
A Pattern-supported

Parallelization Approach

Ralf Jahr, Mike Gerdes, Theo Ungerer

University of Augsburg, Germany

The 2013 International Workshop on Programming Models and

Applications for Multicores and Manycores (PMAM 2013)

Outline

 Motivation

 Parallel Design Patterns

 Pattern-supported Parallelization Approach

– Two phases

– Activity and Pattern Diagram

– Pattern Catalogue

 Case study: Unmanned Aerial Vehicle

 Summary

2013-02-23 A Pattern-supported Parallelization Approach 2

Motivation

 Multicore and manycore CPUs in embedded systems

 Goals:
– Faster execution of a workload

– Concurrent execution of multiple tasks

– Shorter reaction times

– Energy savings because of lower clock frequency

Need for parallel applications

 But, especially for embedded systems:
– Much legacy code

– Limited development resources

– Complicated testing and debugging

2013-02-23 A Pattern-supported Parallelization Approach 3

Parallel Design Patterns

 Design Patterns

– Idea initially in architecture

– Recurring problems  best practice solutions

– Transfer to software engineering

– Mainly object oriented design, see “Gang of four”

– Standardized description: Pattern Catalogue

 Parallel design patterns

– Extended concept: design patterns providing parallelism

– Tradeoff: flexibility in design vs. development effort

2013-02-23 A Pattern-supported Parallelization Approach 4

 Starting point:

– Sequential program (“legacy code”)

– Pattern Catalogue with parallel design patterns

2013-02-23 A Pattern-supported Parallelization Approach 5

 Phase 1: Targeting Maximum Parallelism

– Create model to reveal parallelism

– Model consisting of sequential parts

and parallel design patterns

– Platform independent

 Phase 2: Targeting Optimal Parallelism

– Agglomeration of nodes,

definition of parameters

– Creation of threads and mapping

onto target architecture

– Platform dependent

Pattern-supported

Parallelization Approach

 The Pattern Catalogue:
– Basis for parallelization

– Contains all allowed parallel design
patterns

– Description according to meta-
pattern

– Description is textual, no reference
implementations

– Implementation examples are
optional

– Grows over time

 Example: “Our Pattern Language”
– http://parlab.eecs.berkeley.edu/wiki

/patterns/patterns

– Organized in multiple layers

2013-02-23 A Pattern-supported Parallelization Approach 6

Pattern Catalogue

http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns

Activity and Pattern Diagram

 Extension of UML2 Activity Diagram:

– Parallel design pattern is new node type similar to activity

– Activities: either sequential or encapsulate APD

– Parallel design patterns: Multiple activities in parallel

 Patterns are only way to introduce parallelism

 Advantages over inventing a new notation:

– Well known, easy to understand, tools exist

– Support for dependencies, branches, and nesting

2013-02-23 A Pattern-supported Parallelization Approach 7

Activity and Pattern Diagram

2013-02-23 A Pattern-supported Parallelization Approach 8

 Goal: Reveal sufficient parallelism for any platform as

Activity and Pattern Diagram (APD)

 Start with single activity, repeatedly apply two operations:

a) Replacement: apply parallel design pattern

b) Splitting: decompose into multiple activities

2013-02-23 A Pattern-supported Parallelization Approach 9

Pattern-supported Parallelization

Approach: Phase 1

 Transition from maximum to optimal parallelism by

agglomeration

 Similar to optimization problem:

– Global Objective: reduce execution time, energy

consumption, …

– Execution time influenced by e.g. communication/

computation ratio, cost for synchronization, etc.

– Side conditions: number of available cores/threads;

dependencies (control, data, timing), etc.

2013-02-23 A Pattern-supported Parallelization Approach 10

Pattern-supported Parallelization

Approach: Phase 2

Activity and Pattern Diagram Threads/Tasks Cores

„Agglomeration

and Mapping“

 Agglomeration is...

– Replacing a parallel design pattern by an activity, e.g.,

replacing pipeline by activity  Reduction of parallelism

– Joining elements of parallel design pattern, e.g., multiple

pipeline stages to single one  Reduction of overhead

– Defining parameters, e.g., concurrent workers for data

parallelism  Tailoring design patterns to target platform

2013-02-23 A Pattern-supported Parallelization Approach 11

Pattern-supported Parallelization

Approach: Phase 2

 Mapping

– Find optimal mapping between code (APD) and

threads/tasks and cores/clusters

– Trade-off between optimal use of resources vs. parallelism

– Not in focus of parallelization, different research area

 Objectives for parallelization process

– Speedup/rough approximation of speedup

– Resource usage

– Energy consumption

– Implementation effort (e.g. number of patterns)

 If necessary: iterative application of process!

2013-02-23 A Pattern-supported Parallelization Approach 12

Pattern-supported Parallelization

Approach: Phase 2

Pattern-supported

Parallelization Approach

 Manual process with clear methodology

 Fast modelling of parallelism with Activity and Pattern
Diagram; derived from UML2

 Pattern Catalogue
– Easier implementation of parallel program

– Higher Documentation Quality

 Algorithmic skeletons for reduced implementation effort

2013-02-23 A Pattern-supported Parallelization Approach 13

Sequential Program /
Problem description

Pattern Catalogue
Model of Program

with Parallel Design
Patterns

Source Code

Maximum parallelism by
decomposition

Optimal parallelism by
agglomeration

Similar to Mattson

Similar to Foster

Example & Work in Progress:
Unmanned Aerial Vehicle (UAV)

http://www.oberwelzdesign.com/en/project/quadcopter01

http://www.oberwelzdesign.com/en/project/quadcopter01

The Software

 Autonomous flight over terrain
– Obstacle detection

– Automatic path planning (Laplace operator)

 Assumptions:
– Sequential software exists

 Overview of the software:
– Initialize system

– Loop until goal is reached:

 Determine position

 Mark obstacles

 Plan path

 Set course

2013-02-23 A Pattern-supported Parallelization Approach 15

Parallelization

 Phase 1

– Goal: Expose parallelism

– Finished, see paper

– Six instances of parallel design patterns

 Phase 2

– Goal: Tailor parallelism to target platform

– But: work in progress, no target platform yet defined

– Approximated speedup based on profiling: 7.8

  Enough parallelism for 2 to 6 cores

  Further work necessary for 8+ cores

2013-02-23 A Pattern-supported Parallelization Approach 16

 Pattern-supported parallelization approach

– Two phases:

 Reveal parallelism: architecture independent

 Agglomerate and map: architecture dependent

– Only parallel design patterns to introduce parallelism

– Parallel design patterns are described in Pattern Catalogue

– Supporting structure: Activity and Pattern Diagram, similar

to UML2 Activity Diagram

– Limited effort for parallelization and implementation of

parallel program

 Future work:

– Tool support for parallelization, especially Phase 2

– Extend parallelization process for hard real-time systems

– More case studies, different platforms  gain knowledge

2013-02-23 A Pattern-supported Parallelization Approach 17

Summary

