Training Support Vector Machines using Gilbert's Algorithm

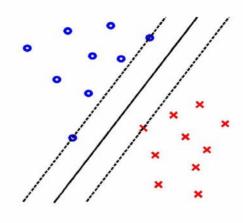
Shawn Martin

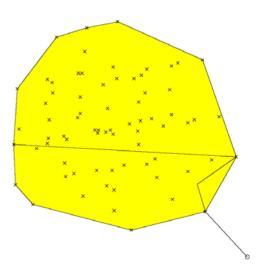
Sandia National Laboratories Albuquerque, NM, USA

Nov. 30th, 2005

Outline of Talk

- Support Vector Machines
 - Background
 - Nonlinear Extension
 - Geometric Version
- Gilbert's Algorithm
 - Background
 - Problems
 - Modifications
- Examples/Comparisons
- Conclusions





Support Vector Machines (SVMs)

1) Starting with a dataset

 $\{(\mathbf{x}_i, y_i)\} \subseteq \mathbb{R}^n \times \{\pm 1\}$

2) we solve the quadratic program

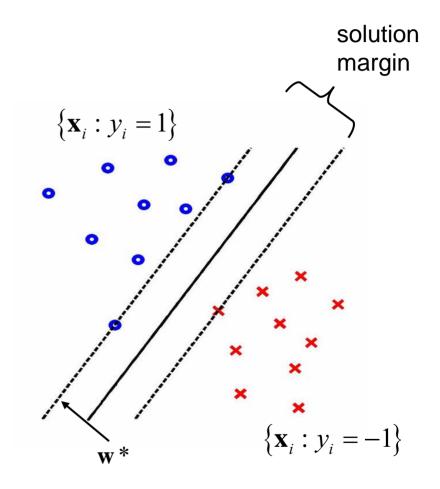
$$\max \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} (\mathbf{x}_{i}, \mathbf{x}_{j})$$

s.t. $\alpha_{i} \ge 0, \sum_{i} y_{i} \alpha_{i} = 0$

3) to obtain the normal to the separating hyperplane

$$\mathbf{w}^* = \sum_i \alpha_i \mathbf{x}_i$$

4) Support Vectors are \mathbf{x}_i such that $\alpha_i \neq 0$, shown as lying on dashed lines. Distance between dashed lines is known as solution margin.

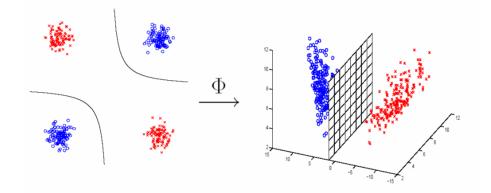


Nonlinear/Non-separable Extension of SVMs

1) Map the dataset into a higher dimensional space using a nonlinear map

$$\Phi:\mathbb{R}^n\to F.$$

2) Use the linear SVM classifier in the higher dimensional space.



3) Do this by replacing the inner products $(\mathbf{x}_i, \mathbf{x}_j)$ in the SVM problem with a kernel function, where a kernel function $k : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ corresponds to Φ such that

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j)).$$

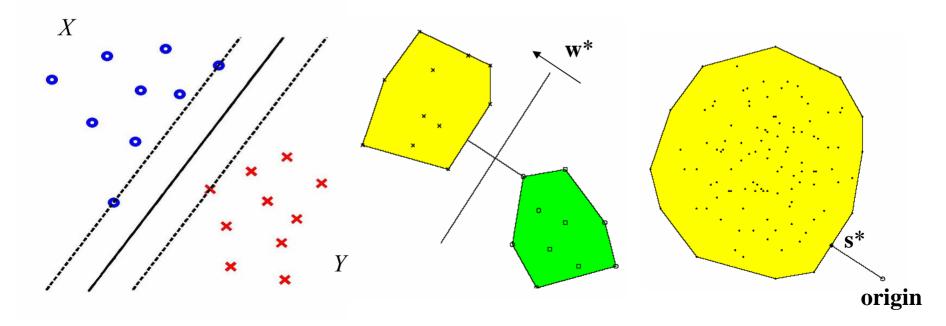
4) If our dataset is non-separable, we can use a kernel function of the form

$$\tilde{k}\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)+\delta_{ij}/\tilde{C}.$$

Geometric Version of the SVM Problem

Let
$$X = \{\mathbf{x}_i : y_i = 1\}, Y = \{\mathbf{x}_i : y_i = -1\}, \text{ and } S = X - Y.$$

Then the normal to the separating hyperplane w^* can be obtained from the point s^* closest to the origin in the convex hull of the secant set *S*.

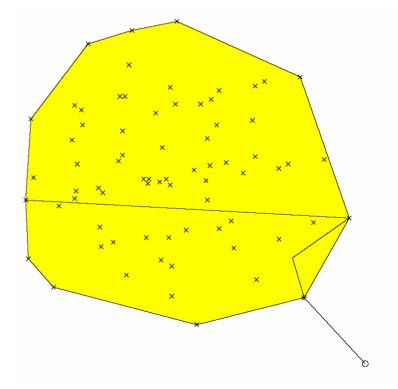


Finding Closest Point on Convex Hull

- Q. How can we find the point s^* on the convex hull of *S* closest to the origin?
- A. One solution is to use Gilbert's Algorithm (1966). This was originally attempted in (Keerthi *et al.*, 2000).

Overview of Gilbert's Algorithm

- 1. Choose a point \mathbf{w}_1 in *S*.
- 2. Identify the point $g^*(-\mathbf{w}_1)$ in *S* closest to the origin in the direction of $-\mathbf{w}_1$.
- 3. Identify the point \mathbf{w}_2 on the line from \mathbf{w}_1 to $g^*(-\mathbf{w}_1)$ closest to the origin.
- 4. Repeat 2-3.



Formalizing Gilbert's Algorithm (Definitions)

For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ we set

$$[\mathbf{a}, \mathbf{b}]^* = \begin{cases} \mathbf{a} & \text{if } -(\mathbf{a}, \mathbf{b} - \mathbf{a}) \leq 0\\ \mathbf{a} + \frac{-(\mathbf{a}, \mathbf{b} - \mathbf{a})}{\|\mathbf{b} - \mathbf{a}\|^2} (\mathbf{b} - \mathbf{a}) & \text{if } 0 < -(\mathbf{a}, \mathbf{b} - \mathbf{a}) < \|\mathbf{b} - \mathbf{a}\|^2\\ \mathbf{b} & \text{if } \|\mathbf{b} - \mathbf{a}\|^2 \leq -(\mathbf{a}, \mathbf{b} - \mathbf{a}) \end{cases}$$

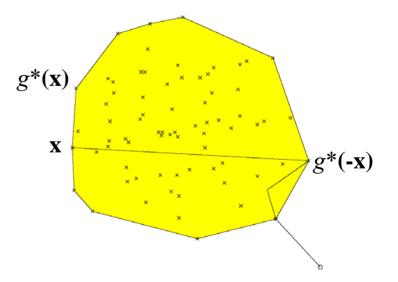
The point $[\mathbf{a}, \mathbf{b}]^*$ is the point on the line segment from \mathbf{a} to \mathbf{b} closest to the origin.

We define the support function $g : \mathbb{R}^n \to \mathbb{R}$ by $g(\mathbf{x}) = \max_m \{(\mathbf{x}, \mathbf{s}_m)\},\$

and the contact function $g^* : \mathbb{R}^n \to \mathbb{R}^n$ by

$$g^*(\mathbf{x}) = \mathbf{s}_{m_0},$$

for some uniquely defined m_0 .

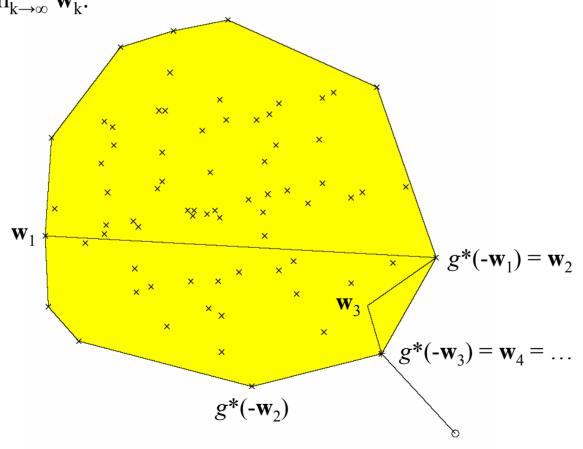


b

origin

Gilbert's Algorithm

- 1. Choose a point \mathbf{w}_1 in *S*.
- 2. Identify the point $g^*(-\mathbf{w}_1)$ in *S* closest to the origin in the direction of $-\mathbf{w}_1$.
- 3. Identify the point $\mathbf{w}_2 = [\mathbf{w}_1, g^*(-\mathbf{w}_1)]^*$.
- 4. Repeat 2-3 indefinitely.
- 5. $\mathbf{s}^* = \lim_{k \to \infty} \mathbf{w}_k$.



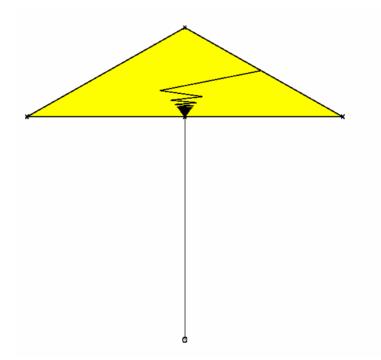
Problem with Gilbert's Algorithm

Gilbert's Algorithm often gets "stuck" in very slow $(\sim 1/n)$ asymptotic convergence.

Can we fix this?

Observations about Gilbert's Algorithm

- 1) Gilbert's Algorithm identifies a subset *S*' of *S* and iterates between the vectors in the subset indefinitely.
- 2) Gilbert's Algorithm appears to converge faster in angle than in norm: $(\mathbf{w}_k, \mathbf{s}^*)/(||\mathbf{w}_k|| ||\mathbf{s}^*||) \sim 1/n^2$.



Modifications to Gilbert's Algorithm

1) Construct $\overline{\mathbf{m}}_1$ from $\mathbf{w}_1, \mathbf{w}_2, \dots$ by using the subset of $S' = \{\mathbf{s}_j, \dots, \mathbf{s}_k\}$ identified by Gilbert's Algorithm:

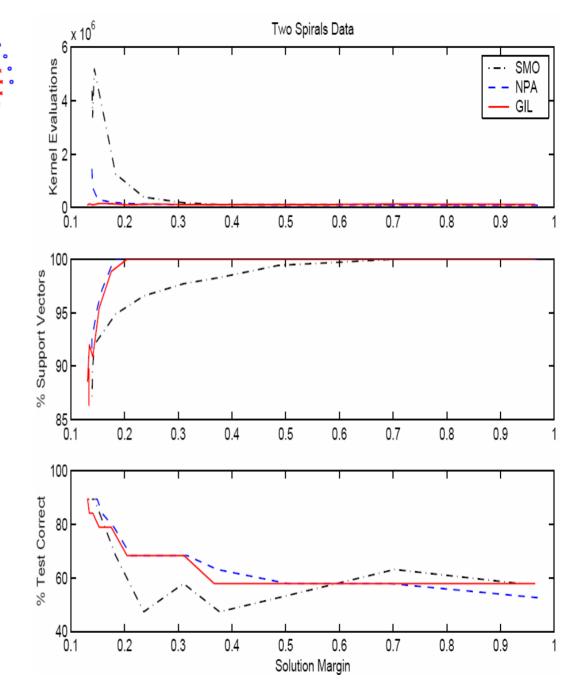
$$\overline{\mathbf{m}}_1 = \frac{1}{k-j} \sum_{i=j+1}^k \mathbf{w}_i$$

- 2) Repeat to obtain $\overline{\mathbf{m}}_2, \overline{\mathbf{m}}_3, \dots$
- 3) Stop when $\overline{\mathbf{m}}_1, \overline{\mathbf{m}}_2, \dots$ converges in angle:

$$\frac{\left(\overline{\mathbf{m}}_{l}, \overline{\mathbf{m}}_{l-1}\right)}{\left\|\overline{\mathbf{m}}_{l}\right\|\left\|\overline{\mathbf{m}}_{l-1}\right\|} < \varepsilon$$

Example: Two Spirals Dataset

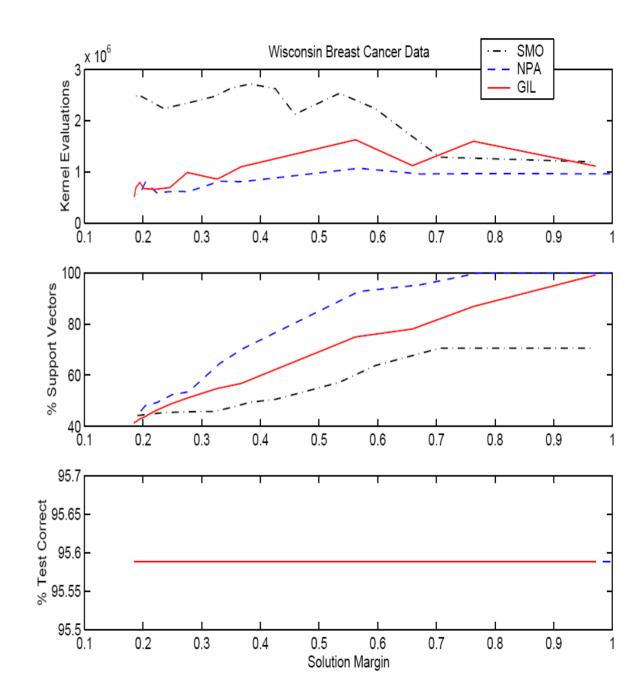
- We compared our method to Sequential Minimal Optimization (SMO) and the Nearest Point Algorithm (NPA) in (Keerthi *et al.*, 2000).
- We measured speed using number of kernel evaluations.
- We compared the final solution using the percent of support vectors.
- We compared performance accuracy by using a test set.
- In all cases we used solution margin (distance between two classes) to measure classifier similarity.



Example: Wisconsin Breast Cancer Dataset

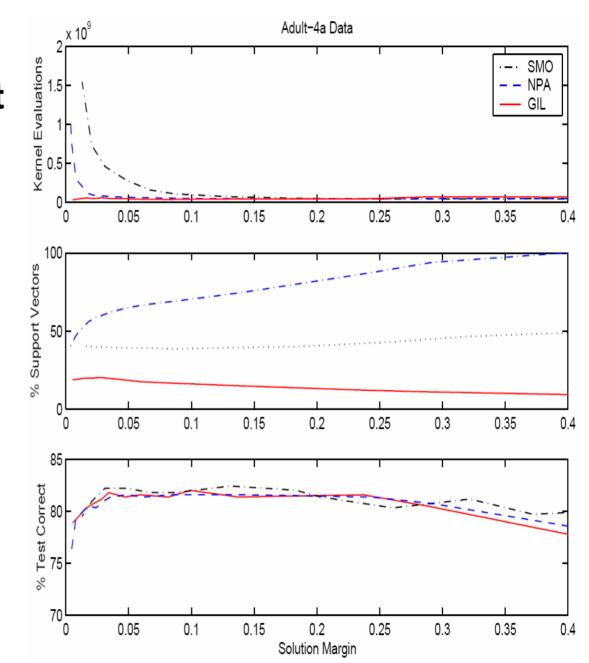
•

Our comparisons indicate that our method is as fast and as accurate as standard methods.



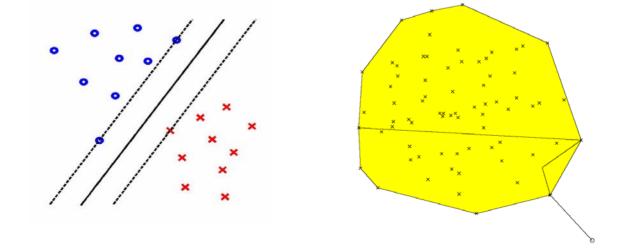
Example: Adult-4a Dataset

• In some cases we also get fewer support vectors.



Conclusions

- Modified Gilbert's Algorithm to successfully train SVMs.
- New algorithm appears to be fast.
- Results are as accurate as other methods.
- New algorithm may identify fewer SVs than other methods.
- Theoretical results should be derived to support/refute this approach.



Future Work

- Another possible direction:
 - 1) Identify subset S' of S using Gilbert's Algorithm.
 - 2) Solve for s^* directly using *S*'.

