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Support Vector Machines (SVMs)

Given a dataset
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(Support Vectors are xi such that αi ≠ 0, shown as lying on dashed lines.)

A Support Vector Machine is the prototypical example of a
kernel method in machine learning.



This is accomplished by replacing the inner products (xi,xj) in the SVM
problem with a kernel function, where a kernel function
such that

If the data is not linearly separable we can map the dataset into a higher
dimensional space using a nonlinear map                      before solving the
linear problem.

The Kernel “Trick”
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Any method which can be written in terms of (xi,xj)  so that kernel functions
can be used is called a kernel method.



Examples of Kernel Methods

• Support Vector Machines
– SV Classification
– SV Regression
– SV Clustering

• Kernel Principal Component Analysis
• Kernel Fisher’s Discriminant Analysis



Numerical Stability

We use the definition of numerical stability from the field of Scientific
Computing/Numerical Analysis.

Definition: If                    is a problem and                    is an algorithm,
then    is numerically stable if for every            there exists           such that

where                   decreases in proportion to           .
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“A stable algorithm gives nearly the right answer to nearly the
right question.” (Trefethen & Bau, 1997).



Stability vs. Conditioning

• An algorithm can be stable or unstable.
– Stable: small changes in input result in small changes in output.
– Unstable: small changes in input can result in large changes in output.

• Similarly, a problem can be well- or ill-conditioned.
– Well-conditioned: small changes in problem give small changes in solution.
– Ill-conditioned: small changes in problem can give large changes in solution.

badbadill-conditioned

badgoodwell-conditioned

unstablestable

Worst Case Scenarios



Example of Numerical Instability
Suppose we are solving                where   ,A =x b
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If we use Gaussian elimination with Pivoting (stable) we get
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This problem is well-conditioned (κ ≈ 2.6).  If we perturb A we get

If we use Gaussian elimination without pivoting (unstable) we get 



• Matrix inversion using determinants.
• Gaussian elimination w/o pivoting.
• Least squares by normal equations

• Eigenvalues as roots of the characteristic polynomial.
• Principal Component Analysis by diagonalizing

Some Unstable Algorithms
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Basic Idea of this Work

• When an algorithm uses           it tends to be unstable.
– Least squares by
– PCA by

• Kernel methods use kernel function evaluation
equivalent to          in kernel space.

• Are kernel methods unstable?
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•  X is the data matrix,
•  U,V  are orthogonal matrices,
•  Σ is a diagonal matrix with

•  the projections UTX = ΣVT capture
    the most variance in the least number
    of coordinates.

Principal Component Analysis (PCA)
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Principal Component Analysis is (roughly) a matrix
factorization

where
,

T
VUX !=

First PC
Projection



Snapshot Method for PCA
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The snapshot method computes the decomposition

by diagonalizing
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so that the eigenvectors XTX give V and the
eigenvalues of XTX give the squares of the singular
values

(Name snapshot originates from image processing.)



Stability of PCA
PCA is stable when computed using the SVD but is unstable when
computed using the snapshot method (diagonalizing XTX).

The instability boils down to the fact that ||XTX|| = ||X||2, so that
computing σ1

2, …, σp
2 instead of σ1, …, σp results in a loss of

accuracy.



Kernel PCA (kPCA)

Kernel PCA uses the
snapshot method in the re-
mapped space.

If the re-mapped data
is denoted    then         is the
kernel matrix, with entries
k(xi,xj) so that we can obtain
VTΣ2V by diagonalization.
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Stability of kPCA

• Kernel PCA is computed using the snapshot
methods so is unstable in the linear case.
– Apply Bauer-Fike bound on eigenvalues

– Compare bounds on X with bounds on XTX.
• Kernel PCA is unstable in the nonlinear case by

extension
– Extend Bauer-Fike to   .
– Compare bounds on    with bounds on        .
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Stability of SVMs (I)
Q. SVMs use the matrix         .  Are they unstable?

A. Yes. Suppose our dataset is given by 

 In this case the SVM problem becomes

  
  where 
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Stability of SVMs (II)

The reduced SVM problem has solution

Now let σi = 2-i for i = 1,…,80.  In this case, the solution
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Conclusions

• Algorithms which use XTX are often numerically unstable
– Least squares by normal equations,
– PCA by solving eigenvalue problem.

• Kernel methods implicitly use XTX.  Are they unstable?
– In two cases: kernel PCA, separable SVMs.

• On the other hand:
– kPCA is only unstable for small singular vectors (often considered

to be noise).
– SVM example is artificial and does not use regularization.

• In practice, kernel methods have potential stability
problems.  However, further work needs to be done:
– Are there any real applications where instability can be observed?
– Does regularization/scaling fix these problems?


