

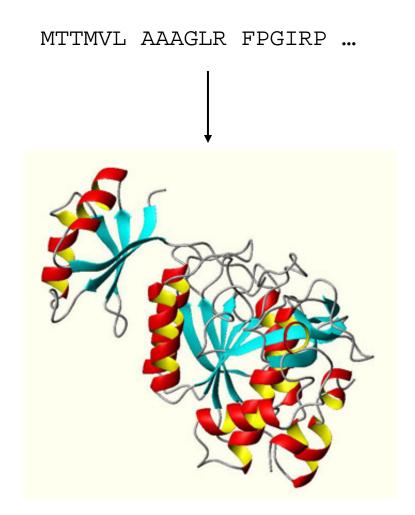
Predicting Protein Interactions using Tensor Products

Shawn Martin Sandia National Laboratories Albuquerque, NM

2/5/2008

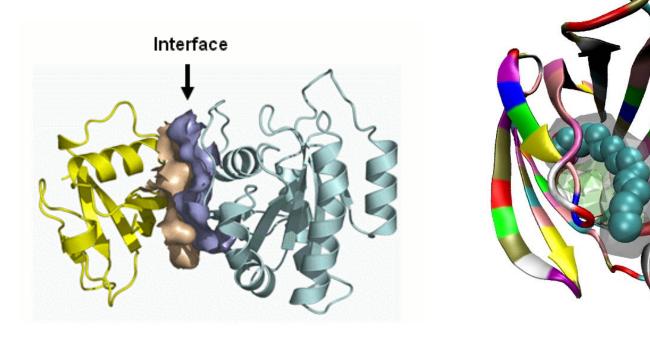
Proteins

- Proteins participate in most cellular events, such as metabolism, cell signaling, immune response, et cetera.
- A protein is made from a linear sequence of amino acid residues which fold into a 3D structure.
- Many protein sequences are known, most 3D structures are not known.



Protein Interactions

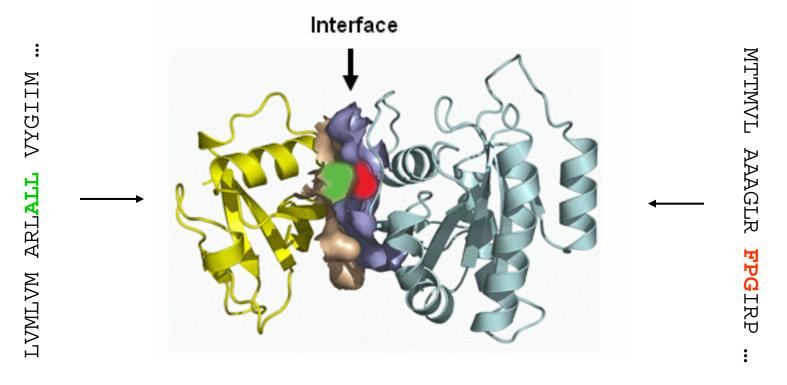
Proteins function by binding with themselves, DNA, and small molecules such as drugs.



- Protein interactions are predicted using
 - *ab initio* approaches using structure (small scale)
 - *a priori* genomic approaches (large scale)
 - *empirical* approaches based on high-throughput data (large scale)

How do Proteins Interact?

• Current theory is that proteins interact via short sub-sequences (*l*-mers) of amino acid residues in binding pockets.



• Our method correlates occurrences of *l*-mer pairs in protein sequences with probability of interaction using experimental data.

Step 1. Count occurrences of *l*-mers in a single protein sequence.

Define Φ_s^l : {finite length amino acid strings} $\rightarrow Z_{\geq 0}^{N_l}$ by

$$\Phi_s^l(P_i) = \sum_j \sigma_j \mathbf{z}_j,$$

where

- $-P_i$ is the protein sequence.
- \mathbf{z}_i are basis vectors for Z^{N_l} corresponding to *l*-mers.
- σ_i counts the number of occurrences of *l*-mer corresponding to \mathbf{z}_i .

- N_l is number of possible *l*-mers.

Step 2. Count occurrences of *l*-mer pairs between protein pairs.

Notes:

- We normally write this matrix as a vector.
- If $l_1 = l_2$ we use Φ_s^l to denote $\Phi_{s\otimes s}^{l_1\otimes l_2}$.

Step 3. Compute similarity between two protein pairs.

We define the similarity between two protein pairs using

 $k_{s\otimes s}^{l_1\otimes l_2}((P_{i_1}, P_{i_2}), (P_{j_1}, P_{j_2})) = \Phi_{s\otimes s}^{l_1\otimes l_2}(P_{i_1}, P_{i_2})^T \Phi_{s\otimes s}^{l_1\otimes l_2}(P_{j_1}, P_{j_2})$

	(2	0	0	4	2
Φ_s^3 (LVMLVM, MTTMVL) =	1	0	0	2	1
	1	0	0	2	1
	0	0	0	0	0
	$\left(0 \right)$	0	0	0	0)
	(1	0	1	1	1
	1	0	1	1	1
Φ_s^3 (VLMVLM, TTMVLM) =	2	0	2	2	2
	0	0	0	0	0
	igl(0	0	0	0	0)

 k_s^3 ((LVMLVM, MTTMVL), (VLMVLM, TTMVLM)) = 20

Steps 1-3. Observations.

- Advantages:
 - By comparing a protein pair $\mathbf{P} = (P_1, P_2)$ with pairs $\{\mathbf{P}_i = (P_{i_1}, P_{i_2})\}$ known to interact we can predict if \mathbf{P} is an interacting pair.
 - Ignores position of *l*-mer in protein sequence.
 - Allows arbitrary sequence lengths.
- Disadvantages:
 - Produces very high-dimensional vectors in $Z_{\geq 0}^{20^{l+l}}$.
 - Not symmetric with respect to sequence order.
 - Not symmetric with respect to protein pair order.
 - Not normalized with respect to sequence length.

Step 4. Computational simplification to alleviate high dimensionality.

• To avoid explicit computation of tensor products, we use the following identity:

 $k_{s}^{l}((P_{i_{1}}, P_{j_{1}}), (P_{i_{2}}, P_{j_{2}})) = (\Phi_{s}^{l}(P_{i_{1}}) \otimes \Phi_{s}^{l}(P_{j_{1}}))^{T} (\Phi_{s}^{l}(P_{i_{2}}) \otimes \Phi_{s}^{l}(P_{j_{2}}))$ = trace $((\Phi_{s}^{l}(P_{i_{1}}) \Phi_{s}^{l}(P_{j_{1}})^{T}) (\Phi_{s}^{l}(P_{i_{2}}) \Phi_{s}^{l}(P_{j_{2}})^{T})^{T})$ = ...

$$= \Phi_{s}^{l}(P_{j_{1}})^{T} \Phi_{s}^{l}(P_{j_{2}}) \Phi_{s}^{l}(P_{i_{1}})^{T} \Phi_{s}^{l}(P_{i_{2}})$$
$$= k_{s}^{l}(P_{i_{1}}, P_{i_{2}}) k_{s}^{l}(P_{j_{1}}, P_{j_{2}})$$

• Now we can compute similarities between protein pairs by computing similarities between proteins.

 k_s^3 ((LVMLVM, MTTMVL), (VLMVLM, TTMVLM)) = k_s^3 (LVMLVM, VLMVLM)× k_s^3 (MTTMVL, TTMVLM) = 5×4 = 20

Step 5. Additional modifications.

• Symmetry in sequence order is accomplished by replacing *l*-mers with odd length "signatures," where middle letter is first and strings on either side are alphabetized:

 $LVM \longrightarrow VLM \qquad MLV \longrightarrow LMV$ $VML \longrightarrow MLV \qquad VMT \longrightarrow MTV$

• Symmetry in protein comparison order is accomplished by using a symmetric sum:

$$\Phi_s^l(P_i, P_j) = \Phi_s^l(P_i) \otimes \Phi_s^l(P_j) + \Phi_s^l(P_j) \otimes \Phi_s^l(P_i)$$

• Normalization according to protein length is accomplished by using a generic normalized similarity:

$$k(P_1, P_2) / \sqrt{k(P_1, P_1)k(P_2, P_2)}$$

Step 6. Use Support Vector Machine (SVM) function approximation to correlate occurrences of *l*-mer pairs with probability of interaction.

A protein interaction SVM is given by

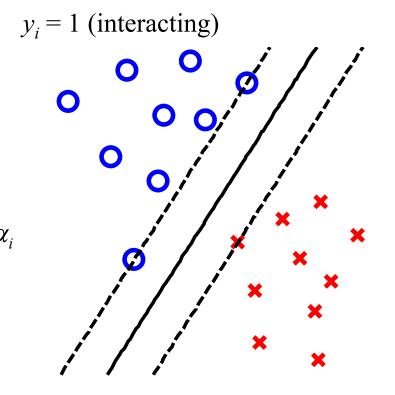
 $f(\mathbf{P}) = \sum_{i} y_{i} \alpha_{i} k(\mathbf{P}, \mathbf{P}_{i}) + b$

where we obtain α_i by solving the quadratic programming problem

$$\max_{\alpha} \quad \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j k(\mathbf{P}_i, \mathbf{P}_j) - \sum_i \alpha_i$$

s.t.
$$\sum_{i,j} y_i \alpha_i = 0$$
$$0 \le \alpha_i \le C$$

(*b* is obtained implicitly.)



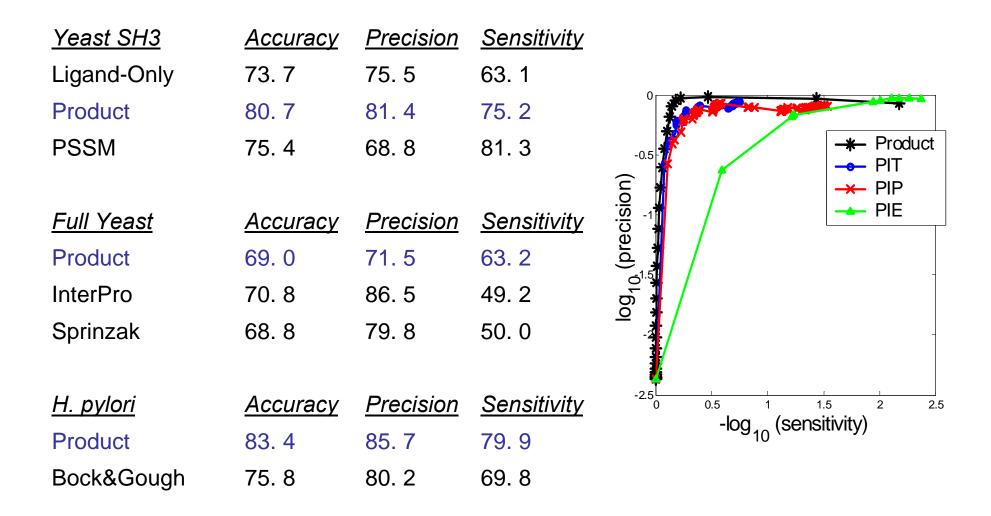
 $y_i = -1$ (non-interacting)

Solving this optimization problem is known as "training" the SVM.

Application 1. Protein-Protein Interactions.

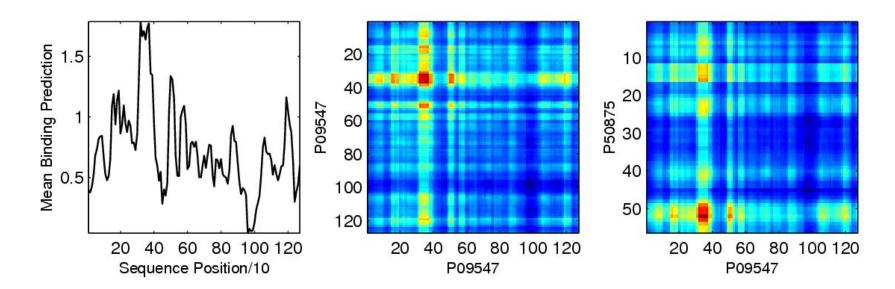
- We first benchmarked our method on Yeast and *H. pylori* datasets.
 - 709 Yeast SH3 domain-ligand pairs (Tong et al., 2002).
 - 2082 Yeast protein pairs (Sprinzak & Margalit, 2001).
 - 1458 H. pylori protein pairs (Rain et al., 2001).
 - 7714 Yeast "gold standard" protein pairs (Jansen et al., 2003).
 - Non-interacting pairs were chosen at random.
- We compared against other methods by using 10-fold cross validation and computing accuracy, precision, and sensitivity.

Comparisons with Other Methods



Locating Protein Domains

- We also tested the ability of our algorithm to locate protein domains.
 - Domains are evolutionarily conserved subsequences thought to be good candidate binding sites.
- We used a sliding window of 50 amino acid residues in Yeast proteins.



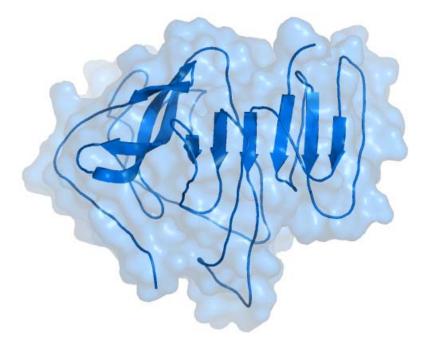
Using Protein Complexes

- In a collaboration with S. Rasheed's group at USC (Viral Oncology and Proteomics Research), we used protein complex data infer a feline protein network.
 - Proteins were given in experimentally determined functional groups.
 - Protein pairs belonging to multiple groups were more likely to interact.

Num.	Num.	Comp.			
Pairs	Comps.	Size	Acc.	Spec.	Sens.
300	1		83.5	84.7	81.6
142	3	2	89.9	92.2	89.4
98	4	3	92.8	91.8	92.8
77	5	4	94.1	92.4	96.0
69	6	5	95.7	95.6	96.3
48	8	6	96.8	95.5	98.3
40	9	7	96.3	95.0	96.7
31	11	8	96.7	97.5	97.5

Application 2. β-Strand Ordering.

- In a collaboration with C. Strauss at Los Alamos National Laboratory Bioscience Division, we tested our methods ability to predict protein secondary structure.
 - Protein amino acid subsequences interact to form secondary structures, such as α -helices and β -sheets.
 - Can we use our method to predict β -strand ordering in β -sheets?

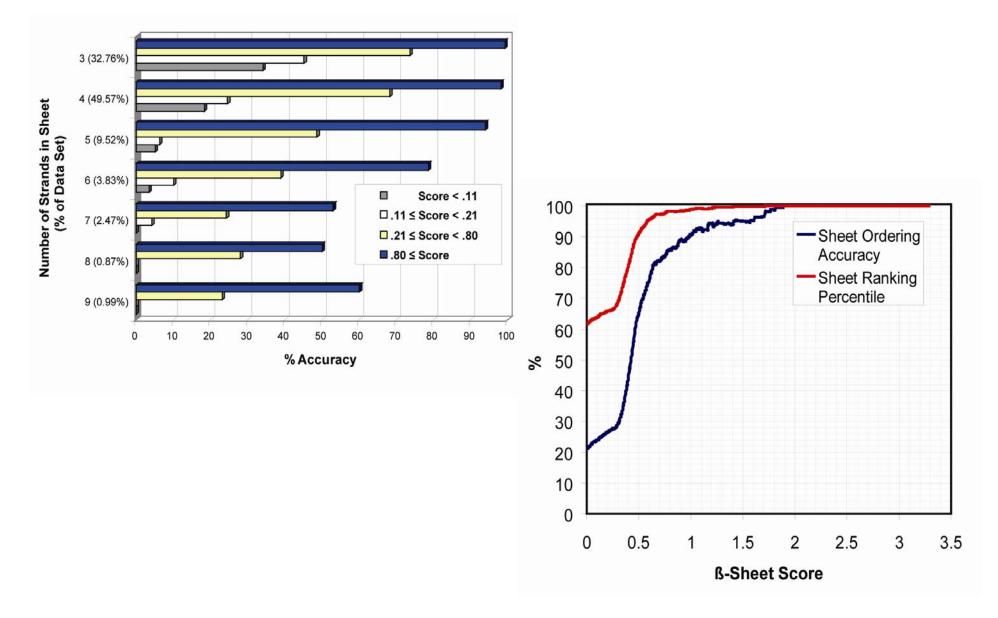


β-Strand Ordering Prediction

KIVLVIEKIMDVVLFTALEGNAVSGS VDAMIENVVIVSDANIELLEFIVTV Get B-Strands 11 from Sequence **1 KIVLVI** 3 VSGSV 5 FIVTV **Score All Possible** 2 **DVVLFT** 4 **VVIVS B-Strand Orderings Generate All Possible B-Strand Pairs** 0 11 11 * Calculate signature for each strand * Calculate signature product for each pair * Classify with SVM X

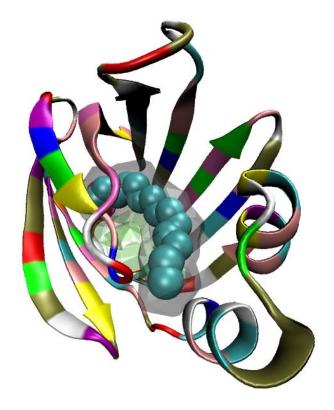
β-Strand Ordering Results

(using 27,196 Strands from Protein Data Bank)



Application 3. Protein-Chemical Interactions.

- Protein-chemical interaction prediction is useful in drug design.
- Almost all interaction prediction is done at a small (but accurate) scale.
- Can we use our method to do large scale empirical predictions?



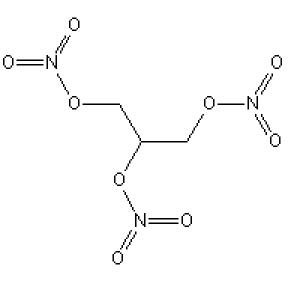
Describing Chemicals

Define Φ_g^h : {chemical graphs} $\rightarrow Z^{N_h}$ by

$$\Phi_g^h(C_i) = \sum_j \sigma_j \mathbf{z}_j,$$

where

- $-C_i$ is a labeled graph describing a chemical
- \mathbf{z}_j are basis vectors for Z^{N_h} corresponding to depth *h* subgraphs.
- σ_j counts the number of occurrences of depth *h* subgraph corresponding to \mathbf{z}_j .
- $-N_h$ is the number of depth h subgraphs.



 $3 O(NC) \leftrightarrow \mathbf{z}_{1}$ $6 O(= N) \leftrightarrow \mathbf{z}_{2}$ $3 N(O = O = O) \leftrightarrow \mathbf{z}_{3}$ $5 H(C) \leftrightarrow \mathbf{z}_{4}$ $2 C(OHHC) \leftrightarrow \mathbf{z}_{5}$ $1 C(OHCC) \leftrightarrow \mathbf{z}_{6}$ $(3,6,3,5,2,1)^{T}$

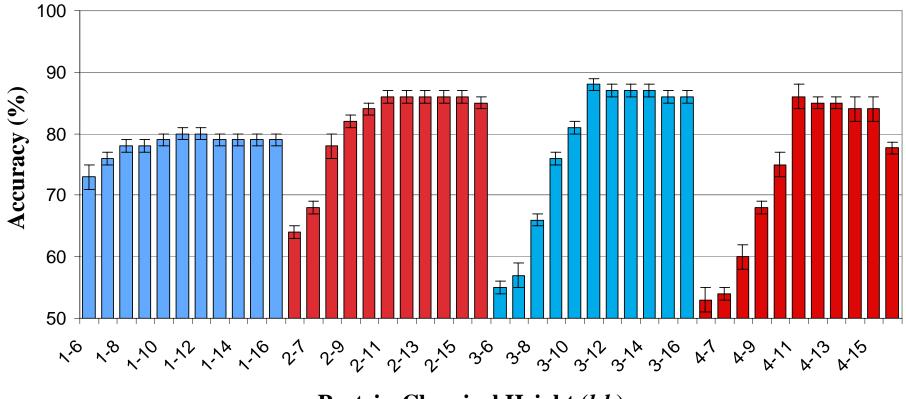
Comparing Protein-Chemical Pairs

• In order to predict protein-chemical interactions we again define a similarity measure for protein-chemical pairs.

$$k_g^h(C_i, C_j) = \Phi_g^h(C_i)^T \Phi_g^h(C_j)$$
$$\Phi_{s\otimes g}^{l\otimes h}(P_i, C_i) = \Phi_s^l(P_i) \otimes \Phi_g^h(C_i)$$
$$k_{s\otimes g}^{l\otimes h}((P_i, C_i), (P_j, C_j)) = \Phi_{s\otimes g}^{l\otimes h}(P_i, C_i)^T \Phi_{s\otimes g}^{l\otimes h}(P_j, C_j)$$
$$k_{s\otimes g}^{l\otimes h}((P_i, C_i), (P_j, C_j)) = k_s^l(P_i, P_j)k_g^h(C_i, C_j)$$

Drug-Target Prediction Results

(using 873 pairs from KEGG)



Protein-Chemical Height (*l-h*)

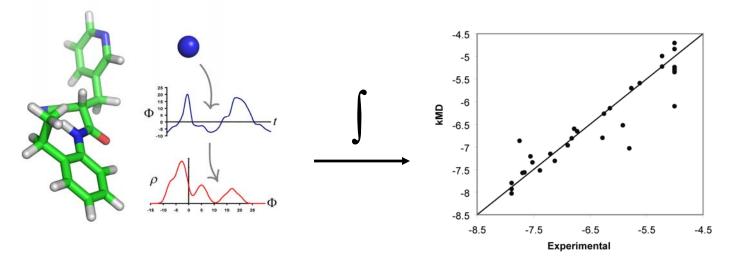
Conclusions

Structure Based Methods

- Accurate
- Slow
- Small Scale
- Often completely *ab initio*

Sequence Based Methods

- Less accurate
- Fast
- Large scale
- Usually completely empirical



• Future work: hybrid structure/statistical method.

References

- Invited Book Chapter:
 - S. Martin, W. M. Brown, and J.-L. Faulon (in press, 2007), "Predicting Protein Interactions using Product Kernels," *Advances in Biochemical Engineering/Biotechnology*, Springer-Verlag.
- Sandia National Laboratory Projects:
 - J.-L. Faulon, M. Misra, S. Martin, K. Sale, and R. Sapra (in press, 2007), "Genome Scale Enzyme-Metabolite and Drug-Target Interaction Predictions using the Signature Molecular Descriptor," *Bioinformatics*.
 - S. Martin, D. Roe, and J.-L. Faulon (2005), "Predicting Protein-Protein Interactions using Signature Products," *Bioinformatics* 21(2):218-226.
- Collaboration with USC Laboratory of Viral Oncology and Proteomics:
 - S. Martin, Z. Mao, L. S. Chan, and S. Rasheed (2007), "Inferring Protein-Protein Interaction Networks using Protein Complex Data," *International Journal of Bioinformatics Research and Applications* 3(4):480-492.
 - S. Martin, Z. Mao, L. S. Chan, S. Rasheed (2006), "Protein Interaction Extrapiolated from Feline Protein Complexes," Proceedings of the 3rd Biotechnology and Bioinformatics Symposium (BIOT):45-52.
- Collaboration with Los Alamos National Laboratory Bioscience Division:
 - W. M. Brown, S. Martin, J. Chabarek, C. Strauss, and J.-L. Faulon (2006), "Prediction of Beta-Strand Packing Interactions using the Signature Product," *Journal of Molecular Modeling* 12(3):355-361.