The Numerical Stability of Kernel Methods

Shawn Martin

Sandia National Laboratories Albuquerque, NM, USA

Dec. 15th, 2005

Outline of Talk

- Kernel Methods
 - Background/Examples
- Numerical Stability
 - Background/Examples
- Stability Analysis
 - Principal Component Analysis (PCA)
 - Kernel PCA
 - Support Vector Machines
- Conclusions

Support Vector Machines (SVMs)

A Support Vector Machine is the prototypical example of a kernel method in machine learning.

Given a dataset
$$\{(\mathbf{x}_i, y_i)\} \subseteq \mathbb{R}^n \times \{\pm 1\}$$

We solve the quadratic problem

$$\max \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} \left(\mathbf{x}_{i}, \mathbf{x}_{j} \right)$$

s.t. $0 \le \alpha_{i} \le C, \sum_{i} y_{i} \alpha_{i} = 0$

to obtain the normal to the separating hyperplane

$$\mathbf{w} = \sum_{i} \alpha_{i} \mathbf{x}_{i}$$

(Support Vectors are \mathbf{x}_i such that $\alpha_i \neq 0$, shown as lying on dashed lines.)

The Kernel "Trick"

If the data is not linearly separable we can map the dataset into a higher dimensional space using a nonlinear map $\Phi : \mathbb{R}^n \to F$ before solving the linear problem.

This is accomplished by replacing the inner products $(\mathbf{x}_i, \mathbf{x}_j)$ in the SVM problem with a kernel function, where a kernel function $k : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ such that

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = \left(\Phi\left(\mathbf{x}_{i}\right),\Phi\left(\mathbf{x}_{j}\right)\right)$$

Any method which can be written in terms of $(\mathbf{x}_i, \mathbf{x}_j)$ so that kernel functions can be used is called a kernel method.

Examples of Kernel Methods

0.5

0

(d)

- Support Vector Machines
 - SV Classification
 - SV Regression
 - SV Clustering
- Kernel Principal Component Analysis
- Kernel Fisher's Discriminant Analysis

Numerical Stability

We use the definition of numerical stability from the field of Scientific Computing/Numerical Analysis.

Definition: If $g : X \to Y$ is a problem and $\tilde{g} : X \to Y$ is an algorithm, then \tilde{g} is *numerically stable* if for every $\mathbf{x} \in X$ there exists $\tilde{\mathbf{x}} \in X$ such that

$$\frac{\left\|\tilde{g}\left(\mathbf{x}\right) - g\left(\tilde{\mathbf{x}}\right)\right\|}{\left\|g\left(\mathbf{x}\right)\right\|} = O\left(\varepsilon_{\text{machine}}\right) \text{ and } \frac{\left\|\mathbf{x} - \tilde{\mathbf{x}}\right\|}{\left\|\mathbf{x}\right\|} = O\left(\varepsilon_{\text{machine}}\right),$$

where $O(\varepsilon_{\text{machine}})$ decreases in proportion to $\varepsilon_{\text{machine}}$.

"A stable algorithm gives nearly the right answer to nearly the right question." (Trefethen & Bau, 1997).

Stability vs. Conditioning

- An algorithm can be stable or unstable.
 - Stable: small changes in input result in small changes in output.
 - Unstable: small changes in input can result in large changes in output.
- Similarly, a problem can be well- or ill-conditioned.
 - Well-conditioned: small changes in problem give small changes in solution.
 - Ill-conditioned: small changes in problem can give large changes in solution.

	stable	unstable
well-conditioned	good	bad
ill-conditioned	bad	bad

Worst Case Scenarios

Example of Numerical Instability

Suppose we are solving $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Rightarrow \mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

This problem is well-conditioned ($\kappa \approx 2.6$). If we perturb *A* we get

$$\tilde{A} = \begin{bmatrix} 10^{-20} & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Rightarrow \tilde{\mathbf{x}} = \begin{bmatrix} -1/\\ 1/\\ 1/\\ 1/\\ 1-10^{-20} \end{bmatrix} \approx \mathbf{x}$$

If we use Gaussian elimination with Pivoting (stable) we get

$$\tilde{P}\tilde{A} = \tilde{L}\tilde{U} = \begin{bmatrix} 1 & 0\\ 10^{-20} & 1 \end{bmatrix} \begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix} \Rightarrow \tilde{\mathbf{x}} = \begin{bmatrix} -1\\ 1 \end{bmatrix} = \mathbf{x}$$

If we use Gaussian elimination without pivoting (unstable) we get

$$\tilde{A} = \tilde{L}\tilde{U} = \begin{bmatrix} 1 & 0 \\ 10^{20} & 1 \end{bmatrix} \begin{bmatrix} 10^{-20} & 1 \\ 0 & 1 - 10^{-20} \approx -10^{-20} \end{bmatrix} \Rightarrow \tilde{\mathbf{x}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \neq \mathbf{x}$$

Some Unstable Algorithms

- Matrix inversion using determinants.
- Gaussian elimination w/o pivoting.
- Least squares by normal equations

$$A^T A \mathbf{x} = A^T \mathbf{b}.$$

- Eigenvalues as roots of the characteristic polynomial.
- Principal Component Analysis by diagonalizing

 $X^T X$.

Basic Idea of this Work

- When an algorithm uses $M^T M$ it tends to be unstable.
 - Least squares by $A^T A \mathbf{x} = A^T \mathbf{b}$.
 - PCA by $X^T X$.
- Kernel methods use kernel function evaluation $k(\mathbf{x}_i, \mathbf{x}_j)$, equivalent to $X^T X$ in kernel space.
- Are kernel methods unstable?

Principal Component Analysis (PCA)

Principal Component Analysis is (roughly) a matrix factorization

$$X = U\Sigma V^T,$$

where

- X is the data matrix,
- *U*, *V* are orthogonal matrices,
- Σ is a diagonal matrix with

 $\sigma_1 \geq \ldots \geq \sigma_p \geq 0,$

• the projections $U^T X = \Sigma V^T$ capture the most variance in the least number of coordinates.

Snapshot Method for PCA

The snapshot method computes the decomposition

$$X = U\Sigma V^T,$$

by diagonalizing

$$X^T X = V \Sigma^2 V^T,$$

so that the eigenvectors $X^T X$ give V and the eigenvalues of $X^T X$ give the squares of the singular values

$$\sigma_1^2 \ge \ldots \ge \sigma_p^2,$$

(Name snapshot originates from image processing.)

Stability of PCA

PCA is stable when computed using the SVD but is unstable when computed using the snapshot method (diagonalizing $X^T X$).

The instability boils down to the fact that $||X^TX|| = ||X||^2$, so that computing $\sigma_1^2, \ldots, \sigma_p^2$ instead of $\sigma_1, \ldots, \sigma_p$ results in a loss of accuracy.

Kernel PCA (kPCA)

Kernel PCA uses the snapshot method in the remapped space.

If the re-mapped data $\Phi(X)$ is denoted \tilde{X} then $\tilde{X}^T \tilde{X}$ is the kernel matrix, with entries $k(\mathbf{x}_i, \mathbf{x}_j)$ so that we can obtain $V^T \Sigma^2 V$ by diagonalization.

Stability of kPCA

- Kernel PCA is computed using the snapshot methods so is unstable in the linear case.
 - Apply Bauer-Fike bound on eigenvalues

 $\left|\overline{\lambda}_{j}-\lambda_{j}\right|\leq\left\|\delta K\right\|_{2}.$

- Compare bounds on X with bounds on $X^T X$.

- Kernel PCA is unstable in the nonlinear case by extension
 - Extend Bauer-Fike to \tilde{X} .
 - Compare bounds on \tilde{X} with bounds on $\tilde{X}^T \tilde{X}$.

Stability of SVMs (I)

Q. SVMs use the matrix $\tilde{X}^T \tilde{X}$. Are they unstable?

A. Yes. Suppose our dataset is given by

$$\left\{\mathbf{x}_{0} = \mathbf{0}, \mathbf{x}_{1} = \boldsymbol{\sigma}_{1}\mathbf{e}_{1}, \dots, \mathbf{x}_{m} = \boldsymbol{\sigma}_{m}\mathbf{e}_{m}\right\} \subseteq \mathbb{R}^{m}$$
$$\left\{y_{0} = -1, y_{1} = 1 = \cdots + y_{m} = 1\right\}.$$

In this case the SVM problem becomes

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{m} \alpha_i^2 \sigma_i^2 - 2 \sum_i \alpha_i$$

s.t. $\alpha_i \ge 0$ for $i = 1, \dots, m$,

where $\alpha_0 = \sum_{i=1}^m \alpha_i$.

Stability of SVMs (II)

The reduced SVM problem has solution $\left(\alpha_{0}^{*}, \frac{2}{\sigma_{1}^{2}}, \dots, \frac{2}{\sigma_{m}^{2}}\right)$ with $\alpha_{0}^{*} = \sum_{i=1}^{m} \frac{2}{\sigma_{i}^{2}}, \mathbf{w} = \left(\frac{2}{\sigma_{1}}, \dots, \frac{2}{\sigma_{m}}\right)$, and b = 1.

Now let $\sigma_i = 2^{-i}$ for i = 1,...,80. In this case, the solution is given by $= 2\sum_{i=1}^{80} (2^i)^2$, and $\alpha_i^* = 2(2^i)^2$ for i = 1,...,80with $\mathbf{w} = 2(2^1,...,2^{80})$ and b = 1.

The fact that $\alpha_0^* = \sum_{i=1}^m \alpha_i^*$ implies a limit on the precision of the results.

Conclusions

- Algorithms which use $X^T X$ are often numerically unstable
 - Least squares by normal equations,
 - PCA by solving eigenvalue problem.
- Kernel methods implicitly use $X^T X$. Are they unstable?
 - In two cases: kernel PCA, separable SVMs.
- On the other hand:
 - kPCA is only unstable for small singular vectors (often considered to be noise).
 - SVM example is artificial and does not use regularization.
- In practice, kernel methods have *potential* stability problems. However, further work needs to be done:
 - Are there any real applications where instability can be observed?
 - Does regularization/scaling fix these problems?