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ABSTRACT OF DISSERTATION

TECHNIQUES IN SUPPORT VECTOR CLASSIFICATION

This work falls into the field of Pattern Classification and more generally Artificial

Intelligence. Classification is the problem of assigning a “pattern” z to be a member

of a finite set (“class”) X or a member of a disjoint finite set Y . In case z ∈ R
n

and X, Y ⊂ R
n we can solve this problem using Support Vector Machines. Support

Vector Machines are functions of the form

f(z) = sign(
∑

i αiκ(xi, z) +
∑

j βjκ(yj , z) + b), (∗)

where κ : R
n×R

n → R and z is classified as a member of X = {xi} if f(z) > 0 and

a member of Y = {yj} otherwise. We consider three problems in classification,

two of which concern Support Vector Machines.

Our first problem concerns feature selection for classification. Feature selection

is the problem of identifying properties which distinguish between the two classes

X and Y . Color, for example, distinguishes between apples and oranges, while

shape may not. Our method of feature selection uses a novel combination of a

linear classifier known as Fisher’s discriminant and a nonlinear (polynomial) map

known as the Veronese map. We apply our method to a problem in materials

design.

Our second problem concerns the selection of the kernel κ : R
n × R

n → R

in (∗). For kernel selection we use a kernel version of the classical Gram-Schmidt
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orthonormalization procedure again coupled with Fisher’s discriminant. We apply

our method to the materials design problem and to a handwritten digit recognition

problem.

Finally, we consider the problem of training Support Vector Machines. Specif-

ically, we develop a fast method for obtaining the coefficients αi and βj in (∗).
Traditionally, these coefficients are found by solving a constrained quadratic pro-

gramming problem. We present a geometric reformulation of the SVM quadratic

programming problem. We then present, using this reformulation, a modified ver-

sion of Gilbert’s Algorithm for obtaining the coefficients αi and βj . We compare

our algorithm with the Nearest Point Algorithm and with Sequential Minimal

Optimization.

Shawn Martin
Department of Mathematics
Colorado State University
Fort Collins, Colorado 80523
Spring 2001
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Chapter 1

INTRODUCTION

In this dissertation we consider one problem in Pattern Classification and two

additional problems in Support Vector Classification. In Chapter 2 we consider the

problem of feature selection using the idea of nonlinear preprocessing, in Chapter

3 we address the problem of kernel selection for Support Vector Machines, and in

Chapter 4 we consider the problem of training Support Vector Machines.

The ideas in Chapter 2 were motivated by a particular problem in Materials

Design (see Section 2.5) and a solution to that problem developed in [53] (see

Section 2.6). The ideas in Chapter 3 were motivated by the ideas in Chapter 2

and a notable lack of methods of kernel selection for Support Vector Machines.

The ideas in Chapter 4 were motivated by a lack of fast algorithms for training

Support Vector Machines.

As indicated by the title, our solutions to these problems may all be considered

“Techniques in Support Vector Classification.” Obviously, Chapters 3 and 4 lie

within the realm of Support Vector Classification. In addition, the technique in

Chapter 2 may be considered a special case of the method in Chapter 3.

Before presenting our techniques in Support Vector Classification, we give a

brief overview of Pattern Classification in Section 1.1 and a detailed presentation

of Support Vector Machines in Section 1.2.
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1.1 The Classification Problem

The classification problem occurs in its simplest form, the two class problem,

whenever we have two disjoint finite sets X and Y and we ask: should an object

z /∈ X ∪ Y be classified as a member of X or Y ? As an example, let’s say that X

is a pile of apples and Y is a pile of oranges. We have an apple z. Does our apple

z belong to X or Y ? The multi-class problem occurs when we have additional

sets. Say we have another set W which corresponds to a pile of bananas. Does our

apple z belong to W ?

There are a large number of books on this topic. Here we cite two classics,

[13] and [16], and two more recent works, [44] and [48]. The classics are both very

readable and accurate. Of the more recent works [44] is readable and interesting

while [48] is very comprehensive. Each of these books addresses both the two

class and the multi-class problems. For ease of exposition (and because Support

Vector Machines are fundamentally binary in nature) we consider only the two class

problem in this introduction. In Section 3.7 we consider very briefly a ten-class

problem.

An important part of solving a classification problem is identifying a salient

feature (e.g. the color of the fruit) that distinguishes between the two classes

X and Y . This aspect of classification, known as feature selection, dictates the

working form of the problem. A chapter on feature selection can be found in [16],

[44], and [48]. A survey of the topic can be found in [12].

Once we select good features, which we require to be real numbers, our

database X ∪ Y is a subset of R
n, where the coordinates (z1, . . . , zn) of R

n are

the selected features. Feature selection is typically performed to reduce the di-

mension n of the problem and to obtain quality features z1, . . . , zn. In addition,

feature selection often helps to obtain insight into the underlying physical problem.
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Another important part of solving a classification problem is constructing the

decision function. When the features have been selected and the database X ∪ Y
made to lie in R

n, a solution to the classification problem is a decision function

f : R
n → {±1} with f(X) = 1 and f(Y ) = −1. The form of the decision function,

known as the decision function’s architecture, is the subject of much research in

Pattern Classification.

Ideally, the architecture of the decision function f should take some optimal

form, and when the entire statistical situation is known, such a form is the Bayesian

classifier. In Bayesian classification, we know both the a priori probabilities P (X)

and P (Y ) that z should be classified as a member of X or Y (respectively) and

the conditional probabilities p(z|X) and p(z|Y ) that z will occur if z should be

classified as a member of X or Y . Using Bayes’ Rule we can then calculate the a

posteriori probabilities p(X|z) and p(Y |z) that z should be classified as a member

of X or Y . The Bayesian classifier has the decision function

f(z) =

{
1 if p(X|z) > p(Y |z)

−1 otherwise.

By making the decision which is probably correct, the Bayesian classifier minimizes

average classification error. See [13] for details.

Of course, the Bayesian classifier is often difficult to apply since we seldom have

such detailed statistical knowledge of our problem. Since, however, the Bayesian

classifier takes an optimal form, a logical approach to classifier design is to ap-

proximate P (X), P (Y ), p(z|X), and p(z|Y ). Once these probability densities are

known, we can certainly apply the Bayesian classifier. The main difficulty here

lies in approximating p(z|X) and p(z|Y ). This is usually accomplished by either

parametric or non-parametric estimation.

In parametric estimation the forms of the probability densities are assumed to

be known (e.g. normal) and the parameters which define the forms (e.g. the mean
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µ and the variance σ2) are then estimated using the data. Methods for parameter

approximation include maximum likelihood estimation, Bayesian inference, and

maximum a posteriori estimation. See [13] and [48].

The main trouble with parametric estimation, of course, is that often the

probability densities do not have the assumed form. In non-parametric estimation

the conditional probabilities p(z|X) and p(z|Y ) are approximated directly. The

simplest way to do this is using histograms, and in fact, the methods of non-

parametric estimation are typically variations on this idea. These methods include

Parzen windows and k nearest neighbor density estimation. Again see [13] and

[48].

Another approach to classifier design is to skip Bayesian theory entirely and

directly acquire a decision function f with some given architecture (e.g. linear).

These “non-Bayesian” methods, however, can usually be interpreted [44] as at-

tempting to estimate the a posteriori probabilities p(X|z) and p(Y |z) via regression

on the pairs X × {1} and Y × {−1}.
The simplest non-Bayesian classifiers are the linear discriminants. These are

classifiers based on separating the two classes X and Y by a hyperplane H . Once

this is done the decision function f classifies a point z /∈ X ∪ Y as a member

of X if it lies on the “X” side of H and a member of Y otherwise. The linear

discriminants are different only in their selection of the hyperplane H . Methods

of determining a separating hyperplane include Fisher’s linear discriminant, the

perceptron algorithm, least mean squares, and many variants on these. See [13]

and [48].

Finally, we have the nonlinear non-Bayesian classifiers. Included here are

nearest neighbor algorithms, neural networks (multi-layer perceptrons), radial ba-

sis function networks, polynomial classifiers, Support Vector Machines, and various

combinations of classifiers (e.g. classifier networks). See [48] and [44].
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1.2 Support Vector Machines

Support Vector Machines are classifiers (there are also Support Vector Ma-

chines which perform regression [46]) which were originally developed in [50], [6],

and [10]. The maximal margin hyperplane was presented in [50], the use of kernels

was suggested in [6], and the soft margin generalization was given in [10]. They

are very adaptable (able to assume polynomial, Radial Basis Function, and Neu-

ral Network forms) and have been applied successfully in [41], [19], [35], and [55]

to problems in handwritten digit recognition, text categorization, face detection,

and protein sequence extraction. For an excellent introduction to Support Vector

Machines see [7]. For an encyclopedic treatment see [51]. For the latest work on

SVMs see [47].

1.2.1 Linear Case

The prototypical Support Vector Machine is a linear discriminant which uses

an optimal separating hyperplane. This hyperplane is known as the maximal

margin hyperplane and is computed via a quadratic programming problem.

Following [7], suppose our two classes X = {xi} and Y = {yj} are nonempty,

finite subsets of R
n. Denote by (x,y) the inner product of x with y in R

n. Assume

that X and Y are linearly separable. That is, assume there exists a separating

hyperplane H with equation (x,w) + b = 0, w �= 0 satisfying

(xi,w) + b ≥ 1 for all xi ∈ X
(yj ,w) + b ≤ −1 for all yj ∈ Y,

with equality for some i and j. Define the margin of H to be twice the distance

from H to a nearest point in X (or, equivalently, a nearest point in Y ). If we have

xi0 and yj0 such that (xi0 ,w) + b = 1 and (yj0,w) + b = −1 we can compute the

margin. It is

(w,xi0)

‖w‖ − (w,yj0)

‖w‖ =
1 − b

‖w‖ − −1 − b

‖w‖ =
2

‖w‖ .
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The Support Vector Machine is a linear discriminant which uses the maximal

margin hyperplane. Since the margin is 2
‖w‖ , we compute the maximal margin

hyperplane by solving

min 1
2
‖w‖2

subject to

{
(xi,w) + b ≥ 1 for all xi ∈ X
(yj ,w) + b ≤ −1 for all yj ∈ Y.

Of course, this formulation is very restrictive as it assumes perfect separation

of X and Y . For linearly separable data with errors, known as nonseparable data,

we use the soft margin generalization (due to [10])

min 1
2
‖w‖2 + C(

∑
i φi +

∑
j ψj), C > 0

subject to

⎧⎨
⎩

(xi,w) + b ≥ 1 − φi
(yj ,w) + b ≤ −1 + ψj
φi, ψj ≥ 0,

obtained by incorporating the slack variables φi and ψj into the problem. (C is a

fixed constant.)

The soft margin generalization can in turn be reformulated via its Wolfe dual

(see [26])
max

αi, βj, ηi, γj

(
min

w, b, φi, ψj
L

)
subject to αi, βj, ηi, γj ≥ 0,

where the Lagrangian

L = 1
2
‖w‖2 + C(

∑
i φi +

∑
j ψj)

−∑
i αi((xi,w) + b− 1 + φi)

−∑
j βj(−1 + ψj − (yj,w) − b)

−∑
i ηiφi −

∑
j γjψj .

The Wolfe dual is preferable to the original formulation because it allows us to

express the problem in terms of inner products. This will be seen to be the key to

the nonlinear generalization in Section 1.2.2.
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Since our problem is convex we can use the Kuhn-Tucker conditions (again

see [26])
∇wL = w − ∑

i αixi +
∑

j βjyj = 0

∇bL = −∑
i αi +

∑
j βj = 0

∇φi
L = C − αi − ηi = 0

∇ψj
L = C − βj − γj = 0

αi((xi,w) + b− 1 + φi) = 0
βj(−1 + ψj − (yj ,w) − b) = 0

ηiφi = 0
γjψj = 0

to rewrite the Wolfe dual as

max
αi, βj

{ ∑
i αi +

∑
j βj − 1

2

∑
i,q αiαq(xi,xq)

+
∑

i,j αiβj(xi,yj) − 1
2

∑
j,q βjβq(yj ,yq)

subject to

{ ∑
i αi =

∑
j βj

0 ≤ αi, βj ≤ C

(1.1)

with solution
w =

∑
i αixi −

∑
j βjyj

b = 1 − (xi,w) for αi ∈ (0, C)
= −1 − (yj ,w) for βj ∈ (0, C)

and corresponding linear discriminant decision function f : R
n → {0,±1} given

by

f(z) = sign((z,w) + b),

where z is classified as a member of X if f(z) > 0 and a member of Y otherwise.

We remark that the solution w is global and unique; that the representation∑
i αixi −

∑
j βjyj of w may not be unique, but is generally sparse (many of the

αi and βj are zero); and that the xi and yj which correspond to the nonzero αi

and βj are known as support vectors. We provide in Figure 1.1 an illustration of

linear SVMs in both the separable and nonseparable cases.

1.2.2 Nonlinear Case Using Kernels

In order to implement a Support Vector Machine that works with data which

is nonlinearly separable, we first preprocess the data with an appropriate nonlinear

7



Figure 1.1: Linear Support Vector Machines. On the left (a) we show a linear
Support Vector Machine in the case of separable data. The two classes X and Y
are depicted by x’s and o’s, with the maximal margin hyperplane shown as a solid
line separating them. The two dotted lines run through the support vectors and
are separated by a distance equal to the margin. On the right (b) we show a linear
Support Vector Machine in the case of nonseparable data.

map. Consider, for example, the exclusive-or problem illustrated in Figure 1.2(a).

In this case the data is not linearly separable in R
2, but if we apply the nonlinear

map Φ : R
2 → R

3 given by

Φ(x, y) = (x2,
√

2xy, y2), (1.2)

we see that the data becomes linearly separable in R
3, as shown in Figure 1.2(b).

This example provides a nice illustration of an appropriate application of non-

linear preprocessing, but it also hints at a fundamental flaw in the direct application

of the technique. The map Φ : R
2 → R

3 results in an increase in the ambient di-

mension of the problem. This increase typically becomes more significant as the

complexity of the problem increases. To avoid these problems we consider only a

special class of maps for nonlinear preprocessing.

Specifically, we consider any map Φ : R
n → F which has an associated kernel

function κ : R
n × R

n → R with the property that

κ(x,y) = (Φ(x),Φ(y)),

8
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Figure 1.2: The Exclusive-Or Problem. On the left (a) we see that the exclusive-
or problem is not linearly separable. On the right (b) the exclusive-or problem
becomes linearly separable after nonlinear preprocessing by Φ in Equation (1.2).

where (Φ(x),Φ(y)) denotes the inner product of Φ(x) with Φ(y) in the Hilbert

space F . It is, for example, easy to check that

κ(x,y) = (x,y)2

= (x1y1 + x2y2)
2

= x2
1y

2
1 + 2x1y1x2y2 + y2

2x
2
2

= (Φ(x),Φ(y))

is a kernel for Φ in (1.2). Other known kernels include (see [7])

• the Veronese kernel κ(x,y) = ((x,y) + c)d, c ≥ 0, d ∈ Z>0,

• the radial basis function (RBF) kernel κ(x,y) = e
−‖x−y‖2

2σ2 , σ �= 0,

• the neural network kernel κ(x,y) = tanh(a(x,y) + b), a, b ≥ 0.

There are additional restrictions on the domain of the neural network kernel which

can be found in [8].

Such kernels allow us to apply nonlinear preprocessing to our original data

without actually applying a nonlinear map Φ. This is accomplished in practice by

replacing inner products with kernels. In the case of the Support Vector Machine

9



problem (1.1) this gives

max
αi, βj

{ ∑
i αi +

∑
j βj − 1

2

∑
i,q αiαqκ(xi,xq)

+
∑

i,j αiβjκ(xi,yj) − 1
2

∑
j,q βjβqκ(yj ,yq)

subject to

{ ∑
i αi =

∑
j βj

0 ≤ αi, βj ≤ C.

(1.3)

For more information on this approach see [7], [6], and [51].

We refer to the formulation in Equation (1.3) as the Support Vector Machine

Quadratic Programming problem. If C = ∞ this is the separable SVM QP problem,

and if κ(x,y) = (x,y) it is the linear SVM QP problem. The Support Vector

Machine quadratic programming problem has decision function, officially known

as Support Vector Machine

f(z) = sign((z,w) + b)
= sign(

∑
i αiκ(z,xi) −

∑
j βjκ(z,yj) + b),

where

b = 1 − ∑
q αqκ(xi,xq) +

∑
j βjκ(xi,yj) for αi ∈ (0, C)

= −1 − ∑
i αiκ(yj ,xi) +

∑
q βqκ(yj ,yq) for βj ∈ (0, C).

The remarks made in the previous section also apply here. In particular, the

solution f to the SVM QP problem is global and unique with many of the αi and

βj zero. We make the additional observation that the architecture of the Support

Vector Machine f is determined by the kernel κ, and to a lesser degree the constant

C.
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Chapter 2

FEATURE SELECTION FOR

CLASSIFICATION

Here we consider the problem of feature selection. A chapter on feature selec-

tion is usually included in the more modern books on Pattern Classification (e.g.

[48], [44], and [16]). A recent survey of the topic can also be found in [12].

To state the problem precisely, suppose that in addition to our database X∪Y
we have a list F1, . . . , Fm of possibly useful features. The goal of feature selection

is a sub-list Fk1 , . . . , Fkn of minimal length n which best distinguishes between our

two classes X and Y . This sub-list should simplify the classification problem and

give some insight into the underlying physical problem.

Our method of feature selection uses a nonlinear version of Fisher’s discrimi-

nant to test the classification ability of a given feature. In Section 2.1 we describe

Fisher’s discriminant; in Sections 2.2 and 2.3 we introduce the Veronese map as a

method of nonlinear preprocessing for Fisher’s discriminant; in Section 2.4 we in-

corporate our nonlinear version of Fisher’s discriminant into an exhaustive feature

search; in Section 2.5 we present an application of our feature search to a problem

in Materials Design; in Section 2.6 we compare our method with the method in

[53]; and in Section 2.7 we place our method in the context of other methods. An

alternate presentation of the material in this chapter may be found in [29].
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Figure 2.1: Fisher’s Discriminant. On the left (a) is an example of Fisher’s crite-
rion. The two classes are represented by x’s and o’s, and the span of a is shown
as a line. In this example J(a) = 77. In the middle (b) is an example where
J(a) = 64.5 is a large number despite the fact that the two classes are not linearly
separable. On the right (c) is the full version of Fisher’s discriminant. In this case
the line represents the span of a∗ in Equation (2.1) and the separating plane has
Equation (2.2).

2.1 Fisher’s Linear Discriminant

The basis of our test of classification ability is Fisher’s linear discriminant.

Fisher’s linear discriminant (here we follow [13]) locates a separating hyperplane

by maximizing Fisher’s criterion function J : R
n → R defined by

J(a) =
(m1 −m2)

2

σ2
1 + σ2

2

,

where m1 and m2 are the means of the (orthogonal) projections of our two classes

X and Y , respectively, onto a. Similarly, σ2
1 and σ2

2 are the variances of the

projections of X and Y onto a. An illustration of Fisher’s criterion is provided in

Figure 2.1(a).

Fisher’s criterion function provides a useful measure of the linear separability

of X and Y . By its definition, we see that larger values of J indicate better

separation of X and Y . In particular, a value of one indicates a separation of

the projected means by one standard deviation of the projected values of X plus

one standard deviation of the projected values of Y . Similarly, if J = 4 the

means are separated by approximately two standard deviations, et cetera. Of
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course, high values of Fisher’s criterion do not guarantee linear separability. This

is demonstrated in Figure 2.1(b).

By maximizing Fisher’s criterion we can locate a good separating hyperplane

for X and Y . Maximizing J is accomplished by first rewriting Fisher’s criterion as

J(a) =
aTSba

aTSca
,

where

Sb = (m1 − m2)(m1 −m2)
T

Sc = S1 + S2

S1 = 1
N−1

∑N
i=1(xi − m1)(xi −m1)

T

S2 = 1
M−1

∑M
j=1(yj − m2)(yj −m2)

T

with

X = {xi}Ni=1

Y = {yj}Mj=1

m1 = 1
N

∑N
i=1 xi

m2 = 1
M

∑M
j=1 yj .

Next we calculate

∇J(a) =
2

(aTSca)2
((aTSca)(Sba) − (aTSba)(Sca)).

Finally, we observe that ∇J(a) is zero when Sca = (m1 − m2) so that J(a∗) is a

maximum (according to [13]) when

a∗ = S−1
c (m1 − m2). (2.1)

The resulting separating hyperplane

H(x) = (x, a∗) − σ2m1 + σ1m2

σ1 + σ2
‖a∗‖ = 0 (2.2)

yields a classifier known as Fisher’s linear discriminant. (Here (x, a∗) denotes the

inner product of x with a∗ in R
n.) Fisher’s discriminant is illustrated in Figure

2.1(c). Using Fisher’s discriminant, a point z ∈ R
n is classified as a member of X

if H(z) and H(m1) have the same sign, and a member of Y otherwise.
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2.2 The Veronese Map

To implement a nonlinear version of Fisher’s discriminant we use nonlinear

preprocessing as in Section 1.2.2. For the present we consider only the Veronese

map for preprocessing. The map Φ used in Equation (1.2) to solve the exclusive-or

problem is a particular example of a Veronese map. In general, the Veronese map

vd : R
n → R

N , where N =
(
n+d
d

) − 1, is given by

vd(x1, x2, . . . , xn) =

(
nonconstant monomials

in x1, x2, . . . , xn of degree ≤ d

)
.

It is a map borrowed from algebraic geometry and can be found in [45]. Φ in (1.2)

is a homogeneous scaled version of this map. Other examples are

v3(x, y) = (x3, x2y, xy2, y3, x2, xy, y2, x, y)

and

v2(x, y, z) = (x2, xy, xz, y2, yz, z2, x, y, z).

The essential property of the Veronese map is that polynomial hypersurfaces

of degree at most d in R
n are hyperplanes in R

N . Figure 2.2 illustrates, for example,

that xy = 1 is a hyperbola in R
2 but a plane in R

3, again using Φ in (1.2). More

explicitly, if Φ in (1.2) is described by (u, v, w) = (x2,
√

2xy, y2) then the hyperbola

xy = 1 in R
2 yields the plane v =

√
2 in R

3. This occurs in general and is precisely

the property which makes the Veronese map useful in conjunction with Fisher’s

linear discriminant.

2.3 Symmetric Veronese Map

A variation of the Veronese map is the symmetric Veronese map. We will use

this map in our application to the Materials Design problem in Section 2.5. The

symmetric Veronese map may be implemented using the elementary symmetric
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Figure 2.2: The Exclusive-Or Problem Revisited. On the left (a), the hyperbola
xy = 1 separates X and Y . On the right (b), the same equation yields a plane
which separates Φ(X) and Φ(Y ).

polynomials. That is, we know that any symmetric polynomial in the variables

x = (x1, x2, . . . , xn) can be written as a polynomial in the elementary symmetric

polynomials (see [33])

s1(x) = x1 + x2 + · · · + xn

s2(x) = x1x2 + x1x3 + · · · + x1xn + x2x3 + · · ·+ xn−1xn

...

sn(x) = x1x2 · · ·xn.

Thus, to obtain a symmetric Veronese map, we simply use the elementary sym-

metric polynomials to “symmetrize” our data before applying the regular Veronese

map. In other words, the symmetric Veronese map is the composition

R
n s−→ R

n vd−→ R
N

x → s(x) = (s1(x), . . . , sn(x)) → vd(s(x)).

2.4 Exhaustive Feature Search

Using Fisher’s linear discriminant and the (symmetric) Veronese map we are

in position to perform a search for the best feature combination. Our algorithm is

as follows:
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(1) For a given choice of feature(s) and a given degree d for the (symmetric)

Veronese map we first preprocess our two class data X and Y using vd(◦s) :

R
n → R

N . We then calculate

• The vector a∗ ∈ R
N in Equation (2.1) that maximizes Fisher’s criterion

J : R
N → R and the actual maximum J(a∗).

• The percentage of points in vd(X ∪Y ) correctly classified using Fisher’s

linear discriminant in R
N .

(2) We record the results of (1) for every set of 1, 2, 3, . . . features and every

degree d = 1, 2, 3, . . . of the (symmetric) Veronese map. This is practical

because the optimization of J is computationally inexpensive.

(3) We rank the effectiveness of the feature combinations using the optimal values

of J and the percentages recorded in step (2). In general a feature whose

optimal J values and percentages are higher than another feature is a better

discriminator.

To see why this algorithm provides a useful ranking of feature combinations,

consider two fixed features F1 and F2. In this case our data X and Y lies in the

plane R
2. What does our algorithm measure? For each degree d = 1, 2, 3, . . . of

the (symmetric) Veronese map we preprocess X and Y then use Fisher’s criterion

and Fisher’s linear discriminant to measure the linear separability of our data after

preprocessing. Thus we are measuring the linear separability of our data (d = 1),

the quadratic separability of our data (d = 2), the cubic separability of our data

(d = 3), et cetera. By using Fisher’s linear discriminant in combination with the

(symmetric) Veronese map, we are measuring the linear and increasingly nonlinear

separability of our data for our given features F1 and F2.
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We remark that this algorithm might be applied directly to a classification

problem. Specifically, Fisher’s discriminant coupled with the Veronese map yields

a classifier. This classifier, however, while less expensive to train than a Support

Vector Machine (see Chapter 4), may not be as good as a SVM. Thus we use our

algorithm only for feature selection, not for classification.

2.5 Application to Materials Design

Here we present an application of our exhaustive feature search to a prob-

lem in Materials Design. Materials Design is the search for new materials (e.g.

metals and ceramics) which have special properties (e.g. super-conductivity) or

work better than older materials (e.g. metal alloys). The problem considered here

comes from the Wright Patterson Air Force Base in Dayton, Ohio and concerns

classifying chemical compounds. Specifically, a large number of chemical element

combinations have been collected, see [52] and [18], which through different pro-

cesses either form or fail to form compounds. We want to use these examples to

predict when other chemical element combinations will form compounds.

In this section we perform feature selection for classifying three-element combi-

nations into forming and non-forming categories. Here features are chemical prop-

erties (e.g. electronegativity) and our data consists of 4031 forming compounds

and 2327 non-forming compounds (non-forming ternary from non-forming binary).

Further, our data is symmetric in the order of the compounds, i.e., if elements

(A,B,C) form a compound then elements (B,A,C) and (C,B,A), etc. should

form the same compound. To exploit this observation we employ the symmetric

Veronese map in Section 2.3 in our feature search. We perform a single feature

search and a feature pair search with symmetric Veronese degrees d = 1, . . . , 10 and

d = 1, . . . , 5 respectively. (Computer memory constraints kept us from considering

higher degrees.)
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The product of our test of separability for each feature against the symmetric

Veronese maps of degree one through ten is Figure 2.3. Here we have identified

the Pettifor Mendeleev number (feature 6) as the single best feature (in agreement

with [53]), followed by the Alfred-Rochow and Pauling electronegativities (features

17 and 24) and the p-shell (feature 45). For the Mendeleev number we also include

plots (Figure 2.4) of the optimal J value and the percentage of points correctly

classified using Fisher’s linear discriminant, both versus the symmetric Veronese

degree.

The two feature test yields another intensity plot (Figure 2.5). The prominent

black group occurs when one feature is the Mendeleev number. Within this group

the feature which best complements the Mendeleev number is the valence electron

number. For this pair we again include plots (Figure 2.6) of the optimal J and

percentage correctly classified versus the symmetric Veronese degree.

2.6 Comparison to Villars’ Work

Finally, we present Pierre Villars’ [53] method of feature selection for the ma-

terials problem and show how our method generalizes his approach. Pierre Villars’

method produces percentage separation plots for various arithmetic combinations

(addition, subtraction, multiplication, division and maximum) of the feature data.

Comparing the resulting plots allows selection of the best features. As an example,

we include Villars’ best result — the percentage separation plot for the Mendeleev

number (Figure 2.7). To produce this plot we first calculated for MA < MB < MC

the triples

(MA +MB +MC ,
MA

MB
+
MB

MC
+
MA

MC
,max(MA,MB,MC))

in both the forming and non-forming classes. We next calculated the distance

between each pair of said triples and considered for each point its fifty nearest
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Figure 2.3: One Feature Test. This is an intensity plot of the optimal J value
(whose range is given by the scale bar on the right) versus the symmetric Veronese
degree for each feature. A dark horizontal bar indicates high optimal J values and
thus identifies a good feature.
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Figure 2.4: Mendeleev Number is the Best Feature. On the top (a) we plot the
optimal J value and on the bottom (b) the percentage correctly classified both
versus the symmetric Veronese degree for the Mendeleev number.
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Figure 2.5: Two Feature Test. This is an intensity plot of optimal J versus the
symmetric Veronese degree for every pair of features.
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Figure 2.6: Mendeleev/valence electron numbers are the Best Feature Pair. On the
top (a) we plot the optimal J value and on the bottom (b) the percentage correctly
classified both versus the symmetric Veronese degree for the Mendeleev/valence
electron number pair.
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Figure 2.7: Percentage Separation Plot. Pierre Villars’ percentage separation plot
for the Mendeleev number.

neighbors. The average over every point (in both classes) of the percent of neigh-

bors of the same type was then plotted versus the number (up to fifty) of nearest

neighbors considered.

It is no coincidence that our results agree so well with Villars’ work. In the

Mendeleev number example, the percentage separation plot provides a rough mea-

sure of linear separability in a space with coordinates given by the aforementioned

triples. Thus a high percentage separation indicates the existence of a separating

plane in this space with equation

α(MA +MB +MC) + β(
MA

MB
+
MB

MC
+
MA

MC
) + γmax(MA,MB,MC) = δ.

Neglecting the γmax(MA,MB,MC) term, this is a cubic polynomial in the variables

MA,MB, and MC — a hyperplane in the degree three Veronese space R
19.

Furthermore, with the exception of the max function, all of the coordinate

systems used by Villars result in hyperplanes in different Veronese spaces. By

testing for linear separability in these (and other) Veronese spaces, we thus extend

Villars’ method to a much more general situation.

23



2.7 Conclusions

With respect to the Materials Design problem, our method has successfully

explained and generalized Pierre Villars’ work [53] and has confirmed his result

in identifying the Mendeleev number as the best single feature. In addition we

have discovered a new result, namely that the p-shell is a good single feature, and

we have extended feature selection information for the materials problem into the

realm of two features, where we have identified the Mendeleev number in combi-

nation with the valence electron number as the best feature pair. Simultaneously,

we have eliminated many features and feature pairs as inferior.

More generally, our method is a novel combination of Fisher’s discriminant

and the Veronese map applied to feature selection. In the parlance of [12], we

have invented a new evaluation function. An evaluation function is a function

which evaluates the effectiveness of a given feature or combination of features.

Fisher’s criterion is often used as an evaluation function (as well as the Mahalanobis

distance and the Bhattacharya distance — see [13] and [16]), but has not been

combined with the Veronese map for this purpose.

Combined with an exhaustive search (certainly not the most efficient search),

our method is a filter method (see [12] and [21]). A filter method is a method which

is independent of the final classifier. It is interesting to note, however, that our

method results in a nonlinear version of Fisher’s discriminant (see also [31]), which

is a classifier in itself. In addition, this version of Fisher’s discriminant occupies

the same space as a Support Vector Machine with the Veronese kernel (see Sections

1.2.2 and 3.2). Thus our method may not be entirely (a priori) independent of the

final classifier, especially if the final classifier is a Support Vector Machine.
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Chapter 3

KERNEL SELECTION FOR SUPPORT

VECTOR MACHINES

In this chapter we consider the problem of kernel selection for Support Vector

Machines. (Refer to Section 1.2.) Until recently, kernel selection for Support

Vector Machines has been performed by simply training a variety of Support Vector

Machines and using the best of those trained. This method, however, is unwieldy

and slow. Thus efforts have been made towards automatic kernel selection. Such

efforts appear in [11], [9], and [42]. In all of these efforts, a “Statistical Risk

Minimization” bound on the generalization error for Support Vector Machines

from Vapnik-Chervonenkis (VC) theory [51] is employed. This bound depends on

the radius of the smallest ball containing the preprocessed (via kernel) training

data. In [11], this bound is computed to select a one parameter kernel while

training a Support Vector Machine using the Kernel Adatron Algorithm [14]. In

[9], an effort is made to rescale the preprocessed training data to fill the Statistical

Risk Minimization ball, thus resulting in a more accurate bound. In [42], the

distribution of the preprocessed training data within the SRM ball is analyzed

using a technique called kernel PCA [43].

In this chapter we adopt a more empirical approach to kernel selection. Specif-

ically, we generalize the approach in Chapter 2 for feature selection using kernels.

Our method again uses Fisher’s discriminant, but this time in combination with
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a technique which we call kernel Gram-Schmidt. In Section 3.1 we introduce ker-

nel Gram-Schmidt; in Sections 3.2 and 3.3 we generalize the method of feature

selection from Chapter 2 using the Veronese kernel; in Section 3.4 we provide

symmetric extensions for the RBF and neural network kernels; in Section 3.5 we

present our method of kernel selection for Support Vector Machines; in Section 3.6

we apply our method to the Materials Design problem; in Section 3.7 we compare

our method with the methods in [11], [9], and [42] using the United States Postal

Service data set of handwritten digits; and in Section 3.8 we offer some concluding

remarks. For an alternate presentation of the material in this chapter see [28].

3.1 Kernel Gram-Schmidt

Our primary vehicle for extending the ideas in Chapter 2 to the problem of

kernel selection for Support Vector Machines is a kernel version of the classical

Gram-Schmidt orthonormalization procedure.

Suppose we have data Z = {zi}mi=1 ⊂ R
n (say Z = X ∪ Y ). Denote Φ(zi) by

z̃i for i = 1, . . . , m, where Φ : R
n → F is our nonlinear preprocessing map, and F

is a Hilbert space with inner product (•, •). For initial notational ease, we assume

that {z̃i}mi=1 is a linearly independent set of vectors in F . We want to produce a

matrix

B =

⎛
⎜⎝ (z̃1,u1) · · · (z̃m,u1)

...
. . .

...
(z̃1,um) · · · (z̃m,um)

⎞
⎟⎠ ,

where u1, . . . ,um form an orthonormal basis for the subspace in F spanned by

z̃1, . . . , z̃m.
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Using the classical Gram-Schmidt orthonormalization procedure (see [49]) we

form
u1 = �z1

‖�z1‖
p1 = (z̃2,u1)u1

u2 = �z2−p1

‖�z2−p1‖
p2 = (z̃3,u2)u2 + (z̃3,u1)u1

u3 = �z3−p2

‖�z3−p2‖
...

pm−1 = (z̃m,um−1)um−1 + · · ·+ (z̃m,u1)u1

um = �zm−pm−1

‖�zm−pm−1‖ .

We then calculate

(z̃1,u1) = ‖z̃1‖ = (�z1,�z1)
(�z1,u1)

(z̃2,u1) = (�z2,�z1)
‖�z1‖ = (�z2,�z1)

(�z1,u1)

(z̃2,u2)
2 = ‖z̃2 − p1‖2 = ‖z̃2‖2 − ‖p1‖2

(z̃2,u2) = 1
(�z2,u2)

[(z̃2, z̃2) − (z̃2,u1)
2]

(z̃3,u1) = (�z3,�z1)
(�z1,u1)

(z̃3,u2) = 1
(�z2,u2)

[(z̃3, z̃2) − (z̃2,u1)(z̃3,u1)]

(z̃3,u3) = 1
(�z3,u3)

[(z̃3, z̃3) − ((z̃3,u2)
2 + (z̃3,u1)

2)] ,

and in general

(z̃i,uj) =
1

(z̃j,uj)

[
(z̃i, z̃j) −

(
(z̃j,uj−1)(z̃i,uj−1) + (z̃j ,uj−2)(z̃i,uj−2)

+ · · ·+ (z̃j ,u1)(z̃i,u1)

)]
.

Finally, we allow linearly dependent {z̃i} by successively ignoring the cases

z̃i0 = p(i0−1), z̃i1 = p(i1−2), et cetera. Thus we get a recursive algorithm for com-

puting the matrix

B =

⎛
⎜⎝ (z̃1,u1) · · · (z̃m,u1)

...
. . .

...
(z̃1,uq) · · · (z̃m,uq)

⎞
⎟⎠ ,

where u1, . . . ,uq form an orthonormal basis for the subspace in F spanned by

z̃1, . . . , z̃m.

This method, which we call kernel Gram-Schmidt, has several important prop-

erties. First and foremost, it is expressed entirely in terms of inner products in F
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so can be computed using kernels. Second, it entirely avoids actually computing

the orthonormal set {u1, . . . ,uq}. This is necessary since F may in fact be infinite

dimensional. Third and last, but very important, the generated matrix B repre-

sents the data {z̃i} in F in exactly the same manner that it would be represented

in R
q. Thus we can apply any standard algorithm from linear algebra to B.

It is also worth noting that kernel Gram-Schmidt represents a significant philo-

sophical deviation from the typical kernel based methods, including Support Vector

Machines, kernel PCA [43], and kernel Fisher’s Discriminant [31]. Kernel Gram-

Schmidt makes an effort to use the actual dimension of the preprocessed data, i.e.

the orthonormal basis u1, . . . ,uq, while Support Vector Machines, kernel PCA,

and kernel Fisher’s Discriminant all perform calculations using the entire data set

as a spanning set (see Section 1.2.2). For this reason kernel Gram-Schmidt can be

used on much larger data sets than kernel PCA and kernel Fisher’s Discriminant.

(Special algorithms exist for using Support Vector Machines for large data sets —

see Chapter 4.)

Finally, we should remark that the classical Gram-Schmidt method is numer-

ically unstable [49]. Thus it may be that kernel Gram-Schmidt is also numerically

unstable. On the other hand, since it is the computation of the orthonormal basis

u1, . . . ,uq that is unstable when using classical Gram-Schmidt, and since kernel

Gram-Schmidt does not actually compute said basis, it may be that kernel Gram-

Schmidt is in fact numerically stable. Certainly the situation requires further

study. See Chapter 5 for other topics which also require further study.

3.2 The Veronese Kernel

Our first application of kernel Gram-Schmidt is to provide a direct generaliza-

tion of the method of feature selection in Chapter 2. To this end, we observe that
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the Veronese map, as defined in Section 2.2, is not known to have an associated

kernel, but that

κ(x,y) = ((x,y) + 1)d

is a kernel (see [7]) for a scaled version of the map. The scaled (or weighted)

Veronese map is given by

wd(x) = ( scaled monomials ajx
j ),

where the sequences j = (j1, j2, . . . , jn) ∈ Z
n range over {j : 0 ≤ ∑

j = j1+j2+· · ·+
jn ≤ d}, the xj are monomials xj11 x

j2
2 · · ·xjnn , and a2

j =
(
d�
j

)(�
j

j

)
=

(
d�
j

) (
�

j)!
j1!j2!···jn!

.

Examples of the scaled Veronese map are

w3(x, y) = (x3,
√

3x2y,
√

3xy2, x3,
√

3x2,
√

6xy,
√

3y2,
√

3x,
√

3y, 1),

and

w2(x, y, z) = (x2,
√

2xy,
√

2xz, y2,
√

2yz, z2,
√

2x,
√

2y,
√

2z, 1).

We also observe that we may implement a symmetric Veronese kernel using

the symmetric polynomials as in Section 2.3.

3.3 Feature Search Revisited

Using the (symmetric) Veronese kernel, we can generalize our method for

feature selection as follows:

(F1) For a given choice of features and a given degree d for the (symmetric)

Veronese kernel we apply kernel Gram-Schmidt to our data X and Y to

obtain a q ×m matrix B. We then calculate using B

• The vector a∗ ∈ R
q that maximizes Fisher’s criterion J : R

q → R and

the actual maximum J(a∗). See Equation (2.1) in Section 2.1.
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• The percentage p of points in B correctly classified using Fisher’s dis-

criminant with separating hyperplane determined by a∗. See Equation

(2.2) in Section 2.1.

• The percentage t of points in test sets TX and TY (see below) cor-

rectly classified. (TX and TY are first preprocessed using kernel Gram-

Schmidt.)

(F2) We record the results of (F1) for different feature combinations and every

degree d = 1, 2, . . . , r of the (symmetric) Veronese kernel. Generally we take

r between 4 and 10.

(F3) We rank the effectiveness of the feature combinations using the optimal values

of J and the percentages recorded in step (F2). More precisely, we order the

features by averaging the values J(a∗), p, and t calculated in step (F1) over

the Veronese degrees 1, 2, . . . , r in step (F2). We denote these averages by

J(a∗)r, p, and t and we use J(a∗)r to rank the features.

In this version of our method, we have included test sets and we have specified

our system for ranking features using average values of J(a∗). The mention of test

sets requires explanation. In practice, a given classification problem consists of not

only the sets X and Y , but also includes two other sets TX and TY , all finite and

pairwise disjoint. We use X and Y as “training” data and TX and TY as “test”

data. That is, we use X and Y to determine our classifiers while we use TX and

TY to test the performance of our classifiers. Using TX and TY we can calculate in

addition to p above the percentage t of test data correctly classified using Fisher’s

discriminant. The values of t then give us additional information to use in our

comparison of features.

In addition, we remark that other kernels could also be used for feature selec-

tion, although they may result in different feature rankings. In addition to being
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more easily interpreted (see Section 2.4) than the RBF and neural network kernels

(see Section 1.2.2), we chose the (symmetric) Veronese kernel because it generally

yields the fastest computations.

Finally, we remark that our use of the Veronese kernel to generalize the feature

search in Section 2.4 allows us to use higher dimensional data and larger degrees

of the Veronese map. Specifically, the Veronese kernel reduces our use of com-

puter memory by allowing us to use the Veronese map without actually forming

monomials. Now instead of storage constraints we are constrained by the scaling

properties of the Veronese map. Specifically, high dimensional data and large de-

grees of the Veronese map can result in very small numbers, i.e. x7y3z2 is very

small when x, y, and z are small. These scaling effects can make calculations on

the computer inaccurate.

3.4 Symmetric Kernels

Here we provide symmetric versions of the RBF and neural network ker-

nels for use in the Materials Design problem in Section 3.6. In fact, we pro-

vide a symmetric generalization for any kernel κ : R
n × R

n → R which can

be expressed in terms of norms and inner products, i.e. any kernel of the form

k(x,y) = f(‖x‖2, (x,y), ‖y‖2), where f : R
3 → R. In the case of the RBF kernel,

f(u, v, w) = exp(−(u+ 2v + w)/2σ2) and in the case of the neural network kernel

f(u, v, w) = tanh(av + b).

To write our symmetric kernel we denote by σ1, . . . , σn! the various permuta-

tions of (x1, . . . , xn). In the case of R
2, for example, we have σ1(x1, x2) = (x1, x2)

and σ2(x1, x2) = (x2, x1). Our symmetric kernel κs : R
n × R

n → R is then defined

by

κs(x,y) = κ(σ1(x),y) + κ(σ2(x),y) + · · ·+ κ(σn!(x),y).
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To see that κs is indeed symmetric, we observe that

κs(σi(x),y) = κs(x,y)

and that

κs(x,y) = κs(y,x)

for any permutation σi. The second equality is true because

‖x‖2 = ‖σi(x)‖2

{(σi(x),y)} = {(x, σi(y))}
‖y‖2 = ‖σi(y)‖2.

Again using R
2 as an example (take x,y ∈ R

2) we have

κs(x,y) = κ(x,y) + κ(σ2(x),y)
κs(x, σ2(y)) = κ(x, σ2(y)) + κ(σ2(x), σ2(y)) = κ(σ2(x),y) + κ(x,y)
κs(σ2(x),y) = κ(σ2(x),y) + κ(σ2(σ2(x)),y) = κ(σ2(x),y) + κ(x,y)

κs(σ2(x), σ2(y)) = κ(σ2(x), σ2(y)) + κ(σ2(σ2(x)), σ2(y)) = κ(x,y) + κ(σ2(x),y),

i.e. κs : R
n × R

n → R is symmetric.

3.5 Kernel Search

To perform kernel selection, we mimic the feature selection procedure in Sec-

tion 3.3. We execute the following:

(K1) For a given kernel and choice of kernel parameters, we calculate a∗, J(a∗), p

and t as in (F1).

(K2) We record the results of (K1) for different kernels and kernel parameters. In

fact we use various discretizations of the parameters in regions where, based

on our data, we expect to encounter good kernels. See, e.g., Sections 3.6 and

3.7.

(K3) We compare the kernels using the values of J(a∗), p and t recorded in step

(K2). Here we generally use the maximum values of J(a∗), p and t to compare

the kernels, as opposed to the averages used in step (F3).
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As a final step, we implement the Support Vector Machines corresponding to

the best kernels found in steps (K1)-(K3) using the best features found in steps

(F1)-(F3). We will consider the topic of SVM implementation in Chapter 4.

3.6 Application to Materials Design

Here we apply our methods to the Materials Design problem. In Section

2.5 we considered feature selection for classifying three element combinations into

forming and non-forming categories. In this section we consider feature (using

the symmetric Veronese kernel) and kernel selection for classifying two, three, and

four element combinations into forming and non-forming categories. Our data set

is an enlarged version of the data set used in Section 2.5 supplied by [52] and [37].

It includes 1333 binary examples, 4963 ternary examples, and 4278 quaternary

examples along with a list of 88 possible features (in particular, we include the N1

and N2 orderings of the periodic table suggested in [36]). We also have a binary

test set with 692 examples, a ternary test set with 2156 examples, and a quaternary

test set with 2535 examples.

Instead of producing intensity plots for feature selection as in Section 2.5, we

produced ranked lists using (F1)-(F3). Our generalized feature search in Section

3.3, using the symmetric Veronese map, allowed us to consider the larger data set

described above. The increase in available features from the previous chapter to

this chapter, however, forced us to consider different feature combinations. For the

case of single feature selection, we again used every feature to produce our ranked

lists, but for the case of feature pair and feature triple selection, we used only a

subset of possible feature pairs and triples. Specifically, we required one of the

features in each feature pair to be from the list of best single features, and two of

the features in each feature triple to be from the list of best feature pairs.

Next, using the best features and feature pairs, we performed kernel selection,

using symmetric kernels, as specified in (K1)-(K3). For this step we also scaled
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our data to have mean zero and unit variance. For the symmetric Veronese kernel

we used d from 1 to 10. We chose the symmetric radial basis function (RBF)

kernel and symmetric neural network kernel parameter search region to have values

between 0 and 2. (Recall from Section 1.2.2 that the RBF kernel is κ(x,y) =

exp(−‖x − y‖2/2σ2) and the neural network kernel is κ(x,y) = tanh(a(x,y)+b).)

This worked well for the RBF kernel, presumably because σ corresponds to the

width of the RBF, but not as well for the neural network kernel. Thus we also

tested values of a and b from 0 to 20 for the neural network kernel. Our final

selections of the parameters for each kernel were chosen using plots such as those

in Figures 3.1 and 3.2.

In presenting our results, we use the structure and notation of (F1)-(F3) and

(K1)-(K3). Specifically, we use J(a∗) to denote the optimal value of Fisher’s cri-

terion obtained using training data, p to denote the percentage of training data

correctly classified using Fisher’s discriminant, and t to denote the percentage of

test data correctly classified. In addition, we use J(a∗)r, p, and t to denote the

averages of the values J(a∗), p, and t over the Veronese degrees 1, 2, . . . , r. Once

these values are calculated, we use them to provide ranked lists of feature combi-

nations and kernel comparisons, again as in (F1)-(F3) and (K1)-(K3). Finally, the

best Support Vector Machines (using various values of C) were implemented using

Joachims’ SVMlight [20] with convergence tolerance ε = .001. (We will discuss SVM

implementation in Chapter 4.)

3.6.1 Binary Case

Feature Selection

The following tables result from steps (F1)-(F3) in Section 3.3 using the sym-

metric Veronese kernel with degrees 1, . . . , 10 in the case of single features; degrees

1, . . . , 7 in the case of feature pairs; and degrees 1, . . . , 5 in the case of feature
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Figure 3.1: Symmetric Veronese and RBF Kernel Selection for Materials Design.
Here we display kernel selection plots for the ternary case using Pao’s N2 ordering.
On the left are plots of Fisher’s criterion, the percentage p of points correctly
classified, and the percentage t of points correctly classified (from top to bottom)
versus the symmetric Veronese degree d. Using these plots we selected d = 3. On
the right are plots of the same values versus the symmetric RBF kernel parameter
σ. Using the RBF plots we selected σ = .25.
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Figure 3.2: Symmetric Neural Network Kernel Selection for Materials Design. Here
we display a kernel selection plot for the ternary case using Pao’s N2 ordering and
Pauling’s Electronegativity (the third ranked feature pair). This is an intensity
plot of the values of Fisher’s criterion versus the symmetric neural network kernel
parameters a and b. The values of Fisher’s criterion are indicated by the scale bar
on the right. Using this plot we selected a = 8.5 and b = 8.
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triples. For the case of single features we’ve also included the means and standard

deviations of the values J(a∗)r, p, and t. (For two features, one of the features is

from the list of best features. Thus the means and standard deviations for feature

pairs are skewed and therefore not included. Similarly for feature triples.)

Top 3 Features
Name

J(a∗)10 p t

1 M13 Paos N2 ordering 3.14 85.76 83.82
2 M2 Mendeleev H t-d start right 2.77 85.27 84.78
3 M6 Mendeleev Pettifor regular 2.69 85.03 83.77

Feature Mean Values .67 65.60 63.62
Feature Standard Deviations .86 9.65 9.97

Top 3 Feature Pairs
Names

J(a∗)7 p t

M13 Paos N2 ordering
1

G2 valence electron number (/)
6.40 90.56 88.58

M4 Mendeleev H d-t start right
2

G2 valence electron number (/)
5.44 90.28 89.49

M5 Mendeleev Pettifor
3

G2 valence electron number (/)
5.41 90.05 87.88

Top 3 Feature Triples
Names

J(a∗)5 p t

M13 Paos N2 ordering
1 G2 valence electron number (/) 4.08 88.69 87.66

M8 Mendeleev t-d start left
M8 Mendeleev t-d start left

2 G2 valence electron number (/) 3.65 88.73 87.72
I3 magnetic susceptibility (m3 kg-1)
M8 Mendeleev t-d start left

3 G2 valence electron number (/) 3.03 87.23 85.43
M10 Mendeleev d-t start left

Kernel Selection

The tables in this section result from steps (K1)-(K3) in Section 3.5 using the

symmetric versions of the Veronese, RBF, and neural network kernels (see Sections

1.2.2 and 3.4). We include the best kernel of each type for the best three features,
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the best three feature pairs, and the best three feature triples. These kernels were

chosen using plots similar to those in Figures 3.1 and 3.2.

Kernel Comparisons for Top 3 Features
Feature Best Classifier

J(a∗) p t

Veronese d = 3 2.42 84.77 82.80
1 M13 Paos N2 ordering RBF σ = .5 5.61 92.27 91.47

Net a = 7.7, b = 5.2 1.35 76.22 73.41
Veronese d = 3 2.18 85.22 84.68

2 M2 Mendeleev H t-d rt. RBF σ = .25 7.38 92.12 91.47
Net a = 4.4, b = 4.7 1.18 71.94 70.81
Veronese d = 3 2.10 84.44 82.51

3 M6 Mend. Pettifor reg. RBF σ = .45 5.08 91.82 90.03
Net a = 18.1, b = 3 1.15 76.97 75.87

Kernel Comparisons for Top 3 F. Pairs
Feature Pair Best Classifier

J(a∗) p t

Veronese d = 3 3.97 91.00 89.88
1

M13 Paos N2 ordering
RBF σ = .65 12.1 95.87 93.06

G2 valence electron #
Net a = 14.8, b = 6.4 1.50 83.57 82.94
Veronese d = 3 3.71 90.02 90.46

2
M4 Mendeleev H d-t rt.

RBF σ = .25 26.2 98.35 92.20
G2 valence electron #

Net a = 16.8, b = 7 .739 76.67 76.88
Veronese d = 3 3.50 89.00 88.87

3
M5 Mendeleev Pettifor

RBF σ = .2 35.0 95.42 91.91
G2 valence electron #

Net a = 7, b = 5 1.07 85.25 80.64

Kernel Comparisons for Top 3 F. Triples
Feature Triple Best Classifier

J(a∗) p t

M13 Paos N2 ordering Veronese d = 5 7.92 94.22 92.05
1 G2 valence electron # RBF σ = .6 36.4 99.02 93.50

M8 Mendeleev t-d left Net a = 6, b = 12 1.6 82.67 81.36
M8 Mendeleev t-d left Veronese d = 5 7.54 94.90 92.49

2 G2 valence election # RBF σ = .35 31.1 97.75 92.34
I3 magnetic susceptibility Net a = 9.5, b = 14.5 .984 77.79 77.89
M8 Mendeleev t-d left Veronese d = 5 5.29 91.30 89.45

3 G2 valence electron # RBF σ = .55 33.6 98.80 93.50
M10 Mendeleev d-t left Net a = 6, b = 14 .938 80.65 80.49

SVM Classifiers

Using Joachims’ SVMlight [20] we trained (see Chapter 4) three Support Vector

Machines on the binary data. The first SVM was trained using Pao’s N2 ordering
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with a symmetric RBF kernel of σ = .5 and a training value of C = 10. This

SVM achieved a success rate of p = 92.72% on the training set and t = 91.33%

on the test set. The second SVM was trained using Pao’s N2 ordering and the

valence electron number with a symmetric RBF kernel of σ = .65 and a training

value of C = 100. Success rates of p = 96.92% on the training set and t = 94.36%

on the test set were achieved in this case. The last SVM was trained using Pao’s

N2 ordering, the valence electron number, and the Mendeleev t-d left feature with

a symmetric RBF kernel of σ = .6 and a training value of C = 10. This SVM

yielded p = 97.82% on the training set and t = 94.88% on the test set.

Remark

In our search for good binary features we discovered that the M2 feature was

the negative of the M3 feature, and that the G1 and G2 features were identical.

Thus we selected only one of M2 or M3 and one of G1 or G2 in the final results.

(This remark also applies to the Ternary and Quaternary cases.)

3.6.2 Ternary Case

Feature Selection

Here we again implemented steps (F1)-(F3) in Section 3.3 using the symmetric

Veronese kernel. In this case we used degrees 1, . . . , 7 for single features and 1, . . . , 5

for feature pairs. As in the binary case, we include means and standard deviations

in the case of single features.

Top 3 Features
Name

J(a∗)7 p t

1 M13 Paos N2 ordering 14.02 95.30 95.51
2 M3 Mendeleev H d-t start left 11.24 94.98 94.86
3 M5 Mendeleev Pettifor 10.86 94.64 94.98

Feature Mean Values 2.29 75.32 74.82
Feature Standard Deviations 3.27 11.77 12.08
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Top 5 Feature Pairs
Names

J(a∗)5 p t

M13 Paos N2 ordering
1

G1 group number (/)
21.0 95.76 95.59

M13 Paos N2 ordering
2

I25 delta H interface O in M Miedema
19.1 95.99 95.81

M13 Paos N2 ordering
3

E2 electronegativity (Pauling) (/)
18.7 96.07 96.09

Kernel Selection

Here are kernel comparisons for the top 3 ternary features and feature pairs.

Kernel Comparisons for Top 3 Features
Feature Best Classifier

J(a∗) p t

Veronese d = 3 12.62 97.05 97.08
1 M13 Paos N2 ordering RBF σ = .25 80.1 99.37 98.79

Net a = 12.6, b = 14.8 7.31 95.56 95.96
Veronese d = 3 9.96 96.70 96.61

2 M3 Mendeleev H d-t left RBF σ = .3 46.3 98.92 98.24
Net a = 18.2, b = 19 8.90 95.86 95.92
Veronese d = 3 9.91 96.24 96.38

3 M5 Mendeleev Pettifor RBF σ = .25 56.8 99.23 98.42
Net a = 11.8, b = 15.4 2.55 92.87 92.90

Kernel Comparisons for Top 3 F. Pairs
Feature Pair Best Classifier

J(a∗) p t

Veronese d = 5 46.8 99.02 97.77
1

M13 Paos N2 ordering
RBF σ = .45 143 99.86 98.65

G1 group number (/)
Net a = 12, b = 12.5 3.6 94.87 91.56
Veronese d = 5 39.4 98.97 97.96

2
M13 Paos N2 ordering

RBF σ = .2 115 99.67 98.98
I25 ∆ H interface O in M

Net a = 11, b = 14.5 5.3 94.11 94.43
Veronese d = 5 38.5 98.85 98.47

3
M13 Paos N2 ordering

RBF σ = .2 87.8 99.65 98.75
E2 Pauling Electroneg.

Net a = 8.5, b = 8 7.9 96.12 96.57

SVM Classifiers

In the ternary case we trained two Support Vector Machines. The first was

trained using Pao’s N2 ordering with a symmetric RBF kernel of σ = .25 and a

training value of C = 10. The resulting SVM had a success rate of p = 99.18% on
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the training data and t = 98.79% on the test data. The second SVM was trained

using Pao’s N2 ordering and the G1 group number (same as the valence electron

number — see remark in Section 3.6.1) with a symmetric RBF kernel of σ = .45

and a training value of C = 10. This SVM had a success rate of p = 99.93% on

the training data and t = 99.07% on the test data.

3.6.3 Quaternary Case

Feature Selection

In the quaternary case we used the symmetric Veronese kernel with degrees

1, . . . , 5 for single feature selection. We again include means and standard devia-

tions.

Top 5 Features
Name

J(a∗)5 p t

1 M5 Mendeleev Pettifor 53.1 97.37 97.16
2 M13 Paos N2 ordering 51.3 97.24 97.10
3 E8 chemical potential Miedema (/) 40.4 97.32 97.60

Feature Mean Values 12.0 88.33 88.02
Feature Standard Deviations 12.4 10.53 10.79

Kernel Selection

Kernel comparisons for the quaternary case were implemented for the best 3

features.

Kernel Comparisons for Top 3 Features
Feature Best Classifier

J(a∗) p t

Veronese d = 2 27.2 98.97 98.93
1 M5 Mendeleev Pettifor RBF σ = .45 508 99.96 99.88

Net a = 15.6, b = 13.6 25.3 98.51 98.34
Veronese d = 3 52.0 99.88 99.80

2 M13 Paos N2 ordering RBF σ = .4 656 100 100
Net a = 7.6, b = 18.4 28.9 98.73 99.21
Veronese d = 2 38.7 99.56 99.49

3 E8 chem. pot. Miedema RBF σ = .55 299 99.88 99.80
Net a = 4.4, b = 17.8 34.8 99.03 98.74
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SVM Classifier

For the quaternary case we trained only one Support Vector Machine. We

used the Mendeleev Pettifor number with a symmetric RBF kernel of σ = .45 and

a training value of C = 100. In this case the resulting SVM had a 100% success

rate on both the training and test data.

3.7 Application to USPS Handwritten Digit Recognition

Here we use the United States Postal Service database of handwritten digits

to compare our method of kernel selection with the methods in [11], [9], and [42].

(We do not consider feature selection for this problem.) The United States Postal

Service database consists of 16×16 images of the digits 0 through 9. There are 7291

training examples and 2007 test examples. The USPS database can be obtained

from [47].

In our first example, we perform an experiment found in [11]. Specifically, we

have selected σ for an RBF kernel designed to separate the digits 0 from 3. Plots

of J(a∗), 100− p, and 100− t versus σ are provided on the left side of Figure 3.3.

Based on these plots we selected σ from 5 to 8. Our plots of 100−p and 100−t are

similar (in shape and with similar values) to the plot of the generalization error of

the actual Support Vector Machine in [11].

In our second example, we have again selected σ for an RBF kernel. In this

case the kernel is designed to separate the digits 0 to 4 from 5 to 9. To provide

a more direct comparison of our method with the methods in [9] and [42] we first

randomly permuted the entire USPS data set (training and test sets together)

and then divided the training set into 23 subsets of size 317 (this was originally

proposed in [42] and was also performed in [9]). We then executed our method

of kernel selection. We include plots of the average values of J(a∗), 100 − p, and

100 − t on the right side of Figure 3.3. The error bars show standard deviations
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Figure 3.3: USPS Partial Problems. On the left are the plots of J(a∗), 100−p, and
100 − t (from top to bottom) versus RBF kernel σ for the problem of separating
0 from 3 in the USPS data set. On the right are the plots of J(a∗), 100 − p, and
100 − t versus log(σ) for the problem of separating the digits 0 to 4 from 5 to 9.

over the 23 subsets. For this example our method selected σ = .368. In addition,

our plot of 100− t is similar (in shape only) to the plots of generalization error in

[9] and [42].

Finally, we have selected Veronese, RBF, and neural network kernels for use

with the entire USPS data set. To be precise, we selected Veronese, RBF, and

neural network kernels for separating each digit from the other nine (0 from 1, . . . , 9;

1 from 0, 2, . . . , 9; 2 from 0, 1, 3, . . . , 9; et cetera). We then trained (using the

selected kernels) Support Vector Machines with Joachims’ SVMlight [20] on each
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of the above cases and constructed a classifier for the entire USPS data set by

using the SVM with the largest output. That is, we classified a digit as zero if the

SVM designed to separate 0 from 1, . . . , 9 had the largest value (before applying

the sign function) of all the SVMs. We classified the digits one to nine similarly.

For the Veronese kernel we used c = 1 and for most digits found d = 3 to be the

best parameter. For the RBF kernel we found σ = 10 to be the best value for

every digit. For the neural network kernel we selected a variety of values of a and

b for the different digits, but in each case found the values of Fisher’s criterion to

be distributed in a similar manner. Figure 3.4 shows some plots representative of

our findings for the three kernels. Our Support Vector Machine classifiers using

the Veronese kernel (we did not mix kernel types) obtained an error rate of 4.5%

on the test set, as did the SVMs using the RBF kernels. For the neural network

kernel we obtained an error rate of 9.1% on the test set.

We have also compared our results to the results of the original application

of Support Vector Machines to the USPS data [41]. Our kernel selections for the

Veronese and RBF kernels agree very well with the selections in [41], as do our error

rates. To be precise, the error rates in [41] were 4.0% and 4.3% for the Veronese

and RBF kernels. (Also in the interest of precision, we should mention that in

[41] the USPS images were smoothed via a “Gaussian kernel of width .75” prior to

SVM implementation. We performed no smoothing or scaling.) Our selection for

the neural network kernel, on the other hand, is in disagreement, as is our error

rate. In [41] the neural network kernels used have negative values of b, which is

interesting since such values are in theory invalid (see Section 1.2.2 and [8]). In

addition, the error rate in [41] for the neural network kernel is 4.1%, less than half

our error rate.

3.8 Conclusions
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Figure 3.4: Entire USPS Problem. On the upper left is kernel selection information
for the Veronese kernel for separating each of the USPS digits from the other nine.
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selection information for the neural network kernel for separating the digit 5 from
the other nine digits. The neural network plot is an intensity plot with the values
of Fisher’s Criterion shown on the scale bar to the right.
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In this chapter we have developed a method of kernel selection for Support

Vector Machines. We have applied it the the Materials Design problem and we

have used the USPS database of handwritten digits to compare our method to

existing methods. We remark that

• Our method selects good kernels for use with Support Vector Machines, both

in the Materials Design problem and in agreement with [11], [9], [42], and

[41] on the USPS data.

• Our method works on large problems (e.g. the Materials problem and the

entire USPS data set). This distinguishes our method from the method in

[42] and also distinguishes our use of Fisher’s discriminant from the kernel

Fisher’s Discriminant in [31].

• Our method works with all SVM kernels. This distinguishes our method

from the method in [11].

Finally, we remark that our method of kernel Gram-Schmidt may be useful

outside of kernel selection. It could, for example, be applied in conjunction with

the Singular Value Decomposition (see also [43]), Least Squares regression (see also

[46]), other methods of classification (see also [31]), et cetera.
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Chapter 4

TRAINING SUPPORT VECTOR MACHINES

In this chapter we consider a new method for training Support Vector Ma-

chines. Support Vector Machines are traditionally obtained by solving the Support

Vector Machine Quadratic Programming problem in Equation (1.3) from Section

1.2.2. Unfortunately, standard Quadratic Programming solvers typically require

computer storage of a square matrix with #{xi} + #{yj} entries to a side, i.e. a

matrix with (N + M)2 entries, where N and M are the number of points in our

two classes X and Y . For large problems (N +M ≥ 5000) it becomes impossible

to accommodate such a matrix. Thus efforts have been made towards developing

SVM specific training algorithms. In particular, the work in [34], [39], [20], [14],

[27], and [24] has addressed this problem. In [34] a decomposition of the full SVM

QP problem into subproblems is proposed, in [39] this decomposition is used with

subproblems of the smallest possible size, and in [20] a very clean and computa-

tionally efficient version of the procedure in [34] is implemented. In [14] a variant

of the traditional SVM QP problem is solved using an algorithm from Statistical

Mechanics known as the Adatron algorithm, in [27] another variant of the tradi-

tional SVM QP problem is solved using successive overrelaxation, and in [24] the

variant in [14] is solved using a geometric reformulation of the SVM QP problem.

Here we consider a new method for training Support Vector Machines and

more generally the solution of the linear separable Support Vector Machine Quad-
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ratic Programming problem (see Section 1.2.1)

max
αi, βj

{ ∑
i αi +

∑
j βj − 1

2

∑
i,q αiαq(xi,xq)

+
∑

i,j αiβj(xi,yj) − 1
2

∑
j,q βjβq(yj ,yq)

subject to

{ ∑
i αi =

∑
j βj

0 ≤ αi, βj.

(4.1)

In Section 4.1 we provide an entirely different formulation of the linear separable

SVM QP problem (also considered in [24]); in Section 4.2 we use our reformulation

to implement a variant of Gilbert’s Algorithm [17] (also considered in [24]) for

training linear separable Support Vector Machines; in Sections 4.3 and 4.4 we

generalize our algorithm to the full (nonlinear, nonseparable) SVM; in Section 4.5

we compare our algorithm to both the Nearest Point Algorithm [24] and Sequential

Minimal Optimization [39]; and in Section 4.6 we offers our concluding remarks.

4.1 Geometric SVM Problem

To set the stage for our reformulation of the linear separable SVM QP problem

we first generalize the definition of the SVM margin from Section 1.2.1. Recall that

for two nonempty, finite sets X and Y in R
n separated by a hyperplane H , the

margin of H is twice the distance from H to a nearest point in X (or, equivalently,

a nearest point in Y ).

We extend this definition by considering any two nonempty, compact sets X

and Y in R
n. They need not even be disjoint. We then write the margin of a

hyperplane H = {x ∈ R
n : (x,w) + b = 0,w �= 0} as

m(w) = d(PwCX , PwCY ),

where CX and CY are the convex hulls of X and Y respectively, Pw is the orthog-

onal projection wwT

‖w‖2 onto the one-dimensional subspace spanned by w, and d(•, •)
denotes the distance between two sets, i.e. d(A,B) = min{‖a−b‖ : a ∈ A,b ∈ B},
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where ‖•‖ denotes the Euclidean norm in R
n. (Note that we may use min because

X and Y are compact.)

If H does not actually separate X and Y (which would be the case if X ∩Y �=
∅), then the margin is simply zero. In addition, since m(w) = m(cw) for c �= 0 we

may restrict the domain of m to the unit sphere Sn−1 = {x ∈ R
n : ‖x‖ = 1} with

no loss of information.

As we will verify in Lemma 4.1, the margin m : Sn−1 → R is a continuous

function on a compact set so by the Extreme Value Theorem achieves a global

maximum at some point w∗ ∈ Sn−1. This is, of course, the point we wish to

locate, as it is the normal to the maximal margin hyperplane.

Finally, let S = X − Y = {x − y : x ∈ X,y ∈ Y } be the set of secants

between our two classes, let CS be the convex hull of S, and let s∗ be the closest

point in CS to the origin. Since CS is compact and convex, we are assured that s∗

exists and is unique. For this and other interesting facts about convex sets see [25].

Lemma 4.1. The margin m : Sn−1 → R is continuous.

Proof. Suppose w,v ∈ Sn−1. Since CS = CX − CY we have

m(w) = min{‖Pwx − Pwy‖ : x ∈ CX ,y ∈ CY }

= min{‖wwT (x − y)‖ : x ∈ CX ,y ∈ CY }

= min{|(s,w)| : s ∈ CS}

= |(t∗,w)|

for some t∗ ∈ CS and similarly m(v) = |(u∗,v)| for some u∗ ∈ CS.
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Now by the Cauchy-Schwarz inequality

m(w) −m(v) = |(t∗,w)| − |(u∗,v)|

≤ |(u∗,w)| − |(u∗,v)|

≤ |(u∗,w − v)|

≤ ‖u∗‖‖u− v‖

≤ M‖w − v‖,

where M bound CS, i.e. ‖s‖ ≤M for all s ∈ CS. Similarly we have m(w)−m(v) ≥
−M‖w − v‖ so that m : Sn−1 → R is continuous as claimed. Q.E.D.

Theorem 4.2. If nonempty, compact sets X and Y in R
n are linearly separable

then the margin m : Sn−1 → R attains a nonzero global maximum at w∗ = s∗
‖s∗‖ .

Proof. The hypotheses give CX ∩ CY = ∅ (see [25]). Thus CS = CX − CY

does not contain the origin so that w∗ is well-defined. We wish to show that

m(w∗) ≥ m(w) for all w ∈ Sn−1 and that m(w∗) > 0. As in Lemma 4.1 and by

the Cauchy-Schwarz inequality

m(w) = min{|(s,w)| : s ∈ CS}

≤ |(s∗,w)|

≤ ‖s∗‖‖w‖ = ‖s∗‖.

Since ‖s∗‖ �= 0, it is enough to show that m(w∗) = ‖s∗‖, i.e., that |(s,w∗)| ≥
|(s∗,w∗)| = ‖s∗‖ for all s ∈ CS. For this we use contradiction: assume there is an

s ∈ CS such that |(s,w∗)| < ‖s∗‖. We will show that this implies the existence of

a point t ∈ CS with ‖t‖ < ‖s∗‖, which contradicts the definition of s∗.

Consider the line segment l from s∗ to s �= s∗ given by (1 − λ)s∗ + λs with

0 ≤ λ ≤ 1. Note that l ⊂ CS and in particular any point of l is in CS. Let λ0 be

the scalar projection −(s∗,s−s∗)
‖s−s∗‖2 of −s∗ onto s − s∗. Let t = (1 − λ0)s

∗ + λ0s.
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We claim that t ∈ l ⊂ CS and that ‖t‖ < ‖s∗‖. To see that t ∈ l it suffices to

show that 0 < λ0 < 1. By assumption we have

|(s,w∗)| =
|(s, s∗)|
‖s∗‖ < ‖s∗‖,

so that

(s, s∗) ≤ |(s, s∗)| < ‖s∗‖2

‖s∗‖2 − (s, s∗)

‖s− s∗‖2 = λ0 > 0.

And since by definition of s∗

(s, s∗) < ‖s∗‖2 < ‖s‖2,

we have

‖s∗‖2 − (s, s∗) < ‖s− s∗‖2 = ‖s‖2 − 2(s, s∗) + ‖s∗‖2,

or, equivalently, λ0 < 1.

To see that ‖t‖ < ‖s∗‖ we note that t is orthogonal to −λ0(s − s∗). Hence,

we can apply the Pythagorean Theorem to get

‖t‖2 + ‖ − λ0(s − s∗)‖2 = ‖t− λ0(s− s∗)‖2 = ‖s∗‖2.

Since 0 < λ0 < 1 and s �= s∗, we have ‖t‖2 < ‖s∗‖2 as desired.

We have thus shown that m(w∗) = ‖s∗‖ > 0 and hence that m : Sn−1 → R

attains a nonzero global maximum at w∗. Q.E.D.

Corollary 4.3. The maximal margin hyperplane is unique.

Proof. In the proof of Theorem 4.2, we used the Cauchy-Schwarz inequality

to assert that

m(w) ≤ |(s∗,w)| ≤ ‖s∗‖‖w‖ = m(w∗)

for w ∈ Sn−1. In fact the inequality is strict when w and s∗ are linearly inde-

pendent, i.e. the margin m : Sn−1 → R achieves global maximum only when
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w = ±w∗. As normal vectors, these yield the same hyperplane so the maximal

margin hyperplane is indeed unique. It is given by

H∗ = {x ∈ R
n : 2(x, s∗) = ‖x∗‖2 − ‖y∗‖2},

where s∗ = x∗ − y∗. Q.E.D.

Theorem 4.4. The linear separable Support Vector Machine Quadratic Program-

ming problem in Equation (4.1) has solution w∗ = 2s∗
‖s∗‖2 .

Proof. First, it is instructive to observe that s∗ solves a constrained version of

the linear separable SVM QP problem. In particular, if w ∈ CS we can write (see

[25])

w =
∑

ij γij(xi − yj),

where
∑

ij γij = 1, and γij ≥ 0 for all ij. By setting αi =
∑

j γij , βj =
∑

i γij we

see that

w =
∑

i αixi −
∑

j βjyj ,

with ∑
i αi =

∑
j βj = 1,

αi, βj ≥ 0.

Thus minimizing ‖w‖ when w ∈ CS implies solving

max
αi, βj

{
2 − 1

2
‖w‖2 =

∑
i αi +

∑
j βj − 1

2

∑
i,q αiαq(xi,xq)

+
∑

i,j αiβj(xi,yj) − 1
2

∑
j,q βjβq(yj,yq)

subject to

{ ∑
i αi =

∑
j βj = 1,

αi, βj ≥ 0.

Next, we note that we can in fact generalize this approach by taking c ≥ 0

and considering the convex hull CcS, where cS = {cs : s ∈ S}. In this case we can

write w ∈ CcS as
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w =
∑

i αixi −
∑

j βjyj ,

with
∑

i αi =
∑

j βj = c and αi, βj ≥ 0. Thus minimizing ‖w‖ when w ∈ CcS

implies solving

max
αi, βj

{
2c− 1

2
‖w‖2 =

∑
i αi +

∑
j βj − 1

2

∑
i,q αiαq(xi,xq)

+
∑

i,j αiβj(xi,yj) − 1
2

∑
j,q βjβq(yj,yq)

subject to

{ ∑
i αi =

∑
j βj = c,

αi, βj ≥ 0.

This problem (by Theorem 4.2) has solution cs∗, the point in CcS closest to the

origin.

Finally, we finish the proof by observing that we have parameterized the lin-

ear separable SVM QP problem by c. Maximizing 2c − 1
2
‖cs∗‖2 = 2c − 1

2
c2‖s∗‖2

over c ≥ 0 we obtain the optimal value c∗ = 2
‖s∗‖2 of c and hence the solution

w∗ = c∗s∗ = 2s∗
‖s∗‖2 of the linear separable Support Vector Machine Quadratic Pro-

gramming problem in Equation (4.1). Q.E.D.

The above results appear in various sources but with different proofs. In

particular, results similar to Theorem 4.2 appear in [4] and [40], Corollary 4.3

appears in [51], and Theorems 4.2 and 4.4 appear in [24].

Theorem 4.2 is particularly useful for interpreting Support Vector Machines.

It tells us that the maximal margin hyperplane is essentially the “perpendicular

bisector” of a line segment connecting the two closest points of the convex hulls

of X and Y . This is illustrated Figure 4.1(c). Figure 4.1 in its entirety gives a

pictorial summary of Theorem 4.2 in its relation to SVMs.

4.2 Gilbert’s Algorithm

Theorem 4.2 provides a geometric solution to the Support Vector Machine

problem, but in order to actually implement a SVM we need an algorithm to
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Figure 4.1: Pictorial summary of Theorem 4.2. On the left (a) is the typical
illustration of a Support Vector Machine. The two classes X and Y are depicted
using x’s and o’s, with the maximal margin hyperplane shown as a solid line
separating them. The two dotted lines run through the support vectors and are
separated by a distance equal to the margin. In the middle (b) is the corresponding
secant hull with the origin marked by a circle, and with the point s∗ in the secant
hull closest to the origin marked by a star (and connected to the origin by a
line segment). On the right (c) the maximal margin hyperplane is shown as the
perpendicular bisector of a shortest line segment connecting the convex hulls of X
and Y .

locate the point s∗ in the secant hull closest to the origin. Gilbert’s Algorithm [17]

performs exactly this task.

To describe Gilbert’s Algorithm we use the following notation. For a,b ∈ R
n

we set

[a,b]∗ =

⎧⎪⎨
⎪⎩

a if −(a,b − a) ≤ 0

a + −(a,b−a)
‖b−a‖2 (b− a) if 0 < −(a,b − a) < ‖b − a‖2.

b if ‖b− a‖2 ≤ −(a,b − a)

Thus the point [a,b]∗ is the point on the line segment from a to b closest to the

origin.

Assuming that X and Y are again finite and writing S = X − Y = {sm}, we

define the support function g : R
n → R by

g(x) = maxm{(x, sm)}

and the contact function g∗ : R
n → R

n by

g∗(x) = sm0 ,
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Figure 4.2: Convergence of Gilbert’s Algorithm. Here we illustrate the behavior
of Gilbert’s Algorithm. On the left (a) s∗ ∈ S, and the algorithm, whose progress
is tracked by the jagged line, converges to s∗ in a finite number of steps. In the
middle (b), s∗ �∈ S and the algorithm converges only asymptotically to s∗. On the
right (c), Gilbert’s Algorithm for Support Vector Machines converges rapidly in
angle to s∗.

where m0 corresponds to the the smallest indices i0 and j0 of X and Y such that

(x, sm0) ≥ (x, sm) for all m. This contact function gives an extreme point of S in

the direction x. (See [24] or [17].)

Finally, let w1 be a random point in S and let wk = [wk−1, g
∗(−wk−1)]

∗ for

k > 1. Gilbert showed in [17] that lim
k→∞

wk = s∗, where s∗ is the closest point in CS

to the origin. Gilbert also made some observations on the convergence properties

of the sequence wk. We note merely that Gilbert’s Algorithm will converge in a

finite number of steps if s∗ ∈ S, but that asymptotic convergence is very likely

when s∗ /∈ S. Gilbert’s Algorithm is illustrated in Figure 4.2 parts (a) and (b).

Unfortunately, the asymptotic behavior exhibited by Gilbert’s Algorithm in

Figure 4.2(b) is not only likely but very slow as well (∼ 1/n). It was for this reason

that Gilbert’s Algorithm was abandoned in [24]. Fortunately, Gilbert’s Algorithm

converges to s∗ in angle much faster than in norm. That is, (wk, s
∗)/(‖wk‖‖s∗‖)

converges to 1 much faster than ‖wk−s∗‖ converges to 0. Since the SVM maximal

margin hyperplane is determined by direction and not by length (see e.g. Theorem

4.4), we can use this angle convergence criterion to greatly improve the performance

of Gilbert’s Algorithm for training Support Vector Machines.
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In addition, we can improve the rate of convergence in angle of Gilbert’s Al-

gorithm by using an associated sequence of averages computed as follows. To

compute m1, we iterate Gilbert’s Algorithm until g∗(−wk−1) = g∗(−wj−1) for

some j < k. We set m1 = 1
k−j

∑k
i=j+1 wi. To compute m2, we repeat this pro-

cess as if we were restarting Gilbert’s Algorithm from wk. In this manner, we

obtain a sequence m1,m2, . . . of averages of points in Gilbert’s Algorithm which

also converge to s∗ (since the points in Gilbert’s Algorithm converge to s∗). More

importantly, the points m1,m2, . . . converge very rapidly in angle to s∗. This is

illustrated in Figure 4.2(c).

Algorithm 4.5. Gilbert’s Algorithm for Support Vector Machines.

(1) Compute m1,m2, . . . as above.

(2) Stop when (ml,ml−1)

‖ml‖‖ml−1‖ < ε, where ε is the convergence tolerance for the algo-

rithm.

4.3 Nonlinear Generalization

To generalize Gilbert’s Algorithm for Support Vector Machines to the non-

linear case we simply use SVM kernels. Recall from Section 1.2.2 that a kernel

κ : R
n × R

n → R can be used to implicitly preprocess data by an associated map

Φ : R
n → F , where F is a Hilbert space and

κ(x,y) = (Φ(x),Φ(y)).

Kernels are used to make Support Vector Machines nonlinear (see Section

1.2.2). Hence, we use them to make Gilbert’s Algorithm for SVMs nonlinear. This

is accomplished by first rewriting Gilbert’s Algorithm for SVMs in terms of inner

products and then replacing the inner products with kernels.

We write
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wk−1 =
∑

i αixi −
∑

j βjyj .

for each wk−1 in Gilbert’s Algorithm, where the αi and βj also depend on k. To

implement Gilbert’s Algorithm for Support Vector Machines we need to calculate

g∗(−wk−1), wk = [wk−1, g
∗(−wk−1)]

∗, and (ml,ml−1)

‖ml‖‖ml−1‖ .

To compute g∗(−wk−1) we observe that

g(−wk−1) = maxm{−(wk−1, sm)}
= maxi{−(wk−1,xi)} + maxj{(wk−1,yj)}.

(Recall S is indexed by m and X and Y are indexed by i and j.) If we denote

maxi{−(wk−1,xi)} and maxj{(wk−1,yj)} by gX(−wk−1) and gY (wk−1) we get

g∗(−wk−1) = g∗
X
(−wk−1) − g∗

Y
(wk−1).

Here we are using the notation in Section 4.2 to suggest that g∗X(x) is the point

xi0 ∈ X with smallest index i0 such that (x,xi0) ≥ (x,xi) for all i, and similarly

for g∗
Y
(x).

Thus to compute g∗(−wk−1) we need only calculate g∗X(−wk−1) and g∗Y (wk−1).

These are easily obtained if we keep an inner product cache containing the values

(wk−1,xi) and (wk−1,yj) as we progress through the points in Gilbert’s Algorithm.

The idea of using such a cache was originated in [39] and adopted in [24].

Next we calculate wk = [wk−1, g
∗(−wk−1)]

∗ from −(wk−1, g
∗(−wk−1)−wk−1)

and ‖g∗(−wk−1) − wk−1‖2. These quantities can be computed using the above

inner product cache along with ‖wk−1‖2. To facilitate the computation of ‖wk−1‖2

we observe that

‖wk‖2 = ‖wk−1‖2 − (wk−1, g
∗(−wk−1) − wk−1)

2

‖g∗(−wk−1) − wk−1‖2

when wk is neither wk−1 nor g∗(−wk−1). This recurrence allows us to compute

‖wk‖2 with a minimum of effort at each step of Gilbert’s Algorithm.
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Finally, we can maintain an inner product cache of the values (ml,xi) and

(ml,yj) by adding the inner product caches containing (wk−1,xi) and (wk−1,yj)

as we progress through the points of Gilbert’s Algorithm. Using this new cache

we can compute the values (ml,ml−1)

‖ml‖‖ml−1‖ .

4.4 Nonseparable Generalization

The final generalization of Gilbert’s Algorithm for Support Vector Machines is

to the nonlinear case with errors (the nonlinear nonseparable case). Unfortunately,

Gilbert’s Algorithm for SVMs cannot be used to solve the traditional SVM QP

problem [10] in Equation (1.3) in Section 1.2.2. Fortunately, recent alternatives to

the traditional SVM QP problem have been proposed in [15] and [27]. We use the

approach in [15].

Specifically, we allow errors by introducing slack variables σi and τj into the

SVM problem. We get

min 1
2
‖w‖2 +

�C
2
(
∑

i σ
2
i +

∑
j τ

2
j )

subject to

{
(xi,w) + b ≥ 1 − σi for all xi ∈ X
(yj,w) + b ≤ τj − 1 for all yj ∈ Y,

(4.2)

where σi corresponds to the data point xi, τj corresponds to the data point yj ,

and C̃ is a positive constant.

We use this formulation of the nonseparable Support Vector Machine because

it can be solved via a separable problem (the traditional formulation [10] may be

nonseparable). The separable problem is obtained as follows (see [15], [24]). Let

ei be a vector of length #{xi} (number of points in the X class) with a 1 in the

ith position and zeros elsewhere. Similarly, let fj be a vector of length #{yj} with

a 1 in the jth position and zeros elsewhere. Let σ be the vector containing each

σi and τ be the vector containing each τj . Finally, let

w̃ =

⎛
⎜⎝

w√
C̃σ√
C̃τ

⎞
⎟⎠, x̃i =

⎛
⎜⎝ xi

1√
�C
ei

0

⎞
⎟⎠, ỹj =

⎛
⎜⎝ yj

0
− 1√

�C
fj

⎞
⎟⎠, b̃ = b.
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Then {x̃i} and {ỹj} are linearly separable and we can solve

min 1
2
‖w̃‖2

subject to

{
(x̃i, w̃) + b ≥ 1 for all x̃i ∈ X
(ỹj, w̃) + b ≤ −1 for all ỹj ∈ Y

to obtain the solution of (4.2). Thus, to compute a Support Vector Machine in

the case of nonseparable data we use {x̃i} and {ỹj} with Gilbert’s Algorithm for

SVMs.

For nonlinear nonseparable data, we replace the inner products (x̃i, ỹj) in the

dual problem

max
αi, βj

{ ∑
i αi +

∑
j βj − 1

2

∑
i,q αiαq(x̃i, x̃q)

+
∑

i,j αiβj(x̃i, ỹj) − 1
2

∑
j,q βjβq(ỹj , ỹq)

subject to

{ ∑
i αi =

∑
j βj,

αi, βj ≥ 0

with kernel products of the form κ̃(x̃, ỹ) = κ(x,y) + δij/C̃, where δij is 1 when

i = j and zero otherwise. This gives the dual

max
αi, βj

⎧⎨
⎩

∑
i αi +

∑
j βj − 1

2

∑
i,q αiαqκ(xi,xq)

+
∑

i,j αiβjκ(xi,yj) − 1
2

∑
j,q βjβqκ(yj ,yq)

− 1

2 �C (
∑

i α
2
i +

∑
j β

2
j )

subject to

{ ∑
i αi =

∑
j βj,

αi, βj ≥ 0.

of the nonseparable SVM problem in [15].

Hence, to implement the full nonlinear nonseparable version of Gilbert’s Algo-

rithm for Support Vector Machines we simply replace the kernel κ in the nonlinear

version of Gilbert’s Algorithm for SVMs with the kernel κ̃(x̃, ỹ) = κ(x,y)+ δij/C̃.

4.5 Examples/Comparisons

We now present some examples which we use to compare our algorithm with

both the Nearest Point Algorithm [24] and Sequential Minimal Optimization [39].

(We should note that both NPA and Gilbert’s Algorithm for SVMs use the above
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nonseparable generalization while SMO uses the nonseparable generalization in

[10].) We used MATLAB to code our algorithm, we obtained the NPA code from

[23], and the SMO code from [2]. We used the different codes to train Support

Vector Machines on the Two Spirals Data [22], the Wisconsin Breast Cancer Data

[5], [3], and the Adult-4a Data [38], [5]. All three data sets were used in [24], and

the Adult-4a set was used in [39].

To compare our algorithm with NPA and SMO, we ran the three algorithms

on a random subset of each data set containing 90% of the original data. We

used the remaining 10% of each data set as a test set. For each algorithm, we

used a convergence tolerance of ε = .001 and a Radial Basis Function kernel

κ(x,y) = exp(−‖x−y‖2

2σ2 ). As suggested in [24], we used σ = 1/
√

2 for the Two

Spirals Data, σ = 2 for the Wisconsin Breast Cancer Data, and σ =
√

10 for the

Adult-4a Data.

For each run we computed the following statistics: the number of kernel evalu-

ations needed to train a SVM on the data; the percentage of support vectors found

(number of support vectors found versus number of data vectors); and the percent-

age of the test set correctly classified. These statistics were selected to measure

speed and quality of solution. The number of kernel evaluations performed was

suggested as a measure of speed in [24] because the various algorithms considered

(including NPA and SMO) were implemented using inner product caches. Thus,

the cost of updating said caches (number of kernel evaluations performed) was the

main computational expense.

The different statistics are plotted versus the solution margin of the resulting

SVM for each algorithm. The statistics for the Two Spirals Data can be found in

Figure 4.3; the statistics for the Wisconsin Breast Cancer Data can be found in

Figure 4.4; and the statistics for the Adult-4a Data can be found in Figure 4.5.
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Figure 4.3: Two Spirals Data. Here we plot the performance statistics for SMO,
NPA and Gilbert’s Algorithm for SVMs on the Two Spirals Data. In each plot the
horizontal axis gives the solution margin, dotted lines are used for SMO, dashed
lines are used for NPA, and solid lines are used for Gilbert’s Algorithm for SVMs.
In the top plot (a) we see on the vertical axis the number of kernel evaluations
performed, in the middle plot (b) we see the percentage of support vectors found,
and in the bottom plot (c) we see the percentage of points in the test set correctly
classified.
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Figure 4.4: Wisconsin Breast Cancer Data. Here we plot the performance statistics
for SMO, NPA and Gilbert’s Algorithm for SVMs on the Wisconsin Breast Cancer
Data. The data is presented as in Figure 4.3. The success rates on the test set are
identical for all three algorithms.

62



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2
x 10

9 Adult−4a Data

K
e
rn

e
l 
E

v
a
lu

a
ti
o
n
s SMO

NPA
GIL

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

%
 S

u
p
p
o
rt

 V
e
c
to

rs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
70

75

80

85

%
 T

e
s
t 
C

o
rr

e
c
t

Solution Margin

Figure 4.5: Adult-4a Data. Here we plot the performance statistics for SMO, NPA
and Gilbert’s Algorithm for SVMs on the Adult-4a Data.

63



It is interesting to note, as indicated by part (a) of Figures 4.3, 4.4, and 4.5,

that our algorithm is similar in speed to both NPA and SMO for large margins

(corresponding to small values of C̃), and significantly faster than NPA and SMO

for small margins (large values of C̃). It is also interesting to note that our algo-

rithm provides Support Vector Machines with representations which are similar (in

terms of number of support vectors) to NPA and SMO in some cases (part (b) of

Figures 4.3 and 4.4), but which can be much more efficient (fewer support vectors)

in other cases (part (b) of Figure 4.5). Finally, we note that all three algorithms

performed equally on the test set (part (c) of Figures 4.3, 4.4 and 4.5).

4.6 Conclusions

We must first acknowledge the similarity of our work to the work in [24].

The main theoretical foundation of our work (Theorems 4.2 and 4.4) was done in

the summer of 1999, before we were aware of the same results in [24]. Gilbert’s

Algorithm was also considered in [24], but dismissed because of slow convergence

in its final stages. We have, on the other hand, successfully applied Gilbert’s

Algorithm to Support Vector Machines via a simple modification. Our modification

made an ailing algorithm into one of the fastest available for SVMs and might

similarly accelerate existing algorithms.

Finally, Gilbert’s Algorithm for Support Vector Machines has a number of

advantages over both NPA and SMO. First, it is simpler (no heuristics) than SMO

and much simpler than NPA. Second, Gilbert’s Algorithm for SVMs runs almost as

fast (in cpu time) coded in MATLAB as NPA in Fortran and SMO in C++. Thus, it

may be faster than both NPA and SMO when coded in C++. (MATLAB is generally

much slower than either Fortran or C++.) Third and last, the Support Vector

Machines produced by Gilbert’s Algorithm for SVMs are as accurate as those

produced by NPA and SMO and may have more efficient representations (fewer

support vectors).
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Chapter 5

CONCLUSIONS

In this dissertation we proposed a solution to a problem in Pattern Classifica-

tion and two additional solutions to problems in Support Vector Classification. In

Chapter 2 we proposed a new method of feature selection for classification using

Fisher’s criterion and the Veronese map. In Chapter 3 we generalized our fea-

ture selection algorithm form Chapter 2 using the Veronese kernel and proposed

a kernel selection algorithm for Support Vector Machines. Finally, in Chapter

4 we developed a new, fast algorithm for training Support Vector Machines. In

this chapter we summarize more precisely our work. In Section 5.1 we recap the

primary contributions of this dissertation, in Section 5.2 we give some possible

extensions of our results, and in Section 5.3 we ask some questions raised during

the course of this research.

5.1 Primary Contributions

The highlights of this research include

• The explanation and extension of Villars’ method of feature selection in Sec-

tion 2.6 using the Veronese map and Fisher’s discriminant.

• The development of kernel Gram-Schmidt in Section 3.1.

• An algorithmic approach to both feature and kernel selection for Support

Vector Machines.
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• Theorem 4.2 in Section 4.1, a theorem on an optimal separation of convex

sets, and the corresponding geometric solution of the linear separable Support

Vector Machine Quadratic Programming problem (Theorem 4.4).

• A new angle convergence criterion for Gilbert’s Algorithm in Section 4.2.

• The Two Point Algorithm in Appendix A.

5.2 Possible Extensions

Possible extensions of this work include

• The use of kernel Gram-Schmidt with other standard methods in linear al-

gebra. Kernel Gram-Schmidt produces a matrix of nonlinearly preprocessed

data. This matrix may be used in conjunction with Least Squares methods,

the Singular Value Decomposition, linear regression, and other classification

methods (e.g. linear perceptrons). This technique would offer an alternative

to existing kernel methods, in particular kernel Principal Component Analy-

sis [43], Support Vector Regression [46], and kernel Fisher Discriminant [31].

In particular, using kernel Gram-Schmidt would allow much larger data sets

than kernel PCA and kernel Fisher Discriminant.

• Kernel selection using our kernel evaluation method in Chapter 3 combined

with some type of gradient search algorithm. This would automate the pro-

cess of kernel selection and most likely be more effective than our present

exhaustive search.

• Use of the Two Point Algorithm in conjunction with the angle convergence

criterion to find the point on a convex set closest to the origin. This method

might be faster than the known methods for solving this problem in [17], [1],

[32], and [54].
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5.3 Open Questions

Some questions raised during the course of this research include

• Is there an effective way of running kernel Gram-Schmidt backwards? That

is, how can we represent the results of an algorithm operating on the prepro-

cessed data matrix in terms of our original data?

• Is kernel Gram-Schmidt numerically stable?

• How can we select C in the Support Vector Machine Quadratic Programming

problem in Equation (1.3)? This question is addressed in [9] and [11].

• How does our kernel selection method compare to the fast modern algorithms

for training Support Vector Machines (see Chapter 4)? In other words, would

it be effective to use a fast modern SVM training algorithm to select kernels

just by brute force (training many SVMs)? Or is our method still faster?

Does our method yield more information about the final SVM?

• Can Theorems 4.2 and 4.4 in Chapter 4 be extended to work with the Support

Vector Machine soft margin generalization (see Section 1.2.1)?

• How does the nonseparable SVM generalization in Section 4.4 compare to

the standard soft margin generalization [10]?
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Appendix A

TWO POINT ALGORITHM

While developing Gilbert’s Algorithm for Support Vector Machines in Chapter

4 we discovered a similar algorithm which we call the Two Point Algorithm. To

describe the Two Point Algorithm we use the notation we used to describe Gilbert’s

Algorithm in Section 4.2. Specifically, we set

[a,b]∗ =

⎧⎪⎨
⎪⎩

a if −(a,b − a) ≤ 0

a + −(a,b−a)
‖b−a‖2 (b − a) if 0 < −(a,b − a) < ‖b− a‖2

b if ‖b− a‖2 ≤ −(a,b − a)

for a,b ∈ R
n. In addition, we say that

a < b if a �= b and [a,b]∗ = a
a ∼ b if a �= b and [a,b]∗ �= a,b
a > b if a �= b and [a,b]∗ = b.

and we use notation such as

a ≤ b if a = b or a < b.

With these definitions, [a,b]∗ is again the point on the line segment from a

to b closest to the origin, a < b if [a,b]∗ = a, and a ∼ b if [a,b]∗ is between a

and b. Writing S = {sk}pk=1 and denoting the convex hull of S by CS, we have the

following lemmas.

Lemma A.1. If a < b then ‖a‖ < ‖b‖.
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Proof. By hypothesis we have a �= b and −(a,b − a) ≤ 0. If a and b are

linearly independent then using the Cauchy-Schwarz inequality we get

‖a‖ ≤ (b, a)

‖a‖ ≤ ‖b‖‖a‖
‖a‖ = ‖b‖.

If a = λb for some λ ∈ R then we have

−(λb,b − λb) ≤ 0
−λ‖b‖2 + λ2‖b‖2 ≤ 0

λ(λ− 1) ≤ 0
0 ≤ λ ≤ 1.

Since a �= b we have 0 ≤ λ < 1 so that ‖a‖ = λ‖b‖ < ‖b‖. Q.E.D.

Lemma A.2. Suppose s∗ ∈ CS. Then the following are equivalent:

(a) s∗ is the point in CS closest to the origin,
i.e ‖s∗‖ ≤ ‖s‖ for all s ∈ CS

(b) s∗ ≤ s for all s ∈ CS
(c) s∗ ≤ sk for k = 1, . . . , p.

Proof. (a) ⇒ (b). Fix s ∈ CS \{s∗}. Let λ0 = − (s∗, s−s∗)
‖s−s∗‖2 and t = (1−λ0)s

∗ +

λ0s. If we assume that λ0 > 0 then we can show using (a) that t ∈ CS but that

‖t‖ < ‖s∗‖. (See the proof of Theorem 4.2.) Thus λ0 ≤ 0 and s∗ < s.

(c) ⇒ (a). Let H = {x : (s∗,x − s∗) ≥ 0}. Note that H is a closed half-

space containing S (since s∗ ≤ sk for k = 1, . . . , p). Since H is convex we see that

CS ⊂ H . Further, h ∈ H \ {s∗} implies that s∗ < h so by Lemma A.1 ‖s∗‖ < ‖h‖,
i.e. ‖s∗‖ < ‖h‖ for every h ∈ H \ {s∗}. This implies that ‖s∗‖ < ‖s‖ for all

s ∈ CS \ {s∗} since CS \ {s∗} ⊂ H \ {s∗}. Q.E.D.

Lemma A.3. Fix s0 ∈ R
n. Then the map

t → [t, s0]
∗

is continuous on R
n.
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Proof. Denote the map t → [t, s0]
∗ by f . Assume s0 �= 0 and define

H = {x : (s0,x − s0) ≥ 0}
B = {x : ‖ s0

2
− x‖ ≤ ‖ s0

2
‖}

E = R
n \ (H◦ ∪B◦),

where H◦ and B◦ denote the interiors of H and B. We note that H,B, and E are

closed and that R
n = H ∪ B ∪ E. To show that f is continuous it is enough to

show that f |H , f |B, and f |E are continuous.

Suppose t ∈ H \ {s0}. Then (s0, t− s0) ≥ 0 which implies that

(t, s0) ≥ ‖s0‖2

−(t, s0) + ‖t‖2 ≥ ‖s0‖2 − 2(t, s0) + ‖t‖2

−(t, s0 − t) ≥ ‖s0 − t‖2.

Thus f(t) = [t, s0]
∗ = s0, and since f(s0) = s0 we see that f |H ≡ s0 is continuous.

Next suppose t ∈ B \ {s0}. Then ‖ s0
2
− t‖ ≤ ‖ s0

2
‖ which implies that

‖ s0
2
− t‖2 ≤ ‖ s0

2
‖2

−(t, s0) + ‖t‖2 ≤ 0.

Hence f(t) = [t, s0]
∗ = t and again f(s0) = s0 so that f |B(t) = t is continuous.

Finally, suppose t ∈ E\{s0}. Then (s0, t−s0) ≤ 0 and ‖ s0
2
−t‖ ≥ ‖ s0

2
‖, which

imply 0 ≤ λ0 = −(t,s0−t)
‖s0−t‖2 ≤ 1 as previously. Thus f(t) = [t, s0]

∗ = (1− λ0)t + λ0s0

is continuous on E \ {s0}. To see that f |E is continuous at s0 we note that

‖f(s0) − f(t)‖ = ‖s0 − (λ0(s0 − t) + t)‖
= ‖(s0 − t)(1 − λ0)‖
= ‖s0 − t‖|1 − λ0|
≤ ‖s0 − t‖.

We conclude that t → [t, s0]
∗ is continuous as claimed. Q.E.D.

These lemmas assist in the proof of the following theorem, which we call the

Two Point Algorithm.

Theorem A.4. Let z = (s1, . . . , sp, s1, . . . , sp, s1, . . . , sp, . . . ), and define

(wk)
∞
k=1 by w1 = z1,wk = [wk−1, zk]

∗ for k ≥ 2. Then lim
k→∞

wk = s∗, where s∗

is the closest point in CS to the origin.
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Proof. Since wk ∈ CS for all k the sequence (wk)
∞
k=1 is bounded so by the

Bolzano-Weierstrass Theorem there exists a subsequence (tj = wkj
)∞j=1 converging

to some t ∈ R
n. In fact, t ∈ CS since CS is closed.

Case I: t = s∗. By Lemma A.1, ‖w1‖ ≥ ‖w2‖ ≥ · · · ≥ ‖s∗‖ so that (‖wk‖)∞k=1

converges. Since wkj
→ t = s∗ as j → ∞ we see that ‖wk‖ → ‖s∗‖ as k → ∞.

Now combining Lemma A.2(b) and the Cauchy-Schwarz inequality we get

‖s∗‖2 ≤ (s∗,wk) ≤ ‖s∗‖‖wk‖

so that (s∗,wk) → ‖s∗‖2 as k → ∞ and hence

‖wk − s∗‖2 = ‖wk‖2 − 2(s∗,wk) + ‖s∗‖2 → 0.

as k → ∞, or lim
k→∞

wk = s∗.

Case II: t �= s∗. Let (gm = sim)qm=1 be the subsequence of (si)
p
i=1 of terms

sim with t ≤ sim , and let (hr = sir)
p−q
r=1 be the subsequence of (si)

p
i=1 of terms sir

with t
>∼ sir . Note that {gm} ∩ {hr} = ∅ and {gm} ∪ {hr} = S as sets, and that

{hr} �= ∅ since ‖s∗‖ < ‖t‖ so by Lemma A.2(c) there exists si0 ∈ S with t
>∼ si0 .

For r = 1, . . . , p− q define

zr = [t,hr]
∗,

εr = ‖t‖ − ‖zr‖ > 0.

Let ε = min{ε1, . . . , εp−q}. Since the maps x → [x,hr]
∗ are continuous (Lemma

A.3) with [t,hr]
∗ = zr for each r we have δr > 0 such that

‖[x,hr]∗ − zr‖ < ε

when

‖x − t‖ < δr

for r = 1, . . . , p − q. Let δ = min{δ1, . . . , δp−q} and note that x ∈ Bε(zr) implies

‖x‖ < ‖t‖, where we use Bε(zr) = {x ∈ R
n : ‖x − zr‖ < ε} to denote the open ε

ball centered about zr.
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Next consider the sequence

v = (v1, . . . ,v2q−1) = (g1, . . . , gq, g1, . . . , gq−1).

Starting backwards with v2q−1 we get 0 < γ2q−1 ≤ δ such that

‖[x,v2q−1]
∗ − t‖ < δ

when

‖x − t‖ < γ2q−1.

Continuing on to v1 we get 0 < γ1 ≤ γ2 ≤ · · · ≤ γ2q−1 ≤ δ with

‖[x,vi]∗ − t‖ < γi+1

when

‖x − t‖ < γi

for i = 1, . . . , 2q − 2. If {gm} = ∅ let γ1 = δ.

Finally, pick N such that ‖tj−t‖ < γ1 for j ≥ N and consider the subsequence

(1) w(kN )+1 = [wkN
, z(kN )+1]

∗

(2) w(kN )+2 = [w(kN )+1, z(kN )+2]
∗

...
(q) w(kN )+q = [w(kN )+q−1, z(kN )+q]

∗

(q + 1) w(kN )+q+1 = [w(kN )+q, z(kN )+q+1]
∗

of (wk)
∞
k=1.

At step (1), z(kN )+1 = si0 for some 1 ≤ i0 ≤ p. If si0 is a term of (gm)qm=1,

say si0 = gm0 = vm0 , then w(kN )+1 ∈ Bγm0+1(t) since wkN
∈ Bγ1(t) ⊂ Bγm0

(t).

If z(kN )+2 is also a term of v, i.e. z(kN )+2 = vm0+1, then w(kN )+2 in step (2) is

contained in Bγm0+2(t).

Eventually, however, z(kN )+c is a term of (hr)
p−q
r=1 since {hr} �= ∅ implies that q

is the maximum length of a consecutive subsequence of v consisting of consecutive
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Figure A.1: Two Point Algorithm. Here we illustrate the behavior of the two point
algorithm. On the left (a) s∗ ∈ S, and the algorithm, whose progress is tracked by
the jagged line, converges to s∗ in at most p steps (guaranteed). In the middle (b),
s∗ �∈ S but the algorithm still converges to s∗ (in less than p steps for this example
— not guaranteed). On the right (c), the algorithm converges only asymptotically
to s∗.

terms in z. We choose the smallest c in 1, . . . , q + 1 such that z(kN )+c is a term of

(hr)
p−q
r=1, say z(kN )+c = hr0 = sir0 . Then we have w(kN )+c−1 ⊂ Bδ(t) so that

w(kN )+c = [w(kN )+c−1, z(kN )+c]
∗

is contained in Bε(zr0). This implies that

‖t‖ > ‖w(kN )+c‖ ≥ ‖w(kN )+c+1‖ ≥ . . . ,

which implies that

‖t‖ > ‖tN+c‖ ≥ ‖tN+c+1‖ ≥ . . . ,

which contradicts the fact the tj → t. In other words, case II (t �= s∗) never

happens. Q.E.D.

In some instances, the Two Point Algorithm (the sequence in Theorem A.4)

will converge in a finite number of steps. In particular this will occur if s∗ ∈ S.

If s∗ /∈ S finite convergence may still occur, but it is not guaranteed. Figure A.1

illustrates the convergence of the two point algorithm in a variety of situations.

Figure A.1 also shows the similarity of the Two Point Algorithm to Gilbert’s

Algorithm (compare Figure 4.2). In particular, we note that both the Two Point
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Algorithm and Gilbert’s Algorithm become mired in the asymptotic convergence

in Figure A.1(c). In that situation both algorithms also converge at a similar rate:

they are both O(p) (recall S = {sk}pk=1) for a single step.

Of course, the Two Point Algorithm and Gilbert’s Algorithm are different as

well. The main difference being that the Two Point Algorithm progresses randomly

while Gilbert’s Algorithm does not. Another difference is the cost of the initial

progress of the two algorithms. Specifically, the Two Point Algorithm is less costly

for its initial progress than Gilbert’s Algorithm (the Two Point Algorithm is O(1)

for its initial steps while Gilbert’s Algorithm is O(p) for every step).
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Appendix B

MATLAB CODE

Here we include the MATLAB (ver 5.3.1 [30]) code which was used to implement

the various algorithms presented in this dissertation.

B.1 Veronese Map

function V = Veronese(X,d)

%VERONESE Veronese map

% V = VERONESE (X,D) returns a matrix V whose columns are

% the Veronese images of degree D of the columns of X.

[n,m] = size(X);

N = prod(2:n+d)/(prod(2:n)*prod(2:d)) - 1;

V = zeros(N,m);

c = [ones(1,d),n+1];

lc = d;

j = 1;

% c cycles through the monomials of degree d down to degree 1

for i = 1:N

V(i,:) = prod(X(c(1:lc),:),1);

if c(j) < n

c(j) = c(j)+1;

elseif c(j+1) < n-1

c = [(c(j+1)+1)*ones(1,j+1),c(j+2:lc+1)];

j = 1;

elseif c(j+1)<n

j = j+1;

c(j) = c(j)+1;

else

c = [ones(1,j-1),n+1];

lc = j-1;
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j = 1;

end

end

B.2 Fisher’s Discriminant

function [J,a] = Fisher (beta,gamma)

%FISHER calculates Fisher’s criterion

% [J,A] = FISHER (BETA,GAMMA) maximizes Fisher’s

% criterion. Inputs: BETA is the X class with data points as

% columns, and GAMMA is the Y class. Outputs: J is the maximum

% value of Fisher’s criterion function, and A is the vector

% normal to Fisher’s hyperplane.

N = size(beta,2);

M = size(gamma,2);

S1 = (beta*beta’ - (sum(beta,2)*sum(beta,2)’)/N)/(N-1);

S2 = (gamma*gamma’ - (sum(gamma,2)*sum(gamma,2)’)/M)/(M-1);

Sc = S1 + S2;

m1 = sum(beta,2)/N;

m2 = sum(gamma,2)/M;

b = m1-m2;

a = Sc\b;

Sca = Sc*a;

atSba = (sum(a’*beta)/N - sum(a’*gamma)/M)^2;

atSca = a’*Sca;

J = atSba/atSca;

B.3 Kernel Gram-Schmidt

function Xtilde = kerGS (X,stol,mtol,ker,kp1,kp2,maxdim)

%KERGS performs implicit Gram-Schmidt via kernel.

% XTILDE=KERGS(X,STOL,MTOL,KER,KP1,KP2,MAXDIM) finds the coeffs of

% the data X with respect to an orthonormal basis implicitly

% calculated using the kernel KER. Inputs: data matrix X with

% data points as columns, relative error STOL for subspace

% inclusion (recommend .001), machine precision tolerance MTOL

% (recommend 6), inline kernel KER with two parameters KP1, KP2,

% and maximum allowed dimension MAXDIM of problem. Outputs a data
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% matrix XTILDE with columns containing the coefficients of the

% data in the orthonormal basis (dim is #rows).

n = size(X,2);

Xtilde = zeros(maxdim+1,n);

PivotIndices = zeros(maxdim,1);

PivotValues = zeros(maxdim,1);

c = (1-stol)^2;

dimtest = zeros(n,1);

d=1;

for i = 1:n

if c*ker(X(:,i),X(:,i),kp1,kp2) > Xtilde(1:d,i)’*Xtilde(1:d,i)

for j = 1:n

dimtest(j) = sqrt(abs(ker(X(:,j),X(:,j),kp1,kp2) - ...

Xtilde(1:d,j)’*Xtilde(1:d,j)));

end

[PivotValues(d),bestdim] = max(dimtest);

PivotIndices(d) = bestdim;

if d > mtol

if log(PivotValues(d)) > log(PivotValues(d-mtol))

d = d - mtol;

break

end

end

d=d+1;

for j = 1:n

Xtilde(d,j) = (ker(X(:,bestdim),X(:,j),kp1,kp2) - ...

Xtilde(1:d-1,bestdim)’*Xtilde(1:d-1,j))/ ...

dimtest(bestdim);

end

if d > maxdim

break

end

end
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end

Xtilde = Xtilde(2:d,:);

B.4 Gilbert’s Algorithms for SVMs

function [w,b] = trainSVM(X,Y,ker,e,Ctilde)

%TRAINSVM trains support vector machines

% [W,B] = TRAINSVM(X,Y,KER,E,CTILDE) trains a SVM using

% Gilbert’s Algorithm for Support Vector Machines.

%

% INPUTS: X -- data matrix with points as columns

% Y -- row vector containing data labels (1 or -1)

% KER -- inline kernel function

% E -- angle convergence criterion

% CTILDE -- Friess’ constant

%

% OUTPUTS: W -- the point sstar closest to the origin

% (the normal to the maximal margin hyperplane)

% B -- bias: separating hyperplane has form x.w + b = 0

% report -- time, flops, # kernel evaluations

%

% NOTES: (1) KER takes two matrices of the same size

% with points as columns and returns a row vector

% of kernels. The first entry of the vector is the

% kernel of the 1st column of each input matrix, etc.

% (2) W is (alpha1,...,alphan,-beta1, ...

% -betam), where n = #class1, m = #class2.

% (3) the points WK in Gilbert’s Algorithm are kept

% internally as structs, where the fields are:

% .alphabeta -- as in (1),

% .norm2 -- the norm^2 of WK,

% .nonzeros -- a vector of length n+m with

% 1’s where nonzero entries of WK occur.

% (4) CACHE is an internally maintained vector which

% contains the kernel (inner) products of the points

% WK in Gilbert’s Algorithm with the points in X.

st = cputime;

flops(0);

class1 = find(Y==1);

class2 = find(Y==-1);
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n = length(class1);

m = length(class2);

N = n + m;

i = class1(round(rand(1)*(n-1))+1);

j = class2(round(rand(1)*(m-1))+1);

wk.alphabeta = zeros(1,N);

wk.alphabeta([i j]) = [1 -1];

wk.norm2 = ker(X(:,i),X(:,i)) - 2*ker(X(:,i),X(:,j)) + ...

ker(X(:,j),X(:,j));

wk.norm2 = wk.norm2 + 2/Ctilde;

wk.nonzeros = zeros(1,N);

wk.nonzeros([i j]) = [1 1];

kerevals = 3;

cache = ker(X,repmat(X(:,i),1,N))-ker(X,repmat(X(:,j),1,N));

cache(i) = cache(i) + 1/Ctilde;

cache(j) = cache(j) - 1/Ctilde;

kerevals = kerevals + 2*N;

[wk,avgwk,cache,avgcache,CV,gilevals] = ...

gilbert(X,class1,class2,wk,[i;j],ker,cache,Ctilde);

kerevals = kerevals + gilevals;

fprintf(’.’);

solution = 0;

while ~solution

[wk,avgwksol,cache,avgsolcache,CV,gilevals] = ...

gilbert(X,class1,class2,wk,CV,ker,cache,Ctilde);

kerevals = kerevals + gilevals;

fprintf(’.’);

avgwknz = find(avgwk.nonzeros);

coserr = avgwk.alphabeta(avgwknz)*(avgsolcache(avgwknz))’/...

(sqrt(avgwk.norm2*avgwksol.norm2));

fprintf(’ %f\n’,coserr);

if coserr >= 1 - e

solution = 1;

else
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avgwk = avgwksol;

end

end

w = avgwksol.alphabeta;

b = -(min(avgsolcache(class1)) + max(avgsolcache(class2)))/2;

fprintf(’Report\n’);

fprintf(’------\n’);

fprintf(’Time: %f seconds\n’,cputime-st);

fprintf(’Flops: %d\n’,flops);

fprintf(’Kernel Evaluations: %d\n’,kerevals);

function [wk,avgwk,cache,avgcache,CV,kerevals] = ...

gilbert (X,class1,class2,wk,CV,ker,cache,Ctilde)

%GILBERT performs steps in Gilbert’s algorithm

% [WK,AVGWK,CACHE,AVGCACHE,CV,KEREVALS] = GILBERT(X, ...

% CLASS1,CLASS2,WK,CV,KER,CACHE,CTILDE) performs steps in

% Gilbert’s algorithm in order to compute the associated

% averages.

%

% INPUTS: X -- data matrix with points as columns

% CLASS1,CLASS2 -- class indices in X

% WK -- last point in sequence

% CV -- last contact vector used (column vector [i;j])

% KER -- inline kernel function

% CACHE -- inner product cache

% CTILDE -- Friess’ constant

%

% OUTPUTS: WK -- new point in sequence

% AVGWK -- average over repeated contact vectors

% CACHE -- updated cache

% AVGCACHE -- inner product cache of avgwk with X

% CV -- newest contact vector

% KEREVALS -- number of kernel evaluations performed

%

N = size(X,2);

avgwk.alphabeta = zeros(1,N);

avgwk.norm2 = 0;
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avgwk.nonzeros = zeros(1,N);

avgcache = zeros(1,N);

avgcount = 0;

kerevals = 0;

CVs = CV;

i = 2;

cycle = 0;

while ~cycle

CVs(:,i) = contact(class1,class2,cache);

[wk,cache,braevals] = bracket(wk,CVs(1,i),CVs(2,i), ...

X,ker,cache,Ctilde);

kerevals = kerevals + braevals;

wknz = find(wk.nonzeros);

avgwk.alphabeta(wknz) = avgwk.alphabeta(wknz) + ...

wk.alphabeta(wknz);

avgwk.nonzeros(wknz) = ones(1,length(wknz));

avgcache = avgcache + cache;

avgcount = avgcount + 1;

% update avgwk, avgcache

if sum(sum(abs(repmat(CVs(:,i),1,i-1)-CVs(:,1:(i-1))),1)==0)

cycle = 1;

else

i = i + 1;

end

end

avgwknz = find(avgwk.nonzeros);

avgwk.alphabeta(avgwknz) = avgwk.alphabeta(avgwknz)/avgcount;

avgcache = avgcache/avgcount;

avgwk.norm2 = avgwk.alphabeta(avgwknz)*(avgcache(avgwknz))’;

CV = CVs(:,i);

function CV = contact(class1,class2,cache);

%CONTACT computes the contact vector indices
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% CV = CONTACT(CLASS1,CLASS2,CACHE) computes the contact vector

% indices CV = [I;J] for the data given the two classes CLASS1

% and CLASS2 and the inner product CACHE.

[mU,i] = max(-cache(class1));

[mV,j] = max(cache(class2));

CV = [class1(i);class2(j)];

function [wk,cache,kerevals] = bracket(wk,i,j,X,ker,cache,Ctilde)

%BRACKET calculates [WK,X(I)-X(J)]* using kernel KER

% [WK,CACHE,KEREVALS] = BRACKET(WK,I,J,X,KER,CACHE,CTILDE)

% computes the closest point on the line segment from WK to

% X(I) - X(J) to the origin after implicit remapping by KER.

%

% INPUTS: WK -- previous point in Gilbert’s Algorithm

% (row vector with alphai’s, -betaj’s)

% I,J -- determine the secant X(:,I)-X(:,J)

% X -- two class data with points as columns

% KER -- inline kernel function

% CACHE -- the inner product cache

% CTILDE -- Friess’ constant

%

% OUTPUTS: WK -- next point in Gilbert’s Algorithm (closest pt)

% CACHE -- the updated inner product cache

% KEREVALS -- number of kernel evaluations

wksij = cache(i) - cache(j);

norm2sij = ker(X(:,i),X(:,i)) - 2*ker(X(:,i),X(:,j)) + ...

ker(X(:,j),X(:,j));

norm2sij = norm2sij + 2/Ctilde;

kerevals = 3;

top = wk.norm2 - wksij;

bot = wk.norm2 - 2*wksij + norm2sij;

if top > eps

N = size(X,2);

if top < bot

lambda = top/bot;

wknz = find(wk.nonzeros);

wk.alphabeta(wknz) = (1-lambda)*wk.alphabeta(wknz);

wk.alphabeta([i j]) = wk.alphabeta([i j]) + lambda*[1 -1];

wk.norm2 = wk.norm2 - top^2/bot;
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wk.nonzeros([i j]) = [1 1];

cache = (1-lambda)*cache + ...

lambda*(ker(X,repmat(X(:,i),1,N)) - ...

ker(X,repmat(X(:,j),1,N)));

cache(i) = cache(i) + lambda/Ctilde;

cache(j) = cache(j) - lambda/Ctilde;

else

wk.alphabeta = zeros(1,N);

wk.alphabeta([i j]) = [1 -1];

wk.norm2 = norm2sij;

wk.nonzeros = wk.alphabeta;

wk.nonzeros(j) = 1;

cache = ker(X,repmat(X(:,i),1,N)) - ker(X,repmat(X(:,j),1,N));

cache(i) = cache(i) + 1/Ctilde;

cache(j) = cache(j) - 1/Ctilde;

end

kerevals = kerevals + 2*N;

end
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