
A Novel CPU-GPU Cooperative
Implementation of A Parallel Two-
List Algorithm for the Subset-Sum

Problem
Jing Liu

College of Information Science and Engineering,
Hunan University

Feb. 15, 2014

2

n  Background

n  The CPU-GPU Cooperative Computing
Environment

n  The CPU-GPU Cooperative Implementation

n  Experimental Evaluation

n  Conclusions

Outline

3

1. Introduction of subset-sum problem
¾ Given n positive integers and a positive integer
M, the subset-sum problem (SSP) is the decision problem of finding
a binary n-tuple solution for the equation

¾ Hard to solve: SSP is well-known to be NP-complete, and it is a
special case of the 0/1 knapsack problem.

¾ Many real-world applications: stock cutting, cargo loading,
capital budgeting, job scheduling, and workload allocation, etc.

Background

1 2[, , ,]nW w w w= L

1 2[, , ,]nX x x x= L

1
, {0,1}

n

i i i
i
w x M x

=

= ∈∑

4

2. Related work of solving subset-sum problem
n  Many techniques have been developed to solve SSP

Ø  Exact algorithms: dynamic programming, branch-and-
bound, two-list algorithm, etc

Ø  Heuristic algorithms: genetic algorithm, local search, etc

n  Sequential two-list algorithm: the best known sequential
algorithm for exactly solving SSP in time O(n2n/2) with O(2n/2)
memory space.

n  Parallel two-list algorithm: to reduce the computation time of
SSP, the parallelization of the two-list algorithm has been
extensively discussed in recent years.

Background

5

2. Related work of solving subset-sum problem
n  Parallel implementation for the subset-sum problem
Recently, heterogeneous CPU-GPU system has been widely used, which is a
powerful way to deal with time-intensive problems. To solve SSP on multi-core
CPU or many-core GPU, some work has been done.

Table 1. Parallel implementation for the subset-sum problem

As shown in Table 1, no implementation combines both CPU and GPU to
accelerate solving the subset-sum problem.

Background

dynamic
programming

branch-and-
bound

two-list
algorithm

genetic
algorithm

CPU-only implmentation P P P P
GPU-only implmentation P P P P

CPU-GPU cooperative
implmentation O O O O

6

2. Related work of solving subset-sum problem
¾ The CPU-only, GPU-only implementations fail to fully utilize
 all the CPU cores and the GPU resources at the same time

Background

In the GPU-only implementation,
only one CPU thread is used to
control and to communicate with
the GPU, all the other CPU
threads are in idle state while the
GPU performs some tasks.

Problem:
this leads to large amounts
of available CPU resources
are wasted.

Idle GPU
computation

kernel
invocation

kernel end

D2H copy

H2D copy

all the other
CPU threads

CPU
thread

0

all GPU
threads

Fig. 1 The GPU-only implementation

7

3. Motivation
In order to effectively solve SSP in a heterogeneous system,
based on the optimal parallel two-list algorithm [1], we
propose a novel CPU-GPU cooperative implementation of
the algorithm, i.e., find an effective method to make full use of
all the available resources of both CPU and GPU to accelerate
solving SSP.

[1] Li KL, Li RF, Li QH. Optimal parallel algorithms for the knapsack problem
without memory conflicts. Journal of Computer Science and Technology 2004;
19(6): 760-768.

Background

8

Background
4. Key challenges

The parallel two-list algorithm is a typical example of an irregularly
structured problem, so it is hard to implement the algorithm on both
CPU and GPU.

How to assign the most suitable workload to the CPU and GPU
to maximize the utilization of all computational resources.

9

1. The first CPU-GPU cooperative computing method
The CPU-GPU Cooperative Computing Environment

CPU
computation

GPU
computation

kernel
invocation

kernel end

D2H copy

H2D copy

all the
other CPU

threads

CPU
thread

0

all GPU
threads

Fig. 2 The first CPU-GPU
cooperative computing method

Main idea:
CPU thread 0 is used to control
and to communicate with the GPU,
all the other CPU threads together
with all GPU threads to
cooperatively perform some tasks.

Typical flow:
(1) CPU thread 0 firstly transfers part
of the input data from CPU to GPU,
next it invokes the CUDA kernel,
then all GPU threads run the kernel in
parallel, finally CPU thread 0 transfers
the output data from GPU to CPU.

(2) At the same time, all the other CPU threads process the input data allocated to
the CPU in parallel.

10

2. The second CPU-GPU cooperative computing method
The CPU-GPU Cooperative Computing Environment

Main idea:
The main idea of the second method is
similar to that of the first method.

Typical flow:
(1) CPU thread 0 is used to control
the GPU, after it invokes the CUDA
kernel, all GPU threads run the kernel in
parallel.
(2) At the same time, CPU thread 1 firstly
transfers part of the input data from GPU
to CPU, then all the other CPU threads
together with it to perform some tasks in
parallel, finally CPU thread 1 transfers the
output data from CPU to GPU.
 The difference between the two methods:

Method 1: the data to be processed by the GPU comes from the CPU main memory
Method 2: the data to be processed by the CPU comes from the GPU global memory

CPU
computation

GPU
computation

kernel
invocation

kernel end

all the
other CPU

threads

CPU
thread

0

all GPU
threads

D2H copy

H2D copy

CPU
thread

1

Fig. 3 The second CPU-GPU
cooperative computing method

11

3. The optimal task distribution model
n  The goal of establishing the model
find the most appropriate task distribution ratio between CPU and GPU

n  The determination of the task distribution ratio needs to

consider the following factors
Ø  processing capabilities and memory capacities of the CPU side
Ø  processing capabilities and memory capacities of the GPU side
Ø  the bandwidth from CPU to GPU
Ø  the bandwidth from GPU to CPU
Ø  the actual time to run the given program only on the CPU
Ø  the actual time to run the given program only on the GPU
Ø  the CPU-GPU communication overhead

The CPU-GPU Cooperative Computing Environment

12

3. The optimal task distribution model
n  Some parameters used in the model

Table 2. Parameters used in the task distribution model

The CPU-GPU Cooperative Computing Environment

Notation Description
D the total workload
Dcpu the workload assigned to the CPU
Dgpu the workload assigned to the GPU
R the proportion of the workload assigned to the CPU
Tcpu the running time of the CPU-only implementation
Tgpu the running time of the GPU-only implementation

Tcomm the CPU-GPU communication time

13

3. The optimal task distribution model
n  The calculation of the task distribution ratio
For the first method, the task distribution ratio can be calculated as follows:

For the second method, the task distribution ratio can be calculated as follows:

The CPU-GPU Cooperative Computing Environment

gpu comm

cpu gpu comm

T T
R

T T T
+

=
+ +

gpu

cpu gpu comm

T
R

T T T
=

+ +

14

3. The optimal task distribution model
n  The determination of the cooperative computing method

 < = Tgpu, adopt the first cooperative computing method

Tcpu

 > Tgpu, adopt the second cooperative computing method

For the parallel two-list algorithm, the experimental results show that
Tcpu > Tgpu, so we adopt the second method.

The CPU-GPU Cooperative Computing Environment

15

1. Three stages of the parallel two-list algorithm
The CPU-GPU Cooperative Implementation

The parallel
generation stage

Firstly get n-element
 input vector W and
divide it into two
equal parts W1 and
W2, then generate
two sorted lists A
and B.

The parallel
pruning stage

At first evenly divide
 lists A and B into k
blocks, then k2 block
pairs are assigned to
k threads, finally use
the prune rule to shri
nk the search space
of each thread.

The parallel
search stage

At first those picked
block pairs are evenly
assigned to k threads,
then each thread perfo
rms the search routine
to find a solution of
SSP.

16

2. The cooperative implementation of the generation stage
The CPU-GPU Cooperative Implementation

Algorithm 1 The cooperative implementation of the generation stage
Require: W1, W2, M
 1: for i = 2 to n/2 do
 2: w the add item process
 3: Determine the task distribution ratio of the add item process.
 4: Determine the workload of the CPU and GPU during the add item process.
 5: Execute the add item process on both the CPU and GPU sides.
 6: w the partition and merge processes
 7: Determine the task distribution ratio of the partition and merge processes.
 8: Determine the workload of the CPU and GPU during the partition and merge
 processes.
 9: Execute the partition and merge processes on both the CPU and GPU sides.
10: end for
11: return the sorted list A (B)

17

2. The cooperative implementation of the generation stage
The whole process of generating the sorted list A (B) needs to execute n/2-1
iterations to complete. Each iteration mainly consists of the following six

steps:

The CPU-GPU Cooperative Implementation

Step 1: Determine
the task distribution
ratio of the add item
process

Step 2: Determine
the workload of the
CPU and GPU during
the add item process

Step 3: Execute the add
item process on both
the CPU and GPU sides

Step 4: Determine
the task distribution
ratio of the partition
and merge processes

Step 5: Determine the
workload of the CPU
and GPU during the
partition and merge
processes

Step 6: Execute the
partition and merge
processes on both the
CPU and GPU sides

18

3. The cooperative implementation of the pruning and
 search stages

The CPU-GPU Cooperative Implementation

Algorithm 2 The cooperative implementation of the pruning and search stages
Require: A, B, M
 1: Determine the task distribution ratio of the pruning and search stages.
 2: Determine the workload of the CPU and GPU during the pruning and search
stages.
 3: Execute the pruning stage on both the CPU and GPU sides.
 4: if a solution of SSP is found then
 5: return the solution of SSP;
 6: else
 7: Execute the search stage on both the CPU and GPU sides.
 8: end if
 9: if a solution of SSP is found then
10: return the solution of SSP;
11: else
12: return NULL; w there is no solution
13: end if

19

3. The cooperative implementation of the pruning and
 search stages
The CPU-GPU cooperative implementation of the pruning and search stages
mainly consists of the following six steps:

The CPU-GPU Cooperative Implementation

Step 1:
Determine the task
distribution ratio of
the pruning and
search stages

Step 2: Determine
the workload of the
CPU and GPU
during the pruning
and search stages

Step 3:
Execute the pruning
stage on both the CPU
and GPU sides

Step 4: Determine
whether to carry out
the next search stage,
if a solution is found,
then return the
solution, else go to
Step 5.

Step 5:
Execute the search
stage on both the CPU
and GPU sides

Step 6:
Output the final
search results

20

1. Experimental setup
n  Two different test platforms

Table 3. Two different test platforms

Experimental Evaluation

Test Platform 1 Test Platform 2

CPU Dual 4-cores Intel Xeon E5504
CPUs (2.0 GHz)

Dual 6-cores Intel Xeon E5-2620
CPUs (2.0 GHz)

GPU An NVIDIA GTX 465 GPU
(352 CUDA cores at 607 MHz)

An NVIDIA Tesla M2090 GPU
(512 CUDA cores at 1.3 GHz)

CPU main
memory 32 GB 32 GB

GPU global
memory

1 GB,
102.6 GB/s memory bandwidth

6 GB,
177.6 GB/s memory bandwidth

software SUSE Linux Enterprise 11 operating system with NVIDIA CUDA
driver version 5.5 and GCC version 4.4.7

21

1. Experimental setup
n  Three different parallel implementations
We use three different methods to implement the parallel two-list algorithm

n  Seven different problem sizes
1) the problem size n = 42, 44, 46, 48, 50, 52, 54
2) for each problem size, we randomly produce 100 different instances of SSP.
3) the average execution time of 100 instances is considered, and it is measured
in milliseconds.

Experimental Evaluation

CPU-only
implementation

Implement the parallel
 algorithm on CPU
using OpenMP

GPU-only
implementation

Implement the parallel
 algorithm on GPU
using CUDA

CPU-GPU cooperative
implementation

Implement the parallel
algorithm on both CPU
and GPU using
OpenMP and CUDA

22

2. Evaluation of the task distribution model
n  The estimated task distribution ratios
Table 4. The estimated task distribution ratio of the partition and merge processes

Table 5. The estimated task distribution ratio of the pruning and search stages

Experimental Evaluation

n Test Platform 1 Test Platform 2
Tcpu Tgpu Tcomm R1 Tcpu Tgpu Tcomm R1

42 92.4 67.1 88.2 27.09% 70.2 56.6 73.5 28.25%
44 150.8 102.5 138.7 26.15% 114.3 85.4 115.6 27.10%
46 255.8 168.0 231.6 25.63% 194.1 140.1 193.0 26.57%
48 454.8 293.1 419.8 25.10% 344.9 244.2 349.9 26.01%
50 851.3 540.0 797.4 24.67% 645.3 449.4 664.5 25.54%
52 1626.3 1025.6 1509.1 24.65% 1236.8 854.8 1257.5 25.52%
54 3273.1 2059.2 3027.5 24.63% 2492.4 1717.0 2522.9 25.50%

n Test Platform 1 Test Platform 2
Tcpu Tgpu Tcomm R2 Tcpu Tgpu Tcomm R2

42 18.0 6.3 9.4 18.78% 13.5 5.3 8.4 19.34%
44 29.1 10.0 18.3 17.43% 21.7 8.4 15.1 18.52%
46 48.7 15.8 33.3 16.19% 36.5 13.2 24.8 17.73%
48 85.3 27.2 58.7 15.86% 63.9 22.6 49.5 16.63%
50 156.8 49.5 110.1 15.65% 117.3 41.2 98.6 16.02%
52 293.5 92.2 207.3 15.55% 220.3 76.9 185.4 15.94%
54 576.0 180.5 410.0 15.48% 432.8 150.5 369.7 15.79%

23

2. Evaluation of the task distribution model
¾Verify whether the estimated task distribution ratio is reasonable

Experimental Evaluation

We specify the problem size
n = 48 and test the execution
time of the partition and merge
processes by using different
distribution ratios
on Test Platform 2.

Figure 4 shows that the
estimated task distribution ratio
has only 1% error. Hence, the
error is acceptable.

Fig. 4 The execution time of the partition and
merge processes for different task distribution

ratios on Test Platform 2 for n = 48

24

2. Evaluation of the task distribution ratio
n  The actual optimal task distribution ratios

Table 6. The actual optimal task distribution ratio for different
problem sizes on two different test platforms

The results show that the estimated task distribution ratios are close to the
actual optimal values, so our proposed task distribution model can find
reasonable task distribution ratio.

Experimental Evaluation

n Test Platform 1 Test Platform 2
R1 R2 R1 R2

42 28.12% 19.81% 29.28% 20.40%
44 27.17% 18.39% 28.13% 19.54%
46 26.64% 17.08% 27.59% 18.71%
48 26.10% 16.73% 27.02% 17.54%
50 25.66% 16.51% 26.54% 16.90%
52 25.64% 16.41% 26.52% 16.82%
54 25.62% 16.33% 26.49% 16.66%

25

3. Performance evaluation of the CPU-GPU cooperative
 implementation

Table 7. The execution times and speedups of three different parallel
implementations on Test Platform 1

 Here, the speedup is defined as sequential execution time over
 parallel execution time.

Experimental Evaluation

n
Sequential

Parallel implementation
CPU-only GPU-only CPU + GPU

Time Time Speedup Time Speedup Time Speedup
42 341.3 114.3 2.99 77.6 4.40 61.5 5.55
44 613.8 186.2 3.30 118.5 5.18 94.2 6.52
46 1094.2 315.4 3.47 193.7 5.65 154.4 7.09
48 2020.5 559.5 3.61 337.3 5.99 270.9 7.46
50 3868.3 1044.5 3.70 620.9 6.23 501.8 7.71
52 7513.4 1989.8 3.78 1177.7 6.38 951.9 7.89
54 15197.1 3990.8 3.81 2359.8 6.44 1907.6 7.97

26

3. Performance evaluation of the CPU-GPU cooperative
 implementation

Table 8. The execution times and speedups of three different parallel
implementations on Test Platform 2

Experimental Evaluation

n
Sequential

Parallel implementation
CPU-only GPU-only CPU + GPU

Time Time Speedup Time Speedup Time Speedup
42 327.1 89.5 3.66 67.4 4.85 52.9 6.18
44 588.1 145.4 4.04 99.2 5.93 78.4 7.50
46 1047.7 246.6 4.25 161.4 6.49 128.2 8.17
48 1933.7 437.3 4.42 281.1 6.88 224.1 8.63
50 3700.1 816.0 4.53 516.8 7.16 413.4 8.95
52 7182.8 1559.4 4.61 982.6 7.31 786.7 9.13
54 14520.8 3131.7 4.64 1967.6 7.38 1577.3 9.21

27

3. Performance evaluation of the CPU-GPU cooperative
 implementation

Experimental Evaluation

Fig. 5 The speedup comparison of three different
parallel implementations on Test Platform 1

1) The results show that
when the problem size
increases, the speedups grow
accordingly, and the speedup
will gradually reach a peak.

2) The CPU-GPU cooperative
implementation significantly
outperforms the CPU-only
case and the GPU-only case,
this is because both CPU and
GPU have been fully utilized.

28

3. Performance evaluation of the CPU-GPU cooperative
 implementation

Experimental Evaluation

Fig. 6 The speedup comparison of three different
parallel implementations on Test Platform 2

1) Figures 5 and 6 show that
the CPU-GPU cooperative
implementation achieves
substantial speedup, when n
= 54, it obtains 8 times
speedup on Test Platform 1
and 9.2 times speedup on
Test Platform 2.

2) The results also show that
Test Platform 2 produces
better performance than Test
Platform 1, indicating that
our approach has good
scalability.

29

3. Performance evaluation of the CPU-GPU cooperative
 implementation

Experimental Evaluation

Fig. 7 The execution time comparison of three
different parallel implementations on Test Platform 1

1) Compared with the
CPU-only implementation,
the CPU-GPU cooperative
implementation achieves
an average of 103%
performance improvement
on Test Platform 1.

2) Compared with the
GPU-only implementation,
the CPU-GPU cooperative
implementation achieves
an average of 25%
performance improvement
on Test Platform 1.

30

3. Performance evaluation of the CPU-GPU cooperative
 implementation

Experimental Evaluation

Fig. 8 The execution time comparison of three
different parallel implementations on Test Platform 2

1) Compared with the
CPU-only implementation,
the CPU-GPU cooperative
implementation achieves
an average of 91%
performance improvement
on Test Platform 2.

2) Compared with the
GPU-only implementation,
the CPU-GPU cooperative
implementation achieves
an average of 26%
performance improvement
on Test Platform 2.

31

Conclusions
n  The main contributions
Ø  An original CPU-GPU cooperative implementation of the parallel

two-list algorithm is proposed to effectively solve the subset-sum
problem.

Ø  An optimal task distribution model is established to find the most
appropriate task distribution ratio between CPU and GPU.

n  The future work
We will focus on the two performance bottlenecks:
Ø  the communication overhead between CPU and GPU
Ø  the load balance between CPU and GPU

32

Thanks!

