both screens I and 2.

3.2.9. COLOR

P

Syntax:- COLOR colour

See COLOUR.

33

3.2.10. COLOUR

Syntax:- COLOUR colour

COLOUR selects the current colour for SET, FILL, LINE and DRAW on
the graphics screens. The colour codes are:

BLACK
RED-
GREEN
YELLOW
BL.UE
MAGENTA
CYAN
WHITE

H W an v o p

NN WM O

For example:
100 COLOUR 2
selects the current colour to be green.
I[f no colour has been selected then WHITE is the default.

The secondary colours CYAN, MAGENTA and YELLOW may be obtained
only by using MIX in either of two ways as follows:

1. By combining the colours on the two graphics screens. In this
case, the drawing is put onto both screens 2 and 4 with one
colour on 2 and the other on 4. The colours are then MIXed to
give the secondary colour. In order to see the secondary colour,
both screens 2 and 4 must be DISPLAYed, and MIX must be ON.
{Remember screen 4 requires 8K of user memory.)

For example:

70 DISPLAY 2

80 DISPLAY 4

90 MIX ON

100 COLOWR 3
110 SELECT 2
120 SET 100,220

This sets point {100,220) on screen 2 in red and on screen 4
in green. The MIX command mixes the 2 colours to give yellow
(cotour 3). For yellow the red is set on the current screen
and green on the other graphics screen

When colours are selected in this manner, colour codes 8 through
15 are also available, representing black through white as above.
These codes differ from those of 0 through 7 in the roles of
current and other graphics screen. This is illustrated by the
following table.

54

Colour

0 Black

1 Red

2 Green

3 Yellow
4 Blue

5 Magenta
&6 Cyan

7 White

8 Black

9 Red

10 Green
11 Yellow
12 Blue

13 Magenta
14 Cyan

15 White

Screen

Black
Red
Green
Red
Blue
Blue
Green
White
Black
Red
Green
Green
Blue
Red
Blue
White

Current Graphics Other Graphics

Screen

-

Green
Red
Blue
B1ack
Red
Green
Red
Blue
Blue

Green
White

2. To each of the graphics screens, a colour may be added to give

a further set of colours.

second form.

The colour sets available are:

No colour added

Red added

Green added
Blue added

When using MIX in this form the primary colour

Red

Red
Yellow
Magenta

Green
Yellow
Green
Cyan

This is achieved by using MIX in

the

Blue White
Magenta White
Cyan White
Blue White
is specified by

COLOUR and the overlay colour to be added, is specified in MIX.

For example:

7G DISPLAY 2
80 SELECT 2
S0 COLOUR 1
100 MIX 2,2
110 SET (100,210)

This sets the point (100,210) on screen 2 in yellow.

Remember that the primary colours are:-

RED GREEN BLUE

YELLOW
MAGENTA
CYAN
WHITE

RED + GREEN
RED + BLUE
-BLUE + GREEN
RED + BLUE + GREEN

55

3.2.11. COMPILE

Availability:- Not available in Standalone mode

Syntax:- COMPILE "filename"
COMPILE

COMPILE saves the program currently in memory on disk in compiled
form. The filename should be specified in quotes. If no filename
extension is specified, .BAC is assumed. A compiled program may
be loaded Tater either with a RUN, LOAD or CHAIN. A compiled
program generally takes less storage than a source file and also
loads faster. A compiled program cannot be listed.

For example:
COMPILE "NEWPRM"

This compiles the BASIC program currently in memory onto the
current default disk as NEWPRM.BAC.

COMPILE without a filename will use the filename of the LOADed
file with a .BAC extension.

3.2.12. CONT

Syntax:- CONT

CONT 1s used to restart a program after it has been stopped by a
STOP statement, by pressing the <EXIT> key, or by an error. The
restart is made at the statement following STOP, at the next
statement after <EXIT>, or at the start of the statement . causing
the error. :

CONT will not restart the program if any editing is performed
while the program is stopped.

3.2.13. CONVERT

Syntax:~- CONVERT string-variablel T0 string-variable?

CONVERT changes a line description stored in a string into a
boundary description (see FILL). FILL converts a 1ine description
to a boundary description each time a FILL is performed, but for
efficiency a 1ine description may be CONVERTed prior to the use
of FILL. -

For example:

100 CONVERT A$ TO AS
110 CONVERT X3 70 Z3

56

If line descriptions have been set up in A$ and X$ then line
100 converts A$ to a boundary description and line 110
converts X$ to a boundary description storing it as Z%.

3.2.14. CSAVE

S —

Syntax:~ CSAVE string-expression

CSAVE saves the BASIC program or the text file, depending on what
mode the POLY is in, currently in memory to tape via the optional
cassette interface.

A prompt to start the tape is issued. CSAVE then writes out a
special tape mark, followed by a heading which is the valye of
the string-expression, then the program or text file currently
stored in memory.

Files saved using CSAVE may be re-loaded using CLOAD.

On completion of saving, the cursor will be displayed. CSAVE may
be terminated at any stage using EXIT.

3.2.15. DATA

Syntax:- DATA value {,valuel...

The DATA statement enables data to be stored inside a program and
to be accessed by a READ statement when it is required. Each item
in the 1ist must be separated by a comma. Each time a READ is
encountered, the next item in the list is read.

Strings do not need to be enclosed in quotes unless they include
embedded commas or colons. Strings and numeric data may be mixed
in the same DATA statement.

Multiple DATA statements may be wused and need not be placed
together in the program. When all the data has been read from one
DATA statement, access will be made to the next DATA statement. A
DATA statement must be the only statement on a line.

RESTORE may be used to set the line number of the DATA statement
from which the next READ is to access.

For example:

50 DIM Array$(3)
100 DATA JAN, FEB, MAR, APR, MAY
200 DATA " 100%, * 1000, "10,000"
300 DATA 50,40,30,20
400 RESTORE 200
560 FOR 14 = 1 T0O 3
600 READ Array${1%)
700 NEXT 1%

57

This sets up Array$ with the 3 string values of 100, 1000
and 10,000.

3.2.16. DEF FN

Syntax:- DEF FN variable-name (dummy-variable) = expression

DEF FN allows the user-definition of single 1ine functions
containing one argument and returning a floating point value.

The function name is formed by preceding the variable name in the
definition by FN.

For example:
DEF FNA(B) = SQR(B) / 2 + 10

defines the function FNA which takes the square root of the
argument, divides it by 2 and adds 10.

FNA could then be used in an expression such as:
A = FNA(16) + FNA(36)
which would give A the value 12 + 13 = 25,
In the example, B is a dummy variable that may be used within the
expression. Its value is determined when the function is called.
The returned value will be floating point. String functions
cannot be included within the expression.

NOTE: DEF FN must be the last statement in a line.
3.2.17. DEL

Availability:~ Not available in Program mode.

Syntax:- DEL line-range [, 1ine-range]

DEL deletes lines as specified by the parameters. A line range
may be a single line, or a starting line number followed by a
hyphen, followed by an ending 1ine number specifying a group of
consecutive Tines.)
For example:

DEL 10, 30-100

Deletes line number 10, and all lines between 30 and 100
inclusive. _

58

3.2.18. DIGITS

Syntax:- DIGITS total-number [,number-of-decimal-places]

DIGITS specifies how many digits to print in standard numerical
notation. The number must be in the range 1-10. If no number is
specified, the default prints a total of 6 digits. The second
argument specifies the maximum number of decimal places, and must
be less than or equal to the total number. The default second
parameter is equal to the first parameter. If a number will not
fit the format it is printed in scientific notation. If DIGITS is
not specified a number with more than 6 digits before or after
the decimal point will be printed in scientific notation.

For example:

10 DIGITS 5,4
20 PRINT 2.7182818285

will print 2.7183
10 DIGITS 2
20 PRINT 999
will print 1E+03 because of rounding.

3.2.19. DIM

Syntax:- DIM variable(size) [,variable{size}]...

DIM sets the number of items allowed in each of the dimensions 1in
an array. All arrays must be dimensioned before they can be used.
There is no 1imit to the number of dimensions.

For example:

100 DIM A$(10), B%(4,2)
200 DIM C$(2,2,2,2,2)

Line 100 sets up a one dimensional string array with
subscript elements 0 - 10, (i.e. 11 elements) and a two
dimensional integer array with elements 0,0 to 4,2.

Line 200 sets up a 5 dimensional string array with elements
0 to 2 in each dimension.

Arrays cannot be redimensioned within a progran.

59

3.2.20. DISPLAY

Syntax:- DISPLAY screen-number [ON]
DISPLAY screen-number [OFF]

DISPLAY is used to turn screens ON and 0OFF. The screen numbers
are

1 - Text screen
2 - Graphics screen (240 by 204)
3 - Text screen
4 - Graphics screen (240 by 204)
5 - Fine graphics screen (480 by 204)
For example:
DISPLAY 1

displays the top text screen.
DISPLAY 4 OFF
turns off the second graphics screen.
0 may be used to represent all screens.
For example:

DISPLAY 0
DISPLAY 0 OFF

displays and turns off all screens.

Following a RUN, NEW, CHAIN or CLEAR, all screens except screen 1
are turned OFF but not cleared.

Screen 5 cannot be used as well as screen 2 or 4 since it is
formed by combining both of these graphics screens.

Screen 5 has the same priority as screen 2.
3.2.21. DOS

Avaitability:- Not available in Standalone mode

Syntax:- DOS

This places the POLY unit in the Disk Operating System (DOS)
mode. A description of operation in this mode, along with a
description of the full set of DOS utilities is contained in the
POLYSYS Utilities Manual. An option to SAVE a loaded file is-
given (see NEW statement).

To return to POLYBASIC from DOS enter BASIC.

60

3.2.22. DPOKE

Syntax:- DPOKE address,value

DPOKE puts the 2 byte integer value at the specified address. The
value must be in the range 0 to 65535. '

For example:
DPOKE 1165, 2456
puts into memory locations 1165-1166 the value 2456.
Care must be taken in using this statement to ensure that the

values changed are at Tocations where the meaning of the contents
are known. _

3.2.23. DRAW

Availablility:- Not available in Standalone mode

Syntax:~ DRAW string-variable
DRAW ¥ channel
DRAW # "file-name"

DRAW places onto the current screen the line whose coordinates
have been defined using LDES$ and put in a string variable or
onto a file, or a screen dump which has been stored in a variable
or file using STORE.

A line is drawn in the current colour, on the current screen, at
the place it was defined.

For a screen dump, the current screen must be a graphics screen.
The screen dump is placed in the same place on the screen from
which it was stored in the original colours.

For example:

10 CLS

100 Car$ = LDES${115,0,115,20,100, 20,100,
70,130,70,130,0,115,0)

110 SELECT 2:CLS:DISPLAY 2

120 DRAW Cars

This draws the car as specified on screen 2.
130 STORE {100,0)(130,70)Car$
135 CLS
140 SELECT 4 : DISPLAY 4
150 DRAK Car$

This stores the car as a screen dump in Car$, clears screen
2 and dumps it onto screen 4 in the same place.

6l

If a screen dump is stored on disk using STORE# the file (which
may contain several screen dumps) may be opened and the screen
dumps drawn using DRAWZ.

For example:

100 OPEN OLD "DIAGRAMS" AS 1

110 CLS : SELECT 2 : CLS : DISPLAY 2
120 FOR Number = 1 TO 5

130 DRAW #1

140 NEXT

150 CLOSE 1

This reads 5 diagrams off the disk file DIAGRAMS.DAT and
dispiays them on screen 2.

If there is only one screen dump in the file then DRAWE"filename"
may be used to avoid the OPEN and CLOSE statements.

3.2.24. DRAW@

e ———r

‘Availability:- Not available in Standalone mode

Syntax:- DRAW®({row, column) string-variable
DRAWE(row, column) #channel
row, columnj # file-name"

DRAWG shifts the coordinates relative to the specified row,
column and DRAWs the diagram in the new position.

For example:

50 CLS

100 Car$ = LDES$(115,0,115,20,100,20,100,
70,130,70,130,0,115,0)

110 SELECT 2 : CLS : DISPLAY 2 : COLOUR 1

120 FOR Col = 240 TO -2 STEP -10
130 CLS

140 DRAWG(115,Col)Car$
150 NEXT Cotl

This causes the car to move from right to left across the
screen,

3.2.25. DRIVE

Availability:- Not available in Standalone mode

Syntax:- DRIVE drive-number [,0N]
DRIVE drive-number OFF
DRIVE ,ON
DRIVE ,OFF

62

DRIVE reassigns the current default drive for a particular POLY.
The drive number should be in the range 0 to 4. 0 to 3 represent
physical disk drives while 4 corresponds to RAMdisk, which may be
used in exactly the same way as a physical disk. This allows a
particular POLY to be working on a different drive from other
POLY's in the system.

The ON and OFF in the DRIVE command refer to the "Search RAMdisk
first” capability. If ON is specified, then whenever an existing
file is referenced without specifying a drive number, RAMdisk
will be searched before the default drive is searched. OFF
disables this capabiiity. ON is default in the DRIVE command.
When BASIC is initially loaded, 0 and ON are defaults.

For example:

10 DRIVE 1,0N
20 OPEN OLD "MYFILE" AS 1

will first search RAMdisk (drive 4) for A4.MYFILE.DAT. If
found then this is the file that will be opened. If not
found then drive 1 will be searched for 1.MYFILE.DAT.

DRIVE O
RUN"MENU"

will first search RAMdisk (drive 4} for 4.MENU.BAC. If
found, this MENU program will be run. If not found,
0.MENU.BAC will be referenced.

DRIVE O0,0FF
RUN “MENU™

and
RUN "O.MENU"

will both always attempt to reference 0.MENU.BAC.
The search RAMdisk first capability only applies to referencing
already existing files, not for creating new files, and only when
the default drive is used. Thus in the following commands:
CHAIN, DRAW#, EXEC, FILL#, LOAD, LOAD#, MERGE, OPEN QOLD, RUN
when a drive number is not specified in the filename, the default

drive is assumed and RAMdisk will be searched first if this
feature is enabled.

3.2.26. ELSE

Syntax:- IF condition [THEN] stmt [:stwtl...ELSE stmt [:stmt]...

ELSE must always be used in conjunction with an IF statement. All
statement(s) on the same line following the ELSE are performed if
the condition is FALSE. The ELSE must not be immediately preceded
by 2 colon.

63

A Tine number immediately following £LSE is read as ELSE GOTO
linenumber.

For example:
The following are valid constructs: |
100 IF A%>3 OR B%<2 THEN GOTO 200 ELSE GOTO 300
200 IF A=4 THEN B=0 :C=0 ELSE D=0 :E=0
300 IFC<X C=X:D=0ELSEIFC<YTHENC=Y:D=1ELSEC=7:D=7
400 IF AL%=4 PRINT A% ELSE 2000

The Tatter two examples are poor. THEN should always be used
as it improves readability.

The following are NOT valid constructs:
500 IF A%>4 GOTO 1000 : ELSE GOTO 2000
600 IF A%=4 AND B8%=6 ELSE C%=0

3.2.27. END

Syntax: - END
END terminates program execution. It may be placed anywhere in
the program. If the last statement to be executed is also the
physically 1last statement in a program, END need not be
specified.
For example:

100 IF A% > 100 THEN END
Foilowing END, a program cannot be restarted by using CONT, but

may be RUN again. The end of a program causes the display of all
screens except screen 1 to be switched off.

3.2.28. ERROR

Syntax:- ERROR numeric-expression

ERROR allows an error to be simulated during testing. ERR and ERL
are set up as if the error had occurred and the ON ERROR branch
is taken as if it has been set.

For example:

ERROR 4

64

makes the program act as if error 4 had occurred.
In the error routine, RESUME NEXT rather than RESUME must be

specified as RESUME will just cause repetition of the ERROR
statement. '

3.2.29. EXEC

Availability:- Not available in Standalone mode

Syntéx:- EXEC “filename”

EXEC loads and executes the machine language program contained in
filename. Care must be taken to ensure that the program loaded
does not interfere with the BASIC program running. Utilities
which run in the utility command Space may be executed with this
command. Following execution of the program, control is returned
to the BASIC program.

For example:
100 EXEC “CAT 1"
This displays the catalogue on the screen.

A complete description of utilities is given in the POLYSYS
Utilities Manual.

3.2.30. FETCH

A

Availability:- Not available in Standalone mode

Syntax:- FETCH variablel [,variablez]...

When a BASIC program is run from another program by the use of
CHAIN, all variable values are reset. However expressions may be
passed to the program being CHAINed using the FETCH statement.
The expressions in the CHAIN 1ist and the variables in the FETCH
11st must match by type. FETCH must be the first executable
statement in the CHAINed program.

For example:
CHAIN "NEXTPROG",Address$,NO%
might CHAIN to a program in which the first statement is:
FETCH Address$,NUMBERY

65

3.2.31. FIELD

—————

Availability:- Not available in Standalone mode

Syntax:- FIELD #channel, fieldsize AS stringnamel
[, fieldsize AS stringnamez2]...

FIELD is used with random access file statements PUT and GET, to
specify string subfieTds within the record buffer.

For example:

10 OPEN QLD RANDOM “"TRIAL" AS 1
20 FIELD#1, 10 AS AS, 4 AS X$, 8 AS D%
30 GET #1

Line 10 opens the file TRIAL on channel 1.

Line 20 assigns A$ as the label for the first 10 bytes
(characters) in the record buffer of channel #1, whatever
these may contain, X$ as the next 4 characters, and D$ as
the last 8 characters.

Line 30 reads the next record of the file into the record
buffer, which will assign values to A$,X$ and D$.

After GETting a record, a FIELD statement may be used to reassign
the fields within the record. If you want to retain the value of
a variable which is in the buffer you must store it in another
variable before reassigning the fields.

For example:

40 FIELD#1, 23 AS 7$, 10 AS A$, 4 AS X3, 8 AS D$

reassigns the labels Z$, A$, X$ and D$ to the buffer, while
the data in the buffer is unchanged.

If it is required to store numeric fields in the record, the CVT
function can be used to convert them.

For example:

5 DIM A%{125)

10 OPEN OLD RANDOM “TRIAL1"™ AS 9
20 GET #9

30 FOR I=0 to 125

40 FIELD #9, I*2 AS X$, 2 AS AS$
50 A%(1}=CVT$%(AS)

100 NEXT I .

This program GETs a single record from TRIAL1.DAT into the
record buffer and breaks it into 126 2 character fields.
These are then stored as integers in the array A%. X$ is a
dummy string to put successive A$ labels at the right
places. Further processing can then be done with the values
stored in the array.

66

To store records in a random access file, FIELD, LSET, RSET and
PUT are used.

For example:

10 OPEN NEW RANDOM({50) “TRIAL2" AS 12
20 FIELD #12,20 AS AS$, 30 AS BS

30 LSET Ag$="AAA"

40 LSET B$="BBB"

50 PUT #12, RECORD 3

60 CLOSE 12

Lines 30 and 40 assign the strings "AAA + 17 spaces" and
"BBB + 27 spaces" into A$ and BS respectively. The FIELD
statement in line 20 assigns these to the first 50 bytes of
the buffer. Line 50 PUTs the contents of the buffer into
RECORD 3 of the new file TRIALZ.DAT.

It is possible to use FIELD and GET (but not PUT) with
sequential files in a similar manner provided no RECORD option is
specified for the GET. : '

3.2.32. FILL

prtrrr—

Availability:- Not available in Standalone mode

Syntax:- FILL [USING pixels[,shiftl;] string
FILD pixelsl ,shift];] #channel
FILC [USING pixelsl,shiftl}] F7¥iTe-name"

FILL fi1ls a defined area on a graphics screen with a specified
pattern in the current colour. The string (whether from a disk
file or not), may be a boundary description or a line
description { see CONVERT). When using LDES$ to create a line
description to be Fllled, the points must be described in a
clockwise direction. The pattern is described by two values, the
pixeTs, and the shift. The pixels are set up in groups of 6 which
are represented by the decimal value of their binary pattern. If
the pixels are not specified, 63 is used. 1If the shift is not
specified no shift is assumed.

For example:
If the pattern required is 101010 then the eqguivalent
decimal value 42 is used. The easiest way to convert from

binary to decimal is by assigning values to each digit and
adding them up.

T . - i don 7y oo

1 01 01 0-=42
0 1 1 1 0 1-=29
0 00 00 1=1

Shift is the number of pixels each row is shifted to the right.

67

For example:

With pixels 000001 a shift of 1 gives the following patterns
on successive rows:

Rowl 000001
Row2 100000
Row3 010000
Rowd 001000
Row5 000100

A diagonal effect is obtained. .

10 SELECT 2

20 CLS

30 DISPLAY 2

40 A$=LDESS$((2,0){2,100)(50,100)(50,10)(2,0))
50 COLOLR 4

60 FILL USING 1,1;A$

This selects screen 2, clears and displays it and fills the
rectangle defined with blue diagonal lines.

The FILL is executed in two stages, the line description is first
converted to a boundary description and then the area is filled.
If the same line description is to be filled repeatedly, a time -
saving may be made by converting the Tine to a boundary
description using CONVERT, and storing this in a string.

For example:

10 AS = LDES$(2,0,2,100,50,100,50,10,2,0)
20 CONVERT AS$ TO AS

30 SELECT 2 : CLS : DISPLAY 2

40 FOR I%2 = 1 TO 100

50 Col = RND(4) : IF Col = 3 then Col = 7
60 COLOUR Col

70 FILL AS

80 NEXT 1%

This fills the box with a solid random colour 100 times.

3.2.33. FILL®

Availability:- Not available in Standalone mode

Syntax:- FILL@(row,column) [USING pixels[,shift];]] string
FILLE{ row,column) [USING pixels[,shiftl:l] Fchannel
FILL®{row,column) [U?Tﬁﬁ'pixels[,shiftjzj} #f71e-name"

This transposes the area to be filled to start at the row, column
specified, operating similiarly to DRAWE.

For example:

68

100 FILL@({10,30) USING 21,1;A$
1f A% is as specified in the FILL example, then all points
are moved by the difference between {10,30) and (2,0). That
is the rows have 8 added to them and the columns 30.
{10,30)(10,130)(58,130)(58,80)(10,30)

"This area is then filled.
3.2.34, FOR

Syntax:- FOR variable = start-value TO end-value [STEP increment]

FOR starts a loop so that a sequence of program statements can be
executed over and over again. The loop must be terminated by a
NEXT statement. The specification of the variable in the NEXT
statement is optional.

For example:

10 FOR 1% =1 T0 6
20 PRINT 1%;
30 NEXT 1%

is the same as writing

10 PRINT 1;
20 PRINT 2;
30 PRINT 3;
40 PRINT 4,
50 PRINT 5;
60 PRINT 6;

The start and end values may be either constants, variables or
expressions. The variable in the FOR statement is to count the
number of times the loop is executed and care must be taken if
this is changed within the loop.

For example:

100 FOR N%Z=1 TO 10
110 N%=N%*2
120 NEXT

Lines Tike 110 which change the value of the control
variable shouid be used with caution.

STEP specifies the amount to be added to the counter variable at
the end of each loop. It may be positive or negative and may
contain a decimal point. If not specified, 1 is assumed. At the
end of each loop, the counter is tested. If the value obtained on
incrementing the counter by the step size is greater than the
final value the program goes on and executes the statement after
the NEXT. (If the STEP is negative, the test is less than the
final value). The value of the counter after the NEXT statement
1s the latest value not to have failed the test.

69

A FOR Toop may be exited by a GO TO from within the Toop but a GO
70 should never reenter the middle of a FOR loop {unless it has
previously exited using a GO TO).

FOR Toops may be nested, 1.e. ptaced one inside another.

ror example:

5X=0.4

10 FOR I=1 TO X*7 STEP 0.5
20 PRINT "OUTER LOOP"; I
30 FOR J=1 TO 2

35 PRINT "INSIDE LOQOP"

40 NEXT J

50 NEXT 1

This would print

CUTER LOOP 1
INSIDE LoOP
INSIDE LoOP
QUTER LOOP 1.5
INSIDE LOOP
INSIDE LOOP
OUTER LOOP 2
INSIDE LooP
INSIDE LOOP
QUTER LooOP 2.5
INSIDE LOOP
INSIDE LOOP

Using integer values for variables saves time and memory space. A
FOR loop is always executed at least once.

3.2.35, GET#

Availability:- Not available in Standalone mode

Syntax:- GET #channel [,RECORD record-number]

GET reads a specific record from a random file and places it in
the record buffer for that channel. To access the data in that
record, a FIELD statement must be used. If a record number is
specified, that record is read from the file. If it is not
specified, then the next record on the file is read.

For example:

10 OPEN OLD RANDOM “TEST" AS 4
20 GET #4, RECORD 24

30 FIELD #4, 100 AS A$, 10 AS BS
40 CLOSE 4

Line 10 OPENS.TEST.DAT on channel 4§,
Line 20 reads record 24 into the buffer.

Line 30 designates the first 100 bytes of the buffer as AS,
the next 10 as BS.

Line 40 CLOSEs the file.
70

See FIELD for further examples, GET may be used with sequential
files provided the RECORD option is not specified.

3.2.36. GOSUB

Syntax:- GOSUB 1inenumber
expression

GOSUB transfers program control to the subroutine beginning at
the specified 1ine number. When a RETURN statement s
encountered, control is returned to the statement following the
GOSUB. When an expression is used it must not start with an
integer value e.g. GOSUB 20*I will be interpreted as GOSUB 20
followed by *I. However GOSUB 1*20 is valid.

For example:
150 IF I%=1 THEN GOSUB 1000
160 PRINT “RETURN FROM SUBROUTINE™
170 END

1000 PRINT “SUBROUTINE"
1010 RETURN

With 1% set to 1 this would display

SUBROUT INE
RETURN FROM SUBROUT INE

A subroutine may be used over and over again from various places
in a program.

3.2.37. GOTO

Syntax: GOTO 1inenumber
GOTO expression

GOTO may also be written as two words i.e. GO T0. GOTO transfers
program control to the specified line number. The line number may
be given as an expression which will be evaluated. When an
expression is used it must not start with an integer value e.g.
G0 TO 20*I will be interpreted as GO T0 20 followed by *I.
However GO TO I*20 is valid.

For example:

100 PRINT “A";
120 GOTO 100

This would result in a continuous Toop with the computer

displaying A's. To stop the program it would be necessary to
press the <EXIT> key.

71

100 PRINT "“A"“;
110 G0 TO 1000

1000 PRINT “g"

This simply transfers control to line 1000 and would display
AB, because of the ";". Lines between 110 and 1000 are
irrelevant to this example.

3.2.38. IF THEN

Syntax:- IF condition [THEN] stmt [:stmt] ...

If the vresult of evaluating the condition is TRUE, the
statement(s) immediately following, or following the THEN on the
same line are executed. If the expression is FALSE, control Jumps
to the matching ELSE statement (if there is one) or to the next
1ine. See the ELSE statement.

A line number immediately after the THEN statement is interpreted
as THEN GOTO linenumber. If THEN is omitted and an assignment
(e.g. A=24) appears following the condition, a space must follow
the condition.

For example:
100 IF A%<4 AND B%=2 THEN GOSUB 1000
200 IF X>127 THEN B%=3 : C% = 0 : GOTO 300

210 IF Z>256 INPUT A$
220 IF X%=1 THEN X%=9999

The following lines all perform the same action

300 IF A$ = "END" THEN GOTO 2000
400 IF A$ = “END" GOTO 2000
500 IF A$ = "END" THEN 2000

However it is good practice to always include THEN.

3.2.39. INPUT

r———

Syntax: INPUT [“"message";] variable [,variable]...

INPUT causes the program to wait until the specified number of

fields are entered on the keyboard. The input statement may
specify a list of string or numeric variables to be input. The

items in the 1ist must be separated by commas. When typing the

strings, fields need not be enclosed in quotes unless leading or

trailing spaces are to be included or the string includes a L.

<ENTER> must be pressed to terminate input. Note that all

characters up to the wmaximum cursor position attained are

accepted by INPUT, no matter where the cursor is positioned when

<ENTER> is pressed.

72

It is an error to input a non-numeric value to a numeric
variable. To trap such an error and return to the INPUT
statement, ON ERROR may be used and the error tested.

INPUT displays a ? followed by the cursor in the next PRINT
position. To position an INPUT to a specified place on the
screen, the INPUT statement should be preceded by a PRINT®{row,
column) and a semi-colon.

For example:

100 PRINT@(20, 15);
200 INPUT AS

A "prompting message" may also be inciuded in the INPUT
statement. This will be printed before the ? prompt. The
statement must be enclosed in quotes and followed by a ";"“.

For example:

100 INPUT "NAME"; N$
110 INPUT "AGE IN YEARS, HOUSE NUMBER"; A%,H%

The following would be displayed on the screen. The data
entered in is underlined.

NAME? JIM
AGE IN YEARS, HOUSE NUMBER? 15,113

If insufficient fields are entered, further ? prompts are given
until all the requested values have been entered.

An empty input field, produced by typing a comma or <ENTER> with
nothing between it and the previous comma or the ? prompt, leaves
the previous value in the variable unchanged.

Entering spaces only followed by a comma or <ENTER> sets a string
variable to null (zero length), and a number to zero. {To set a
string variable to a space, enter " " with quotes). In other
cases, leading spaces are ignored when inputting into a string
and all spaces are ignored when inputting into a number.
For example:
10 INPUT A%
Entering
6 <SPACE> <SPACE> O
1s equivalent to entering
? 60

If <ENTER> is the only key pressed, then the variable is left
with the value it had before the INPUT statement.

73

3.2.40. INPUT#

Availability:- Not available in Standalone mode

Syntax:- INPUT #channel, variable [,variable]...

INPUT# reads the next sequential record from a disk file on the
specified channel and assigns values contained in it to the
variables specified. in the variable 1ist. INPUT#0 works the same
as the ordinary INPUT statement except that no ? prompt is given.

The disk file must first be OPENed and later CLOSEd. The disk
file must previously have been created to match the form in the
variable 1ist. See PRINT#. To test for the end of the file, an ON
END trap may be used. :

For example:

INPUT and 1ist all the records from file "NAMES.TXT". The
records each contain 3 fields,

10 OPEN OLD “"NAMES.TXT" AS 1
20 ON END #1 GOTO 1000

30 INPUT #1, A$,B%,C

40 PRINT AS

50 PRINT B%,C

60 GO TO 30

1000 CLOSE 1

3.2.41. INPUT LINE

Syntax:- INPUT LINE [(length)] string-variable

INPUT LINE inputs all data typed in up to the maximum position
attained by the cursor and places it in the string variable when
<ENTER> is pressed {(no matter where the cursor is positioned).
Only one string is allowed. Data typed in may dinclude commas
{unlike INPUT, where the comma specifies the start of a new
field). Any prompting text must be printed by a previous
statement.

If a null string is entered, the string will be set to a Tength
of zero; it will not be left with its previous value (as it is
for a null item using INPUT).

For example:

100 PRINT@(10,0) "TYPE IN YOUR NAME AND ADDRESS"
110 INPUT LINE A$

On the screen this would appear as:

TYPE IN YOUR NAME AND ADDRESS
? JOHN SMITH, 246 BERKLEY GROVE, WADESTOWN

74

A1l of the name and address entered by the user is assigned
to A$, including the commas.

If a Tength is specified this is the maximum length of the string
that may be entered. When the user types a line in response to
INPUT LINE the cursor will refuse to move past the column of the
last character which will be accepted into the string. INPUT LINE
with a specified length accepts the whole buffer, that is, any
data appearing on the screen within the specified length will be
assigned (unless deleted or replaced).

For example:

100 CLS:PRINT®(10,2) “JOE BLOGGS"; : PRINT®(10,0);
200 INPUT LINE {8) X$

Line 200 will accept no more than 8 characters. If the user
types "JOHN SMITH", the “I" will be overwritten by the "T*,
then the "H"; and X$ will be set to JOHN SMH.

If a null string is entered, X$ will be set to
JOE BLOG
{since this was already on the screen),
If the length specified is zero, then the string will be set to

zero length without waiting for the user to input a null line. &
negative maximum length is an error.

3.2.42. INPUT LINE#

Availability:- Not available in Standalone mode

Syntax:- INPUT LINE [(length)] #channe) » String-variable

INPUT LINE# works exactly Tike INPUT LINE but the string comes
from the disk file which is OPEN on the specified channel. The

input takes all characters up to the first line feed or up to the

length specified (see INPUT LINE). INPUT LINE#0 inputs data
from the keyboard similiar to INPUT, but does not give a prompt.

3.2.43, KILL

Availability:- Not available in Standalone mode

Syntax:- KILL “filename"

KILL deletes a file from disk. The defaults are the working drive
and .BAS extension.

For example:

100 KILL "1.XXXX.AAA"

75

Line 100 KILLs file XXXX.AAA which is found on drive 1.
3.2.44, LET

Syntax:- [LET] variable = expression

LET assigns a value to a variable. The word LET may be omitted.
The variable and the expression must both be numeric or both be
strings. A real value assigned to an integer variable will be
truncated (see the INT function).

For example:

5 DIM G(8,8)

10 LET X%=7

20 LET C$="ABCDEF"
30 D=SQR({5)*7.8+9
40 G{0,8)=6

50 A%="ABCDEL"

Line 30 LET has been Teft out.
Line 40 assigns an array element.

Line 50 is an invalid statement because you cannot assign a
string to a numeric variable.

3.2.45. LINE

Syntax:- LINE line-description

LINE is used to draw lines on to the current screen.

LINE may be used on any of the screens but if used on the text
screens, the programmer must ensure that the graphics control
characters are printed on the rows before using this command.

A1l points are specified as coordinates in the form ({row,
column). The coordinates may be specified with or without
surrounding parentheses. If parentheses are used, the comma
between points may be omitted. If parentheses are omitted, then
all commas must be included.

For example:
LINE (10,10)(20,15)(30,20)(40,10)
LINE (10,10),(20,15),(30,20),(40,10)
LINE 10,10,20,15,30,20,40,10

are all legitimate forms of specification and draw a line
joining the points.

Lines may be stopped and started by using a ; in place of the

comma between points. The points on either side of the ; are not
joined.

76

For exampie:
LINE (10,10) (20,15);{30,20){40,10)
or
LINE 10,10,20,15;30,20,40,10

would draw 2 lines, one joining {10,10) to (20,15) and a
second line joining (30,20} to (40,10}.

Use of LINE on the graphits screens

COLOUR O (BLACK) may be used to remove a 11ne

The colours YELLOW, MAGENTA and CYAN can on]y be obtained by
us1ng MIX, either by adding a colour to the current screen or by
mixing the two screens.

If a point outside the screen is specified, then the 1line is
drawn to the edge of the screen as if it was Jjoined to that
point.

Use of LINE on the text screens

On teletext screens, the user must ensure that graphics control
characters have been written prior to using LINE. A simple loop
to insert these is:

10 FOR I%=0 TO 23: PRINT@(I%,0)"BR";:NEXT 1%

which prints “NR" or CHR$(18) in column 0 of all rows on the
screen.

Because the graphics control character is placed in column O,
chunky pixels cannot be placed in chunky graphic columns 0 or 1
on the text screen.

For example:

10 SELECT 1 : CLS

20 FOR I%=0 TO 23: PRINT®{I1%,0) "HR";:NEXT I%

30 LINE (14,10),(42,78},(0,0)

draws a line joining the 3 points screen 1 in green.

For example:

10 SELECT 2 : DISPLAY 2

20 COLOUR 1

30 LINE (0,0),(203,0),(203,239),(0,239),(0,0)

40 A$=INCH$(0) :REM DISPLAY UNTIL KEY PRESSED

draws & red line around the boundary of the screen.

77

3.2.46. LIST

Syntax:- LIST [start 1inel- end line]]

LIST displays a single program line, a group of lines, or the
whole program. A long 1isting may be stopped for examination at
any time by pressing <PAUSE>. Use of the <SPACE BAR> or the
<PAUSE> key allows stepping through the 1isting, 1ine by 1line.
Pressing <EXIT> terminates the 1isting.

For example:

LIST , Lists the whole program.

LIST 10-90 Lists Tines 10 to 90.

LIST 83 Lists line 83,

LIST -200 Lists lines 1 to 200.

LIST 200- Lists from line 200 to the end of the
program.

To Tist a program on the printer, either enter
 +PRINT “filename" options
or
SAVE "filename.PRT"
{.PRT files are automatically listed on the printer and the
file is deleted after printing.)

3.2.47. LOAD

Availability:- Not available in Standalone mode

Syntax:- LOAD “filename"

LOAD 1oads a BASIC source program or a text file from disk into
memory. In text mode, the default extension is .TXT. In BASIC
mode, the default extension is .BSC. If no drive number is
specified, the default drive is assumed, and thus RAMdisk will be
searched first, if this feature is enabled {see the DRIVE
command).

For example:
LOAD" ABAAAAA"
loads AAAAAA.BSC (1in BASIC mode) from the default drive
(searching RAMdisk first if this option is set). In TEXT
mode ARAAAA.TXT will be Jloaded from the default drive
{searching RAMdisk first if this option is set).

LOAD"1.BBBB. TXT"

78

loads BBBB.TXT from drive 1.

3.2.48. LOAD#

Availability:- Not available in Standalone mode

Syntax:- LOAD # channel, string-name
LOAD # "™fiTe-name™, string-name

LOAD# loads strings previously stored as disk files using SAVE#
or STORE#. In the first form, the specified channel. must have
already been OPENed (OLD). In the second form, the specified file
is opened (as an OLD GRAPH file) and closed automatically.
LOAD# may also be used to load binary files into a string
{possibly to execute as an assembler subroutine).

3.2.49. LOCK

Availability:- Not available in Standalone mode

Syntax:- LOCK #channel

LOCK causes the random file attached to the specified channel to
be "Tocked", i.e. no other user will be able to access the file
(either read or write) until it is "unlocked". Note the LOCK
has no effect on files in RAMdisk.

3.2.50. LOGOFF

Syntax:- LOGOFF

In Standalone mode, LOGOFF will return the POLY +to the magenta
start up screen. In System mode, the program LOGON.BAC will be
Toaded and executed, producing the blue Tog on screen., If
LOGON.BAC is not available, the POLY will display the magenta
start up screen.

3.2.51. LPRINT

Availability:- Not available in Standalone mode

Syntax:- LPRINT print-1ist

LPRINT outputs the data specified to a sequential disk file on
the default disk drive (but not RAMdisk) which will automatically
be printed on completion of the program, if the program is
stopped, or if the CLOSE#0 command is executed.

It is not necessary to specify a channel number, nor to open and

close the disk file. (For a description of the print-Tist see
PRINT.)

79

For example:

10 A= 1.2 : B%= 2 : C$= "SS55S5SS"
20 LPRINTA;B%,C$
30 END

Ll

This prints on the line-printer:

1.2 2 SSSSSSS
3.2.52, LSET

Syntax:- LSET string-variable = string-expression

LSET stores a new string value in an existing string storage
tocation. The value is either truncated if it is too long, or has
spaces added to it if it is too short (Compare RSET).

LSET {or RSET) is the only way to put a value into a variable in
the I/0 buffer before writing it to a disk file.

For example:

10 OPEN OLD RANDOM "XXXX" AS 9

20 FIELD#9,5 AS A$,6 AS B3,6 AS C$
30 LSET A$="AAAAAXXX"

40 LSET B$="8BB"

50 LSET Cs$="ccc"

60 PUT#9,RECORD 10

70 CLOSE 9

Line 10 OPENs file XXXX.DAT on channel 9. Line 20 assigns
positions in the buffer to A$,B$ and C$. Lines 30-50 put the
values into the strings in the buffer as follows:

A$="AAAAA", B$="BBB ", C$="CCC "

Line 60 PUTs the contents of the buffer into RECORD 10 in
the disk file XXXX.DAT .

Warning: Care should be exercised when using string functions
{e.g. LEFT$, MID$, RIGHT$) in conjunction with LSET {or RSET) and
existing string storage Tlocations. The string-expression is
stored as it is evaluated in the existing string location so that
the string function will apply to the string as it is currently
rather than as it was before evaluation.

3.2.53. MEM

Syntax:- MEM [high-memory-address]

MEM resets the top of wmemory address of the BASIC programs
working area. This is useful when a protected area is required
for a machine language subroutine. The current memory address can
be obtained using FRE(1). If the address is not specified it is
reset to the initial system value. -

80 -

MEM should not be used within GOSUB routines, ON ERROR routines,
ON KEY routines or ON SEC routines as the stack containing the
return address is stored just below high memory.

MEM may be used to de-select graphics screen 4 ({or 5) by
specifying MEM without an address so that the top of memory
address is reset to the initial system value. HNote however that
it is necessary to re-select screen 4 ({or 5) before using it
otherwise unpredicatable results may occur.

For example:
10 S% = FRE(1)

20 MEM S% - 100
30 REM SAVES 100 BYTES

10000 REM END OF PROGRAM
10010 MEM

This “protects” 100 bytes of memory and later releases it.

3.2.54, MERGE

e

Availability:- Not available in Sﬁanda]one mode

Syntax:- MERGE "filename"

MERGE Toads a BASIC program source file from disk into memory,
merging it with the BASIC program already in memory (if any). A
1ine from the file being merged will overwrite a line in memory
if they have the same 1ine number. Defaults are .BAS and the
working drive. In TEXT mode, .TXT 4is the default extension.
Encoded BASIC files may not be merged.

3.2.55. MIX

Syntax:- MIX [ON]
MIX [OFF]

MIX screen, colour

MIX is used for controlling:-
a) The mixing of the colours on screens 2, 3 and 4.
b) The adding of a colour to pixels ON within screens 2 or 4.

MIX ON specifies that the beams on screens 2, 3 and 4 are to be
MIXed. If the current COLOUR is either YELLOW, CYAN or MAGENTA,
then DRAW, FILL and LINE will draw on both screens 2 and 4, and
if both screens 2 and 4 are displayed, then these colours will be
displayed MIXed.

MIX OFF switches MIX mode OFF so that the screens display in
their priority order.

81

MIX screen, colour, adds the colour to all pixels ON on the
specified graphics screen (see COLOUR for examples).

Mixing Colours

The colour of each pixel on the screen is determined by which of
the 3 colour beams - red, blue, and green - are switched on.
These are the primary colours. The secondary colours reguire 2 or
more beams on such that:

Red + Green = Yellow
Red + Blue = Magenta
Green + Blue = Cyan
Red + Green + Blue = White

Al11 7 colours are available on the text screens, but the graphics
screens have only the primary colours immediately available. The
secondary colours are created using the MIX command. When two
colours are mixed the resulting colour is the composite of the
two colours.

For example:
Red + Red + Blue

Red + Blue
Magenta

Red + Magenta

Note that if a beam is repeated in the MIX, it is not doubled in
intensity.

- 3.2.56. NEW

Syntax:- NEW

NEW deletes the current file from the POLY. If the file in memory
is a source program (or a text file) that has been altered, the
user will be prompted with

Save (Y/N)?
or
Save filename (Y/N)?

The filename will appear only if the file was LOADed. In the
first case if Y is typed, the NEW is aborted; if N is typed the
NEW is executed. In the second case if Y is typed the file will
be SAVEd and NEW executed; if N is typed, NEW will be executed.
Only Y, y, N, or n will be accepted. In BASIC mode, the default
extension will be .BSC, in TEXT mode it will be .TXT.

82

3.2.57. NEXT

Syntax:- NEXT [loop-variablel

NEXT terminates a FOR toop. The loop variable name need not be
specified.

For example:
10 FOR N%=1 TO 12
20 PRINT N%
30 NEXT N%

This prints a 1ist of the first 12 integers.

3.2.58. ON END

Availability:- Not available in Standalone mode

Syntax:- ON END #channel GOTO 1ine-number

ON END allows the user to set a line number to which control will
be passed when an attempt to read the file on the specified
channel fails because there is no more data to be read. The file
must be open when ON END is set. RESUME is not necessary after an
ON END.

Warning:- When using ON END with string files saved with SAVE# or
STORE#, several null strings may be input at the end of the file
before ON END causes a branch.

For example:

10 OPEN OLD "FILLY.TXT" AS #2
20 ON END #2 GOTO 1000

30 INPUT LINE #2,A$

40 PRINT AS

50 GOTO 30

1000 CLOSE #2

1010 END

Line 10 OPENs FILLY.TXT on channel 2.

Line 20 sets the ON END line number for channel 2.

Line 30 INPUTs a 1ine from the file.

Line 40 PRINTs the line from the file.

Line 50 causes the program to GOTC 30 for another INPYT.
Line 1000 CLOSEs the file and will only be executed once end
of file is detected.

83

3.2.59. ON ERROR

Syntax: - ON ERROR GOTO 1inenumber

ON ERROR allows the user to trap errors and carry out whatever
action is required. When an error occurs in a program without an
ON ERROR GO TO, or the 1line number given is 0, the program
terminates with a message like

ERROR 74 IN LINE 210

When an ON ERROR routine is included, the program will go to the
specified Tine when an error occurs. The error number s saved in
ERR and the 1ine number on which the error occurs 1is saved in
ERL. The ON ERROR statement must be executed prior to the Tline
causing the errors. After an ON ERROR routine, control is passed
back to the main program with a RESUME statement.

For example:

10 ON ERROR GO TO 1000

200 FOR I%=1 TO 300

210 READ A(1%)

220 NEXT I%

230 REM program carries on

1000 iF ERL=210 AND ERR=91 THEN RESUME 230 ELSE
RESUME 1010
1010 PRINT ERR,ERL

This program READs from DATA tists. When all data has been
read into array A error 91 will occur in line 210. This has
been trap?ed and processing will resume at line 230. Other
errors will be reported in line 1010.

The ON ERROR routine does not trap errors within itself.

ON ERROR routines may be tested by simulating errors using ERROR.

If an ON KEY is trapped during an ERROR routine, the ON KEY

routine is not executed until AFTER resumption from the ERROR
routine.

3.2.60. ON GOSUB

Syntax:- ON numeric-expression GOSUB line[,1inel...

ON GOSUB allows different subroutines to be called from the same
statement. Control will RETURN to the statement following the ON
GOSUB statement.

For example:

100 ON N GOSUB 110,120,130,140,150
105 REM

—t
-
=
H o #

1 control goes to the subroutine at iine 110.
2 control goes to the subroutine at line 120 etc.

etc

If N <O or N>5 control goes to the next statement, in
this example, lTine 105.

Non-integer values for the numeric expression are truncated.
Values less than or greater than the number of items in the 1list
cause the program to continue at the following statement.

3.2.61. ON GOTO

Syntax:~ ON numeric-variable GOTO line[,linel...

ON GOTO is similiar to ON GOSUB except that control is not
RETURNed to the statement following the ON GOTO statement.

If the numeric-variable has a value less than 1 or greater than
the number of items in the 1ist, then the program continues at
the following statement.

For example:

50 ON N% GOTO 200, 210, 220
60 REM ...

If N = 1 control goes to the statement at iine 200.

If N% = 2 control goes to the statement at 1ine 210.
If N% = 3 control goes to the statement at line 220.
If N2 < 0 or N& > 3 the program continues onto the 1ine

following line 50.

3.2.62. ON KEY

Syntax:- ON KEY [key-no-11[T0 key-no-21 GOTO [Tinenumber]
ON KEY keynumber AS new-value

ON KEY allows the functions performed by specific keys to be
programmed.

85

Programming the Special Keys

The special keys include the numeric keypad, the cursor keys, the
editing keys and other special purpose keys. These are all
assigned a special ON KEY number as follows:

Key(s) ON KEY value
Numeric keypad numbers 0-9 0-8
EXIT 10
PAUSE 11
ENTER 12
NEXT 13
REPEAT 14
BACK 15
HELP 16
CALC 17
back arrow 18
forward arrow 19
down arrow 20
Up arrow 21
INS CHAR 22
DEL CHAR 23
INS LINE 24
DEL LINE 25
. on keypad 26
SHIFT PAUSE 27
@ 28
£ 29
EXP 30
1 31

The ON KEY procedure works in a similar way to an ON ERROR
procedure in that as soon as the key specified is pressed, a
special routine in the program is performed. Control must be
returned using RESUME.

During the ON KEY routine the ON KEY value of the key pressed is
returned by KVAL and the state of the SHIFT and CONTROL keys is
returned by KVAL{O)}. To turn off the ON KEY interrupt use:

ON KEY [key-no-1] [T0 key-no-2] GOTO O

For example:

20 ON KEY 12 GO TO 1000
30 REM other statements

-

1000 CLS
1010 RESUME

This would cause the program to clear the current screen
whenever <ENTER> was pressed. The program would RESUME
normal operation at the statement following that during
which <ENTER> was pressed. The keyboard is checked after
every statement.

86

For example:

20 ON KEY 10 GO TO 1000

1000 RESUME

This disables the <EXIT> key. The ON KEY routine at 1ine
1000 does nothing except continue when the <EXIT> key is
pressed.

For example:

10 DIM a%(9)
15 count = ¢
20 ON KEY 0 TO 9 GOTO 1000

1000 a%{count) = KVAL

1010 count = count +1

1020 TF count > 9 THEN ON KEY 0 TO 9 GOTD ©
1100 RESUME

This routine allows up to 10 numeric keys to be pressed
during other processing. The values of these keys are stored
in the array a%. When 10 keys have been pressed, the ON KEY
is switched OFF.

The whole keyboard may be trapped by ON KEY by omitting the
key-number,

For example:
20 ON KEY GO TO 1000

*

1000 iF KVAL < 65 OR KVAL > 90 THEN RESUME

1100 RESUME

In this case KVAL contains the ASCII value of the key
pressed.

In this example, whenever any key is pressed, the ON KEY
routine is executed. In line 1000, if the key pressed is not
a capital letter, processing continues. Note ON KEY GOTO ©
resets the whole keyboard trap but not the special key trap.

Changing the ASCII values of the numeric keypad

ON KEY may also be used to assign a new ASCII value to the keys 0
to 9 of the numeric keypad.

87

For example:

It is required to enter from the keyboard the teletext
characters 1/4, 1/2 and 3/4 as these are not on the
keyboard. The numeric keypad numbers 1, 2 and 3 are assigned
for entering these characters.

20 ON KEY 1 AS 123
30 ON KEY 2 AS 92
40 ON KEY 3 AS 125

If a KEY is trapped during a KEY, SEC or ERROR routine, the ON
KEY routine for that key is not executed until after resumption

of the main code following completion of the routine. Multiple
KEY traps are stacked.

3.2.63. ON SEC

Syntax:- ON SEC [intervall GOTO 1ine-number

ON SEC acts in a manner similar to ON ERROR or ON KEY except that
the ON SEC routine is performed at specified time intervals. The
interval is specified in seconds.

For example:

100 ON SEC 5 GOTO 1000

1000 PRINT@(0,32)TIMES;
1010 RESWME

During this program, the time would be displayed every 5
seconds on the top line of the screen.

3.2.64. OPEN

Availability:- Not available in Standalone mode

Syntax:- OPEN OLD [RANDOM [{record-tength)]l] "filename"
“AS [#Ichannel
OPEN NEW [BATKT [GRAPH] [RANDOML(record-length)]l
"filename" AS T#Ichannel

In general before a file may be used in BASIC, it must be OPENed.
Sequential files are either written from beginning to end { NEW)
or read from beginning to end { OLD), whereas RANDOM files may
be read or written in any order and may previously exist or not.
Sequential files are accessed using PRINT# and INPUT#. For RANDOM
files, a record length (an expresion yielding an integer between
1 and 252) may be specified. PUT and GET then refer to buffers of
this length rather than 252.

88

A BACK option is available when a NEW file is opened. If BACK is
not specified and the specified file already exists, then it will
be deleted. If BACK is specified and the specified file already
exists then it will be renamed with a .BAK extension { §f a .BAK
file with the same name also exists it will be deleted Yo If the
NEW file is not written to, only the .BAK file will exist.

If the GRAPH option is specified when opening a sequential file,
space compression will be turned off. This mode is necessary if
control characters are to be input or output. The GRAPH option is
only allowed to be used with sequential files. Control characters
can be input and output from RANDOM files without any special
considerations.

It 1s possible to have up to 12 files open (for both read and
write) at any given time. The OPEN statement associates the
specified file with an input/output channel.

The # is optional before the channel number.
For example:

10 OPEN NEW “AAAA" AS 7

20 A$="DD" : B=9.2 : C%=99
30 PRINT#7,A$,",",B,",",C%
40 CLOSE 7

50 OPEN OLD “AARAA" AS 2

60 INPUT#2,W$,X,Y%

70 PRINT W$,X,Y%

80 CLOSE 2

The display shows:
Db 9.2 99

Line 10 OPENs a new file on channel 7.

Line 30 PRINTs data into the file.

ine 40 CLOSEs the fiTe on channel 7.

Line 50 OPENs an existing file on channel 2.
Line 60 INPUTs data from the file.

Line 70 PRINTs the data on the POLY screen,
Line 80 CLOSEs the file on channel 2.

The variable names are not stored with the data. Default
extensions are the working drive and .DAT . Channe] numbers may
be variables or expressions with a value between 1 and 12
inclusive.

Random files must be OPENed with the RANDOM option. Random files
are accessed using GET# and PUT#.

The use of PUT# and GET# is shown in the following example.
For example:

10 OPEN OLD RANDOM (20) "EXAMPLE" AS 11

20 GET#11,RECORD 2

30 FIELD#11,5 AS A$,15 AS BS

40 PRINT A$.BS

50 LSET A$="apAA"

89

60 LSET B$="BBB"
70 PUT#11,RECORD 2
80 CLOSE 11

The old file EXAMPLE.DAT is opened, record 2 1is read into
the buffer and the fields within it are defined. Strings
A3 and B$ are printed then new data is moved to them in the
buffer. Then the whole contents of the buffer is PUT back in
to the same record on the disk. Lastly the file is closed.

The size of a random file may be calculated as follows.
If the record length is r%, then the number of records per disk
sector is th e integer value of 252/r% i.e. INT{252/r%).
If the maximum record number you PUT to the file is max%, then
the number of sectors allocated to the file is

2 (for the index) + max%/INT(252/r%)
If this value is not an integer, it must be rounded up.
For example, if r%=252 and you PUT record 92, the file will be 94
sectors long. If r%=20 and you PUT record 200, the file will be
19 sectors long.

Notes:

1. If no data is written to a new sequential file before
it is closed, then when it is CLOSEd (by CLOSE or END)
it will be removed from disk. If no data is written to
a new random file before it is closed, it will exist.

2. GET and FIELD may be used with sequential files (but
not PUT).

3. The same random file may be opened from two POLY's on
the network and data shared. To ensure that the most
recent data is obtained, LOCK and UNLOCK should be
used.

4. The same random file may be opened on two (or more)
channels from the same POLY. Because of buffering, care
must be exercised when using PUT on one of the channels
and GET on the other when random record lengths are
less than 127.

5. The search RAMdisk first option, if enabled (see the
DRIVE command), will operate for OPEN OLD and all
operations will be performed using the file in RAMdisk,
if it exists.

3.2.65. POKE

Syntax:- POKE address, numeric-expression

POKE stores a single character integer value at the specified
address. The address must be between 0 and 65535. The
numeric-expression must have a value between 0 and 255 inclusive.
See DPOKE.

For example:

POKE 1161,1

90

This puts the value 1 into address 1161.
3.2.66. PRINT

Syntax:- PRINT print-list

The print-1ist is a 1ist of items to be printed. PRINT causes
items in the print-list to be displayed starting at the current
PRINT position. This position may be varied by the punctuation in
the PRINT statement. ? may be used as an abbreviation for PRINT.

No punctuation after an item Causes the current position to move
to the start of the next Jine.

For exampie:

10 PRINT “AAA"
A comma after an jtem causes the next item to be PRINTed starting
in column 0,8,16,24, etc (whichever is the next column). On the
screen, column 40 is the same thing as column 0 of the next line.
For example:

20 PRINT Iloli’ "8","16“,"24","32"

This displays the numbers each starting in the given column.
i.e.

0 8 16 24 32

A semi-colon after an item causes the next item to be PRINTed
immediately following the previous one.

For exampie:
30 PRINT "A";"g"
This will display
AB
with no spaces between.
An exclamation mark causes the next data to be printed on the

next Tine starting in the same column as the start of the last
data printed. :

For example:
20 PRINT@(10,10)"Line 1™
30 PRINT"Line 2"}
40 PRINT “Line 3"!

would be printed as, starting on line 10, in column 10.

91

Line 1
Line 2
Line 3

Commas, semi-colons and exclamation marks may be mixed in a
single PRINT statement.

Numbers are printed with one trailing space, and one Teading
space unfess this is filled with a minus sign. A1l strings,
including 'number' strings, have no leading or trailing blanks.

For example:
100 X$="ABC" : B=4.2 : C%=-7
110 PRINT X$. PRINT B : PRINT C%

120 PRINT X$,B,C%
130 PRINT X$;B;C%

This program displays:

ABC

4,2

7

ABC 4.2 -7
ABC 4.2 -7

3.2.67. PRINT®@

Syntax: - PRINT@{row,column)[,Jprint-1ist

PRINT@ specifies the point where the PRINTing starts. The rows
are numbered from 0 to 23, and the columns from 0 o 39. When
printing on row 23 a semi-colon is necessary to stop scrolling of
the screen.

For example:
10 X=555
20 PRINT®(10,4)"X =";X
30 PRINT@(23,0)"This is the bottom 1ine";
This displays: "X = 555" starting at position (10,4), and
“This is the bottom line" starting at position (23,0).
3.2.68. PRINT USING

Syntax:- PRINT USING string, print-list

PRINT USING uses various special strings to format the data
displayed. The string is an image of the required output, but
with special characters in place of the actual characters. The
print 1ist is similar to that of the PRINT statement. Literal
Characters, i.e. ones that are not special, may be inserted in
front of the string of special characters. Special characters

l"

are: !,7,#,5,*,!, and sometimes a comma.

92

For example:
10 PRINT USING"! ! !" "Joe","E","Bloggs"
This prints the initial letters with a single space between
each pair. i.e. JE B. The "!" denotes a single character
string field.
20 PRINT USING"!!i" "Joe","E","Bloggs"

This prints the initial letters without spaces. i.e. JEB

30 PRINT USING"%1234%","ABCDEFGH"
This prints the first 6 letters of the string i.e. ABCDEF.
The pair of "3"'s denote a string field with a length equal
to the total 1length of the image string. The middie
Characters are arbitrary.

40 PRINT USING"####.###",123.4567
This prints 123.457 in a total field width of 8. The g
characters denote a number field. Decimal points are lined
up and the number is rounded to fit the format.

50 PRINT USING"S###.##",-9.87
This prints $§ -9.87 in a total field width of 7 (a dollar
sign, up to 3 digits, one of which may be used for a minus
sign, a decimal point and 2 digits).

50 PRINT USING"S$S##.##",-9.87
This prints -$9.87 i.e. the dollar sign is moved right to be
immediately in front of the first digit when two dollar
signs are used. "“$$##.##" will handle numbers up to 999.99,
Just as “S###.##" will, the second dollar sign acts as a "#"
in reserving space for a digit.

60 PRINT USING"S$###.#4-",-10,1234

This prints $10.12- .,
70 PRINT USING"**g## #" 1.23
This prints ****1.2 | Two asterisks cause all ieading spaces

to be filled.

70 PRINT USING"**### " _1,25

93

This prints ***.1 3,

80 PRINT USING"S$**#4#.##",67.89

This prints $***67.89 . The $ is a 'literal' character

preceding the asterisks.

90 PRINT USING"###,#.#4",2345.67

This prints 2,345.67 . A single comma embedded somewhere in
the numeric field will cause the number to be printed out

with commas separating every three digits.

100 PRINT USING"##.###1¢41",123456

This prints 1.2356405. Four up arrows are needed after the

numeric field to print in scientific notation.

NOTE: If the number is too big to fit into a given format a %
sign will be printed followed by the number in a format as close

as possibie to that specified.

3.2.69. PRINT@ USING

Syntax:- PRINT@(row,column) USING string, print-list

PRINT® may be combined with USING. Refer to PRINT USING.
For example:

10 A$="###.##" : X=4.5
20 PRINT@(10,15)USING A$,X

This will print 4.50 in row 10 with the decimal point
column 18.

3.2.70. PRINT#

Availability: Not available in Standalone mode

Syntax:- PRINT#channel, print-list

PRINT# outputs the data specified to a sequential access
file. The print-list format is as described in PRINT.

For example:
10 OPEN NEW“"AAAA" AS 5

20 PRINT#5,A$,",",B,",",C%
30 CLOSE 5

94

Be careful to insert "," between variables if the file is to be
read using INPUT, because INPUT expects commas to separate
fields. This is very easy to overlook.

Note that channel O corresponds to the screen.

3.2.71. PRINT# USING

Availability:- Not available in Standalone mode

Syntax:- PRINT#channel, USING string, print-list

PRINT# may be combined with USING. Refer to PRINT USING and
PRINT#.

For example:
10 OPEN NEW"AAAA™ AS 5
20 A=l : B=23.456 : C=206
30 PRINT#5, USING "S###.##", A,",",B,",".C
40 CLOSE 5 _
Be careful to insert "," between variables if the fije is to be
read using INPUT.
3.2.72. PUT#

Availability:- Not available in Standalone mode

Syntax:- PUT #channel [, RECORD numeric-expression]

PUT# is used to PUT data from an I/0 buffer into a random access
disk file. FIELD is used to define the buffer area and LSET and
RSET must be used to place the data in the buffer.

For example:

10 OPEN NEW RANDOM "NNNNN" AS 3

20 FIELD#3,6 AS G$,5 AS H$,4 AS I$

30 LSET G$="GG" : LSET H$="HHH" : LSET I$="1I[III"
40 PUT#3,RECORD 8

50 CLOSE 3

This has now PUT into record 8 of file NNNAN the data:
"GG HHH TIII"
Each time a PUT or GET statement is actioned and the RECORD
number is not specified, the RECORD number is automatically
increased by one,

For example:

g5

10 OPEN NEW RANDOM(18) "PPPP" AS 6

20 FIELD#6, 5 AS X$, 6 ASYS$, 7 AS Z$

15 FOR N%=1 TO 10

30 LSET X$="XX" : LSET Y$="YY" : LSET 7$="72"
40 PUT#6

45 NEXT N%

50 CLOSE 6

This PUTs the same three strings into the first 18 bytes of
RECCRDs 1 to 10.

GET# is used to read the data from the file.

3.2.73. RANDOM

Syntax:- RANDOM

RANDOM generates a new seed for the RND function. This means that

each time RANDOM is used, a new sequence of RND values is
started.

For example:
20 PRINT RND{10)

will always give the same result each time after switching
the POLY unit ON

10 RANDOM
20 PRINT RND(10)

ensures that the value is different each time.
3.2.74, READ

Syntax:- READ variable-l1ist

READ 1s used to READ data specified in DATA statements and place
it in specified variables. The data must match the variable type.

For example:

300 READ A,B%,C$
500 DATA 32.4,55,AAMA

This will take the next 3 items in a DATA 1ist and store
them in variables A, B% and C$.

Trying to READ DATA items when there is no more data causes an
error. This may be trapped by using ON ERROR GO TO and testing
for ERR = 91. To use the same data again the RESTORE statement
may be used.

96

3.2.75. REM

Syntax:- REM [remarks]

Any text in.a REMark statement is ignored by the program and is
used purely for documentation to make the program more
understandable. '
For example:

230 REM Put explanations here ...

240 X%=0 : REM X% counts sheep
3.2.76. RENAME

Availability:- Not available in Standalone mode

Syntax:~ RENAME “filenamel","filename2"

RENAME may be used to change the name of a file on disk. The
default drive is the work drive. The default extension for
filenamel 4is .DAT; the default for filename2 1is whatever
filenamel had.

For example:

RENAME "1,AAAA","1.BBBB.BAS"
RENAME"AB123" . “AB10O"

File 1.AAAA.DAT is renamed 1.BBBB.BAS and file AB123.DAT is
renamed AB100.DAT.

3.2.77. RENUM

L S

Availability:- Not available in Program mode, nor Standalone
mode.,

Syntax:-
RENUM {start—]ine[,increment[,first~1ine[*1ast~11ne]]]]

RENUM will renumber the lines of a BASIC program commencing at
the Tine number given by the first parameter (default 10), and
proceeding in increments as given by the second parameter
(default 10).

The last two parameters specify that part of the program to be
renumbered, (defaults are the actual first 1ine and last line of
the program i.e. the whole program).

Renumbering will not take place if interleaving and duplication

of 1ine numbers would occur. It is not possible to re-order the
program with RENUM, use MERGE to do this.

97

A1l Tine numbers contained within the program are changed to
their corresponding new 1line numbers. Line numbers within
statements that do not have a corresponding line will be listed
and Teft unchanged, (they would ultimately give rise to errors
when the program is run).

For example:

RERNUM

RENUM 10,5

RENUM 100,10,60,400
Warning:- Use of line numbers in expressions {e.q. in a
comparison with ERL}) will not be located.

3.2.78. RESET

Syntax:- RESET [(Irow,column{)]

RESET switches off the specified pixel. 0On text screens, RESET
switches off the chunky graphic pixel. (See SET)

For example:
160 RESET 24,26
200 RESET (24,27)

3.2.79. RESOFF - RESON

Syntax:- RESOFF or RESON

RESOFF will allow variable names to contain sequences of
characters corresponding to a reserved word, except at the
beginning of the variable name. RESON cancels RESOFF and is set
by default. With RESOFF a variable must be separated from an
immediately following word by a space.

For example:

With RESOFF, XLEN and AGOTO are valid variable names, LENX
is not. With RESON none are valid varjable names.

3.2.80. RESTORE

Syntax:- RESTORE [1ine-number]

If the same DATA is to be READ in more than once, a RESTORE
statement will allow the program to go to the beginning of the
DATA, or to the first DATA item after the specified line number.

For example:

98

200 READ A,B,C
210 READ D,E,F
220 RESTORE 280
230 READ G,H,I
240 RESTORE

250 READ J,K,L
260 PRINT A,B,C,D
270 DATA 2.3,3.4,
280 DATA 6.7,7.8,

LE,FLG,H,I,J,K,L
4,5
8.9
This program reads in the 6 data items on lines 270 and 280
and assigns them to variables A to F. The data is RESTOREd
to line 280, so G, H, and I take on the values 6.7, 7.8, 8.9
respectively. The data is then RESTORED to the first DATA

statement so J, K, and L take on the values 2.3, 3.4, and
4.5,

3.2.81, RESUME

Syntax:- RESUME [line-number]
RESUME NEX]
RESUME TINE

The trapping of an error, processing of a trapped key, or expiry
of a certain amount of time are known as interrupts. Interrupts
may be thought of as occurring at the beginning of a BASIC
statement {i.e. if a statement contains an error, the interrupt
may be thought of as occurring at the beginning of the statement
containing the error).

ON ERROR, ON KEY and ON SEC routines are Kknown as interrupt
routines and RESUME must be used to return control from such
interrupt routines.

If the Tine number is omitted or is 0, control will be returned
to the point at which the interrupt occurred. For ON ERROR, the
statement containing the error will thus be re-executed. For ON
KEY and ON SEC, statements will continue to be executed in
sequence.

If a line number is specified, then control is returned to the
line specified.

1f LINE is specified, then control is returned to the beginning
of the line on which the interrupt occurred.

If NEXT is specified, then control is returned to the next
statement. For ON ERROR, the statement containing the error wWiTl
thus be omitted. For ON KEY and ON SEC, the next statement will
be omitted and since this is 1ikely to be undesirable, RESUME
NEXT should not be used with ON KEY or ON SEC.

For example:
20 ON ERROR GO TO 300

30 READ AS
40 REM Process data

99

150 GO TO 30
300 IF ERR=91 THEN PRINT "NO MORE DATA"
310 RESWIME 320 °
320 REM End Data
REM ...
For example:

20 ON KEY 0 GOTO 1000
30 REM rest of the program

1000 RESUME

This disables the 0 on the numeric keypad.

3.2.82. RETURN

Syntax:~ RETURN
When a subroutine is completed, control is returned to the main
program with RETURN. This sends control to the statement
following the corresponding GOSUB.
For example:

100 GOSUB 2000

»

2000 REM SUB 2000 STARTS HERE

2060 IF R=99 THEN RETURN
2060 REM rest of subroutine...

3.2.83. RSET

Syntax:- RSET string-variable = string-expression

RSET 1s similar to LSET except that the inserted string is right
justified, i.e. it is packed on the left with spaces to make it
fit. Truncation is the same as for LSET. See LSET for a warning
concerning the use of RSET (and LSET) with string functions.

For example:

10 OPEN OLD RANDOM "FFFF" AS 4
20 FIELD#4, 6 AS AS, 6 AS B$
30 X$="123" : Y$="12345678"

40 RSET A$=X$

50 RSET B$=Y$

100

60 PUT#4
70 CLOSE 4

This sets A$=" 123" and B$="123456" in the disk file
buffer area. This is then written into the file FFFF.DAT.
3.2.84. RUN

Syntax:- RUN [“filename"][1inenumber]

After LOADing a BASIC source program from disk into a POLY unit
it may be RUN without specifying the filename. Specifying the
filename causes a program to be loaded from disk and started
automatically. The filename extension defaults are .BAC and the
working drive. After a RUN, all screens except screen 1 are
switched OFF and variables are reinitia1izeq.
For example:

RUN

Executes the BASIC program loaded in POLY memory.
RUN"AAAA"

Loads the compiled program AAAA.BAC from disk using the
default drive and executes it.

RUN 100

Executes the BASIC program loaded in POLY memory starting at
line 100.

Note that the search RAMdisk first option if enable (see the
DRIVE command), will operate for the RUN statement.
3.2.85. SAVE

Availability:- Not available in Standalone mode

Syntax:- SAVE [TEXT] [BACK] ["filename"] [startline [-endline]]
[BACK] i1ename”]

After creating or editing a file {BASIC or TEXT) it may be SAVEd
on disk. If BACK is not specified, any existing file of the same
name will automatically be deleted. If BACK is specified, any
existing file of the same name will be renamed with the extension
-BAK (if one of these .BAK files also exists it will be deleted).
The default drive is the working drive and the default extension
is .BAS for SAVE TEXT from BASIC mode, .BSC for SAVE from BASIC
mode and .TXT for SAVE from TEXT mode. IF a 1ine number range is
specified, only those lines will be SAVEd. The Tine number range
is only permitted for full text BASIC program saves (SAVE TEXT)
from BASIC mode and TEXT file saves (SAVE) from TEXT mode.

101

For example:
SAVE"1.AAARAA"

In BASIC mode, this SAVEs file AAAAAA.BSC on the disk in
drive one.

In TEXT mode, this SAVEs file AAAAAA.TXT on the disk 1in
drive one. '

SAVE TEXT"AAAAAAY
This SAVEs file AAAAAA.BAS on the disk in the default drive.
SAVE TEXT BACK "XYZ" 100-200

This SAVEs file XYZ.BAS, lines 100 to 200 and renames any
existing XYZ.BAS as XYZ.BAK.

SAVE may be used without a filename if the file has previously
been LOADed from disk. In this case the user will be prompted
with

Save filename (Y/N) ?

where filename is the name of the file that was LOADed, but with
extension .BSC from BASIC mode and .TXT from TEXT mode. Note that
a prompted SAVE will reset any ON KEY traps that have been set.

When programming, because of the increased speed of LOADing and
SAVEing, the encoded BASIC form (.BSC) should normally be used.
To print the most recent copy of the program, it will be
necessary to LOAD the encoded form (.BSC) and SAYE TEXT the full
text form (.BAS) which may then be printed. It is also advisabje
to occasionally LOAD the full text form (by specifying the
extension .BAS) as this will remove any unwanted or discarded
variabTes that may have been saved in the encoded form.

3.2.86. SAVE#

Syntax:- SAVE# channel, string
SAVE# "file-name", string

Any string may be saved on disk using the SAVE# statement. Note
that only one string is permitted in the argument 1ist. In the
first form, the specified channel must have been already OPENed
(NEW). It is possible to write more than one string into a given
channel using more SAVE# statements. In the second form, the
specified file is opened (as a NEW GRAPH file, the old file with
the same name, if any, being deleted) and closed automatically.
SAVE# is especially useful for saving text screens.

For example:

20 SAVE# "TEXT1", TEXT$(10,0,44)

102

Note that strings written onto disk files using SAVE# and STORE#
are preceded by two bytes representing their length. Also since
such strings may contain control characters, files should be
GRAPH files. The LOAD# statement may be used to reload strings
previously saved using SAVE#. '

3.2.87. SCROLL

Syntax:~ SCROLL ON
SCROLL EEE

If SCROLL is OMN, when the bottom of the page is reached, during
printing or with the cursor arrow, then all 1lines move up one
line and the top line is lost. Moving off the top of the screen
with the up arrow causes the lines to SCROLL down.

When SCROLL is OFF, when the bottom of the screen is reached,
printing continues at the top of the screen. The cursor arrows
simply move the cursor from the bottom line of the screen to the
top line (or vice versal. :
SCROLL is turned ON on a RUN, CHAIN, CLEAR or NEW.
For example:

100 SCROLL OFF

Also see examples in SPLIT.

3.2.88. SELECT

Syntax:-~ SELECT screen-number

SELECT sets the current screen for writing. The screens available
are

1 Top Text Screen (24 by 40)

2 Top Graphics Screen (204 by 240)

3 Bottom Text Screen (24 by 40)

4 Bottom Graphics Screen (204 by 240)

5 Fine Graphics Screen (204 by 480)

STEXT Fine Graphics and Text Screen (204 by 480)

At the start of a program, the current screen is always 1. SELECT
does not DISPLAY the screen. This must be done with a separate
command .

The graphics commands SET, RESET, LINE and POINT refer to the
current screen, whether graphics or text. The graphics commands
DRAW and FILL refer to current screen, which must be a graphics
screen. _

At the END of a program, all screens except 1 are turned OFF but
not cleared.

103

On an error or <EXIT>, all screens are left exactly as they are.
Commands may be typed in and these are displayed on screen 1, but

the displays they produce are placed on the currently selected
text screen.,

For example:

10 CLS

20 SELECT 2

30 CLS

40 DISPLAY 2

50 COLOWR 1

60 LINE 0,0,0,239,203,239,203,0,0,0
70 PRINT®(10,10} "SCREEN 1"

80 GOTO 80

Line 10 clears screen 1

Line 20 selects the graphics screen 2

Line 30 clears screen 2

Line 40 displays screen 2

Line 50 selects the colour red

Line 60 draws a box around the screen in red on
screen 2

Line 70 prints on screen 1, the words SCREEN 1

Line 80 Toops so that display is not turned off

The PRINT command places text on the most recently selected text
screen, whether 1, 3 or S5TEXT.

Selecting screen 5TEXT means that screen 5 is selected for both
graphics and text. In this case, characters written to screen 5
using PRINT will be software generated. This software must be
specially provided by POLYCORP and may be wused to provide
alternate character sets, e.g. 60 characters per line. The
software for generating alternate character sets is stored in a
file called POLYACS.SYS. If this file does not exist then
selecting 5TEXT will cause screen 1 to be selected. Note that a
warm reset will disable the alternate character set.

If screen S5TEXT has been selected and another graphics screen
(either 2 or 4) 1is selected, printing will produce strange
results as screen 5 is a combination of screens 2 and 4.

Since screen 5 is not a teletext screen, colour is selected using
the COLOUR and MIX commands as for screen 5 graphics, rather than
by using control characters. In general characters of different

colours should not be placed adjacent to one another on screen
5TEXT.

For example:

10 CLS

20 SELECT STEXT

30 DISPLAY 5

40 CLS

50 COLOUR1

60 LINE 70, 150, 70, 330, 98, 330, 98, 150, 70, 150
70 COLOURZ

80 PRINT®@ (10,21) "This is an example"

90 G0 TO 90

104

This will display a red box enclosing blue text produced using
the alternate character generator.

The use of screen 4 (and hence screen 5) reduces the available
program memory. If screen 4 is selected late in a program it may
be found to have 'noise’ on it since the memory space was already
being used as a working area. Either select screen 4 at the start
of the program or clear screen 4 with CLS immediately after
selection. If screen 4 is selected, the size of the largest
possible program that may be chained to s 100 disk sectors.

3.2.89. SET

Syntax:- SET [{Jrow,column[)]

SET switches on the specified pixel on the current screen. On
graphics screens, the pixel is turned on in the current colour.
If the colour is a secondary colour, the specified pixel is also
turned on in the other graphics screen. MIX must be ON and both
screens 2 and 4 displayed for this to be displayed in the correct
colour (See COLOUR and MIX).

On text screens, a teletext graphics control character must have
previously been placed on the start of the 1line. If this is
missing the character equivalent of the graphics character is
~ displayed. The colour is as set up in the graphics control
Character.

For pixels to be displayed using SET

Rows should be between O and 71 for screens 1 and 3.
Rows should be between 0 and 203 for screens 2, & and 5,
Columns should be between 2 and 79 on screens 1 and 3.
Columns should be between O and 479 on screen 5.

For example:

100 CLS

110 FOR row = 0 TO 23:PRINT@(row,0)}" ,":;:NEXT row
120 SET 15, 20

130 SET (64,70)

140 SELECT 2:CLS:DISPLAY 2

150 SET (120,230)

160 COLOUR 1

170 SET 121,230

Line 110 prints graphics green control characters
on screen 1

Lines 120-130 set points on

Line 140 selects, clears and displays screen 2

Line 150 sets a point on in WHITE

Line 160 sets COLOUR to red

Line 170 sets a point on in RED

105

3.2.90. SOUND

—————

Syntax:- SOUND[pitch [, Tengthl]

SOUND without parameters produces a beep. With parameters, SOUND
Produces a pitched sound of the specified Tength. The parameter
'pitch" should be calculated as (502400/frequency)-1 e.g. to get
a_ 200Hz frequency for 1 second you could write "SOUND
(502400/200)-1,100* or "SOUND 2511,100"., Equivalent musical note
values are given in Appendix 4.5. The length must be specified in
10 millisecond lengths.

For example:

10 C=1919:G=1281:A1=1141:B1=1016:C1=959

100 SOUND C,50
110 SOUND C,50
120 SOUND 6,50
130 SOUND G,50
140 SOUND Al,25
150 SOUND B1,25
160 SOUND 1,25
170 SOUND Al,25
180 SOUND G, 100

This plays the first line of "BAA BAA BLACK SHEEP".

3.2.91. SPLIT

Syntax:- SPLIT number-of-1ines[,cursor-action]

Each of the text screens may be sptit into 2 independentiy
scrolling screens.

The number-of-lines specifies the number of lines in the top
section of the screen.

The cursor-action, if specified must contain either 0 or 1. If
this is 0 or not defined, then the cursor is left in place after
each PRINT. If 1 is specified, after each PRINT, the cursor is
returned to the top section of the screen to where it was after
the last PRINT.

For example:

100 CLs : SPLIT 10
110 GOSUB 200

120 PRINT@(10,0);
130 GOSUB 200

140 END

200 FOR I = 0 TO 20
210 PRINT I

220 NEXT

230 RETURN

106

Line 100 splits the screen

Line 110 Prints the numbers 0 to 20 in the top section

Line 120 moves the cursor to the top line of the bottom
section

Line 130 Prints the numbers 0 to 20. This shows the
independant scrolling of the two sections. If the line '

105 SCROLL OFF

is inserted, then the return to the top of each section can
be seen.

With a split screen, CLS only clears the section of the screen on
which the cursor is currently placed.

For example:
Add the Tine
135 CLS

to the program in the above example and only the bottom
section of the screen is cleared.

For example:

100 CLS : SpLIT 23,1
11I0FOR I =0 T0O 100
120 PRINT 1

130 PRINT®(23,0) I;
140 NEXT 1

Line 100 clears the screen, placing the cursor in (0,0) and
then splits the screen specifying that the cursor is to
return to the top section. In the Toop (lines 110-140}, the
number is printed in the top section and then in the bottom
section. Following the PRINT®{23,0) in the bottom section,
the cursor is returned to jts position in the top section
for the next PRINT in tine 120.

On 2 RUN, NEW, CHAIN or CLEAR, SPLIT is reset to SPLIT 24,0.

3.2.92. sTOP

Syntax:- STOP
The program terminates and a STOP AT LINE message will be
displayed. The program can be restarted from just after the STOP

statement with a CONT command. STOPs are usefyl for diagnostic
purposes.

For exampie:

250 IF X=10 THEN STOP ELSE PRINT X

107

If X = 10 the program will halt displaying STOP AT LINE 250.

3.2.93. STORE

————i

Availability:- Not available in Standalone mode

Syntax:- STORE {(rl,cl),(r2,c2) string-name
(rI,cI), 12, c2 ¥ channel
STORETrT,cl), 1 rZ C2T#"F1T6-name"

STORE allows a rectangular area of a graphics screen to be stored
in a string and then be redrawn anywhere on the screen using
either DRAW or FILL. It will store the rectangle between rl,cl
and r2,c2 either in the string named, in the NEW file opened on
the specified channel, or in the file specified (opening and
closing is automatic in this Jlast case). After drawing a
complicated picture on the screen it may be stored and reprinted.
anywhere on the screen.

For example:

1000 STORE (0,0),{20,40) house$ ' 5
1010 CLS ‘
1020 DRAWE(40,100) houses$

Diagrams stored on disk may be retrieved and re-displayed on the
screen by using DRAW#.

For example:

10 OPEN NEW “ABC" AS 1
20 STORE (0,0),{20,40)#1
30 CLOSE 1

40 CLS

50 OPEN OLD "ABC" AS 2
60 DRAW#2

70 CLOSE 2

3.2.94. SWAP

Syntax:- SWAP variablel, variable?

SWAP exchanges the values of two variables of the same type i.e.
2 strings or 2 reals or 2 integers.

For example:
10 SWAP A%,BS

This exchanges the contents of the two strings.

108

3.2.95. TEXT

Syntax:- TEXT

TEXT is used to enter TEXT mode so that text files may be edited.
Following a TEXT command an option to SAVE a Tloaded file is
given.

Normaily after entering TEXT mode an AUTO or a LOAD command would
be used. If the AUTO command is given lines of text may be
entered one after the other. Line numbers will not be displayed
on the screen. Once the text has been entered, a null line will
exit AUTO mode. A LOAD command will cause the specified file to
be loaded. LISTing a file in TEXT mode will display line numbers
but these are not really part of the file, they are for use 1in
editing, { e.g. overwriting existing lines and deleting lines).
Lines may be added by using 1ine numbers., A SAVE command in TEXT
mode causes the program to be stored on disk without 1line
numbers. To return to normal BASIC mode, use the BASIC command.
In TEXT mode, defaults for SAVE, LOAD and MERGE are .TXT .

After each line press <ENTER>.

For example:
TEXT
Ready
AUTO

program SHOW(INPUT, OQUTPUT)
begni

watch ('TEST PROGRAM')

end.

<null Tine to exit AUTO mode.>

LIST

10 program SHOW(INPUT, OUTPUT)
20 begni

30 watch ('TEST PROGRAM')
40 end.

20 begin

<Wi1l fix this one>
35 WatCh (bk khdkokdk ok ke b)

<Will add a line>

SAVE"TEST.PAS"
<Will save the program without line numbers.>

LOAD"TEST.PAS"
<Will load it again>

BASIC
<Goes to BASIC>

109

Ready
DOS <Goes to DOS>
DGS

3.2.96. TROFF

Syntax: - TROFF

This turns the TRace OFF. See TRON.

3.2.97. TRON

Syntax:- TRON

TRON turns the TRace ON. The trace displays the line numbers as
the program is executed and can be useful during debugging. When
the trace is on, text will scroll out of sight but fine graphics
will not move. Use the <PAUSE> key and <SPACEBAR> to examine the
execution of the program line by line. These numbers are printed
one after the other, from wherever the cursor happens to be.

For example:
The screen might appear as follows:
<1500><1501><1502><400><401><402><1503>

The program has gone to and returned from a subroutine at
line 400. -

3.2.98. UNLOCK

Availability:- Not availabie in Standalone mode

Syntax:- UNLOCK#channel

UNLOCK causes the random file attached to the specified channel
to be “unlocked", i.e. it may be accessed by other users.

3.2.99. WAIT
Syntax:- WAIT length

WAIT suspends the program for the specified number of 10
millisecond intervals.

For example:

110

120 WAIT 100
suspends the program for ! second.

Interrupts occurring during a wait are queued until the beginning
of the next statement.

111

APPENDICES

4.1. ERROR MESSAGES

NUMBER

OO0~ s LOPY O

MEANING

EXIT key pressed

I17egal file request

The regquested file is in use

The file already exists

File could not be found

System directory error

System directory full

A1l disk space has been used

End of file error

Disk file read error

Disk file write error

File or disk is write protected

File is protected, access denied

ITlegal file control block specified

ITlegal disk address encountered

I11egal drive number specified

The disk drive is not ready

File is protected, access denied

File not opened in the correct mode

Data index range error

File management system inactive

Invalid filename syntax

File close error

Sector map overflow, the disk is too segmented
Non-existent record number specified

Record number match error or the file is damaged
Syntax error in command

Lost communications with disk drive

I1Tegal software interrupt function

Disk drive door was opened while file open for write
Cannot lock a sequential file

File is locked, access denied

Pirated software !

Unbalanced parentheses

I11egal character or reserved word in statement
Source file is not present in memory

The 1ine is too long, 255 characters is the limit
Syntax error on compile

Undefined variable referenced

Invalid syntax

Invalid syntax in function

An invalid character is present at the start of line
An invalid statement start

An invalid statement terminator

A Tabel was expected

A numeric result was expec ted

A string result was expected

A left parenthesis "{* was expected

A comma "," was expected

A right parenthesis ")" was expected

112

120
121
122
130
131
132
133
134
135
136
137
138
139
140
150
151

Missing or invalid item in expression

String and numeric expressions mixed

Too many temporary strings

The array subscript is negative or out of range
Incorrect number of subscripts with array reference
Undimensioned array referenced or misspelt function
The expression result is <0 or >255

A string variable was expected

Different string lengths

RETURN without a corresponding GOSUB

NEXT without a corresponding FOR

RESUME is not in an interrupt routine

Cannot continue, variables have been re-initialised
The line number was not found

Auto mode will not overwrite existing lines

Line number too large

Fatal renumbering error

The command is valid in immediate mode only
Arithmetic overflow has occurred

The real number is too large to convert to an integer
Cannot calculate the LOG of zero or a negative number
Cannot calculate the SQR of a negative number
Cannot divide by zero

Argument too large

Argument out of range

Out of data for READ

Data type mismatch in PRINT USING

I1tegal format-string in PRINT USING

Attempt to access outside text screen area

SHAP arguments must be the same type of variable

An invalid parameter in a SWI or USR function call
The array has already been dimensioned

The FN function has not been defined

The array dimension was negative or too large

The clock is not running

No room for stack, program is too large for memory
The memory 1imit has been set too low or too high
Not enough memory for a new string or array
Non-numeric data in input

Number input is too large for integer variable
Number has too many significant digits

Specified file is not a compiled file

An invalid channel number was specified

The specified channel was not open

The specified channel is already in use

Invalid use of the FETCH statement

Compiled or encoded file cannot be merged

Sum of field sizes exceeds the declared record size
I17egal DOS command from BASIC or TEXT mode

Cannot access random files with sequential methods

Sequential files cannot be accessed by random methods

Random or graphic files cannot have a .PRT extension
A graphics screen has not been selected
Cannot use a null string for graphics

113

4.2. TELETEXT SCREEN CONTROL CHARACTERS

ASCII Decimal Representation Function

Yalue in Strings

0 @ or space Not used

1 Aora Starts RED characters

2 Borb Starts GREEN characters

3 Corc Starts YELLOW characters

4 Dord Starts BLUE characters

5 Eore Starts MAGENTA characters

6 Forf Starts CYAN characters

7 * Gorg Starts WHITE characters

8 Hor h Starts FLASHING

9 * Iori Ends FLASHING
10 J or j Not used

11 Kork Not used

12 * Lori Normal height
13 Morm Double height (see below)

14 - Norn Shift into ASCII characters
15 * Ooro Shift into Teletext characters
16 Porp Reverse video on

17 Qorg Starts RED graphics

18 Rorr Starts GREEN graphics
19 Sors Starts YELLOW graphics
20 Tort Starts BLUE graphics

21 Uoru Starts MAGENTA graphics

22 Vory Starts CYAN graphics
23 Worw Starts WHITE graphics
24 X or x CONCEAL display on rest of line
25 * Yory Contiguous graphics

26 Zorz Separated graphics
27 * - Or ; Reverse video off
28 * % or < No background to characters

29 —-Qr = Set background to current colour
30 4 or > Print graphics characters over

control characters
31 * # or ? Print space for control characters

EACH CHARACTER MUST BE PRECEDED BY A i,

To include a single & in a print string use K 4.

Each of the control characters takes up ONE screen position
except the reverse video on and off characters and the shift
characters for ASCII.

A1l control characters are reset at the beginning of each 1ine to
those with an * beside them. Reverse video is switched off at the
end of each PRINT.

The control characters in strings are always converted to the
fﬁrst of the two options listed above, i.e. "fia" is converted to
] A“ .

Double height may be used on screen 1 but not screen 3. Double
height characters extend down to the following 1ine. If double
height is used anywhere on a line the following 1line 1is not
displayed. Anything printed on screen 3 ‘“behind" a Tine

-containing a double height character will be displayed in normal
height on both rows.

114

4.3. ASCII SCREEN CONTROL CHARACTERS

ASCII Decimal Function

Yalue
0 Not used
1 Insert character
2 Delete character
3 Not used
4 Not used
5 Scroll up
6 Scroll down
7 BEEPs the speaker
8 Moves cursor 1 space to the LEFT
9 Moves cursor 1 space to the RIGHT
10 Moves cursor 1 space DOWN and scroll
11 Moves cursor 1 space UP and scroll
12 Clears screen and moves cursor to HOME
position (0,0)
13 Moves cursor to start of screen line
14 Not used
15 Starts TELETEXT characters
16 Reverse video on
17 Not used
18 Not used
19 Not used
20 Not used
21 Not used
22 Not used
23 Not used
24 Not used
2h Not used
26 Not used
27 Reverse video off
28 Not used
29 Not used
30 Clear to end of line
31 Initialise 1ine editor
NOTE

To use ASCII screen control characters, they must be preceded by
Teletext control character 14 {Shift In) and followed by Teletext
control character 15 (Shift Out). N

115

4.4. SPECIAL FUNCTION KEYS

Function Key ~ ON KEY Value ASCII Decimal value

Numeric keypad 0 0 48 *

1 1 49 *

2 2 50 *

3 3 51 *

4 4 b2 *

5 5 53 *

6 6 54 *

7 7 55 *

8 8 56 *

9 9 57 *
Numeric keypad . 26 46
EXIT 10 26
PAUSE i1 28
ENTER 12 13
NEXT 13 19
REPEAT 14 20
BACK 15 21

HELP 16
CALC 17

- 18 08
~ 15 0%
¢ 20 24
¢ 21 25
CHAR INS 22 01
CHAR DEL 23 02
LINE INS 24 17
LINE DEL 25 18
SHIFT/PAUSE 27 27
@ 28 64
£ 29 35
t or EXP 30 94
] 31 124

The function keys marked with * may be assigned "soft key" values
by using ON KEY <exp> AS <exp>

e.g. ON KEY 4 AS 16

This assigns a new ON KEY value, key 4 now "looks 1like" a key
with the ASCII value of 16.

The HELP and CALC keys cannot be tested by checking their ASCII
values. To disable or trap these keys use ON KEY. :

116

4.5. SOUND FREQUENCIES AND THE MUSICAL SCALE

This scale has the A above middle C defined as having a frequency
of 440 Hz. N1 is the 'pitch' value to be used with the SOUND
statement.

Note Freq N1 Freg N1
A 55 9134 880 570
A# 58 8621 932 538
B 62 8137 988 508
c 65 7680 1047 479
C# 69 7249 1109 452
D 73 6842 1175 427
D# 78 6458 1245 403
E 82 6056 1319 380
F 87 5753 1397 359
F# 92 5430 1480 338
G 98 5126 1568 318
G# 104 4838 1661 301
A 110 4566 1760 284
A# 117 4310 1865 268
B 123 4068 1976 253
C 131 3840 2083 239
C# 139 3624 2217 226
D 147 3421 2349 213
D# 156 3229 2489 201
E " 165 3047 2637 190
F 175 2876 2794 179
F# 185 2715 2960 169
G 196 2562 3136 159
G# 208 2418 3322 150
A 220 2283 3520 142
A# 233 2154 3729 134
B 247 2033 3951 126
Clmiddle) 262 1919 4186 119
C# 277 1812 4435 112
D 294 1710 4699 106
D# 311 1614 4978 100
E 330 1523 5274 94
F 349 1438 5588 89
F# 370 1357 5920 84
G 392 1281 6272 79
G# 415 1209 6645 75
A 440 1141 7040 70
A% 466 1077 7459 66
B 494 1016 7902 63
C 523 959 8372 59
C# 554 805 8870 56
D 587 854 9397 52
D# 622 806 9956 49
E 659 761

F 698 718

F# 740 678

4 784 640

G# 831 604

117

GRAPHICS

[0 % P I8 (o G P A o e o (3 G P IS (0 G 8 I 3 ol Pl T 2 W W 0 G PO IO

ASCII
DECIMAL
VALUE

[P
o L , :

: — - w3
ma *abC.ﬂEfgh.....J.K.imnO.D.qutUVWXV,.Z..%‘&..?'
3=
d

T.ME
— = D O I~ O O O —t N g) WD S 00 Do MM S WD D P 00 D e N o WY WO
Qe Sy Ov O O O O O O G O O O O 8 M o oe e o e oo e OO0 N NN O
b oo
o Ll
Mvﬁu @AnBCDEFGHIJKLMNOPQRSTUVWXV..Za_\syz Ha
) L Q,Al

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

GRAPHICS

CHAR-

4.6. TELETEXT CHARACTERS AND GRAPHICS
ACTER

ASCII
DECIMAL
VALUE

[0 60 70] o e AT) 10T)]) 90 T (el P O ol o P e T O 0) PO I

i

L.) .
Mt.u£$uﬁoﬁ|f\\}.*+s..!0123456789...:(:)?
(%))

M) WY WD) O~ N g W WS 0O+ NNM oS D W M 0 D N M
M M M M m M M M osf s s T s oS s RE ST WY MW W W W W N N WOW W W

118

118

3

4.7. SCREEN LAYOUT CHART

i I el R e A U NG
| | Ak i A |
| i N e m
I ; i i m
| |
R ! S .
| W W | | i
it Al i M it w
M b HitH 2 2 ; i § i H 41 i
i ! i i
| ~
} | m
_ |
i LU i !
| i ! - | |]
H : i L L 1 m
_ I ‘ i ”
e | | |
; i ; ; “ ; i
! i i il : 4
T i : HHEH
A
i . il m., MM M I H i _
LUt LE e ut PE EE D 1 0L 62 B2 L2 U2 52 P2 €222 1202 61wl L1 914l p1E1 2111016 6 L 96 v € ¢ T O

PP U o TR S ¥ + TRV T

o

4.8. RESERYED WORDS

Words which are used in POLYBASIC commands, statements or
functions must no* be in general included in variable names (see
RESON, RESCFF). Reserved words may be in either upper or Tlower
case, and must not contain spaces.

The following is a 1ist of the reserved words.

ABS END LPRINT RND
AND ERL LSET RSET
AS ERR MEM RUN
ASC ERRCR MERGE SAVE
ATN EXEC MID$ SCROLL
AUTO EXp MIX SELECT
BACK FETCH MOD SEC
BACKG FIELD NAMES$ SET
BASIC FILE NEW SGN
CHAIN FIiLL - NEXT SIN
CHR$ FN NOT SOUND
CLEAR FOR OFF SPC
CLOCK FRE OLD SPLIT
CLOSE GET ON SQR
CLS GO OPEN STEP
COLOR GOSUB OR STOP
COLOUR GOTO PEEK STORE
COMPILE GRAPH PI STR
CONT HEX POKE STRINGS
CONVERT IF POINT SWAP
cos INCHS POS SWI
CvT INPUT PRINT TAB
CVTF INSTR PTR TAN
DATA INT PUT TEXT
DATES KEY RANDOM THEN
DEF KILL READ TIMES
BEL KVAL RECORD 10
DIGITS LDESS REM TROFF
DIM LEFTS RENAME TRON
DISPLAY LEN RENUM UNLOCK
BIV LET RESET USING
DQs LINE RESOFF USR
DPEEK LIST RESON VAL
DPOKE LOAD RESTORE WAIT
DRAW LOCK RESUME CLOAD
DRIVE LoG RETURN CSAVE
ELSE LOGOFF RIGHTS UPCASE$

120

4.9. ADVICE

1. Corrupted Disks - Prevention and Recovery

Corrupted disks can result from files being opened for write and
not subsequently closed. If this happens the structure of the
free space on the disk is corrupted and subsequent use of the
disk may cause problems.

To prevent the corruption of disks, remember the following rules.

{1) Before switching off or resetting a POLY, either
LOGOFF or enter CLEAR from BASIC.
(ii) If your BASIC program ends with an error or stops

for any reason with files open, execute CLEAR to
close all files {if you need to examine variables
for debugging purposes do so first).

{(iii) Do not reset or switch off the disk unit until all
POLYs have closed their files as above.
(iv) Do not remove a disk from the disk unit, or even

open the door unless you are sure that all users
have closed all the files they have open on that
disk.

NOTE A file is open for write if it 1is opened NEW or
RANDOM. A file is also open for write if LPRINT is
used (though this 1is automatically closed if an
error occurs) and when SAVE is being executed. Many
utilities have files open for write as well so
execution of these should not be interrupted.

The RECOVER utility should be used to clean up a disk under any
of the following conditions.

i If any of the above rules are broken.

(1) If a disk door opened error is given (the disk which
was in the drive whose door was opened should be
RECOVERed).

{ii1) If, after executing the CAT command, the “SECTORS="

number (the number of sectors used by the files)
plus the "FREE=" number (the number of sectors not
used by the files) do not add up to 2280 for a
double-sided disk or 1140 for a single-sided disk.
Note that even if these numbers do add up to 2280 or
1140 as appropriate, the disk is not necessarily
uncorrupted. Alse note that sometimes when a disk is
FORMATted, the "TOTAL SECTORS=" number may be less
than 2280 or 1140 as appropriate due to physically
Crashed sectors (see below). We suggest that you
throw away such disks.

2. Lrashed Disks

Disks may crash for a variety of reasons - physical damage, wear,
dirt, power surges, etc. Normally such disks will contain one or
more unreadable sectors and access will result in disk read or
disk write errors (errors 9 and 10). Cleaning disk heads every so
often may help (cleaning kits are available from POLYCORP} but
remember the following rules.

121

(i) Back up your disks regularly.
(i1) Once you have noticed a disk crash ~error, do not
continue to use the disk.

If you do have a crashed disk then the following procedure will
recover as much as possible.

(1) Get a catalog of the crashed disk (if this isn't
possible the disk s irretrievable; a partial
catalog will allow some files to be recovered),

(ij} Decide which files you want to recover.

(ii4) Copy as many of these files as possible, one at a
time to another system disk using PCOPY, COPY, or
SDC. _

(iv) Copying a file containing an unreadable sector will

present problems. For example, the copy may stop in
the middle, in which case only part of the file will
be recovered. Some times the file may have unwanted
lines in it and these will have to be edited out.
Sometimes, the file may appear infinitely long and
an attempt to copy it will continue for ever (this
is a bad one, the network controller will have to be
reset to turn off the disk drive so the disk can be
extracted and the file deleted).

(v} After copying the wanted files, reformat the crashed
disk and if you're sensible, back up your recovered
disk.

3. Deadly Embrace

Several precautions must be taken when sharing files. If a file
is opened for write by more than one program, and one of the
programs is to get a record, alter it, and then put it back, then
the other programs must be denfed access to that record while it
is being changed. To accomplish this, the updating program must
LOCK the whole file (i.e. all records) before it GETs the

required record and then UNLOCK the file after it has PUT the
record.

In the simple cases this is all very well, but consider a more
complex example.

Program A opens two files, say X and Y, locks X and tries to read
Y. In the meantime, program B opens X and Y, locks Y and tries to
read X. Using the error trap as in
ON ERROR GOTO 1000
1000 IF ERR=34 THEN RESUMF

the two programs will wait on each other forever. This is known
as "Deadly Embrace" and must be carefully avoided.

4, Security

If you have files you want to protect from accidental or
purposeful access by other users, log on to the POLY with your
initials and a password that you will remember. Then run the PROT
utility specifying the P option and the password will be

122

associated + /th the file. Future access to the file wil) only be
permitted to wusers logging on with the same initials and
password. 1f PROT is used and LOGON has been avoided, you will be
prompted for your initials and password.

If you forget your password, an OVERRIDE program (with limited
distribution) exists so that the password may be removed.

123

