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Proteins

• Proteins participate in most 
cellular events, such as 
metabolism, cell signaling, 
immune response, et cetera.

• A protein is made from a 
linear sequence of amino 
acid residues which fold 
into a 3D structure.

• Many protein sequences are 
known, most 3D structures 
are not known.
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• Proteins function by binding with themselves, DNA, and small 
molecules such as drugs.

• Protein interactions are predicted using
– ab initio approaches using structure (small scale)
– a priori genomic approaches (large scale)
– empirical approaches based on high-throughput data (large scale)

Protein Interactions



How do Proteins Interact?
• Current theory is that proteins interact via short sub-sequences 

(l-mers) of amino acid residues in binding pockets.

• Our method correlates occurrences of l-mer pairs in protein 
sequences with probability of interaction using experimental 
data.
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Step 1. Count occurrences of l-mers in a
single protein sequence.
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l : {finite length amino acid strings} → by lNZ 0≥

where
– Pi is the protein sequence.
– zj are basis vectors for         corresponding to l-mers.
– σj counts the number of occurrences of l-mer corresponding to zj.
– Nl is number of possible l-mers.
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Step 2. Count occurrences of l-mer pairs
between protein pairs.

Define                                                          by

Notes:
– We normally write this matrix as a vector.
– If l1 = l2 we use Φs

l to denote 
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Step 3. Compute similarity between two
protein pairs.

We define the similarity between two protein pairs using

ks
3((LVMLVM, MTTMVL), (VLMVLM, TTMVLM)) = 20
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Steps 1-3. Observations.

• Advantages:
– By comparing a protein pair P = (P1, P2) with         

pairs                       known to interact we can predict if 
P is an interacting pair.

– Ignores position of l-mer in protein sequence.
– Allows arbitrary sequence lengths.

• Disadvantages:
– Produces very high-dimensional vectors in
– Not symmetric with respect to sequence order.
– Not symmetric with respect to protein pair order.
– Not normalized with respect to sequence length.
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Step 4. Computational simplification to
alleviate high dimensionality.

• To avoid explicit computation of tensor products, we use the 
following identity:

• Now we can compute similarities between protein pairs by 
computing similarities between proteins.

ks
3((LVMLVM, MTTMVL), (VLMVLM, TTMVLM)) = 

ks
3(LVMLVM, VLMVLM)×ks

3(MTTMVL, TTMVLM) = 5×4 = 20
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Step 5. Additional modifications.
• Symmetry in sequence order is accomplished by replacing l-

mers with odd length “signatures,” where middle letter is first 
and strings on either side are alphabetized:

• Symmetry in protein comparison order is accomplished by 
using a symmetric sum:

• Normalization according to protein length is accomplished by 
using a generic normalized similarity:
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Step 6. Use Support Vector Machine (SVM) function
approximation to correlate occurrences of
l-mer pairs with probability of interaction.

A protein interaction SVM is given by

where we obtain αi by solving the
quadratic programming problem

(b is obtained implictly.)

yi = 1 (interacting)

yi = -1 (non-interacting)
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Solving this optimization problem is known as “training” the SVM.



Application 1. Protein-Protein Interactions.

• We first benchmarked our method on Yeast and H. pylori
datasets.
– 709 Yeast SH3 domain-ligand pairs (Tong et al., 2002).
– 2082 Yeast protein pairs (Sprinzak & Margalit, 2001).
– 1458 H. pylori protein pairs (Rain et al., 2001).
– 7714 Yeast “gold standard” protein pairs (Jansen et al., 2003).
– Non-interacting pairs were chosen at random.

• We compared against other methods by using 10-fold cross 
validation and computing accuracy, precision, and sensitivity.



Comparisons with Other Methods
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Locating Protein Domains

• We also tested the ability of our algorithm to locate protein 
domains.
– Domains are evolutionarily conserved subsequences thought to be good 

candidate binding sites.

• We used a sliding window of 50 amino acid residues in Yeast 
proteins.



Using Protein Complexes
• In a collaboration with S. Rasheed’s group at USC (Viral 

Oncology and Proteomics Research), we used protein complex 
data infer a feline protein network.
– Proteins were given in experimentally determined functional groups.
– Protein pairs belonging to multiple groups were more likely to interact.



Application 2. β-Strand Ordering.
• In a collaboration with C. Strauss at Los Alamos National 

Laboratory Bioscience Division, we tested our methods ability 
to predict protein secondary structure.
– Protein amino acid subsequences interact to form secondary structures, 

such as α-helices and β-sheets.
– Can we use our method to predict β-strand ordering in β-sheets?



β-Strand Ordering Prediction



β-Strand Ordering Results
(using 27,196 Strands from Protein Data Bank)



Application 3. Protein-Chemical Interactions.

• Protein-chemical interaction 
prediction is useful in drug 
design.

• Almost all interaction 
prediction is done at a small 
(but accurate) scale.

• Can we use our method to do 
large scale empirical 
predictions?



Describing Chemicals

Define Φg
h : {chemical graphs} → by

where
– Ci is a labeled graph describing a chemical
– zj are basis vectors for         corresponding 

to depth h subgraphs.
– σj counts the number of occurrences of 

depth h subgraph corresponding to zj.
– Nh is the number of depth h subgraphs.
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Comparing Protein-Chemical Pairs

• In order to predict protein-chemical interactions we again 
define a similarity measure for protein-chemical pairs.
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Drug-Target Prediction Results
(using 873 pairs from KEGG)
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Conclusions
Structure Based Methods
• Accurate
• Slow
• Small Scale
• Often completely ab initio

• Future work: hybrid structure/statistical method.

Sequence Based Methods
• Less accurate
• Fast
• Large scale
• Usually completely 

empirical
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