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Results

We first applied our algebraic reduction to the constraint equations previously derived for 
peptide rings in an LFA-1/ICAM-1 study. We next applied our reduction to the inverse 
design of -secretase inhibitors for Alzheimer’s disease. This dataset consisted of 61 
compounds with varying IC values.  Finally, we applied our reduction to the design of non-
toxic but still effective conazole fungicides. These 27 fungicides were obtained from the 
Enivronmental Protection Agency’s Persistent, Bioaccumulative, and Toxic (PBT) Profiler 
database (www.pbtprofiler.net), each with a corresponding fish chronic toxicity value 
(ChV).

Discussion

We have proposed a simple method for reducing a linear system of homogeneous equations 
when using the signature molecular descriptor for inverse design of chemicals. We have 
tested the reduction on three datasets, including a set of ICAM-1 inhibitory peptides, a set of 
γ-secretase inhibitors, and a set of conazole fungicides. On these three datasets we achieved 
an average reduction of 29.4% in the number of variables and 53.2% in the number of 
equations, resulting in an average reduction in computation time of 94.0%. This increase in 
efficiency allows us to use the signature descriptor to design large molecules, previously 
impossible with our technique. 
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Reductions

We reduce the constraint equations using three simple linear transformations.  To 
describe these transformations, suppose we have m equations and n variables.  We 
write our Diophantine system as A0x0 = b, where A0

m x n = (a0ij), x0
n x 1 = (x0j), bm x 1

= (bi), with a0ij, bi integer and x0j non-negative integer.  We use the superscript 
notation to denote steps in our reduction, never exponentiation.

In our first reduction, we eliminate equations of the form

(1)

where a0ik ≥ 0 for k ≠ j.  To eliminate an equation of this form, we replace any 
occurence of x0j in A0x0 = b with the corresponding sum  ∑k≠j a0ik x0k.  We can then 
eliminate both the variable x0j and the equation x0j = ∑k≠j a0ik x0k to obtain a reduced 
system A1x1 = b.

Our next transformation is achieved by considering equations of the form

(4)

where apik ≥ 0 for k ≠ j.  In this case, we observe that apik > 1 can be replaced by the 
remainder of apik divided by 2, provided that xpj is adjusted appropriately.

Finally, it often occurs that Aq has a few identically zero columns after the previous 
reductions, and even some repeated columns.  Identically zero columns represent 
free variables, which can be removed, and repeated columns represent groups of 
variables that occur together in every equation.  These variable groups can be 
replaced by single variables and recovered later by solving equations with the form 

(6)

where the sum is over the only the indices ic corresponding to a specific set of 
repeated columns.

Diophantine Solver

To solve the reduced system Arxr = b, we use the Contejean-Devie Diophantine 
solver.  This solver produces a Hilbert basis Hr for the system Arxr = b.  This basis 
consists of a minimal set of solutions to Arxr = b such that any other solution can be 
obtained via non-negative integer linear combinations of the solutions in Hr.  To 
obtain the basis H for the original system A0x0 = b, we perform a sequence of 
transformations which include the addition of unit vectors for any free variable 
previously eliminated as well as new minimal solutions for any repeated columns 
that were removed; replacing the variables xq+1j with the various possibilities for 
xqicic; and using linear transformations to reverse the operations in (1).
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Abstract

We have previously developed a method for the inverse design of small ligands.  
This method can be used to design novel compounds with optimized properties, 
such as drugs.  A key step in our method involves computing the Hilbert basis of a 
system of linear Diophantine equations.  In our previous application, the ligands 
considered were small peptide rings, so that the resulting system of Diophantine 
equations was relatively small and easy to solve.  When considering larger 
molecules, however, the Diophantine system is larger and more difficult to solve.  
Here we present a method for reducing the system of Diophantine equations before 
they are solved, allowing the inverse design of larger compounds.

Signature

Our method for the inverse design of small molecules is based on a fragmental 
descriptor called signature.  Signature encodes molecular structure by counting the 
occurrences of fragments in a molecule.  The molecular signature encoding of 
nitroglycerin is shown below.

Constraint Equations

Signature can also be used to reverse engineer molecular structures.  This is done 
by deriving constraint relations that must be present between fragments in order 
that the fragments may be combined to form a molecule.  These constraints consist 
of a graphicality equation and multiple consistency equations.  The graphicality 
equation assures that the molecular fragments can be combined to form a 
connected molecular graph and assumes the form

where ni is the number of vertices of degree i (number of atoms connected to i 
other atoms), and z is a non-negative integer.

The consistency equations assure that the molecular fragments can be re-connected 
such that the molecular bonds are consistent.  Here we show a consistency 
equation which guarantees that the number of bonds of type O → C must be equal 
to the number of bonds of type C → O for nitroglycerin.

3 o_(n_c_)  =  2 c_(o_h_h_c_)  +  1 c_(o_h_c_c_)
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