POLYSYS
UTILITIES
MANUAL

VERSION 23

DECEMBER 1984

a
LLE]

seewma hurOa TR pps akw GG Re caRRY PRTOER eFd
IR0ME cabbAED BBN ine pee CEINIOM sndTENDS Deeesew Ty
RS FDA sLaWQOS SR gy Gmp VRALTRD ewtdbAr POROBAA petsqEe
AT 249 so0a gves AQA ake cpdt TRE TES Sume ok She bW Dae R
2440540 46 WHY FER Sesvosw KAE GUO goa Stz BLANGLS AudomEe
PENAEAT paa dH0 Ak poempend SR Pat 3&% Anebeaw SHoRdbEY
*hOLET spe e ShE FPACE ORC NDN SRS cdé AVBURDC sACOOW
b4 nhe etw L@ Iy FHQ soR tH4 Kot saw ewe g
beded boohaed PhUEww fop SEGdnde swasadd Awf HEd pew
a4 THEAOEE Pt ECAF ywp GEANGEs roRAUBLE Bhe bog [1-1]
bag Gadus GBEAARe Aee s Avden LAt ent poa

New Zealand Limited

The material presented in this document
has been expressly prepared by POLYCORP
New Zealand Limited.

No part of this publication may be
reproduced, stored in a retrieval
system, transmitted in any form or by
any - means, electronic, mechanical,
photocopying, recording or otherwise
without prior permission of POLYCORP
New Zealand Limited.

COPYRIGHT OCTOBER 1984
POLYCORP NEW ZEALAND LIMITED

Progeni House, 14/18 Pretoria Street
Telephone (04) 633-202, P.O. Box 30-243, Lower Hutt
Telex PO LHT NZ3740 Attn Progeni

CONTENTS

INTRODUCTION

1.1. MODES OF OPERATION

1.2, FILE STORAGE AND NAMING CONVENTIONS
1.3. STANDARD OPERATING SYSTEM FILES
1.4. PROGRAMMING AND COURSEWARE DISKS

DISK OPERATING SYSTEM UTILITIES

2.1. INTRODUCTION

2.2. COMMAND DESCRIPTIONS
2.2.1. BASIC

2.2.2.
2.2.3.
2.2.4,
2.2.5.
2.2.6.
2.2.7.
2.2.8.
2.2.9.
2.2.10,
2.2.11.
2.2.12.
2.2.13.
2.2.14,
2.2.15.
2.2.16.

CAT
CLEAN
COPY
DATE
DRIVE
FASTCOPY
FORMAT
GPRINT
KILL
LINK
LIST
LOGOFF
OVERRIDE
PATCH
PCOPY

PAGE

w o o

10
10
11
12
13
14
14
15
15
15
16

2.2.17.

2.2.18.
2.2.18.
2.2.20.
2.2.21.
2.2.22.
2.2.23.
2.2.24.
2.2.25,

PRINT

PROT

RDF ORMAT
RECOVER
RENAME
SCOPY
SDC

TEXT

WTD

SETTING UP A NEW DISK

3.1. FORMATTING THE DISK

3.2. CREATING OPERATING SYSTEM DISKS

3.2.1. SINGLE DRIVE SYSTEMS

3.2.2. MULTI-DRIVE SYSTEMS

3.3. CREATING COURSEWARE DISKS

3.4, REPLACING LOGON.BAC

THE POLY EDITOR

4.1. ENTERING NEW LINES

4.2. USING THE AUTO COMMAND

4.3. LOOKING AT LINES ALREADY ENTERED

4.4, ALTERING LINES

4.5. DELETION OF LINES

4.6. RENUMBERING OF LINES

4.7. SAVING THE EDITED FILE ON DISK

4.8. LOADING FILES FROM DISK

ii

17

18
19
19
20
20
21
22
22

23
23
23
23
24
24
25

26
26
26
27
28
28
29
30
30

4.9. MERGING FILES ON DISK WITH THE FILE BEING EDITED
4.10, DELETING THE FILE BEING EDITED

INSTALLING AND USING THE. PRINTER

5.1. PRINTING EXISTING FILES FROM DISK
5.2. PRINTING DOS UTILITY QUTPUT

5.3. PRINTING FROM A PROGRAM

5.4, INSTALLING THE PRINT SPOOLER

HARDWARE/SOF TWARE INTERFACES

6.1. SOFTWARE INTERRUPT FUNCTIONS
6.2, MEMORY MAPPING

6.3. CASSETTE INTERFACE

31
32

34

34
34
35
35

39
39
53
55

L, INTRODUCTION

1.1. MODES OF QPERATION

This manual describes the Disk Operation System (DOS) and TEXT
modes of operation of the POLY 1 Computer System. The BASIC mode
of operation is described in the POLYBASIC Manual. As well,
instructions are given for initialising and setting up disks,
printer operation is summarized and some details of
hardware/software interfaces are described.
The three fundamental modes of operation of a POLY are:

Dos,

BASIC, and

TEXT.

To enter DOS mode from BASIC or TEXT, enter (i.e. type and then
press the ENTER key) DOS.

7o enter BASIC mode from DOS or TEXT, enter BASIC.
To enter the TEXT mode from DOS or BASIC, enter TEXT.
Note that a user of courseware on a POLY need not be aware of

these three fundamental modes of operation since courseware
operation is fully automatic and menu-driven.

1.2. FILE STORAGE AND NAMING CONVENTIONS

Data and programs are stored on disk as files.

File names may be up to 8 characters long. The first character
must be alphabetic and the remainder must be alphanumeric. File
names maybe followed by a "." and a one to three Iletter
extension. Some extensions have been associated with specific

types of files.

BASiC full text source files .BAS

BASIC compiled files .BAC
Operating system commands .CMD
Data files .DAT
Print files PRT
Operating system files .SYS
Text files LIXT

If the file is on a particular drive then the drive number may be
added to the filename either at the beginning or the end,
separated from the file name by a ".".

For example:
1.PROG1.BAS or PROG1.BAS.1
Both associate the file PROG1.BAS with drive 1.

If a drive number is not specified then the current default drive
will be used. Upgraded POLY 1 computers have a local RAMdisk
facility comprising 48K bytes of RAM. RAMdisk is referred to as
drive 4 and may be used in exactly the same way as physical disk
drives. Files loaded into RAMdisk have extremely fast access
times for both reading and writing.

Disks used in the POLY 1 Computer System may be single or double
sided. Before use, disks must be formatted (see the FORMAT
utility). Double-sided disks are formatted (in single density) to
contain 2280 sectors each of which contains 256 bytes.
Single-sided disks contain 1140 sectors. Of the 256 bytes in each
sector, 252 are available for storage. RAMdisk is formatted on
start up, or by use of the DOS utility RDFORMAT, to contain 187
sectors.

Part of each disk {and RAMdisk)} is used to contain a catalogue or
directory of all files stored on the disk (or RAMdisk). Such
catalogues may be 1isted on the screen {or printed) using the CAT
utility.

The total number of sectors available on a disk or RAMdisk may
not necessarily add up to 1140 or 2280 or 187 if the directory
requires more than 5 sectors since extra sectors will be taken
for the directory from those available as required.

the actual storage of files on disk {(or in RAMdisk) is managed
automatically by the Disk Operating System.

1.3. STANDARD OPERATING SYSTEM FILES

The following table is a catalogue of a standard POLY Version 2.3
Operating System disk containing only operating system files.
Such a disk may be used to start up {or "boot", in computer
jargon) a POLY Computer System {as described in the POLY System
Operating Manual). A POLY computer started up using such a disk
will display a blue 1og on screen and when a user logs on will go
directly into BASIC mode.

TABLE 1.

DIRECTORY OF DRIVE NUMBER 1
DISK: POLY23 1 CREATED: 13-DEC-84

NAME TYPE R SIZE DATE PRT
POLYNET .SYS 44 11-DEC-84
PLYSYS .SYS 24 12-DEC-84
POLYACS .SYS Y 30-APR-84
ERRORS .SYS R 43 31-JUL -84
BASIC .CMD- - 36 6-JUN-84
TEXT .CMD 1 5-MAY-83
CAT . CMD 5 14-NOV-84
CLEAN .CMD 3 22-DEC-83
COPY .CMD 4 9-JUN-83
DATE .CMD 2 27 -JUL-82
DRIVE .CMD 1 31-JAN-83
FASTCOPY .CMD 7 30-NOV-84
FORMAT .CMD 8 30-NOV-B84
GPRINT .CMD 3 10-JUN-83
KILL .CMD 3 17-APR-84
LINK .CMD 1 29-JAN-80
LIST .CMD 3 13-JUN-83
LOGOFF .CMD 1 11-DEC-84
PATCH .CMD & 22-JUL-83
PCOPY .CMD 4 27-APR-84
PRINT .CMD 5 10-DEC-84
PROT .CMD 3 11-DEC-84
RDFORMAT .CMD 2 23-NOY-84
RECOVER .CMD 7 30-NOY-84
RENAME .CMD 1 29-JAN-80
SCOPY .CMD 4 3-MAY -84
SoC .CMD 7 13-JUN-83
WiD .CMD 2 8~JUN-84
POLYTEST .BAC 28 29-NOV -84
BRT23 .CMD 5 9-JAN-84
MEMTST4 .CMD 4 20-DEC-83
YDEQTEST .BAC 2 2-MAR-82
LOGON .BAC 6 18-JAN-85

FILES=33, SECTORS=323
LARGEST=44, FREE=1957

The four files with extension SYS comprise the fundamental
operating system. POLYNET runs in the PROTEUS (or network
controlier/disk drive if an earlier system fJs being used -
throughout this manual, PROTEUS is - synonymous with network
controll/disk drive) handling communications and the sharing of
disk storage and other peripherals. POLYSYS runs in the POLY
handling communications with the PROTEUS and file and resource
management within the POLY. POLYACS contains the alternate
(normally 60-column) character set and is automatically loaded at
start up, if it exists. This is necessary for selecting screen 5
for text from BASIC. Note that a warm start will cause POLYACS to
be disabled until the POLY is re-booted. ERRORS contains full
descriptions of any that may arise during POLY operation.

The twenty-five files with extension CMD are the POLY Operating
System Utilities or Commands described in this manual.

POLYTEST, BRT23, MEMTST4 and VDEOTEST form the POLY Computer
System test suite.

LOGON is the program automatically executed in each POLY at start
up producing the POLY Tog on screen. LOGON may be replaced by a
user-written or user-specified program to perform security checks
or other functions, as required.

The master copy {and back-ups created using the FASTCOPY utility)

of the standard operating system disks {both single and double
sided) should be kept in safe-keeping.

1.4..PROGRAMMING AND COURSEWARE DISKS

The operating system disk described previously may be used as a
BASIC programming disk.

A version of Omegasoft Pascal is available for POLY. A Pascal
programming disk will contain the standard operating system files
described above plus the necessary command and utility files that
comprise Pascal on POLY,

Other programs, for examp1e,'the 6809 Text Processor (copyright
TSC Inc.}, may be added to an operating system disk as required.

A courseware or authoring disk wili normally contain the standard
operating system, a MENU program, plus the courseware or
- authoring programs. The MENU program is automatically chained to
by LOGON after the user has completed the log on procedure.
Selecting menu items will cause the corresponding programs to be
loaded and run. Upon completion, the menu program will be
returned to, thus providing fully automatic operation.

Software (courseware, authoring systems, Pascal, etc.) will
normally be suppliied on a non-operating system disk. The user
should then create a copy of the master operating system disk and
copy the supplied software onto the created disk, Tlabelling it
appropriately. The supplied disk should then be stored in
safe-keeping.

2. DISK QPERATING SYSTEM UTILITIES

2.1. INTRODUCTION

The DOS utilities are provided on all standard operating system
disks. Each utility is a separate file with an extension of .CMD.
A utility is executed from DOS by entering the file name (the
.CMD extension is not required).

Where possible, utilities are executed in the POLY wutility area
so that the BASIC program or TEXT currently loaded i5 not
affected. Such utilities may be run from BASIC and TEXT by
putting & + in front of the utility name. The utilities that will
not run in the utility work space must be run from DOS. The
availability of a utility is detailed under the description of
each particular utility.

For example:

In DOS mode entering
CAT O

will provide a catalﬁgue of the files on the disk in drive
0. In BASIC and TEXT modes

+CAT O
will do the same.
In this manual all examples are given as if executed in DOS mode.

The utilities expect either a space or a comma to separate the
parameters.

For examplie:
CAT O .BAS
is exactly the same as
CAT,0, .BAS
If a semi-colon immediately follows the utility name, then the
utility will load and pause, prompting for any key to be pressed
before beginning execution. It is then possible to change disks.
For example:
If you have CAT on one disk and you wish to obtain a
catalogue of the files on another disk that does not have
CAT on it, then enter

CAT;

When CAT is loaded it will pause so that you may change
disks. Press any key to obtain the required catalogue.

Most utilities are 1loaded from the disk into the POLY for
exectution and do not interfere with other users. However, for
efficiency reasons, some utilities are executed in tre PROTEUS.
While these utilities are being executed, other POLYs on the
system will not be able to gain access to the disk drives. Such
utilities are CLEAN, COPY, FASTCOPY, FORMAT and RECOVER.

A11 utilities, except those mentioned above that execute -in the

PROTEUS, may be executed from RAMdisk ({after being copied to
RAMdisk, i.e. drive 4, using the SCOPY utility).

2.2. COMMAND DESCRIPTIONS

In describing the command syntax, the following conventions are
used:

-Words in capital letters must be entered exactly as
written.

-Words in small letters must be replaced by the user with a
specific filename or other word as required.

~Words enclosed in square brackets ([]) are optional and
may be omitted.

-Underiined words must be entered if that part of the option
is used.

-In examples, the wuser responses to queries are shown
underlined.

For example:

Syntax:~ CAT [drive-1ist] [match-1ist]

allows any of the following to be used:

CAT

CAT 1

CAT MYFILES
CAT 0 MYFILES

2.2.1. BASIC

Availability:- Available in DOS mode only.
Syntax:- BASIC [filename]

The BASIC command Toads POLYBASIC (including all RAM-based
extensions) from disk.

If a file name is specified {default extension .BAC), then the
file will be Toaded and executed as a BASIC program. If no
filename is specified, then immediate mode is entered.
For example:
BASIC
Toads the extensions to BASIC and enters immediate mode.
BASIC,MENU
loads the extensions to BASIC, then 1loads and executes
MENU.BAC
2.2.2. CAT

Syntax:- CAT [drive-1ist] [match-1ist]

The CAT utility displays names of the files on a disk. The
drive-1ist may be one or more drive numbers, and the match-list
can be a series of filtenames, extensions or abbreviations of both
to allow 'masked’ viewing of the file names in the directory.
For example:

CAT O LLZ2.BAS

1ists only those filenames on drive 0 beginning with LL2 and
having extensions of .BAS.

CAT

Tists all filenames on the current disk drive assigned to
that POLY.

CAT,1,P.T,MA

lists those files on drive 1 which begin with P and have
extensions beginning with T, and files beginning with MA.

CAT,0,1,TYP,.SYS

Tists all files on drives 0 and 1 which either begin with
TYP or have extensions of .SYS.

CAT also displays other information about the file.
For example:
NAME TYPE R SIZE DATE PRT
POLYEX .BAC 27 26-FEB-85 W
The R if present, indicates the file is a random access type
data file. The size is given in 256 byte sectors. The date

is the date on which the file was created. The PRoTection
code is a 1ist of protection attributes assigned to the file

7

(see the PROT utility).

2.2.3. CLEAN

Availability:- Available in DOS mode only.
Syntax:- CLEAN

The CLEAN command is used in conjunction with Head Cleaning Kits.
For best results, disk heads should be cleaned every one to fwo
weeks. Run CLEAN then insert the head cleaning disk in the drive
to be cleaned as prompted by CLEAN. CLFAN ensures that the disk
heads are active and contact the surface of the cleaning disk.

NOTE: While CLEAN is running, all the other disk activity 1is
suspended.

2.2.4, COPY

Syntax:- COPY filenamel filename?
COPY fiTename drive
COPY source-drive destination-drive [match-1ist]

The COPY command copies files. If a system has only a single disk
drive attached, SDC (Single Disk Copy) must be used to copy files
from one disk to another. COPY can only be used in a single drive
system to produce a copy of a file on the same disk under a new
name.

If the file to be created already exists, a request to delete it
is displayed. Pressing Y causes the file to be overwritten.

A1 copied files retain the date and protection of the original.
For example:

COPY may be used on a single disk in the first form. If this
is done then the filenames must be different.

COPY O.DEMOPR.TXT 0.DEMOUP
This copies O.DEMOPR.TXT to 0.DEMOUP.TXT.
The extension of the input file must always be specified, but for
the output file this is optional as it defaults to the extension
of the input file.

COPY may be used to copy between drives. If the drive is not
specified, then the current drive for that POLY is used.

COPY may not be used to copy to and from RAMdisk (drive 4), see
SCOPY,

For example:

If the current drive is 0, then
COPY DEMOPR.TXT DEMPOUP
copies O.DEMOPR.TXT to 0.DEMOUP.TXT.

When copying from one drive to another, the file may retain its
original name.

For example:
COPY 0.FILEZ23.BAC 1
This copies FILEZ23.BAC from drive 0 to drive 1.

Finally, COPY can be used to copy all files from one drive to
another or only those corresponding to a match 1ist.

For example:
CoPY 0 1
will COPY all files from drive 0 to 1.
COPY 1 0 .BAS .TXT

will COPY all files from drive 1 to drive O that have
extensions of .BAS or .TXT.

COPY O 1 DATA PROGR.C

will copy all files from drive O TO 1 that have names
beginning with DATA as well as those that begin with PROGR
and have extensions beginning with C.

The name of each file copied is displayed on the POLY screen.

NOTE: While COPY 1is running, all other disk activity s
suspended. '

2.2.5. DATE

Syntax:- DATE

At startup, the first POLY activated will request the date and
time to be entered. This information is sent to the PROTEUS, and
then sent to each POLY in the network as they are started up.

The DATE utility allows the user to input the date and time From
a POLY, if the PROTEUS has been reset or otherwise initialised.
If the PROTEUS already has a valid date, then DATE will not ask
for a new date and time, and the POLY date and time will be
updated from the PROTEUS.

Only the POLY from which DATE was run, and the PROTEUS date and
time are changed. Other POLYs on the network have the previously
set date and time until they are restarted or until DATE is run.

For example:
After the PROTEUS has been reset, enter
DATE
Enter date DD,MM,YY 2 185

Enter time HH,MM 9 1

This will set the PROTEUS and POLY dates to 20 January 85
and the times to 9:12:00.

2.2.6. DRIVE

Availability:- Available in DOS mode only.

Syntax:- DRIVE drive-number

This utility duplicates the DRIVE command in BASIC and TEXT
modes. That 1is, DRIVE reassigns the current drive for a
particular POLY.
For example:

DRIVE 1

This causes the POLY to use drive 1 as its current drive.
2.2.7. FASTCOPY

Syntax:- FASTCOPY source-drive destination-drive

FASTCOPY duplicates all of the information stored on the disk in
the source-drive onto the disk in the destination-drive. Two
drives are required. The destination disk cannot have any faulty
sectors {see FORMAT).

FASTCOPY copies sector by sector rather than file by file and so
a corrupt disk, or one in which files are scattered all over it,
will be reproduced exactly as the original. FASTCOPY will
overwrite anything already on the disk being copied onto.
For example: |

FASTCOPY 0 1

will duplicate the information on the disk in drive 0 onto
the disk in drive 1.

NOTE: While FASTCOPY is running, all other disk activity is
suspended. :

10

2.2.8. FORMAT

Syntax: - FORMAT [drive]

FORMAT is used to format a new disk or reformat an old one.
FORMAT must be used on all new disks before they can be used. If
drive is not entered with the command, then FORMAT will ask for
the drive.

For example:
FORMAT 1
ARE YOU SURE? Y

(indicates that formatting is desired, N is pressed to abort
format)

DOUBLE SIDED DISK? ¥
{or N for single sided disks)
VOLUME NAME? POLY
{up to 7 characters with the same rules as file names)
VOLUME NUMBER? 1
(up to a 4 digit number)
IS THE DISK TG BE FORMATTED IN DRIVE 0? Y
(N to abort formatting)

NOTE: Inputs to the queries do not require a terminating <ENTER>
except in the case of volume name and number.

When the process is complete, a message stating the total number
of sectors formatted is displayed. or a single-sided disk this

should be 1140 sectors, 2280 for a double-sided disk.

FORMAT checks for disk surface defects. If a faulty sector is
found on a part of the disk required by the POLY operating
system, then the FORMAT is aborted. If this occurs remove the
disk from the drive, reinsert it and try again. If this proves
unsuccessful after another try then assume the disk is unable to
be used.

If faulty sectors occur on other parts of the disk, then these
are reported and formatting continues. These disks may be used
but FASTCOPY cannot be used to copy onto the disk.

Do not turn single-sided disks over to use the other side, as the

protective sleeves have dust c¢ollecting surfaces on the inside
which are not intended for use in a reversed direction.

11

FORMAT may be used in a single drive, but the disk to be
formatted must be placed in the drive before answering the final
question.

To prevent formatting a master disk (containing FORMAT.CMD)
accidently, it is a good idea to protect the disk by removing the
tab from the disk protection notch.

NOTE: While FORMAT is running, all other disk activity 1is
suspended.

2.2.9. GPRINT

Availability:~ Available in DOS mode only.

Syntax:- GPRINT [start-column] [end-row] [end-column] [size]

GPRINT is used to print the POLY graphics screens. The program
asks for various parameters for printing the screen.

For example:
Start row (0-203) 0
row 0 is the first row to be printed
Start column (0-239) 0
column O is the first column to be printed
End row {0-203) 200

row 200 is the last row to be printed
End column (0-239) 239

column 239 is the last column to be printed

Size {1 or 2) 1

the size of the printed picture is normal. (Entering 2 would
select double size.)

Screens (24) 2

screen 2 is to be printed (Screens 2, 4 or 2 and 4 can be
printed).

Output filename ? SCRNDMP

the output filename for the picture will be SCRNDMP. {Any
valid filename can be used. The extension defaults to .LST,
-PRT extensions should not be specified.)

The result of the above example will be the file SCRNDMP.LST

which will contain a complete copy of screen 2, and can be
printed with the command

12

PRINT SCRNDMP.LST NG
NOTE: This utility will only work with EPSON MX-series printers
with the bit-image graphics option.
2.2.10. KILL

Syntax:- KILL [drive-1ist] [match-1ist]

KILL is used to delete files from disk.
Before deleting a file a check is made.
Delete "FILENAME" ?

Any reply other than Y will leave the file intact and proceed to
the next file , but if Y is pressed then the file 1is deleted.
<ENTER> is not required after the reply, and <ENTER> as the reply
will cause KILL to terminate.

For example:
KILL MYFILE.BIN

will delete MYFILE.BIN from the disk on the current drive
for that POLY.

KILL I FILE.CMD O DATES.TXT

will delete FILE.CMD from drive 1, and DATES.TXT from
drive Q.

Files may be protected against any attempts to KILL them by
Delete or Write protecting them (see PROT for the control of such
protection).

If no filenames are given in a KILL command then the files on the
disk are presented one by one for deletion. If Y is pressed, then

the file is deleted. Pressing any other key leaves the file
intact. Make sure that all write and delete protection is removed
from files to be deleted prior to running KILL in this manner.
For example:

KILL 4

will give the option to delete all files from RAMdisk.
KILL O PP

will give the option to delete all files starting with PP on
drive 0.

NOTE: Do not delete files on the print queue, the print may be
stopped using PRINT -filename (see the PRINT command}.

13

2.2.11. LINK

Syntax:- LINK filename

The filename wiil normally be POLYNET.SYS. LINK sets up a pointer
on the disk to POLYNET.SYS, causing it to be Toaded into the
PROTEUS whenever the PROTEUS is turned on or reset. LINKing must
be done before a disk can be used for automatic loading. All
operating system disks supp1aed by POLYCORP and PROGENI will have
previously been linked. '

For example:
LINK 1.POLYNET.SYS

will LINK the disk on drive 1 to POLYNET.SYS, which must be
on the disk.

A disk created using FASTCOPY does not need to be LINKed if the
original disk has been LINKed. A disk created using COPY, PCOPY
or SDC must be 1inked.

2.2.12. LIST

Syntax:~ LIST filename [startline - endline] [+N]

LIST T1ists the contents of program, text and data files on the
screen. Entire files or only selected 1ines may be listed.

The drive number may be included in the filename. If the file
extension is not specified, the extension defaults to .TXT. The
numbers of the first and last 1lines to be displayed may be
specified - otherwise the whole file is LISTED.

For example:
LIST 1.TESTPR.BAS
will produce

10 REM TESTPROGRAM
20 REM TESTPROGRAM
50 REM TESTPROGRAM
70 REM TESTPROGRAM
100 END

on the screen.
LIST 1.TESTPR.BAS,1-4
will produce
10 REM TESTPROGRAM
20 REM TESTPROGRAM

50 REM TESTPROGRAM
70 REM TESTPROGRAM

14

on the screen.
LIST 1.TESTPR.BAS 3-

will produce
50 REM TESTPROGRAM
70 REM TESTPROGRAM
100 END

on the screen,

Note that the range indicates the actual line numbers of the

lines and not BASIC line numbers. +N causes actual Tine numbers
to be printed.

2.2.13. LOGOFF

Availability:- Available in DOS mode only
Syntax:~ LOGOFF

LOGOFF is used to exit DOS (1ike LOGOFF from BASIC), returning to
the magenta start up screen.

2.2.14. OVERRIDE

Availability:- Available in DOS mode only
Syntax:~ QVERRIDE

The OVERRIDE utility may be used to over-ride the protection on a
file. Log on to a POLY with initials and password, enter DOS mode
and run OVERRIDE. OVERRIDE sends the current initials and

password to the PROTEUS as a master password, and this overrides
normal passwords. PROT can then be run so protection can be

removed from files on which the passwords have been forgotten.
Access to this utility must be restricted to supervisors, and so
OVERRIDE is provided on its own normally 6n a single-sided disk.

2.2.15. PATCH

Availability:- Available in DOS mode only
Syntax:~ PATCH [filename]

PATCH may be used to patch binary files. (For example, the print
spooier in POLYNET.SYS may require patching for different makes
of printer (see Section 5). If a filename is not specified, a
filename will be requested. The default extension is .CMD. The
appropriate file will be loaded and PATCH will display a menu.

15

M - Display and change contents of specified memory
Tocations. Enter the required memory location as a
hexadecimal number. The contents of that memory
Tocation will be displayed.

Pushing NEXT will display the contents of the next
successive memory location.

Pushing BACK will display the .contents of the
immediately preceding memory location.

Typing a two-digit hexadecimal number will cause
the contents of the specified memory Tlocation to
be altered.

Pushing ENTER will cause return to the menu.

T - Transfer a complete section of the program from
one position in memory to another.

The file range (the memory address range of each
section of the program) will be displayed. A
current address {in hexadecimal) must be entered
to identify the section of the program to be
transferred. Then the new address {in hexadecimal)
must be entered so that the transfer may be made.

Pushing ENTER at any stage will return to the
menu. -

X - Abort execution of PATCH without change %o the
specified file.

S - Save the specified file to the same location on
disk that it was read from. (Note that some nulls
contained in the original file may be removed when
a file is PATCHed. Note also that if POLYNET.SYS
is PATCHed, it is not necessary to LINK it.)

2.2.16. PCOPY

Availability:- Available in DOS mode only

Syntax:- PCOPY filenamel filename2
PCOPY fi1lename drive
source-drive destination~drive [match-1ist]

The PCOPY command is the same as the COPY utility, except it
allows the user to selectively copy files and PCOPY will copy to
and from RAMdisk {drive 4). PCOPY can only be used on a single
drive system to produce a copy of a file on the same disk under a
new name.

For example:

16

PCOPY 0 1 GEOG

will display all files whose names begin with GEOG, giving
the option of having each one copied {Y) or not {N). <ENTER>
is not required after the Y or N. Pressing any other key
will cause PCOPY to abort.

COPY COMPLETE

is displayed when PCOPY isécomp%ete.

NOTE: While PCOPY is running, other disk activity continues.

2.2.17. PRINT

Syntax:- PRINT filename [options]

PRINT ~filename

The PRINT command is used to print a file on the printer. The
file is not directly printed but rather put on a queue awaiting
print, a technique known as print spooling. The default extension
for the filename is .TXT. The following options are available:

D

- Double spacing: This causes double vertical spacing
on the printout.

- No headings: Where this 1s not specified headings
take the form of a double row of asterisks in between
which appear a date and time stamp, and the name of the
file being printed.

- Compressed print: This will cause compressed
characters to be printed.

- Elongated print: This will cause elongated characters
to be printed. In the case of the EPSON MX80 printer,
there are normally 80 characters per line. In
compressed mode, there are 132 characters per line; in
etongated mode, 40 characters per 1ine. Defaults for
these may be specified using PATCH (see Section 5).

- Emphasized print: This will cause characters to be
over-printed.

- Graphics print: This disables automatic 1line feeds
and carriage returns and other special translations by
the print spooler, allowing the user to control the
spacing and to print control characters. This is
especially intended for printing graphics. Only the N
option will have any effect when the graphics option is
selected.

- Delete after printing: This will cause the file to be
deleted after it has been printed.

17

- Print # for Teletext: The Teletext # has the same
value as the ASCII underscore {) character. Since most
printers utilize the ASCII character set, undersocres
are converted to hashes by the print spooler (INPUT #1
will thus be printed as such rather than INPUT 1).
This conversion may be overridden by this option ~and
may be necessary when wusing PR, the FLEX Text
Processor.

Pn - Paging: The n is an optional page length (default s
60, which may be specified using INSTALL). When P or
say, P40 is specified, then either the default number
of lines or 40 Tines respectively, will be printed
before a form feed is issued.

Wn -Page width: This option may be used to set the page
width to n.

To delete a file from the print queue (even if it is printing)
put a "-" sign in front of the filename.

PRINT without any parameters will display the contents of the
print queue.

For example:
PRINT POLYPR DNCP40
will print the file POLYPR.TXT using double spacing, with
132 characters per 1ine, with no heading and with 40 1lines
per page.

PRINT -POLYPR

will abort the printing of POLYPR.TXT.
2.2.18. PROT

Syntax: - PROT filename [option-list]

This command is used to change the PROTection attributes of a
file. Protection against deleting, writing to, and referencing of
by other users, a file may be set by PROT. Until PROT has been
run, a file may be referenced, rewritten, renamed or deleted.

The filename is the name of the file to be protected. The
option-list may contain any number of the following protection
codes.

D - Delete: To protect a file so that it cannot be deleted by
KILL or from within a program. The file may still be
changed.

W - Write: To write protect a file so that it may not be

deleted or renamed or have anything written to 1it. It is
automatically delete protected.

18

c - Catalogue: To catalogue protect a file so that it will not
be displayed when CAT is executed. (However, To display
these files, KILL with no file names may be used.)

P - Password: To protect a file with a password generated from
the user's password entered when tne user logged on. Access
to this file will only be allowed by 1logging on with the
same password. (It is remotely possible for two users to
generate the same password.)

X - Remove: Removes all protection from the specified file.

For example:

PROT FASTCOPY.CMD WP

will write protect and vpassword protect the file
FASTCOPY.CMD.

PROT SECRET.TXT XDC
will remove all previous protection from the file

SECRET.TXT, delete protect it and prevent it being displayed
by CAT.

2.2.18, RDFORMAT

Availability:- Available in DOS mode only (but may be safely
EXECed from BASIC)

Syntax: - RDFORMAT

ROFORMAT is a utility for formatting RAMdisk. A1l files
previously loaded to RAMdisk will be removed.

For example:
RDF ORMAT

formats RAMdisk.
2.2.20. RECOVER

Availability:- Available in DOS mode only

Syntax:- RECOVER [drive]

The RECOVER utility tries to recover missing sectors from a disk.
if a drive is not entered, then the current disk drive is
assumed.

For example:

19

RECOVER 1
Are you sure ? A

{indicates that recovering is desired, N is pressed to abort
recover)

Disk to be recovered in drive 1?7 ¥

(N to abort recover)

2.2.21. RENAME

Available:- Available in DOS mode only

Syntax:- RENAME filenamel filename?

RENAME performs the same function as RENAME from TEXT aor BASIC.
Filename 1 is the file you wish to RENAME and filename2 is the
new name. The default extension for filenamel is .TXT and the
default drive is the current drive. The default extension for
filename2 is that of filenamel and no drive is required.

For example:
RENAME 1.PROG.BAS LKT.BAS
will rename the file I.PROG.BAS, if it exists, as
1.LKTBAS.BAS

2.2.22. SCOPY

Syntax:- SCOPY [*] filenamel filename?
SCOPY [*] filename drive
SCOPY [*] source drive destination-drive [match-1ist]

The syntax and function of SCOPY are exactly the same as COPY
with two exceptions. SCOPY runs in the POLY rather than the
PROTEUS and thus may be used to copy files to and from RAMdisk
(drive 4). The optional asterisk, if present, will cause the
suppression of all print messages.

Thus SCOPY may be used from a BASIC program {using the EXEC
command) and not print messages on the screen.

For example:
SCOPY 4,PROG.BAC 0

will copy PROG.BAC from drive 4 (RAMdisk) to drive O,
printing appropriate messages.

SCOPY * 1,POINTS.DAT 4

20

will copy POINTS.DAT from drive 1 to Ramdisk without
printing messages on the screen.

2.2.23. SDC

Availability:- Available in DOS mode only

Syntax:- SDC filenamel filename?
SOC fiTename drive
SDC source-drive dest-drive [match-list]

The SDC command (Single Disk Copy) is used to copy files from one
disk to another using a single drive. This utility is similar in
operation to COPY. The source and destination drive specified
must be the same.

Before each file is read, the message:

Insert source disk & press a key
is displayed. Insert the disk that the file is to be copied from.
When a key has been pressed, the file being copied is read into
the memory of the Poly.
When complete,

Insert destination disk & press a key
is displayed. Insert the disk that the file is to be copied to
then hit a key. When the file has been copied a message is
returned. When copying multiple files, the above process repeats
until all the specified files have been copied.
For exampie:

SBC TESTPR.BAS

copies the file TESTPR.BAS from one disk to another using
" the current drive.

If a multiple drive system is available use COPY or PCOPY, they
are much faster.

If the file being copied is larger than the amount of memory
available, then the source and destination disks will have to be
interchanged as many times as necessary until all the file 1is
copied. If an error occurs it will be necessary to insert the
destination disk so that SDC may delete temporary files.

21

2.2.24. TEXT

Availability:- Available in DOS mode only
Syntax:- TEXT [filename]

The TEXT command Toads the POLY text editor (see section & of
this manual), If a file name is specified (default extension
JTXT), then the file will be Toaded ready to be edited.
For example:
TEXT
1oads the text editor.
TEXT MYPROG

Toads the file MYPROG.TXT ready for editing.
2.2.25. WTD
Availibility:- Available in DOS mode only

Syntax:- WID filename utility-command
WTD + utiTity-command

If WTD (Write To Disk) is placed in front of a POLY utitity
command, then the output from the utility normally displayed on
the screen will be directed to the specified file or to the
printer {the + option).

The default extension for filename is .PRT i.e. a printfile.

For example:

WTD PRFILE LIST TESTPR.BAS 1-3 +N
will Tist 1ines 1 to 3 of the file TESTPR.BAS into the file
PRFILE.PRT which will then be automatically printed and
deleted.

WTD + CAT O

will print the catalog for drive 0, using a
spooier-generated filename for the printfile.

22

3. SETTING UP A NEW DISK

Jsers may purchase and set up disks themselves. The disks may be
either single or double sided and be either single or double
density. Currently, all disks are recorded as single density,
either single or double sided.

3.1. FORMATTING THE DISK -

Each disk must be formatted before it can be used for storage on
the POLY system. The DOS utility FORMAT is used to format the
disk. This may be run either from BASIC as +FORMAT, or from DOS
as FORMAT,

3.2. CREATING OPERATING SYSTEM DISKS

Both single-sided and double-sided copies of the master operating
system disk should be stored safely as back-up copies. A master
copy of a disk should be protected by removing the tab from the
disk protection notch.

IT is recommended that, if a disk is to be wused to start the
system up, all operating system files {as in the catalogue in
Table 1) be present on the disk. Uperating system files may be
copied to a formatted disk from a master operating system disk
using FASTCOPY.

If SDC, COPY or PCOPY are used to copy POLYNET.SYS then LINK must
be used to 1ink the disk to POLYNET.SYS. This is not required
when FASTCOPY is used.

The minimum set of operating system files necessary on a disk to
be used for start up are:

POLYNET. SYS
POLYSYS.SYS
POLYACS. SYS
BASIC.CMD
LOGON.BAC

3.2.1. SINGLE DRIVE SYSTEMS

1. Start the system up in the normal manner using the master
operating system disk and enter

DOS

2. Format the new disk. Enter

23

FORMAT O

When the question ARE YOU SURE? s asked, change the
programming disk for the new disk before proceeding.

Answer the questions. On conclusion of format, the number of
sectors formatted on the disk is displayed. This should be
228 sectors for double-sided disks and 1140 for
single-sided disks.

Copy the operating system files onto the new disk using SDC,
with the master disk as source and the new disk as the
destination.

Link the new disk by entering

LINK O.POLYNET.SYS

3.2.2. MULTI-DRIVE SYSTEMS

Start the system up in the normal manner using the master
operating system disk in drive 0, and enter

Dos
Put the new disk in drive 1.

Enter the following sequence of commands with the
appropriate responses:

FORMAT 1
FASTCOPY 0 1

3.3. CREATING COURSEWARE DISKS

Supplied courseware and software will normally be released on
disks not containing an operating system. To create a disk
containing the operating system and the supplied courseware,
Carry out the following steps.

i.

FORMAT a scratch disk (either single or double sided, as
appropriate}.

Make a FASTCOPY of your Master Version 2.3 Operating System
Disk (either single or double sided as appropriate} onto
this newly formatted disk. (Put the Master Disk away.)

With the FASTCOPY disk from step 2 4in drive 0 and the
supplied disk in drive 1, execute COPY 1 0 from DOS {or
*OPY 1 0 from BASIC) and copy all files from the supplied
disk to the new disk. (MENU.BAC will normally be one of
these files.)

24

4. Label the disk from drive 0 appropriately. Put the supplied
disk away as a master.

If you have a single disk drive and you are supplied with
courseware or software on a non-operating system disk, then carry
out the above procedure except all copying in steps 2 and 3 must
be performed using SDC. We recommend you print catalogues of the
source disks so that you know which files to specify when using
SDC. And remember to LINK the disk after the SDC of POLYNET.

When transferring programs and files to other POLY users, it is
advisable to exclude operating system software from the disk used
for the transfer. This is because other POLY users may have
different versions of POLY hardware and software (maybe they
simply have a different brand of printer for which their
operating system has been customised).

3.4. REPLACING LOGON.BAC

Following start up, LOGON.BAC is automatically run and the blue
1og on screen will appear. The supplied LOGON.BAC may be replaced
by other versions depending on user requirements. For example, a
log on program to carry out more extensive security checking,
such as checking a file of valid users, could be substituted for
the supplied LOGON program. Or, if no security checking at log on
is required at all then a simple program such as

10 CLS:NEW
or

10 CLS:TEXT
or

10 CLS:DOS
or

10 CHAIN "MENU"

may be substituted for LOGON depending on the user requirements
of the particular disk. These four programs, when each 1is
compiled as LOGON.BAC onto a disk, will respectively cause the
following to occur when the disk is used to start up a POLY:
direct entry to BASIC mode, direct entry to TEXT mode, direct
entry to DOS mode, and direct chaining to the MENU without 1ogon
procedures.

Of course, if the supplied LOGON is replaced and the Togon
procedures by-passed, then when PROT is used to password protect
a file, no initials and password will have been entered. In such
a case, PROT will request that the user enter these at the time
of running PROT.

The supplied LOGON automatically chains to a program called
MENU.BAC after successful log on, provided such a program exists.
The MENU program can be a standard suppiied MENU, a user-written
MENU {compiled BASIC) or a MENU generated using POLYMENU.

25

4. THE POLY EDITOR

The POLY system provides a full screen editor which can be used
to edit either BASIC or TEXT files.

BASIC mode is available from TEXT and DOS via the BASIC command.
The prompt Ready will appear printed in yellow. The extensions
normally used for BASIC files are BAS and BAC. In BASIC mode line
numbers are part of the file. In BASIC mode, whenever a program
is edited, all variable values are reinitialised and any files
left open are closed.

TEXT mode is entered from BASIC or DOS via the TEXT command. The
prompt Ready is always printed in cyan. The extension normally
used for text files is .TXT. In TEXT mode line numbers are not
part of the file, they are added to the 1lines when Tloading
{starting at 10, with intervals of 10) and deleted when saving.
In TEXT mode 1line numbers are used to reference lines for
1isting, deleting and inserting.

4.1. ENTERING NEW LINES

A1l new lines are entered with a 1ine number at the start which
indicates the position in the file into which the line is to be
inserted. If the line number is omitted the line is treated as an
immediate command. Entering a line is the act of typing the line
and pressing the <ENTER> key.

The cursor may be moved back to an incorrect line and the line
corrected. The line is re-inserted into the file on pressing the
<ENTER> key. If <ENTER> is not pressed, the line is only stored
on the screen and is not updated in memory.

4.2. USING THE AUTO COMMAND

The AUTO command is used to save time when entering new lines, it
automatically sets up the line numbers.

Syntax: - AUTO [start-1inel [,increment]

The start-Tine is the first Tine number at which the automatic
numbering will start. If not specified, 10 is used.

The increment is the amount added to each 1line number to get the
next number. If not specified, 10 is assumed.

For example:

AUTO

26

starts automatic 1ine numbering at 10 with an increment of
10, i.e. 10 20 30 40 ...

AUTO 100, 200

starts automatic line numbering at 100 with increments of
200, i.e. 100 300 500 ...

In BASIC mode, the next Tine number 1is displayed, as soon as
<ENTER> has been pressed for the previocus line. '

In TEXT mode, the Tine numbers are not displayed on the screen
but are incremented in memory each time <ENTER> is pressed.

To exit from AUTO mode either enter a null line (i.e. just press
<ENTER> at the start of a new line) or press <EXIT>.

AUTO will not allow the entering of Tines with line numbers the
same as those already entered.

4.3. LOOKING AT LINES ALREADY ENTERED

The LIST command displays text already entered, on the screen.

Syntax:- LIST [startline] [-] [endlinel

Startiine and endline refer to the line numbers as entered. if
startline is not specified, then the listing starts at the
beginning of the file. If endline is not specified the listing
will stop at the end of the file. The <PAUSE> is used %o halt the
listing at any time. To restart the listings, press any key. If
the <SPACEBAR> is pressed following <PAUSE>, then the Jines are
listed one at a time. If the <EXIT> key is pressed, then the
Tisting is terminated.

If only the startline number is specified then only that line is
displayed.

For example:
LIST
displays the whole file.
LIST 100

displays only line 100.
LIST 100-

disptays all lines from 100 to the end.
LIST -100

27

displays all lines up to 100.
LIST 100-200

displays lines 100 to 200 inclusive.

4.4, ALTERING LINES

To alter a line, 1ist it on the screen wusing LIST, move the
cursor up to the line using the arrow keys, make the alterations
necessary, and press <ENTER>.

While changing a line, the <CHAR INS> and the <CHAR DEL> keys may
be used for insertion and deletion of characters on that line.

<ENTER> may be pressed when cursor is anywhere on the 1line, it
does not necessarily need to be at the end of the line.

The <LINE INS> and <LINE DEL> keys enable 1ines to be 1inserted

and deleted on the screen but do not cause changes to the
POLYBASIC program or text file in memory.

4.5. DELETION OF LINES

A line may be deleted by either:
(i) entering the line number with no data following it, or
(11) by use of the DEL command.

The DEL command may be used to either delete individual lines or
a group of lines from memory.

Syntax: - DEL startline [-endline]

The startline must be given. If the -endline is missing, only the
startline is deleted.

For example:
DEL 280
deletes line 280.
DEL 280 - 1000
deletes lines 280 to 1000 inclusive.

NOTE that the following forms are NOT allowed:

28

DEL 280-
or

DEL -10Q0C0

4.6. RENUMBERING OF LINES

At times, all available line numbers in a particular sequence may
have been used. Alternatively, due to.a large number of
insertions and deletions the 1ine numbers may be badly
distributed. In both these cases, it is advisable to use the
RENUM command to renumber the file.

Syntax:- REMWM [startline] [,increment]

Renumbering a BASIC file not only changes the 1line numbers but
also changes all references to them in GOTO, GOSUB and other
statements. RENUM may also be used to renumber part of a file
{see the description of the RENUM command in the POLYBASIC
manual).

Renumbering a TEXT file only changes the 1ine numbers.

The startline is the first line number allocated. If not given,
10 is used.

The increment is the amount added to each succeeding line number.
If not given, 10 is used.

For example:
RENUM

renumbers the file from line 10, in increments of 10, i.e.
the new 1ine numbers are 10, 20, 3C, 40 ...

RENUM 100

renumbers the file from 100 in increments of 10, i.e. the
new line numbers are 100, 110, 120, 130 ...

RENUM ,100

renumbers the file from 10 in increments of 100, ij.e. the
new line numbers are 10, 110, 210, 310 ...

RENUM 1000, 100

renumbers the file from 1000 in increments of 100, i.e. the
new line numbers are 1000, 1100, 1200 ..,

29

4.7. SAVING THE EDITED FILE ON DISK

At any stage during editing, the file may be saved using the SAVE
command. A BASIC file is saved with line number, a text file is
saved without Yine numbers.

Syntax:- SAVE "filename"
CSAVET

The filename may specify the extension and the drive number.
For example:
SAVE "O.MYFILE.TXT"

If the drive number is not given then the file is written to the
current drive for that POLY.

If the extension is not given then a BASIC file is given the
extension .BAS and a TEXT file the extension .TXT.

Following a SAVE, the file 1is still in the POLY memory and
further editing may be performed.

For example:
SAVE "MYFILE"

If the POLY is in TEXT mode and the current dirve is 0, then
the file will be saved on drive 0 as MYFILE.TXT.

SAVE may be used without a file name if the file has been
previously L0ADed from disk. In this case the user will be
prompted with

Save filename {Y/N) ?

where filename is the name of the file that was LOADed.

4.8. LOADING FILES FROM DISK

A file stored on disk is loaded into POLY memory using the LOAD
command. This clears any program or file currently in POLY
memory, and loads the file from disk.

Syntax:- LOAD “filename"

The filename may specify the drive number and the extension.
For example:

LOAD "1.MYFILE.BAS"

30

will load MYFILE.BAS from the disk in drive 1.

If the drive number is not given, then the file is loaded from
the current drive for that POLY.

If the extension is not specified then .BSC is used in BASIC mode
and .TXT in TEXT mode.

When a TEXT file is loaded, 1ine numbers are added, starting at
10 and incrementing in steps of 10.

For example:
LOAD "MYFILE"
If entered on a POLY with the current drive as 1 and in TEXT
mode, then the file L.MYFILE.TXT will be 1loaded into the

POLY memory, starting at Tine 10 and incrementing 1in steps
of 10.

4.9. MERGING FILES ON DISK WITH THE FILE BEING EDITED

The MERGE command merges a file from disk into the file currently
being edited. BASIC files are merged on line number such that
where the same line exists in both files, the new 1line replaces
the old line.

In TEXT mode, the disk file is appended onto the end of the file
being edited and line numbers above those turrently 1in use are
allocated.

Syntax: - MERGE “filename"

The filename may specify the drive number and the extension.

If the drive number is not given, then the file is Iloaded from
the disk on the current drive for that POLY.

If the extension is not specified then, for BASIC .BAS is
assumed, and for TEXT, .TXT is assumed.

For example:

If a POLY {in BASIC mode) contains the following file:
10 CLS
20 FOR row = 0 TO 10
30 PRINT @(row,0) "11Q"
40 NEXT row

and the file MYFILE.BAS on disk contains:
30 PRINT @{row,0} " R";

50 REM DRAW A CAR
60 REM etc...

31

then when the command:
MERGE “MYFILE"
is entered, the resulting file in the POLY will be:

10 CLS

20 FOR row = 0 7O 10

30 PRINT @&(row,0) ™ R";
40 NEXT row

50 REM DRAW A CAR

60 REM etc...

If a POLY (in TEXT mode) contains the following file:
100 THIS IS A TEXT FILE
200 CONTAINING ONLY
300 3 LINES
and the file MYTEXT.TXT contains:
THIS IS MYTEXT
FILE WHICH HAS
ONLY 3 LINES
then following the command:
MERGE "MYTEXT"
the POLY file becomes:
100 THIS 1S A TEXT FILE
200 CONTAINING ONLY
300 3 LINES
310 THIS IS MYTEXT

320 FILE WHICH HAS
330 ONLY 3 LINES

4.10. DELETING THE FILE BEING EDITED

The NEW command deletes the file currently being edited from
memory.

For example:

NEW
If the file being edited has not been changed the Ready prompt
will appear on the screen. If the file has been changed since the
Tast SAVE the user will be prompted with

Save (Y/N) ?

or

32

Save filename {Y/N) ?

The filename will only appear if the file was LOADed. In the
first case if Y is typed, the NEW is aborted; if N is typed, the
NEW is executed. In the second case, if Y is typed the file will
be SAVEd and NEW executed; if N is typed, NEW will be executed.
Only Y,y,N or n will be accepted. The default extensions are .TXT
for TEXT files and .BAS for BASIC files.

33

5. INSTALLING AND USING THE PRINTER

The printer in a POLY system is shared by all the POLYs. All
print requests are queued onto disk before printing, a technique
known as print spooling. There are several ways of having
information printed.

5.1. PRINTING EXISTING FILES FROM DISK

Existing files may be printed using the DOS PRINT command in the
form

PRINT filename

They may be removed from the queue, even after printing has
started by entering

PRINT -filename

For further details, see PRINT in this manual.

5.2. PRINTING DOS UTILITY OUTPUT

DOS commands normally display their output on the POLY screen.
This output may be printed instead by using the WTD
(Write To Disk) command in conjunction with the DOS utility
command.

For example:
WTD + CAT O
will print the catalogue on the printer using the file
SPannnnn.PRT as the intermediate file, where nnnnnnn is a
unique 6 digit number.

WTD filename.PRT CAT O

where a specific filename is given as the print gqueue file
name. Any file that is created with .PRT extension is
automatically printed and then deleted. Further details of
WTD are given under the description of WTD in this manual.

34

5.3. PRINTING FROM A PROGRAM

To print from a BASIC program use the LPRINT command {see the
POLYBASIC manual). Output from LPRINT will be printed when the
program stops executing. It is also possible to print from a
program by creating a disk file with a .PRT extension. When the
CLOSE of that file is issued, that file is automatically printed
and deleted. This method may be used from both BASIC and PASCAL
programs. If it is necessary to retain the file, it may be
created with any other extension, and the DOS PRINT command used
to print it out. Files with a .PRT extension may not contain
graphics characters - the PRINT command with a G option must be
used to print the file and all control characters (including
carriage return and line feed) must be supplied. Files may be
deleted after printing using the X option of the PRINT command.

5.4. INSTALLING THE PRINT SPOOLER

Various brands of printers may be attached to a PROTEUS for use
by a POLY network. Either a serial or a parallel interface may be
utilized. Each brand of printer has a set of control characters
for special functions such as condensed characters, elongated
characters, emphasized characters, etc. As well, printers may be
of different widths.

The PATCH utility may be used to modify the print spooler for
different types of printers.

Patching the Print Spooler so that the POLY Operating System uses
the appropriate Printer Port

Program to be PATCHed: POLYNET.SYS

Memory location Yalue Function
(Hex) (Hex)
4808 FF PROTEUS Parallel Printer Port
{Default 00 PROTEUS Serial Printer Port
01 POLYDRIVE Serial Printer Port

Patching the Print Spooler to Operate with Different Makes and
Models of Printers

1. A table with relevant entries has been set up within
POLYNET.SYS to allow easy patching for different models and
makes of printers (unfortunately most different brands of
printers use control characters for different purposes).

2. Attached is a table showing memory locations, default values
for the EPSON MX80 printer, and functions of the various
locations.

3. To alter for other brands or models of printer, use PATCH to
alter appropriate locations. The program that must be
PATCHed is POLYNET.SYS. Unused Tlocations should contain
nul1(00}.

35

TABLE 2
PRINTER SPOOLER PARAMETER ARFA

Memory Default

Location Yalue Function
55CB _ 3C Number of lines/page (default 60}
55CC 50 Number of normal characters/line (80)
55CD 84 ' Number of compressed characters/line (132)
55CE 28 Number of elongated characters/line (40)
55CF 0A 1 Ignore (1ine feeds)
5500 0A]
58D1 OE]
5502 00] 4 control characters necessary to
55D3 00] produce elongated characters
5504 00]
55D5 00 Null {terminator)
55D6 0A] Ignore {1ine feeds)
5507 OA]
5508 OF]
5509 00 1 4 control characters necessary to
55DA 00 I produce compressed characters
5508 0o]
55DC 00 Null {terminator)
550D ' A] Ignore (1ine feeds)
55DE 0A 1
55DF 00]
5500 00 1] 4 control characters necessary to
55E1 00] produce normal characters
55E2 0
55E3 00] Null {terminator)
55E4 12 1]
55E5 14]
55E6 18]
55E7 32]
55E8 1B] _
55E9 39] 14 control characters necessary to
55EA 18] initialise the printer
55EB 46]
55EC 1B]
55ED 48]
55EE 00]
55F 1 00]

36

Memory Default

Location Value Function
55F 2 00 Null {terminator)
55F3 iz] 14 control characters necessary to
55F 4 0] reset the printer
5600 00 3
5601 00 Null {terminator)
5602 A 0y _ Ignore {carriage return)
5603 A] Ignore (line feeds)
5604 0A]
5605 0t]
5606 1B] 4 control characters necessary to
5607 45] produce elongated, double-printed
5608 00 characters
5609 00 Null (terminator)

37

4. For the EPSON MX10C printer, locations of POLYNET.SYS must
be changed as follows.

Memory Location 01d Value New Value
55CC 50 88
55CD 84 E9
55CE 28 44

This gives 136 normal characters per tine, 231 compressed
characters per line and 68 elongated characters per line.

5. These locations may also be PATCHed while still using the
same printer. For example, when using 80 column wide paper
on an EPSON MX100.

6. After patching POLYNET.SYS, it is necessary to reset the
PROTEUS in order for the patches to take effect.

7. It is suggested that POLYNET.SYS be patched on master

operating system disks so that these are standard for the
particular system.

38

6. HARDWARE/SOF TWARE INTERFACES

6.1. SOFTWARE INTERRUPT FUNCTIONS

The number on the left-hand-side of each description below is the
"Software Interrupt Function ;number”. The BASIC function
"SWI(number,parameter)" calls the relevant software interrupt
function which is performed before the program continues. The
PASCAL on POLY manual contains details of calling software
interrupts for PASCAL programs.:

For example:

To check the status of the keyboard, insert the code

X%=SWI(0)

at the appropriate position in your program.
Some software interrupt functions require one or more parameters
to be specified. Values returned by software interrupts may be
used as normal function values. Parameters and values returned
are integers which occupy two bytes. Reference is sometimes made
to the first (left-most} and second (right-most) bytes of these
integers,

For example:

X%=SWI1(3, 1000, 100)
Y%=SWI (1)

The first call does not return a value. The second returns a
value which is assigned to the integer variable Y%.

Where a software interrupt function applies to a text screen,

then it applies to the two teletext screens and screen 5 when
used for the alternate character set.

0. Check Status of Keyboard.

This function checks to see if a key has been pressed on the
keyboard.

Input Parameters: None
Yalue Returned:
If (SWI{0) AND 255)
time.
If (SWI(O) AND 255) = 128 the key is still depressed.
If (SWI{O) AND 255) = 129 a character is waiting for the
first time and the key is still depressed.

It

1 a character is waiting for the first

n o

39

[

Input Single Character.

This function turns on the cursor and waits until a
character is typed on the keyboard (in either teletext or
alternate character set mode).

Input Parameters: None

Value Returned:
The ASCII value of the key pressed (this is in
the 2nd byte, the first byte remains unchanged).
In BASIC, INCH$(O) accomplishes the same task.

Line Edit.

The line editor must first be initialised, otherwise it will
not function properly. To do this first put the current text
screen into ASCII mode by: ' PRINT" N"; '. Then call SWI 2
with the following parameters:

Input Parameters
Parameter 1:

Byte 1 - If zero then when the enter key is
pressed (indicating End-0f-Line) the buffer is
returned beginning from the start of the buffer to
the cursor. If byte 1 is non-zero, then the buffer
returned is from the start of the input buffer to
the end of input buffer, no matter where the
cursor is positioned.

Byte 2 - must contain 31 (hex $1F) to
initialise the editor.

Parameter 2: The start address of user's input
buffer.
Parameter 3: The maximum number of characters
allowed (or the maximum buffer length).

Value Returned: None

The line editor is now ready to accept input characters in
either teletext or alternate character set mode. The input
Character can be program generated or input from the
keyboard using SWI (1}. When a character is input the line
editor will do the appropriate function €.g. insert
character, delete character, cursor left or cursor right.
When the enter key (13 or $0D) is input to the editor, the
edit (or input)is complete, and the input buffer is copied
into the user's buffer, whose address was specified in
parameter 2 of the initialisation SWI call. The length of
the buffer will be returned via parameter 3 (not accessible
from BASIC).

An exampie in POLYBASIC is:

10 CLS

20 REM Ensure teletext screen is in ASCII mode
30 PRINT®(10,5)" N";

40 REM Buffer$ is the user's buffer

50 Buffer$=STRINGS${20)

6C REM Ba% is the address of the user's buffer
70 Ba%=DPEEK(PTR(Buffers$))

80 REM Initialise editor to return whole

40

90 REM buffer to address Ba%, and maximum
10C REM number of characters to input is 20.
110 Z%=SWI{2,256+31,Ba%,20)
120 REM Get a character from the keyboard
130 A%=SWI{1) AND 255
140 REM Input the character to the line editor
150 Z%=SWI{2,A%)
160 REM If the character wasn't ENTER then go back for another input
170 IF A%<>13 THEN 130
180 REM The key was ENTER, so now the input buffer has been
185 REM copied into the user's buffer. :
180 CLS S
200 REM Print the user's buffer which now contains the
205 REM edited line.
210 PRINT®{5,0) Buffers
220 END

Note: INCH$(0} should not be used with this function.

3. Sound Generator.

This function generates sound from the speaker. the pitch is
calculated as (502400 / frequency) -1. The length is
specified in 10 millisecond lengths.

Input Parameters:
Parameter 1: The pitch of the sound.
Parameter 2: The length in 10 millisecond
intervals.

Yalue Returned

None.
4. Pause
This function will cause a pause if the pause key has been
pressed {and thus the pause flag is set).
Input Parameters: Hone
Value Returned:
The ASCII value of the key pressed (in the 2nd
byte, the first byte remains unchanged) after the
pause. Pressing the space bar or the pause key
will not reset the pause flag, other keys will.
5. Put Character

This function prints a character to the current text screen.

Input Parameters: :
Parameter 1: The second byte contains the
character to be printed on the screen.

Value returned: None

6. Write Character to Specified Position

This function prints a character to a specified position of
the current text screen. It does not affect cursor position.

41

|~

|

[T
.

input Parameters:
Parameter 1: The second byte contains the byte to
be printed.
Parameter 2: Not used.
Parameter 3: Contains the print position in
teletext row, column format. E.g.,to specify row
2, cotumn 3 uyse 2*256+3

Yalue Returned: None

Read the Keyboard

This function reads the keyboard. If a key has been pressed,
it will return the ASCII character, otherwise a null
(CHR$(0)) will be returned. This is essentially the same as
INCHS$ in BASIC.

Input Parameters: None

Yalue Returned: The second byte contains the ASCII
value of the key pressed, otherwise null.
The first byte is unchanged.

Copy From Screen to a String

This function copies a string of characters from the current
text screen to a memory area specified by the user. Nulls in
the string will be converted to spaces (hex 20).

Input Parameters
Parameter 1: Start address of string { not above
hex EOQ0)
Parameter 2: Length of string to be copied.
Parameter 3: User specified position in row,
column format

Yalue returned: None
If the user tries to copy beyond the end of the
text screen the carry bit of the condition code
will be set and the string is copied up to the end
of the current text screen.

In the case of the teletext screens, the end of the screen
is row 23, column 39. In the case of the alternate character
set screen (screen 5) the end of the screen is defined by
the alternate character set program (POLYACS.SYS). For the
case of 60 character mode, this would be row 23, column 59.

Set Cursor Position

This function sets the cursor to a specified position on the
current text screen. If the split screen is active then this
function allows the user to move the cursor to the other
portion of the split screen. If the input position is
invalid then the cursor will not be moved {(i.e. beyond the
end of the text screen),

Input Parameters:
Parameter 1: Contains cursor position 1in row,
column format. The first byte is the row, and the
second byte the column {e.g. 2%256 + 5 sets the
cursor to row 2 column 5).

Value Returned: None

42

If an invalid cursor format is specified then the
carry bit of condition code is set on return.

10. Set Relative Cursor Position on Current Text Screen.

This function moves the cursor by the specified number of
positions, relative to its current location.

Input Parameters:
Parameter 1: A positive or negative number
which is the number of rows that the cursor
is.to be moved. .-
Positive is down, negative is up.
Parameter 2: A positive or negative number
which is the number of columns that the
cursor is moved.
Positive is to the right, negative is to
the left.
Value Returned: None
If the resulting cursor position s outside the
screen area the carry bit of the condition code isg
set and the cursor is not moved.

11. Read Cursor Position

This function reads the cursor position of the current text
screen. It does not affect the cursor position.

Input Parameters: None

Value Returned:
The first byte contains the row and the second
byte contains the column number of the cursor
position.

i2. Read Cursor Character

This function reads the character on the current text screen
at the current cursor position.

Input Parameter: None

Yalue Returned:
The first byte is always null. The second byte
contains the ASCII value of the character read.

13. Split Screen Into Two Portions

This function splits the current text screen into two
portions, one above the other. The two portions are to all
intents and purposes independent of each other, in
particular, scrolling on one portion is independent of
scrolling on the other, and the cursor remains in one
portion until specifically moved to the other using PRINT@
or SWI(9) or SWI(10).

Input Parameters:
The first byte contains the start row of the
second half of the split screen. (If =0 or >23
then the split screen is turned off i.e. reset.)
Yalue Returned: None

43

14.

Clear Text Screen

This function is used to clear one of the text screens.
Clearing the current text screen can be accomplished by
printing a character 12 { Hex $0C, Home } to the screen
using SWI{5).

Input parameters:
Only the second byte is used.
If >0 and <127 Clear screen 3
=0 : Clear screen 1
>=128 and <=255 (Clear current screen
Yalue Returned: None

[f the alternate character set has been selected, this
function will always clear the alternate character set
screen {i.e. screen 5).

15. Set Screen and Display Characteristics.

This function is wused to set teletext and graphics

characteristics as follows (but note the alternate character

screen must be specially set):

Input Parameters:
Parameter 1: A 16 bit integer where each bit is
set or reset according to the following functions.
bit 15 - Not used '
bit 14 - Mix/priority bit: l=mix, O=priority
bit 13 - 1=Display 2 (Graphics 1 screen)
bit 12 ~ 1=Select 5, 0=Select 2
bit 11 - 1=Display 1 (Teletext 1}
bits 10 & 9 - Select screen 2 mix colour
00=blue, Ol=green, 10=red,li=none

bits 7 & 8 - Not used
bits 6 5 & 4 - Select background colours

i.e.bit 6 - 1= BLUE

bit 5 - 1= GREEN
bit 4 - 1= RED
bits 3 & 2 - Select screen 4 mix colour as for
Screen 2 (see bits 10 and 9}
bit 1 - 1=Display 4
bit 0 - 1=Display 3
Yalue Returned: None.
16. Read Display Mode.

This function reads the current screen display mode.

Input Parameters: None
Yalue Returned:
A 16-bit integer defined as follows:

bit 15 - Not used

bit 14 ~ Mix/priority bit: 1=Mix, O=Priority
bit 13 - 1=Display 2 {Graphics 1 screen)

bit 12 - 1=Select 5, 0=Select 2

bit 11 - 1=Display 1 (Teletext 1)

bits 10 & 9 - Select screen 2 mix colour
00=blue, Ol=green, 10=red,ll=none

bits 7 & 8 - Not used

44

bits 6 5 & 4 - Select background colours
i.e. bit 6 - 1= BLUE
bit & - 1= GREEN
bit 4 - 1= RED
bits 3 & 2 - Select screen 4 mix colour as for
Screen 2 {see bits 10 and 9)
bit 1 -~ 1=Display 4
bit 0 - 1=Display 3

This function allows the user to change the current value of
the clock. The clock is initially programmed to interrupt
every one second. The user can use this function to stop the
ctock or restart it. { Warning: sound generation is
dependent on the clock - if the clock is turned off the

Input Parameters:
Parameter 1: Only the second byte is used. If zero
then stop the clock otherwise run the clock as
specified by the user.
Parameter 2: The first byte contains the most
significant byte of a 3 byte value of time { in 10
millisecond units) after midnight.
Parameter 3: Contains the least significant two
bytes of a 3 byte value of time (in 10
millisecond units)} after midnight.

Yalue Returned: None:

17. Set The Clock
sound will not work.)
18, Return The Time

This function returns the current time in 10 millisecond units.
If the clock is not running the carry bit of condition code 1is
set and nothing is returned.

19.

Input Parameters: None

Yalue Returned:
Parameter 1: The least significant 2 bytes of a 3
byte value of time (in I0 wmillisecond wunits)
after midnight.
Parameter 2: The second byte contains the most
significant byte of a 3 byte value of time { in 10
millisecond units)} after midnight.
(In BASIC only parameter 1 is returned.)

WAIT Routine

This function waits for a period of time specified by the
user. It is done by sampling the clock until it reaches the
specified time. Therefore the clock must be running
otherwise the carry bit of condition code is set.

input Parameters:
Parameter l: A 16 bit value of time (in 10
millisecond units } to wait.

Value Returned: None

45

20.

Set Pause Flag

The function may be used to set or clear the pause flag.

Input Parameters:
Parameter 1: If zero the pause flag will be
cleared, if non-zero the pause flag will be set.
Yalue Returned: None

21. and 22. Reserved For System Use

This function allows the user to read a string of characters
through the optional RS232 port. Either all characters up to
and including a specified character are read, or a specified
number of characters are read and stored in a string in the
user area. A time out will occur if no character is received
for approximately one second. The wuser must allocate a
buffer of sufficient size in which the characters are

Parameter 1: If negative, the absolute value is
the count of characters to be read. Otherwise,
this is the ASCII value of the delimiter character
denoting the end of the input string.

Parameter 2: The address of the memory Jocation
into which the characters are to be stored.

Yalue Returned: The number of characters actually

input. If negative or zero a timeout has occurred
(the absolute value represents the number of
characters input before the timeout).

23. Read Through The Serial Port
stored.
Input Parameters:
24. Write Through The Serial Port

This function allows the wuser to output a string of
characters through the optional RS232 port. Either all
characters up to and including a specified character are
output or a specified number of characters are output from a
string in the user area. A timeout will occur if the serial
port is not ready for +transmission for approximately one
second.

Input Parameters:
Parameter 1: If negative, the absolute value is
the count of characters to be output. Otherwise,
this is the ASCII value of the delimiter character
denoting the end of the output string.
Parameter 2: The address of the memory location
from which characters are to be output.

Yalue Returned: The number of characters actually
output. If negative or zero, a timeout has
occurred (the absolute value represents the number
of characters output before the timeout).

46

Note: When using the RS232 port it is necessary to
(1} initialise it (i.e. write 3 %o memory location SEQG4 Y,
(i1) set the baud rate (i.e. write an appropriate number to
{ memory location $EOQ6 - see Software Interrupt 25), and
iii)
set the word structure (i.e. write an appropriate
number to memory Jocation $EQ04 - see Software
Interrupt 25).

For example:

10 REM Master reset of I/0 port

20 Z%=SWI(47,3,HEX("EQ04"),0)

30 REM Set Word Structure

40 Z%=SWI{47,1,HEX{"E004"),0)

50 REM Set baud rate to 9600 bit/sec
60 Z%=SKWI1(47,0,HEX{"E006"),0)

70 OPEN OLD "PRIMES.TXT" AS 1

80 ON END #1 GOTO 180

90 Z%=SWI(47,12, HEX{"EQ05"),0)

100 INPUT LINE #1,78
110 REM Ouput the line

120 7%=SWI(24,-LEN(Z$),DPEEK (PTR(Z$)}))
130 REM Output a carriage return

140 Z%=SWI{47,13,HEX{“EC0O5™),0)
150 REM and a line feed
160 Z%=3WI1{47,10,HEX("E005"},0)
170 GOTO 100 _

180 CLOSE 1

This program uses software interrupt 24 to output a
complete file through the RS232 port, line by line.

For example:

10 scratch?
20 scratch%
30 scratch?
40 buffer$ = STRING$(255)
50 bufpnt% = DPEEK(PTR{buffer$))
60 ret® = SWI(23,13,bufpnt®)
70 IF ret%<=0 THEN 130
80 ret? = SWI(24,-ret%,bufpnty)
90 IF ret%<=0 THEN 130
100 ret%=SWI{47,13,HEX("E005"),0)
110 ret%=SWI{47,10,HEX{"EC0O5"},0)
120 GOTO 60
130 PRINT"TIMED QuUT"
140 STOP

SWI(47,3,HEX{"EQ04"),0)
SWI({47,0,HEX({"E006"),0}
SWI(47,17,HEX("E004") ,0)

L LI]

o

This program will read characters through the RS232
port until a carriage return is encountered. The string
is then echoed out the R$232 port (using the character
count). The initialisation in lines 10,20,30 sets the
port up for 8600 baud, with a word consisting of 8 bits
and 2 stop bits.

47

25.

Setect Terminal Mode

26.

This function allows the POLY to act as a dumb terminal.
Characters input via the keyboard are transmitted through
the serial port. Characters received at the serial port are
displayed on the screen. Reset must be used to restore the
POLY to normal operation.

Input Parameters:
Parameter 1: A number corresponding to the baud
rate as follows: -

0 = 8600

2 = 4800

4 = 2400

6 = 1200

8 = 600

10 = 300

12 = External Clock (Cassette Interface)
Parameter 2: The word structure (i.e. word size,
parity on/off). The bits specifying this are
000xxx01 so this will be a number between 1 and 29
as follows:

1 =7 bits + even parity + 2 stop bits

5 =7 bits + odd parity + 2 stop bits

9 =7 bits + even parity + 1 stop bit

13 =7 bits + odd parity + 1 stop bit

17 = 8 bits + no parity + 2 stop bits

2l = 8 bits + no parity + 1 stop bit

25 = 8 bits + even parity + 1 stop bit

29 = 8 bits + odd parity + 1 stop bit

Value Returned: None.

Select Standard Memory Map 2

27.

This function selects the predefined memory map 2. This map
contains the 64k RAM addresses from $0000 - $FFFF. The two
graphics screens are also included in this memory map. The
address of the first graphics screen occupies $EGO0 - $FFFF,
the second graphics screen occupies $8000 - $9FFF. The
operating system occupies $C000 - S$DFFF. To display the
graphics screen see SWI(15) and SWI(16).

Input Parameters: None.
Value Returned: None.

witch To Memory Map 1

This function allows the user to switch from memory map 2 to
memory map 1. If the user is already in map 1 nothing will
change. The only difference between memory map 1 and
standard memory map 2 is that in map 1 addresses from $A000
- $BFFF and $E000 - $FFFF are the 16k BASIC ROMs while in
map 2 these addresses are 16k of RAM.

48

28.

Input Parameters: None
Yalue Returned: None

Switch To Memory Map 2

29,

This function allows the user to switch from memcry map 1 to
memory map 2 (non standard). It is usually called after
SWI{29) which changes the configuration of map 2 but does
not switch to it.

Input Parameters: None
Yalue Returned: None

Change Configuration of Memory Map 2

30.

This function uses the user specified address translation
table to configure memory map 2. The address translation
table is written into the system dynamic address translator
(DAT). This configuration does not change until the next
call to this function or until the system is reset. In the
latter case the configuration is the same as standard memory
map 2. (Note: the BASIC interpreter uses a different
configuration from the standard map 2, therefore one cannot
assume that memory map 2 is always the same as the
predefined memory map 2.} This function does not switch the
current memory map to memory map 2, to do this use SWI{28).
A copy of the current contents of memory map 2 is held in
memory locations DFF8-DFFF.

Input Parameters:
Address of the 8 byte translation table.
Yalue Returned: None

Select Current Text Screen

31,

This function selects one of the two teletext screens or the
alternate character-set screen. Once it is selected, all
references to a text screen {e.g. print a character, read a
character etc. } will refer to this screen. One of the
screens will be current at any one time. This function only
selects the current text screen, it does not display it. {
See SWI(15) and SWI(16) to display teletext and graphics
screens.)

Input Parameter:
If the second byte contains 2 or 3, the second
teletext screen (Screen 3) is selected.
If the second byte contains 5 and the alternate
character set software has been loaded, then the
alternate character set screen (screen 5} is
selected. Otherwise the first teletext screen
{screen 1) is selected.

Value Returned: None,

Select 24-Line Display for Teletext Screens.

Calling this function sets both teletext screens to display
24 lines.

49

32,

Input Parameters:
None,

Yalue Returned:
None.

Select 12-Line Display for Teletext Screens.

33.

Calling this function sets both teletext screens to display
12 Vines.

Functions 33 & 34 determine whether the top 12, or

bottom 12 lines are to be displayed.

Input Parameters:
None.

Value Returned:
None.

Display First 12 Lines,

34,

When used in conjunction with 32 above, this function
displays the top 12 lines (lines 0-11)}) on each teletext
screen.

Input Parameters:
None.

Yalue Returned:
None.

Display Last 12 Lines.

35.

When used in conjunction with 32 above, this function
displays the bottom 12 lines (1ines 12-23) on each
teletext screen.

Input Parameters:
None.
Yalue Returned:
"~ HNone.

Set Scroll Mode On Text Screen

36.

The text screens can operate under scroll mode or wrap mode.
in scroll mode, when the cursor reaches the end of the
screen, the whole screen is scrolled up one 1line and the
cursor is positioned at the start of the bottom Tine. In
wrap mode, the cursor wraps around to the top of the screen,
and there is no scrolling.

Input Parameters:
If the second byte is zero, the text screens are
set to scroll mode. Otherwise the text screens are
set to wrap mode.

Value Returned: None

Map In Memory Page

This function allows a specified physical 8K page of memory
(RAM or ROM) to be addressed from a specified 8K 7ogical
page in Memory Map 2. See section 6.2 for a description of
the contents of physical memory pages. This function does

50

not alter the configuration of Memory Map 1.

WARNING: unpredictable results may occur if this function is

called from BASIC.

Input Paramater:
The first byte: 1logical page number in 6809
address space (0 to 7)
Second byte: The page number (0 to 15) of the
physical page to be mapped in to the above logical
page. o

Yalue Returned: None

37. Test EXIT Flag

This function returns the exit key flag. If the exit key has
been pressed the value returned is non zero. On return the
exit key flag is always cleared to null.

input Parameters: None.

Value Returned:-
The first byte 1is unchanged. The second byte
contains the exit key flag. If non zero, the exit
key has been pressed.

38. to 42. Reserved For System Use

43. Send Message to Master

This function is used to send a message to the network
controller. There should be no need for a user to call this
function, as all message handling is done by the operating
system.

Input Parameters:
Parameter 1: The second byte contains the message

type.
Parameter 2: Start address of message.

Parameter 3: Length of message.

Value Returned: None.
The carry bit of the condition code is set if an
error occurs in the communication system.

44. Receive A Message From Master

This function is used to receive a message from the network
controtler. Normally the master does not send messages to
the POLY unit unless the POLY has requested some information
from the master.{ e.g. read a sector from disk). As in the
case of SWI{43) the wuser should not need to call this
function. The user must provide a buffer of sufficient
Tength to receive the message.

Input Parameters:
Parameter 1: Not used.
Parameter 2: Start address of message to be
received.

Parameter 3: Maximum length of message allowed.

51

Yalues Returned:
Parameter 1: The second byte contains the message
type.
Parameter 2: Not changed.
Parameter 3: Length of message actually received.

If there is a communication system error or no message is
forthcoming, then an error has occured and the carry bit of
the condition code is set.

45. Log Off

This function returns the user to the start up screen.

Input Parameters: None.
Value Returned: None.

46. Read System Input/Output

This function allows the user to read the status and data
registers of various peripherals attached to the POLY.

Because all input/output ports appear only in the system
memory map mode {which is protected), it is necessary to use
this function to read these ports e.g. PIA, TIMER.

Input Parameters:
Parameter 1: If the second byte is zero then one
byte is read, otherwise 2 bytes are read.
Parameter 2: Address to read from.

Yalue Returned:
The value read. If only one byte is read, then it
will be in the Tow order byte and the high order
byte will be unchanged.

47. Write System Input/Output

This function allows the user to write to the control and
data registers of various peripherals attached to the POLY.

Input Parameters:
Parameter 1: The 1 or 2 bytes of data to be
written to the specified address. If only one byte
is to be written, the lTow-order byte must contain
the data.
Parameter 2: Address to write to.
Parameter 3: Zero indicates one byte is to be
written, otherwise 2 bytes will be written.

Value Returned: None. _

52

6.2. MEMORY MAPPING

The 6808 micro-processor is capable of addressing 64K bytes of
memory. However a feature called Dynamic Address Translation has
been incorporated into the POLY which allows more than 64K to be
used.

This feature allows the user to switch into addressable memory
any of 8 blocks of 8K memory, from a maximum of 16 blocks. These
may be placed in any order in any of the 8 positions in
addressable memory. Two memory maps are available, and the user
indicates which is currently in use.

Memory map 1 is fixed at initialisation of the system, but the
user may alter memory map 2 to suit an application by using
software interrupt 29 or 36. The selection of a memory map is
made using software interrupts 27 and 28.

The physical memory in the POLY is allocated as follows

Blocks 8 to 15 64K RAM
Biocks 6 and 7 16K BASIC ROM
Biocks 4 and 5 16K RAM bank 3

Block 4 contains screen 4
Blocks 2 and 3 16K RAM bank 2

Block 2 contains screen 2
Blocks 0 and 1 16K RAM bank 1

The System ROM and Teletext screens are within a protected area
which is not accessable directly by the user. These may only be
accessed by software interrupts.

Standard memory maps 1 and 2 are configured as follows

MAP 1
Starting Physical . Contents
address block :
$EOCD 7 BASIC ROM
$C000 5 DOS RAM
3A000 6 BASIC ROM
$8060 4 Screen 4 or user RAM
$6000 8 User RAM
34000 3 User RAM
$2000 1 User RAM
$0000 0 RAM BASIC (up to $1B0OO)

53

MAP 2

Starting Physical Contents

address block

$EQOC 2 Screen 2 or user RAM
3C000 5 RAM DOS

$A000 9 User RAM

$8000 4 Screen 4 or user RAM
$6000 8 User RAM

$4000 3 User RAM

$2000 i User RAM

$0000 0 User RAM

To setup and call a special memory map 2, carry out the following
steps.

1. Set up a string of 8 bytes, each byte containing the
physical block number to be put into the map, starting
from address 0.

2. Call software interrupt 29 giving the address of the 8
bytes as parameter 1.

3. Call software interrupt 28 to select memory map 2.

For example:
In BASIC

100 A$=CHRS (0 }+CHR$(1)+CHRS (3)+CHRS(8)+CHRS(2)+CHRS(6)+
CHR${5)+CHR$(7) ‘

110 A%=SWI(29,DPEEK(PTR{AS$)))

120 A%=SWI{28)

this puts screen 2 in place of screen 4 in addressable
memory .

BASIC graphics commands should not be used while using memory map
2, as these use a special memory map 2 and will overwrite the
memory map defined by the user.

Memory locations $DFF8 to $DFFF contain the current configuration
of Memory Map 2 {see figure 6.1). If this map is changed by the
use of software interrupts 29 or 36, these locations are changed
correspondingly. They may be saved to allow the original memory
map to be restored, but they should not be altered directly by
the user.

Memory location $DFF7 contains 0 if Memory Map 1 is selected and

2 if Memory Map 2 is selected. This location should also not be
altered directly by the user.

54

Contents of = Block number mapped into

$OFF8 $CO00 - $1FFF
$OFF9 $0002 - $3FFF
3DFFA $0004 - S$5FFF
$DFFB 30006 - S$7FFF
SDFFC $0008 - $9FFF
$DFFD $000A - $BFFF
$DFFE $000C - $DFFF
SDFFF SOU0E - $FFFF

Figure 6.1 Map 2 Image

6.3. CASSETTE INTERFACE

An optional cassette interface may be attached to the POLY?
(provided an RS232 port is also present). Cassette interfaces are
generally sensitive to the type of recorder used and should be
adjusted during installation.

The cassette interface utilises the serial RS232 port and thus
software interrupts 23, 24, 46 and 47 may be used to record to
and load from tape.

The RS232 baud rate should be initialised to 1200 bits/second
(see Software Interrupt 25) for output. For input the baud rate
should either be set to 1200 bits/second, or, to increase the
tolerence to tape speed errors initialise the port with value 12
$0 the clock is derived from the signal on the tape.

Below is a listing of & program which generates a character
pattern on tape. Start the cassette recorder on record and RUN
the program. After some time, EXIT from the program and enter

A%=SWI(25,12,17)

to put the POLY into terminal mode (with the external clock).
Rewind the tape and play it, the pattern will be displayed on the
POLY. Faulty adjustment or faulty cassette performance will be
readily visible. :

10 A%=SWI(47,3,HEX("E0D4"),0)

20 A%=SWI(47,6 ,HEX("E006"),0)

30 A%=SWI{47,17,HEX{"ECC4"),0)

40 FOR 1%=32 TO 127

50 BUF$=CHR$(14)+CHR${13)+CHR$(1U)+CHR$(15)+CHR$((I%AND7)+1)+STRING$(38,I%)
60 BP%=DPEEK(PTR(BUF$))

70 FOR J%=1 TO LEN{BUF$)

80 A%=SWI(46,0,HEX("E004"),0)

90 IF A%ANDZ THEN A%=SW1(47,ASC(MID$(BUF$,J%,1) ,HEX("EQ05"),0) ELSE GOTO 80
100 NEXT

110 NEXT

120 GOTO 40

55

