A Pattern-supported
Parallelization Approach

Ralf Jahr, Mike Gerdes, Theo Ungerer
University of Augsburg, Germany

The 2013 International Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM 2013)

Outline

= Motivation

= Parallel Design Patterns

» Pattern-supported Parallelization Approach
— Two phases
— Activity and Pattern Diagram
— Pattern Catalogue

= Case study: Unmanned Aerial Vehicle

= Summary

2013-02-23 A Pattern-supported Parallelization Approach 2

Motivation

= Multicore and manycore CPUs in embedded systems

= Goals:
— Faster execution of a workload
— Concurrent execution of multiple tasks
— Shorter reaction times
— Energy savings because of lower clock frequency

- Need for parallel applications

= But, especially for embedded systems:
— Much legacy code
— Limited development resources
— Complicated testing and debugging

2013-02-23 A Pattern-supported Parallelization Approach 3

Parallel Design Patterns

= Design Patterns
— Idea initially in architecture
— Recurring problems = best practice solutions
— Transfer to software engineering
— Mainly object oriented design, see “Gang of four”
— Standardized description: Pattern Catalogue

= Parallel design patterns
— Extended concept: design patterns providing parallelism
— Tradeoff: flexibility in design vs. development effort

2013-02-23 A Pattern-supported Parallelization Approach 4

Pattern-supported

Parallelization Approach

= Starting point:
— Sequential program (“legacy code”)
— Pattern Catalogue with parallel design patterns

* Phase 1: Targeting Maximum Parallelism
— Create model to reveal parallelism

. . . . i i“
— Model consisting of sequential parts M aximum Pa |sm
and parallel design patterns ‘

— Platform independent

* Phase 2: Targeting Optimal Parallelism

— Agglomeration of nodes,
definition of parameters

— Creation of threads and mapping W
onto target architecture

— Platform dependent

2013-02-23 A Pattern-supported Parallelization Approach

Pattern Catalogue

e |

T —

| @ pamemsagentan.. x |12

| 3
E S

| ——
| £ pates2t1s meeting.. | £ puems Paate o, | +

) @ pasiab cecs bestotey.euviki/paticmsagent_and,_sepestory
wih Sommersemester 2012 (B Meistbesucht ., phpMyaAdmin Bl Reverse Enginesring v...
patterns:agent_and_repository

| 8- evoutionx

| Kervansaray - Tarkisch.. [[] HPCS 2013

| —

| Name
Agent & Repository
Prablem

Many problems festure
and comectly supported?

Context

Consider a large shared
satisfabilty solver, or a i
perform operations on thi
paralicism. However, the

Forces

= The agents want
= The data structure
= Consistency must
on the data structy
= Consistency must
= Enforcing consistan|
= Some operations m;

Solution
‘The software architecture|

1. Alarge data struct]
2. Agents that operatf
2. & manager that maf

The repository is usually
agents operate on
small piece of data of thel
and write it back to the r}
a consistent state. Each
operations on the reposity
accesses by the agents.
el i

patterns:patterns

Showpagesource | | Old revisions |

| Recent changes

O revisio] | ¢ [porallei.| £ p |z Co.. | 2 pallas2011 meeting... | [+

—————o

Ag:“t and Repos (: P | @ porlab cecs berkeley.edu/wiki/pattems/patterns & M- evolutionx Pl #|-
" : ™y " R - Tarkisch... (7] HPCS 2013 »B

J Seach |

Traz

A Pattern Language for Parallel Programming ver2.0

Read me first! = T|Our Pattern Language

(notes) (Glossary)(Blogs) (Pattern Template) (Pattem Abstract) (Pattemn Workshop) (Pattem in Education)

« pattarmtampiste » pattarns « patterni_0 + 2011_mesting_notes » tazk_paralelism + agent_and_regasitary + patterns

Applications
Computational Patterns

Backtrack Branch and Bound ("=

| structural Patterns
Agent and Repository Pipe-and- filter

Process Control

Circuits{"**==)

Iterative_refinement = Dense Linear Algebral™==)

“FEvent-based, implicit invocation i Dynamic Programming] doc’

[EjLayered systems 4 finitestatemachine.pdf

HMap reduce Graph Algorithms

% Graphical Models

{notes) | Spectral Methods

Monte Carlo Methodst™*tes)
N-Body Methods

Sparse Linear Algebra

Fstructured Grids "ot==)
Funstructured Grids
orting

% Model-view controller

Parallel Algorithm Strategy Patterns

Task Parallelism ("=} Fpiscrete Event Geometric Dec (notes)

Non-work-efficient Parallelism

(notes)

Recursive splitting! Hipipeline] doc("***=)|Data Parallelism

| Implementation Strategy Patterns

|Tsemp MasterWorker | |[#sharedqueue. paf

Strict-data-par Shared Hash Table

ForkJoin

LoopParallelism

BSP

[actors i Task Queue
F)Graph Partitioning "=}

I (Program Structure) | |

Speculation

Distributed Array
shared data

memory parallelism("®t¢s}

(Data Structure)

ge

Collective

nq

| Task Graph Spec:

Collective Synchronization

SIMD Data Flow Mutual Exclusion

DigitalCircuits (otes)

(Advancing Program Counters) |

Transactional Memory

(Coordination)

(Pattern v1.0) (Pattarn v2.0)

All contents on this website are by Q)OPL Working Group, available under a @) Creative Commons Attribution 3.0 Unported License. Copyright © 2008-2010,

OPL Warking Groug.

2010/07/15 01:23 by vivak:

Old revisions |

| Media Manager

Login | Sitemap | | Backtotop

» The Pattern Catalogue:
Basis for parallelization

— Contains all allowed parallel design
patterns

— Description according to meta-
pattern

— Description is textual, no reference
implementations

— Implementation examples are
optional

— Grows over time

= Example: “Our Pattern Language”

— http://parlab.eecs.berkeley.edu/wiki
/patterns/patterns

— Organized in multiple layers

2013-02-23

A Pattern-supported Parallelization Approach

http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns

Activity and Pattern Diagram

= Extension of UML2 Activity Diagram:
— Parallel design pattern is new node type similar to activity
— Activities: either sequential or encapsulate APD
— Parallel design patterns: Multiple activities in parallel

= Patterns are only way to introduce parallelism

= Advantages over inventing a new notation:
— Well known, easy to understand, tools exist
— Support for dependencies, branches, and nesting

2013-02-23 A Pattern-supported Parallelization Approach 7

Activity and Pattern Diagram

Reading Access

Parallel Pattern x End node
Obstacle Map J Weightmap Sectors
(7] R; (1]
. ; Initialize Weightmap CHCilatE Satiom Propagate Weights @
Data Parallel Pipeline
il a W
Weightmap sectors Weightmap
Sequential code \
Start node Writing Access

2013-02-23 A Pattern-supported Parallelization Approach

Pattern-supported Parallelization

Approach: Phase 1

= Goal: Reveal sufficient parallelism for any platform as
Activity and Pattern Diagram (APD)

= Start with single activity, repeatedly apply two operations:
a) Replacement: apply parallel design pattern
b) Splitting: decompose into multiple activities

.—%[Complete Program (Sequential Implementation) %

Replacing Activity by Parallel Design Pattern

Complete Program

Pipeline
. = (a) Task 1 %@
(b) Task 2

(c) Task 3

2013-02-23 A Pattern-supported Parallelization Approach 9

Pattern-supported Parallelization

Approach: Phase 2

= Transition from maximum to optimal parallelism by
agglomeration

= Similar to optimization problem:

— Global Objective: reduce execution time, energy
consumption, ...

— Execution time influenced by e.g. communication/
computation ratio, cost for synchronization, etc.

— Side conditions: number of available cores/threads;
dependencies (control, data, timing), etc.

—

— I y— ——

(@ | T —

B ——

— e | | et e

o T e | | Sl | o : —

= | = ~Agglomeration e

"’“’"E;“w}_’" m“m . and Mapping” [

-~ (e} @ | Lo LT —
Activity and Pattern Diagram Threads/Tasks Cores

2013-02-23 A Pattern-supported Parallelization Approach

Pattern-supported Parallelization

Approach: Phase 2

= Agglomeration is...

— Replacing a parallel design pattern by an activity, e.q.,
replacing pipeline by activity - Reduction of parallelism

— Joining elements of parallel design pattern, e.g., multiple
pipeline stages to single one - Reduction of overhead

— Defining parameters, e.g., concurrent workers for data
parallelism - Tailoring design patterns to target platform

Navigate and Fly ’
Pipeline

Position Position Position

LIDAR PhiciaEen Obstacle Map Weightmap Oricitaiion Waypoints Sintopditon Course
[(V] (] V] [\V] (W] V] [\
.— Extend Obstacle Map Build Weightmap Find Waypoints Update Course Fly to Waypoint O
— Rl S 0 @
Obstacle Map Weightmap S~ e Waypoints Course
Build Weightmap J
Obstacle Map Weightmap Sectors
. - Initialize Weightmap Propagate Weights - (>
Data Parallel Calculate Sectors Pipeline .
(1]
—{J— {1

2013-02-23 A Pattern-supported Parallelization Approach

Pattern-supported Parallelization

Approach: Phase 2

= Mapping
— Find optimal mapping between code (APD) and
threads/tasks and cores/clusters
— Trade-off between optimal use of resources vs. parallelism

— Not in focus of parallelization, different research area

= Objectives for parallelization process
— Speedup/rough approximation of speedup
— Resource usage
— Energy consumption
— Implementation effort (e.g. number of patterns)

= If necessary: iterative application of process!

2013-02-23 A Pattern-supported Parallelization Approach

Pattern-supported

Parallelization Approach

Similar to Foster

Sequential Program /
Problem description .
decomposition

Similar to Mattson l y v

Model of Program Optlma: paralli!lsm by
Pattern Catalogue with Parallel Design agglomeration
Patterns

Source Code

Maximum parallelism by

= Manual process with clear methodology

= Fast modelling of Parallelism with Activity and Pattern
Diagram; derived fr
= Pattern Catalogue

— Easier implementation of parallel program
— Higher Documentation Quality

= Algorithmic skeletons for reduced implementation effort

om UML2

2013-02-23 A Pattern-supported Parallelization Approach

®
Universitit
lN k i
University

Example & Work in Progress:
Unmanned Aerial Vehicle (UAV)

http://www.oberwelzdesign.com/en/project/quadcopter0l

http://www.oberwelzdesign.com/en/project/quadcopter01

The Software

= Autonomous flight over terrain
— Obstacle detection
— Automatic path planning (Laplace operator)

= Assumptions:
— Sequential software exists

= Qverview of the software:
— Initialize system
— Loop until goal is reached:
= Determine position
= Mark obstacles
= Plan path
= Set course

2013-02-23 A Pattern-supported Parallelization Approach

Parallelization

= Phasel

— Goal: Expose parallelism
— Finished, see paper
— Six instances of parallel design patterns

= Phase 2

— Goal: Tailor parallelism to target platform
— But: work in progress, no target platform yet defined
— Approximated speedup based on profiling: 7.8

- Enough parallelism for 2 to 6 cores

—> Further work necessary for 8+ cores

BAMERASA

2013-02-23 A Pattern-supported Parallelization Approach

Summary

» Pattern-supported parallelization approach
— Two phases:

= Reveal parallelism: architecture independent
= Agglomerate and map: architecture dependent

— Only parallel design patterns to introduce parallelism
— Parallel design patterns are described in Pattern Catalogue

— Supporting structure: Activity and Pattern Diagram, similar
to UML2 Activity Diagram

— Limited effort for parallelization and implementation of
parallel program

= Future work:
— Tool support for parallelization, especially Phase 2
— Extend parallelization process for hard real-time systems
— More case studies, different platforms = gain knowledge

2013-02-23 A Pattern-supported Parallelization Approach

