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Wavefront Pattern (0:30)

(c)

(c)-Dios, A.J et al."Evaluation of the Task Programming Model in the Parallelization of Wavefront Problems," (HPCC), 2010, IEEE



  

Wavefront Applications (0:30)

● Nash Equilibrium : A game-theoretic problem in economics, characterized by small instances 
but a very computationally demanding kernel. The internal granularity parameter controls the 
iteration count of a nested loop.

● Biological Sequence Comparison : A string alignment problem from Bioinformatics, 
characterized by very large instances and very fine-grained kernels, varying with detailed 
comparisons made.

(a)- http://en.wikipedia.org/wiki/SmithWaterman_algorithm

(a)



  

Implementation Strategy (4:30)

Dual GPU MultiCore Wavefront Framework



  

Experimental Programme (1:30)



  

Platforms and Parameters (0:30)
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Appendix :Tuning Challenges
● Problem size (dim) large enough to justify parallel computation in GPU (smaller sized 

problems can be computed quicker in the faster CPU cores)

● Granularity of task (tsize) high enough for computation to dominate over the cost of starting a 
GPU and the communication overhead of transferring data between GPU and CPU. 

● Communication cost increases with increase in data (dsize) being transferred 

● Dual GPUs have the additional overhead of exchanging neighbouring data between 
themselves every few iterations (halo swapping).

● Halo swaps will decrease with increase in halo size but this has to be traded against 
redundant computation, which starts affecting performance with increase in granularity of task

● GPU tiling (gpu-tile) leads to reduction in the number of kernel calls but this has to be traded 
against the additional cost of synchronizing work items within each work group.

● When computation dominates over communication anyway, time spent in kernel calls no 
longer matters and gpu tiling may prove to be counter productive

● The type of system affects the performance : 

- fast GPU coupled to a slow CPU means data will mostly be offloaded to the GPU, meaning 
more diagonals in the GPU (band sizes) with CPU tiling having negligible effect. 

- fast GPU + fast CPU would similarly mean lower band sizes 



  

Appendix : Framework Interface



  

●Appendix : TBB/Omp/baseline vs skeleton

●

●
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Appendix :Previous Autotuning 
Performance

● Synthetic Application – note varying colour key
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Appendix : Previous Summarised Results
● Overall Average Performance
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