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Introduction

In theory, it should be possible to infer realistic genetic networks 
from time series microarray data.  In practice, however, network
discovery has proved problematic.  The three major challenges are 
1) inferring the network; 2) estimating the stability of the inferred 
network; and 3) making the network visually accessible to the user.  
Here we describe a method, tested on publicly available time series 
microarray data, which addresses these concerns.

Network Inference

The first step in our inference algorithm involves clustering the time 
series microarray data.  The clustering algorithm uses force directed 
graph layout, and produces a two-dimensional representation of the 
genes from the microarray (Davidson et al., 2001; Kim et al., 2001).  
In this representation, genes with similar expression profiles are 
placed near each other, and genes with different expression profiles 
are placed farther apart.  We then partition this representation using 
the well-known k-means algorithm to provide k groups of co-
regulated genes.  This process not only simplifies the task of 
network inference (by reducing the problem size), but also results in 
a network of gene groups, instead of actual genes.  These gene 
groups, which we call meta-genes, make the biological analysis and 
interpretation of the inferred network tractable.  Figure (1) 
illustrates this process.

Figure 1.  Gene map partitioned with k-means.

Since our network inference algorithm is Boolean, we must first 
discretize the expression levels of our meta-genes.  This 
discretization is accomplished in two steps.  First, Support Vector 
Regression (Smola & Scholkopf, 1998) is used to obtain a single 
continuous curve representing each meta-gene.  Next, an on/off 
expression profile is obtained by thesholding the resulting 
continuous curve.

Figure 2.  Discretized meta-gene for gene group.

After discretizing the meta-genes, we infer a Boolean network.  The 
inference algorithm is based on previous work in chemical reaction 
network generation (Faulon & Sault, 2001) and contains routines to 
count, enumerate, and sample Boolean networks matching the 
clustered and discretized expression profiles.  The inference routines 
run in O(2knk+1) time, where n is the number of meta-genes 
available, and k is the maximum connectivity of a given gene.  This 
algorithm is shown in Figure (3).

In order to more easily interpret the results of our Boolean network 
inference algorithm, we exploit available tools for electronic circuit 
analysis.  In particular, we perform a two-level Boolean 
minimization on the truth table representation of the inferred gene 
network using Espresso, a well-known logic simplification tool 
available from www-cad.eecs.Berkeley.edu.  Espresso produces a 
minimized truth table for each meta-gene.  Since each meta-gene is 
processed in the same manner, we get a minimized representation of 
the entire network.  This new version of the network simplifies the 
biological analysis and interpretation.
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Figure 3.  Boolean Inference Algorithm.

Stability Assessment

Even though the number of possible logic clauses per meta-gene is 
limited, a large number of possible networks can be inferred from 
the same meta-genes.  To explore the distribution of possible 
networks, we expand our logic clause calculation to a set of 1000 
randomly sampled networks.  We use this calculation to generate 
statistics which identify the most reliable meta-genes and associated 
clauses.

Network Visualization

After the network has been inferred, converted into a minimal set of 
logical clauses, and been assessed for quality, we present the results 
in a format amenable to interactive viewing.  First, we draw the
network using the dot graph drawing tool (part of the GraphViz 
package available at www.research.att.com/sw/tools/graphviz).  
This tool was programmed to use various colors and shapes to 
encode information specific to the particular application.  We show 
a network drawn with dot in Figure (4).

Figure 4.  Network visualization for yeast data.

To make the drawing interactive, we display it using a web-
browser, where each meta-gene is hot-linked and has mouse-over 
capability.  In particular, clicking a meta-gene opens a spreadsheet 
containing the annotation for the genes in that group, and when a 
meta-gene is under the mouse, a window pops up to show the 
original gene expression patterns and corresponding discretization, 
as shown in Figure (5).

Results

We have applied our method to the publicly available yeast time 
series microarray data in (Spellman et al., 1998), as shown in the 
previous figures.  For this dataset, we used the clustering of the 
time series data previously performed in (Werner-Washburne et al., 
2002) along with partitioning by k-means.  In this case, we used k = 
100, and discarded clusters with fewer than 20 genes, leaving 81
meta-genes.

Next we used Support Vector Regression with a Gaussian kernel
(γ = 2) and an ε-tube width of one and a half times the average 
standard deviation of the expression values at each time point.

For the network drawing, we used different color lines for 
inhibition and activation connections, and different color nodes for 
essential genes. We used circular nodes for genes involved in the

Figure 5.  Interactive network visualization environment.

cell-cycle, oval nodes for gene not involved in the cell-cycle, and
circles around a node to indicate confidence in the relationships for 
that node.  We computed the confidence bands for a given meta-
gene in the network using the cumulative distribution of logical
clauses from 1000 networks.  We found that 14% of the 
activation/inhibition clauses appeared in all networks, while 45% of 
the clauses were present in half of the networks.  This result 
indicates that even while a large number of networks can be 
inferred, there is some consistency across networks.

Future Work

A principal objective for future work is the analysis of the stability  
of our methods in greater detail.  In particular, the circles around 
the nodes in Figure (4) are meant to give an indication of likelihood 
that a given meta-gene will have the same relationships to other 
meta-genes in alternate networks generated by the network 
inference algorithm.  We plan to make these computations much 
more robust by using bootstrapping methods (Efron, 1979) to 
assess the variance caused by changes in our sampling algorithms.  
These changes include altering the curve-fitting and discretization 
parameters as well as considering even more alternate inferences
provided by the network inference algorithm.  The proposed 
process is shown in Figure (6).

Figure 6.  Bootstrapping process for stability assessment.

Conclusions

The development of this network and visualization environment has 
required the collaboration of researchers in math (JLF, SM), 
computer sciences (GD, EM), and yeast genomics (MWW).  From 
the beginning we have focused on the entire network inference 
process.  We have developed clustering, discretization, and 
inference algorithms, and have attempted to validate their output.  
Finally, we have presented the results using an interactive network 
browser for accessible biological interpretation.  Although we will 
continue to improve our process, it has already yielded two testable 
biological hypotheses, one concerning exit from arrested states, and 
one concerning the level of control present in genetic networks.
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