Programming a multicore architecture
without coherency and atomic operations

Jochem Rutgers, Marco Bekooij, Gerard Smit

2014-02-15

1/13

Parallel render example

One master thread:
1 data = read_3d_model_from_file();
2 go =1;
3 while(done!=N) sleep();

4 display_frame(frame);

N slave threads:

1 while(!go) sleep();
2 render_my_part_of_frame(data,frame);

3 done++;

2/13

Parallel render Pthread example

One master thread:

1 data = read_3d_model_from_file();
2> pthread_barrier_wait();
3 pthread_barrier_wait();

4 display_frame(frame);

N slave threads:

1 pthread_barrier_wait();
2 render_my_part_of_frame(data,frame);

3 pthread_barrier_wait();

3/13

programmers say. . . hardware architects say. ..

| want C, so | need
sequential execution

Can't do, use paralle
execution instead

Hmm, then | need -

shared memory to use
threads and pointers

I'll give you

distributed memory

Then at least supply
hardware cache

coherenc
4 Ok, but only with a

weak memory model

| can't reason about

state then, give me
atomic operations -

Ok, but that's ex-
tremely expensive,
so don't use them

4/13

Programming a multicore architecture
without
coherency and atomic operations

5/13

Programming a multicore architecture
without
coherency and atomic operations

... by starting from a functional language

5/13

Dependency-only description

Program definition:

1 main h = cylinder 2 h
2 cylinder r = = (* w (sqr r))

3 sqr X = % X X

6/13

Dependency-only description

Program definition: @

1 main h = cylinder 2 h

2 cylinder r = = (* 7w (sqr 1)) @
3 sqr X = % X X

Evaluation sequence: @ @
1 main (* 3 3) ‘ @

2 cylinder 2 (* 3 3)
3 % (x m (sqr 2)) (* 3 3)
4 % (¢ (x»22)) (+33)

5ok (o (4)) (+ 33)
6 % (12.57...) (x 3 3)
7 % (12.57...) 9

s 113.10...

6/13

Dependency-only description

Program definition:

1 main h = cylinder 2 h

2 cylinder r = = (* 7w (sqr 1))

3 sqQr X = *

X X

Evaluation sequence:

1 main

2 cylinder 2

3 % (x m (sqr 2))
4 % (xm (% 22))

5 % (v m (4))
6 % (12.57...)
7 % (12.57...)
g 113.10...

« 3 3)

3 3)

* 3 3)
% 3 3)
* 3 3)

33

6/13

Dependency-only description

» Terms are constant @

» Duplicates are identical <2

» No order in execution o‘Q @

» No memory/state

» No implicit behavior @ @
... therefore. . . ‘ @

» Parallel description

» Shortcuts in synchronization

» Lossy work distribution @ a

» Only atomic pointer writes

» atomic free

6/13

A \-term's life

O _

1. Memory allocation

7/13

A \-term's life

O &)

1. Memory allocation

2. Memory initialization (construction)

7/13

A \-term's life

1. Memory allocation
2. Memory initialization (construction)

3. Add to expression

7/13

A \-term's life

Sl

OO

Memory allocation
Memory initialization (construction)
Add to expression

Replace with result (indirect)

7/13

A \-term's life

Memory allocation

Memory initialization (construction)
Add to expression

Replace with result (indirect)

Die

AR

7/13

A \-term's life

O O

Memory allocation

Memory initialization (construction)
Add to expression

Replace with result (indirect)

Die

Garbage collect, free

o 0k =

7/13

A A-term'’s life

O O

1. Memory allocation private
2. Memory initialization (construction) r/w access, private
3. Add to expression read-only, shared
4. Replace with result (indirect) pointer write, shared
5. Die private
6. Garbage collect, free private

7/13

From phases to rules

1. Memory allocation

2. Memory initialization (construction)

Rule 1: construction must be completed; flush / fence
3. Add to expression

Rule 2: pointer write is atomic, in total order; (flush)

Rule 3: reads are in total order
4. Replace with result (indirect)

(Rule 2 again)
5. Die

Rule 4: all operations are completed; flush / fence

6. Garbage collect, free

8/13

From phases to rules to requirements

1. Memory allocation

2. Memory initialization (construction)

Rule 1: construction must be completed(flush)/ fence
3. Add to expression

Rule 2: pointer write is atomic, in total order; (flush)

Rule 3: reads are in total order
4. Replace with result (indirect)

(Rule 2 again)
5. Die

Rule 4: all operations are completed; flush / fence

6. Garbage collect, free

8/13

From phases to rules to requirements

1. Memory allocation

2. Memory initialization (construction)

Rule 1: construction must be completed(flush)(fence
3. Add to expression

Rule 2: pointer write is atomic, in total order; (flush)

Rule 3: reads are in total order
4. Replace with result (indirect)

(Rule 2 again)
5. Die

Rule 4: all operations are completed; flush / fence

6. Garbage collect, free

8/13

From phases to rules to requirements

1. Memory allocation

2. Memory initialization (construction)

Rule 1: construction must be completed(flush)(fence
3. Add to expression

Rule 2: pointer write i atomic,)in total order; (flush)

Rule 3: reads are in total order
4. Replace with result (indirect)

(Rule 2 again)
5. Die

Rule 4: all operations are completed; flush / fence

6. Garbage collect, free

8/13

From phases to rules to requirements

1. Memory allocation

2. Memory initialization (construction)

Rule 1: construction must be completed(flush)(fence
3. Add to expression

Rule 2: pointer write i atomic,)in total order; (flush)

Rule 3: reads are in{ total order
4. Replace with result (indirect)

(Rule 2 again)
5. Die

Rule 4: all operations are completed; flush / fence

6. Garbage collect, free

8/13

M-calculus in C++

» \-terms implemented as C++ templates/classes

» gcc; ()-operator overloading gives FP-like syntax

» data type: (complex) doubles, large integers (GNU MP)
» one worker thread per core

» Haskell-like par and pseq

» local vs. global data and garbage collection

» mark—sweep GC (global GC is stop-the-world)

» ~400 instructions in run-time per created A\-term

» ~5500 LoC

» GPLv3

» https://sites.google.com/site/jochemrutgers/lambdacpp

9/13

https://sites.google.com/site/jochemrutgers/lambdacpp

1$ | DS I$ | DS 1$ | DS 1$ | DS

N2

in-order NoC

10/13

Speedup

24
20 |-
16 |- linear speedup
—=— ghc (x86)
12 —&— ghc (x86, hyperthreaded)
—e— LambdaC++ (x86)
8 B —e— LambdaC++ (x86, hyperthreaded)
4— LambdaC++ (MicroBlaze)
4 —— LambdaC++ (x86), no mem bottleneck
0 | | | | | | |
4 28 32

|
0 4 8 12 16 20 2

Number of processors

(b) parfib

11/13

Time spent (fraction of execution time)

M global GC

M 1ocal GC

[stalling on black hole
Hidle

[running B-reduction

H
1
ik
g

T |
I

|

RN N > s
o RS SR
M8 o 97 0@

o &

12/13

Highlights

m
A Thankst

programmers say. . . hardware architects say. ..

I want C, so | need
sequential execution
~Can't do, use parallel
___ execution instead

Hmm, then | need
I'll give you

shared memory to use
distributed memory

threads and pointers

hen at least supply™~a--
hardware cache
coherency ——e

Ok, but only with a
weak memory model

I can't reason about
state then, give me

atomic operations

Ok, but that's ex-
tremely expensive,
5o don’t use them

» Accept the hardware trends

13/13

Highlights

=
A Thankst

)

Le

% —

Dependency-only description

» Terms are constant @
> Duplicates are identical 7

» No order in execution “‘o

> No memory/state

» No implicit behavior @

... therefore. . .

v

v

v

v

atomic free

v

Parallel description

Shortcuts in synchronization @

Lossy work distribution

Only atomic pointer writes @ @

» Accept the hardware trends

> Another programming model might be more suitable

13/13

Highlights

From phases to rules to requirements

1. Memory allocation

N}

. Memory initialization (construction)

Rule 1: construction must be completed(flush)/ fence

w

. Add to expression
Rule 2: pointer write i atomic,)in total order; (flush)

Rule 3: reads are in(total order

>

Replace with result (indirect)

(Rule 2 again)

/ 5. Die

Rule 4: all operations are completed; flush / fence

o

Garbage collect, free

» Accept the hardware trends

> Another programming model might be more suitable

=
A Thankst

D == » Extreme example: FP is hardware-friendly. ..

Le

% —

13/13

Highlights

=
==
=

il

Xy

EXYA

v

(in-order NoC)

\,‘\/ /F/
\4\,/\

DDR

Accept the hardware trends
Another programming model might be more suitable
Extreme example: FP is hardware-friendly. . .

...cache coherency and atomics are avoided
13/13

Highlights

==
=

il

S

|
|
~
|
- |

/i
N

@<

v

v

Thanks!

Jochem Rutgers
j.h.rutgersQutwente.nl

Programming a multicore architecture
without coherency and atomic operations

UNIVERSITY OF TWENTE.

Nwm LYY

Accept the hardware trends
Another programming model might be more suitable
Extreme example: FP is hardware-friendly. . .

...cache coherency and atomics are avoided
13/13

Part |l

Appendix

14 /13

Thanks!

Jochem Rutgers
j.h.rutgers@utwente.nl

Programming a multicore architecture
without coherency and atomic operations

UNIVERSITY OF TWENTE.

15/13

local local a
benchmark applications® constants® globals
coins 0.418 0.582 1.36-107*
parfib 0.379 0.621 1.44-1074
partak 0.351 0.648 5.47-107*
prsa 0.412 0.583 4.97-1073
queens 0.445 0.555 9.10-107°

@ Fraction of sum of all global and local terms

Table 2. Generated terms during evaluation (LambdaC++, x86, 12

cores)

16 /13

	Presentation
	Introduction
	Functional approach
	Rules and requirements
	Experiments
	Conclusion

	Appendix

