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Support Vector Machines (SVMs)

1) Starting with a dataset
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2) we solve the quadratic program

3) to obtain the normal to the
separating hyperplane
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4) Support Vectors are xi such that αi ≠ 0, shown as lying on dashed lines.
Distance between dashed lines is known as solution margin.



Nonlinear/Non-separable Extension of SVMs

1) Map the dataset into a higher dimensional space using a nonlinear map

2) Use the linear SVM classifier in the higher dimensional space.

3) Do this by replacing the inner products (xi,xj) in the SVM problem with a kernel 
function, where a kernel function                               corresponds to Φ such that 

4) If our dataset is non-separable, we can use a kernel function of the form
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Geometric Version of the SVM Problem
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Then the normal to the separating hyperplane w* can be obtained 
from the point s* closest to the origin in the convex hull of the 
secant set S.
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Finding Closest Point on Convex Hull

Q. How can we find the point s* on the convex hull of S closest 
to the origin?

A. One solution is to use Gilbert’s Algorithm (1966).  This was 
originally attempted in (Keerthi et al., 2000).

Overview of Gilbert’s Algorithm

1. Choose a point w1 in S.
2. Identify the point g*(-w1) in S closest 

to the origin in the direction of -w1.
3. Identify the point w2 on the line from 

w1 to g*(-w1) closest to the origin.
4. Repeat 2-3.



Formalizing Gilbert’s Algorithm (Definitions)
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Gilbert’s Algorithm
1. Choose a point w1 in S.
2. Identify the point g*(-w1) in S closest to the origin in the direction of -w1.
3. Identify the point w2 = [w1, g*(-w1)]*.
4. Repeat 2-3 indefinitely.
5. s* = limk→∞ wk.

w1
g*(-w1) = w2

g*(-w2)

w3

g*(-w3) = w4 = …



Problem with Gilbert’s Algorithm
Gilbert’s Algorithm often gets “stuck” in very slow 
(~1/n) asymptotic convergence.

Can we fix this?



Observations about Gilbert’s Algorithm

1) Gilbert’s Algorithm identifies a subset S’ of S and 
iterates between the vectors in the subset 
indefinitely.

2) Gilbert’s Algorithm appears to converge faster in 
angle than in norm: (wk,s*)/(||wk|| ||s*||) ~ 1/n2.



Modifications to Gilbert’s Algorithm

1) Construct m1 from w1, w2, … by using the subset of S’ = {sj,…,sk} 
identified by Gilbert’s Algorithm:

2) Repeat to obtain m2, m3, …
3) Stop when m1, m2, … converges in angle:
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Example:
Two Spirals
Dataset

• We compared our method 
to Sequential Minimal 
Optimization (SMO) and 
the Nearest Point 
Algorithm (NPA) in 
(Keerthi et al., 2000).

• We measured speed using 
number of kernel 
evaluations.

• We compared the final 
solution using the percent 
of support vectors.

• We compared 
performance accuracy by 
using a test set.

• In all cases we used 
solution margin (distance 
between two classes) to 
measure classifier 
similarity.



Example:
Wisconsin Breast
Cancer Dataset

• Our 
comparisons 
indicate that our 
method is as fast 
and as accurate 
as standard 
methods.



Example:
Adult-4a Dataset

• In some cases we 
also get fewer 
support vectors.



Conclusions
• Modified Gilbert’s Algorithm to successfully train SVMs.
• New algorithm appears to be fast.
• Results are as accurate as other methods.
• New algorithm may identify fewer SVs than other methods.
• Theoretical results should be derived to support/refute this 

approach.



Future Work

• Another possible direction:
1) Identify subset S’ of S using Gilbert’s Algorithm.
2) Solve for s* directly using S’.
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