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Motivation

= Multicore and manycore CPUs in embedded systems

= Goals:
— Faster execution of a workload
— Concurrent execution of multiple tasks
— Shorter reaction times
— Energy savings because of lower clock frequency

- Need for parallel applications

= But, especially for embedded systems:
— Much legacy code
— Limited development resources
— Complicated testing and debugging
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Parallel Design Patterns

= Design Patterns
— Idea initially in architecture
— Recurring problems = best practice solutions
— Transfer to software engineering
— Mainly object oriented design, see “Gang of four”
— Standardized description: Pattern Catalogue

= Parallel design patterns
— Extended concept: design patterns providing parallelism
— Tradeoff: flexibility in design vs. development effort
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Pattern-supported

Parallelization Approach

= Starting point:
— Sequential program (“legacy code”)
— Pattern Catalogue with parallel design patterns

* Phase 1: Targeting Maximum Parallelism
— Create model to reveal parallelism

. . . . i i“
— Model consisting of sequential parts M aximum Pa |sm
and parallel design patterns ‘

— Platform independent

* Phase 2: Targeting Optimal Parallelism

— Agglomeration of nodes,
definition of parameters

— Creation of threads and mapping W
onto target architecture

— Platform dependent
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Pattern Catalogue
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» The Pattern Catalogue:
Basis for parallelization

— Contains all allowed parallel design
patterns

— Description according to meta-
pattern

— Description is textual, no reference
implementations

— Implementation examples are
optional

— Grows over time

= Example: “Our Pattern Language”

— http://parlab.eecs.berkeley.edu/wiki
/patterns/patterns

— Organized in multiple layers
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Activity and Pattern Diagram

= Extension of UML2 Activity Diagram:
— Parallel design pattern is new node type similar to activity
— Activities: either sequential or encapsulate APD
— Parallel design patterns: Multiple activities in parallel

= Patterns are only way to introduce parallelism

= Advantages over inventing a new notation:
— Well known, easy to understand, tools exist
— Support for dependencies, branches, and nesting
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Activity and Pattern Diagram
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Pattern-supported Parallelization

Approach: Phase 1

= Goal: Reveal sufficient parallelism for any platform as
Activity and Pattern Diagram (APD)

= Start with single activity, repeatedly apply two operations:
a) Replacement: apply parallel design pattern
b) Splitting: decompose into multiple activities

.—%[ Complete Program (Sequential Implementation) %

Replacing Activity by Parallel Design Pattern

Complete Program

Pipeline
. = (a) Task 1 %@
(b) Task 2

(c) Task 3
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Pattern-supported Parallelization

Approach: Phase 2

= Transition from maximum to optimal parallelism by
agglomeration

= Similar to optimization problem:

— Global Objective: reduce execution time, energy
consumption, ...

— Execution time influenced by e.g. communication/
computation ratio, cost for synchronization, etc.

— Side conditions: number of available cores/threads;
dependencies (control, data, timing), etc.

—
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Pattern-supported Parallelization

Approach: Phase 2

= Agglomeration is...

— Replacing a parallel design pattern by an activity, e.q.,
replacing pipeline by activity - Reduction of parallelism

— Joining elements of parallel design pattern, e.g., multiple
pipeline stages to single one - Reduction of overhead

— Defining parameters, e.g., concurrent workers for data
parallelism - Tailoring design patterns to target platform
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Pattern-supported Parallelization

Approach: Phase 2

= Mapping
— Find optimal mapping between code (APD) and
threads/tasks and cores/clusters
— Trade-off between optimal use of resources vs. parallelism

— Not in focus of parallelization, different research area

= Objectives for parallelization process
— Speedup/rough approximation of speedup
— Resource usage
— Energy consumption
— Implementation effort (e.g. number of patterns)

= If necessary: iterative application of process!
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Pattern-supported

Parallelization Approach

Similar to Foster

Sequential Program /
Problem description .
decomposition

Similar to Mattson l y v

Model of Program Optlma: paralli!lsm by
Pattern Catalogue with Parallel Design agglomeration
Patterns

Source Code

Maximum parallelism by

= Manual process with clear methodology

= Fast modelling of Parallelism with Activity and Pattern
Diagram; derived fr
= Pattern Catalogue

— Easier implementation of parallel program
— Higher Documentation Quality

= Algorithmic skeletons for reduced implementation effort

om UML2
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Example & Work in Progress:
Unmanned Aerial Vehicle (UAV)

http://www.oberwelzdesign.com/en/project/quadcopter0l



http://www.oberwelzdesign.com/en/project/quadcopter01

The Software

= Autonomous flight over terrain
— Obstacle detection
— Automatic path planning (Laplace operator)

= Assumptions:
— Sequential software exists

= Qverview of the software:
— Initialize system
— Loop until goal is reached:
= Determine position
= Mark obstacles
= Plan path
= Set course
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Parallelization

= Phasel

— Goal: Expose parallelism
— Finished, see paper
— Six instances of parallel design patterns

= Phase 2

— Goal: Tailor parallelism to target platform
— But: work in progress, no target platform yet defined
— Approximated speedup based on profiling: 7.8

- Enough parallelism for 2 to 6 cores

—> Further work necessary for 8+ cores

BAMERASA
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Summary

» Pattern-supported parallelization approach
— Two phases:

= Reveal parallelism: architecture independent
= Agglomerate and map: architecture dependent

— Only parallel design patterns to introduce parallelism
— Parallel design patterns are described in Pattern Catalogue

— Supporting structure: Activity and Pattern Diagram, similar
to UML2 Activity Diagram

— Limited effort for parallelization and implementation of
parallel program

= Future work:
— Tool support for parallelization, especially Phase 2
— Extend parallelization process for hard real-time systems
— More case studies, different platforms = gain knowledge
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