

Autotuning Wavefront Applications
for Multicore

Multi-GPU Hybrid Architectures

Siddharth Mohanty
Murray Cole

University of Edinburgh

Agenda (1:00)

● Wavefront Pattern (1:00)

● Wavefront Applications (0:30)

● Implementation Strategy + trade-offs (4:30)

● Experimental Programme (1:30)

● Platform And Parameters (1:00)

● Exhaustive Search Results (2:00)

● ESR : Best Points Performance (1:00)

● ESR : Best Points Sensitivity (1:00)

● Autotuning Model (1:00)

● Autotuning Results (1:30)

● Q&A (4:00)

Wavefront Pattern (0:30)

(c)

(c)-Dios, A.J et al."Evaluation of the Task Programming Model in the Parallelization of Wavefront Problems," (HPCC), 2010, IEEE

Wavefront Applications (0:30)

● Nash Equilibrium : A game-theoretic problem in economics, characterized by small instances
but a very computationally demanding kernel. The internal granularity parameter controls the
iteration count of a nested loop.

● Biological Sequence Comparison : A string alignment problem from Bioinformatics,
characterized by very large instances and very fine-grained kernels, varying with detailed
comparisons made.

(a)- http://en.wikipedia.org/wiki/SmithWaterman_algorithm

(a)

Implementation Strategy (4:30)

Dual GPU MultiCore Wavefront Framework

Experimental Programme (1:30)

Platforms and Parameters (0:30)

Exhaustive Search Results (ESR) (2:00)

ESR : Best Point Performance (1:00)

ESR : Best Points Sensitivity (1:00)

Autotuning : Model (1:00)

Autotuning Results (1:30)

Thank You

Appendix :Tuning Challenges
● Problem size (dim) large enough to justify parallel computation in GPU (smaller sized

problems can be computed quicker in the faster CPU cores)

● Granularity of task (tsize) high enough for computation to dominate over the cost of starting a
GPU and the communication overhead of transferring data between GPU and CPU.

● Communication cost increases with increase in data (dsize) being transferred

● Dual GPUs have the additional overhead of exchanging neighbouring data between
themselves every few iterations (halo swapping).

● Halo swaps will decrease with increase in halo size but this has to be traded against
redundant computation, which starts affecting performance with increase in granularity of task

● GPU tiling (gpu-tile) leads to reduction in the number of kernel calls but this has to be traded
against the additional cost of synchronizing work items within each work group.

● When computation dominates over communication anyway, time spent in kernel calls no
longer matters and gpu tiling may prove to be counter productive

● The type of system affects the performance :

- fast GPU coupled to a slow CPU means data will mostly be offloaded to the GPU, meaning
more diagonals in the GPU (band sizes) with CPU tiling having negligible effect.

- fast GPU + fast CPU would similarly mean lower band sizes

Appendix : Framework Interface

●Appendix : TBB/Omp/baseline vs skeleton

●

●

1

Appendix :Previous Autotuning
Performance

● Synthetic Application – note varying colour key

1

Appendix : Previous Summarised Results
● Overall Average Performance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

