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Abstract 
The determination of protein-protein interaction networks is a difficult and important problem in biology.  
Present day approaches to this problem are usually based on two hybrid experimental measurements 
coupled with refinement and extrapolation using computational techniques.  Here we consider a 
computational method for similar refinement and extrapolation using experimental data from which protein 
interactions can not be directly inferred.  Our dataset was derived from an experiment designed to examine 
cell growth, tumorigenesis, and differentiation in a highly malignant cat melanoma cell line using 2-D gel 
electrophoresis and MALDI-TOF mass spectrometry.  Instead of direct information about protein-protein 
interactions, this experiment yields protein complexes.  We analyze and interpret these complexes to 
provide predictions of protein-protein interactions.  We find that we are able to predict when a protein pair 
belongs to a complex with ~96% accuracy, suggesting that these protein pairs interact.  We extrapolate the 
experimentally identified interaction pairs to the entire cat proteome in order to obtain a cat protein 
interaction network.  This network has a scale free degree distribution, in agreement with previous 
observations about protein interaction networks. 
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1. Introduction 
The determination of protein-protein networks is an 
important problem in biology which has been 
undertaken using both experimental and 
computational approaches.  Common experimental 
approaches for identifying protein-protein 
interactions on a large scale include two hybrid 
systems (Fields and Song 1989), mass spectrometry 
(Ho, Gruhler et al. 2002), and protein chips (Zhu, 
Bilgin et al. 2001).  Computational approaches for 
identifying protein-protein interactions include 
theoretical approaches based on genome sequences 
and phylogeny (Dandekar, Snel et al. 1998; Enright, 
Iliopoulos et al. 1999; Marcotte, Pellegrini et al. 
1999; Goh, Bogan et al. 2000; Pazos and Valencia 
2001), as well as approaches which refine and 
extrapolate directly from experimental data such as 
two hybrid (Bock and Gough 2001; Giot, Bader et al. 
2003; Martin, Roe et al. 2005).  In this paper we 
consider a computational method for inferring 
protein-protein networks using a different type of 
experimental data. 

In previous work (Rasheed, Mao et al. 2005), we 
generated protein profiles for the study of the trans-
differentiation of cat melanoma into neuronal cells 
using 2-D gel electrophoresis and Matrix Assisted 
Laser Desorption Ionization Time-of-flight (MALDI-
TOF) mass spectrometry.  The data we generated in 
this experiment does not directly provide information 
on protein-protein interactions and did not cover the 
entire cat proteome.  It does, however, provide 
accurate information about certain protein groups in 
terms of spots in the 2-D gel.  Each spot in the gel 
contains either a single protein per spot or exhibits 
multiple proteins in a complex. 

In this paper, we consider a computational 
approach for inferring a proteome wide interaction 
network using these protein complexes.  We start by 
investigating the hypothesis that these complexes are 
composed of functionally related and/or interacting 
proteins.  We exhibit an ability to predict (with ~96% 
10-fold cross-validation accuracy) which protein 
pairs are likely to occur together in a complex. 

If we then assume that the protein complexes are 
composed of interacting proteins, we relate the 



interactions to the underlying protein sequences to 
extrapolate from the 46 proteins present in our 
experiment to the entire cat proteome (569 proteins).  
We validate this network by confirming that it has a 
scale-free degree distribution and by verifying the 
existence of biologically meaningful protein 
pathways.  The end result is a computationally 
inferred protein-protein interaction network for cat.  
To our knowledge this is the only feline protein 
interaction network (inferred or otherwise) presently 
available. 
 
2. Materials and Methods 
 
2.1 Proteomics analyses of Feline cells  
The complete details of the experimental protocol can 
be found in (Rasheed, Mao et al. 2005).  Here we 
present an overview for completeness.  The 
biological and molecular characteristics of a highly 
malignant cat melanoma cell line (CT1413) have 
been described in (Rasheed 1983).  For proteomics 
analyses, cells were grown in minimal media for 24 
hours.  After 24 hours, culture medium was removed 
and fresh growth medium containing RD114 virus 
was added.  Cells were harvested after trans-
differentiation (usually after 48 hours).  RD114 is an 
endogenous retrovirus originally derived from the 
brain of a young cat and grown in human 
rhabdomyosarcoma cell line (McAllister, Nicolson et 
al. 1972).  To validate protein profiles two 
independent cell culture experiments were conducted 
almost 12 months apart and proteomes of both cell 
types were analyzed separately. 

Next, proteins were extracted from 2 × 107 cells 
from each set of experimental (trans-differentiated) 
and control melanoma cells.  Two different reagents 
were used to solubilize proteins as rapidly as possible 
(approximately 10-15 seconds).  The most soluble 
membrane proteins were removed in the first 
extraction and the less soluble proteins were 
separated in the second fraction. All cell lysates were 
sonicated for 2-seconds and clarified by 
centrifugation for 90 minutes.  Proteins were 
separated by 2-D gel electrophoresis and stained with 
Coomassie blue and protein spots from each of the 15 
gels were evaluated by the use of a CCD camera and 
an image-processing analytical program (PDQuest 
from BioRad).  This program compared the quality 
and normalized quantity of each spot across 15 gels, 
then created a master gel-image of 3,129 well-
calibrated, quantifiable spots using internal reference 
proteins.  All differentially expressed (i.e. 
upregulated and down-regulated) proteins were 
identified in each gel and 467 spots (including 
several spots common to both cell types) were 

excised from multiple gels.  Proteins were digested 
using trypsin and peptide fingerprints of each in-gel 
digest and peptide fingerprints were analyzed by 
MALDI-TOF mass spectrometry. 

Finally, spectra were submitted to the Swiss-Prot 
protein database (Boeckmann, Bairoch et al. 2003) 
for protein identification.  We used manual 
acquisitions of spectra, which yielded more reliable 
and reproducible results compared to automated 
acquisitions. The confidence level in our protein 
identification was high because almost all proteins 
were confirmed in corresponding spots in multiple 
gels and by duplicating the entire experiment for 
validation.  Furthermore, we included only those 
proteins that were most reproducible in the high 
stringency Feline Protein database and results were 
confirmed in other mammalian species (Boeckmann, 
Bairoch et al. 2003).  Altogether, we identified 46 
proteins among 302 spots from multiple gels tested. 
All spots in which proteins were not identified 
reproducibly by mass spectrometry from the same or 
different gels were not included in any analysis. 
 
2.2 Inferring Interactions from Complexes 
The data consisted of groups (complexes) of proteins 
found together in single spots separated by 2-D gel 
electrophoresis.  We removed redundant complexes 
and did not consider complexes with only one 
protein.  This left sets of unique complexes with 2 to 
8 proteins per complex. 

Our initial assumption was that any protein pair 
within a complex interacts.  However, it seems likely 
that a protein pair that occurs in more than one 
complex is more likely to interact.  We therefore 
assigned confidence measures to the interactions 
within the complexes.  Our measure is based on the 
probability that a protein pair will occur at random in 
multiple complexes. 

We observe that the probability that proteins A 
and B occur in a complex of size n at random is Pn = 
P(A,B occurring in complex of size n) = 
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where a is the number of proteins.  Next, we 
calculate the probability that A and B occur in exactly 
m of c complexes.  This probability is given by Pm,n = 
P(A,B occurring in exactly m of c possible 
complexes) =  
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However, we are more interested in the probability 
that A and B occur in m or more complexes.  This is 
given by  
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Plots showing how Cm,n varies with m for different 
values of n are shown in Figure 1.  The curves shown 
in Figure 1 agree with intuition because larger 
complexes lead to greater probabilities that a given 
pair will occur in multiple complexes.  Since our 
complexes vary from in size from 2 to 8, we use the 
curves Cm,2 to Cm,8 to estimate probability values for 
protein interactions.  As an example, the curve Cm,8 
tells us that a protein pair must occur in 11 
complexes to be considered significant at the .05 
level, while the curve Cm,4 tells us that a protein pair 
must occur in 5 complexes to be considered 
significant at .05. 

 
Figure 1:  Probabilities of occurrence of a protein pair in m 
complexes, each of size n.  The probabilities decrease as 
the number of complexes m increases and the complex size 
n decreases. These curves confirm intuition: larger 
complexes lead to greater probabilities that a given pair 
will occur in multiple complexes. 
 
2.3 Relating Interactions to Sequence 
After obtaining a set of protein-protein interactions, 
we seek to evaluate our ability to predict when two 
proteins will interact.  There are a variety of methods 
available for accomplishing this goal, including the 
methods described in (Bock and Gough 2001; 
Sprinzak and Margalit 2001; Ben-Hur and Noble 
2005; Martin, Roe et al. 2005).  We use the most 
general of these methods (Ben-Hur and Noble 2005; 
Martin, Roe et al. 2005) so that we may extrapolate 
our dataset to the full proteome later in our analysis.  
The methods of (Ben-Hur and Noble 2005; Martin, 
Roe et al. 2005) relate protein interactions to 
sequence using pairwise kernels in Support Vector 
Machines (SVMs) (Burges 1998; Bennet and 
Campbell 2000; Cristianini and Shawe-Taylor 2000).  

We used protein sequences obtained from Swiss-Prot  
(Boeckmann, Bairoch et al. 2003) and the pairwise 
product kernel in (Martin, Roe et al. 2005).  This 
method uses SVMs and tensor products (Faulon, 
Churchwell et al. 2003; Faulon, Visco et al. 2003), 
and has also been applied successfully to the 
prediction of β-strand ordering in protein structure 
prediction (Brown, Martin et al. 2005). 

The method used here to relate interactions to 
sequnces is based on the use of a symmetric tensor 
product string kernel (Martin, Roe et al. 2005).  We 
use this kernel in a Support Vector Machine to relate 
sequences to interactions.  Support Vector Machines 
are binary classifiers which make decisions by 
locating a maximal margin hyperplane (Burges 1998; 
Bennet and Campbell 2000; Cristianini and Shawe-
Taylor 2000).  In this work, Support Vector 
classification was performed using SVMlight  
(Joachims 1999) with the kernel modifications in 
(Martin, Roe et al. 2005). A patch for SVMlight, along 
with the necessary software for calculating signature 
products for protein sequences can be obtained from 
http://www.cs.sandia.gov/~smartin/. 

SVMs require not only protein pairs that interact, 
but also pairs that do not interact.  Non-interacting 
pairs were obtained by sampling at random from the 
complement of the set of protein pairs taken to 
interact (as calculated in Section 2.2).  To test the 
ability of the SVMs to relate the protein interaction 
pairs to their underlying sequences, we used 10-fold 
cross-validation.  We perform 10-fold cross-
validation by dividing at random our dataset into ten 
equal size subsets.  For each of the subsets, we obtain 
predictions from a SVM trained on the remaining 
nine subsets.  We measure the accuracy, sensitivity, 
and specificity of our predictions.  The accuracy is 
the ratio (TP+TN)/(TP+FP+TN+FN); the sensitivity 
is the ratio TP/(TP+FN); and the specificity is the 
ratio TN/(TN+FP).  The accuracy measures the 
overall performance of a classifier; the sensitivity 
measures the performance of the classifier on the 
positive examples (interactions); and the specificity 
measures the performance of the classifier on the 
negative examples.  Finally, to extrapolate from a 
subset of protein pairs to a full proteome, we simply 
train our SVM on the full set of known protein pairs 
(using negatives selected at random) and make 
predictions on the full proteome. 
 
3. Results 
We have compared 3129 protein spots in 15 gels 
derived from RD114-infected and uninfected 
melanoma cells.  We used two independent 
experiments and analyzed peptide fingerprints of 467 
differentially expressed (up-regulated and down-
regulated) protein spots by MALDI-TOF mass 



spectrometry. A total of 46 proteins were confirmed 
unambiguously from 302 spots excised from multiple 
gels in both experiments. The remaining 165 spots 
were discarded because they did not identify any 
protein from the Swiss-Prot database (Boeckmann, 
Bairoch et al. 2003), or proteins were not identified 
reproducibly from corresponding spots in different 
gels. 

Each gel spot contained either a single protein 
per spot in a non-complexed form or a complex of 2–
8 proteins in one spot. The frequency of distribution 
for the 46 proteins among the 302 spots included 82 
single protein spots (32 in melanoma and 50 in 
neuronal cells) and 220 spots containing protein 
complexes (103 in melanoma and 117 in neuronal 
cells).  From these complexes, we removed 36 
redundant complexes to arrive at 184 complexes 
made up of 45 proteins. 

We computed (as described in Materials and 
Methods, Section 2.2) the probability of protein pairs 
occurring by chance alone in multiple complexes.  
Using our most conservative estimate Cm,8 we 
identified 31 protein pairs at the .05 confidence level.  
These pairs are listed in the Appendix.  Using our 
least conservative estimate Cm,2 we identified 142 
protein pairs. 

We next related the protein pairs to sequence for 
different probability estimates using our product 
Support Vector Machine (SVM) code (see Materials 
and Methods, Section 2.3).  To test the ability of the 
SVMs to relate the protein pairs to their underlying 
sequences, we used 10-fold cross-validation to 
compute the accuracy, sensitivity, and specificity of 
the SVMs.  The results of our calculation are shown 
in Table 1. 

According to this analysis, our accuracies range 
from ~97% when assuming a complex size of 8 to 
84% when assuming that any pair contained in a 
complex interacts.  These accuracies show that the 
results improve when we use smaller but more 
reliable training sets.  Since it is desirable to use 
larger training sets, we must choose between 
accuracy and training set size.  A good balance is 
obtained using the top 69 protein pairs.  These pairs 
occur in at least 6 complexes and have a p-value of < 
.05 when assuming that each complex has 5 proteins.  
This choice is also supported by the fact that the 
median complex size is 4 and the mean size is 4.5.  
The accuracy assuming each complex has 5 proteins 
is ~96%. 

 
 
 
 
 

 

Num. 
Pairs 

Num. 
Comps. 

Comp. 
Size Acc. Spec. Sens. 

300 1  83.5 84.7 81.6 

142 3 2 89.9 92.2 89.4 

98 4 3 92.8 91.8 92.8 

77 5 4 94.1 92.4 96.0 

69 6 5 95.7 95.6 96.3 

48 8 6 96.8 95.5 98.3 

40 9 7 96.3 95.0 96.7 

31 11 8 96.7 97.5 97.5 

 
Table 1:  Performance of the SVM model for the 
classification of protein pairs in complexes using 10-fold 
cross-validation.  The first and second columns were 
computed using Cm,n for the assumed complex size n in the 
third column.  The first row uses all protein pairs, which 
occur in even one complex.  Accuracy, specificity and 
sensitivity are all given as percentages. 
 

The fact that we are able to accurately predict 
when two proteins will occur in the same complex 
implies that there is some biological relevance to 
both the complexes and the protein pairs.  This idea is 
further supported by the fact that we used rapid lyses 
(see Materials and Methods, Section 2.1) and that our 
previous work (Rasheed, Mao et al. 2005) suggested 
that most of the complexes that we isolated 
represented functionally active rather than randomly 
aggregated proteins.  Our classification accuracies 
(Table 1) also confirm this notion.  For these reasons 
we hypothesize that the complexes obtained in our 
experiment are in fact functionally related and that 
the protein pairs we have identified interact.  Given 
this hypothesis, we can now extrapolate from the 
pairs identified in the experiment to a proteome wide 
interaction network for cat. 

To obtain our inferred feline protein interaction 
network, we first downloaded sequence information 
for all available (569) feline proteins from Swiss-
Prot/TrEMBL (Boeckmann, Bairoch et al. 2003).  
Using our model for relating sequences to 
interactions (trained on all 69 pairs occurring in 5 
complexes as discussed above), we extrapolated to all 
possible pairs of feline proteins.  We used a network 
drawing and visualization software (Cytoscape) to 
display and browse our network (Shannon, Markiel et 
al. 2003).  The visualization is shown in Figure 2. 

 



 
Figure 2:  Visualization of the inferred protein-protein 
interaction network using Cytoscape. 
 

We next examined the degree distribution of our 
inferred network.  This distribution is shown in 
Figure 3, where we plot log (node degree) vs. log 
(number of nodes with that degree).  The fact that 
these two quantities appear linearly related in our plot 
shows that our network has a scale-free degree 
distribution.  This finding supports the validity of our 
network because it has been observed that biological 
networks, including protein-protein networks, are 
scale-free (Barabasi and Albert 1999; Jeong, Tombor 
et al. 2000; Jeong, Mason et al. 2001). 

 
Figure 3:  Degree distribution of the inferred interaction 
network for cat.  The linear downward trend in this plot 
shows the scale-free nature of the degree distribution.  This 
type of distribution indicates that a few proteins (hubs) 
interact with many other proteins, while most proteins 
(spokes) interact with only a few other proteins. 
 

We also examined our inferred protein 
interaction network for biological relevance.  
Examination of the network has revealed that the 
most significant interactions in the cat melanoma 
cells involve signal-transducing proteins.  The 
highest frequencies of interactions in these cells were 
detected with integrin beta-1 (ITGB1), mass/stem cell 
growth factor receptor (KIT), protooncogene 

tyrosine-protein kinase (FES) and zona pellucida 
sperm-binding protein (ZPB).  Integrins are 
transmenbrane proteins present on the cell surface 
which interact with the extracellular matrix proteins, 
playing a critical role in cell proliferation, migration 
and differentiation.  These proteins are also essential 
for focal adhesion, vesicle transport, regulation of 
actin cytoskeleton and targeting to other membrane 
proteins.  Our results indicate that integrin beta-1 
interacted most significantly with 15 signal 
transducing proteins including membrane bound 
kinases, enzymes, phosphatases, growth factors and 
receptors, which facilitate assembly of distinct 
complexes that regulate numerous cellular functions. 

The KIT and FES protein-tyrosine kinases exhibit 
significant interactions with 10 and 3 distinct proteins 
respectively.  These proteins are essential for 
phosphorylation, dephosphorylation, activation and 
deactivation of a wide range of molecular processes 
that are critical for cell differentiation and 
neurogenesis.  The highly significant computational 
interactions of the sperm-binding protein ZPB in 
experimentally isolated complexes are particularly 
noteworthy as this domain of interaction has been 
shown to be required for connecting mechanosensory 
dendrites to sensory structures (Chung, Zhu et al. 
2001). 
 
4. Conclusion 
We have performed a computational analysis of the 
results of an experimental technique that can be used 
to obtain protein profiles and protein complexes from 
2-D gel electrophoresis and MALDI-TOF mass 
spectrometry.  In previous work (Rasheed, Mao et al. 
2005) this experiment was used to identify protein 
profiles showing that the trans-differentiation of 
melanoma into neuronal cells is directly associated 
with de novo expression of pro-inflammatory 
cytokines, neuro-regulatory enzymes/kinases, neuro-
trophic factors, and concomitant suppression of 
growth-promoting proteins.  In this work, we have 
provided computational evidence that the protein 
complexes obtained in the experiment also have 
biological relevance.  We have extrapolated the 
inferred protein-protein interactions to the entire 
feline proteome. 

The first evidence of this relevance consisted of 
the results of the derivation of a measure of the 
probability that a protein pair would occur at random 
in different groups of proteins (the complexes).  
Based on our measure, we found 31 protein pairs that 
occurred in multiple complexes at the .05 confidence 
level.  We next used a previously established method 
(Martin, Roe et al. 2005) to obtain a relationship 
between the sequences of the proteins in the protein 



pairs and the occurrence of the pairs in the 
complexes.  We showed that we could predict with 
~96% accuracy when a protein pair would occur in a 
complex. 

Finally, we extrapolated the protein interactions 
inferred from the complexes to obtain a protein 
interaction network for cat.  To our knowledge this is 
the only protein interaction network (inferred or 
otherwise) available for cat.  Another observation in 
support of the biological relevance of the complexes 
and of our proposed interactions was the observation 
of a scale-free degree distribution in our inferred 
network.  Further biological analysis was observed in 
the inferred network which emphasized the 
importance of several protein-protein interactions in 
the context of the original experiment. 
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7. Appendix 
 
Pair Prot. 1 Name Abbr. Acc. # Prot. 2 Name Abbr. Acc. # p-value 

1 Integrin beta-1 precursor ITGB1 P53713 Mast/stem cell growth factor recept KIT Q28889 <.001 
2 Integrin beta-1 precursor ITGB1 P53713 Sarcoplasmic/endoplasmic reticulum  SERCA2 Q00779 <.001 
3 Integrin beta-1 precursor ITGB1 P53713 Transferrin receptor protein 1 TFRC Q9MYZ3 <.001 
4 Sarcoplasmic/endoplasmic reticulum  SERCA2 Q00779 Mast/stem cell growth factor recept KIT Q28889 <.001 
5 Zona pellucida sperm-binding protei ZPB P48834 Integrin beta-1 precursor ITGB1 P53713 <.001 
6 Serum albumin precursor ALB P49064 Integrin beta-1 precursor ITGB1 P53713 <.001 
7 Proto-oncogene tyrosine-protein kin FES P14238 Integrin beta-1 precursor ITGB1 P53713 <.001 
8 Sarcoplasmic/endoplasmic reticulum  SERCA2 Q00779 Transferrin receptor protein 1 TFRC Q9MYZ3 <.001 
9 Serum albumin precursor ALB P49064 Mast/stem cell growth factor recept KIT Q28889 <.001 

10 Mast/stem cell growth factor recept KIT Q28889 Transferrin receptor protein 1 TFRC Q9MYZ3 <.001 
11 Pyruvate kinase, M1 isozyme PKM2 P11979 Integrin beta-1 precursor ITGB1 P53713 <.001 
12 Integrin beta-1 precursor ITGB1 P53713 Aminopeptidase N APN P79171 <.001 
13 Serum albumin precursor ALB P49064 Sarcoplasmic/endoplasmic reticulum  SERCA2 Q00779 <.001 
14 Proto-oncogene tyrosine-protein kin FES P14238 Mast/stem cell growth factor recept KIT Q28889 <.001 
15 Sodium/calcium exchanger 1 precurso NCX1 P48767 Integrin beta-1 precursor ITGB1 P53713 <.001 
16 Pyruvate kinase, M1 isozyme PKM2 P11979 Mast/stem cell growth factor recept KIT Q28889 0.002
17 Sodium/calcium exchanger 1 precurso NCX1 P48767 Mast/stem cell growth factor recept KIT Q28889 0.002
18 Proto-oncogene tyrosine-protein kin FES P14238 Sarcoplasmic/endoplasmic reticulum  SERCA2 Q00779 0.007
19 Zona pellucida sperm-binding protei ZPB P48834 Sarcoplasmic/endoplasmic reticulum  SERCA2 Q00779 0.007
20 Zona pellucida sperm-binding protei ZPB P48834 Mast/stem cell growth factor recept KIT Q28889 0.007
21 Integrin beta-1 precursor ITGB1 P53713 Alkaline phosphatase, tissue-nonspe ALPL Q29486 0.007
22 Zona pellucida sperm-binding protei ZPB P48834 Serum albumin precursor ALB P49064 0.016
23 Beta-glucuronidase precursor GUSB O97524 Integrin beta-1 precursor ITGB1 P53713 0.016
24 Glutamate decarboxylase, 67 kDa iso GAD67 P14748 Integrin beta-1 precursor ITGB1 P53713 0.016
25 Aminopeptidase N APN P79171 Mast/stem cell growth factor recept KIT Q28889 0.016
26 Zona pellucida sperm-binding protei ZPB P48834 Transferrin receptor protein 1 TFRC Q9MYZ3 0.016
27 Mast/stem cell growth factor recept KIT Q28889 Interleukin-1 beta convertase precu CASP1 Q9MZV6 0.016
28 Integrin beta-1 precursor ITGB1 P53713 Cathepsin W precursor CTSW Q9TST1 0.016
29 Lysosomal alpha-mannosidase precurs MANB O46432 Integrin beta-1 precursor ITGB1 P53713 0.038
30 Integrin beta-1 precursor ITGB1 P53713 Toll-like receptor 4 precursor TLR4 P58727 0.038
31 Serum albumin precursor ALB P49064 Transferrin receptor protein 1 TFRC Q9MYZ3 0.038

 
Protein pairs occurring in multiple complexes.  Probabilities of occurrence (p-values) are computed using the assumption that a protein pair is significant if it 
occurs in 11 complexes (.05 level for Cm,8).




