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Parallel render example

One master thread:
1 data = read_3d_model_from_file();
2 go =1;
3 while(done!=N) sleep();

4 display_frame(frame);

N slave threads:

1 while(!go) sleep();
2 render_my_part_of_frame(data,frame);

3 done++;
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Parallel render Pthread example

One master thread:

1 data = read_3d_model_from_file();
2> pthread_barrier_wait();
3 pthread_barrier_wait();

4 display_frame(frame);

N slave threads:

1 pthread_barrier_wait();
2 render_my_part_of_frame(data,frame);

3 pthread_barrier_wait();
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programmers say. . . hardware architects say. ..

| want C, so | need
sequential execution

Can't do, use paralle
execution instead

Hmm, then | need -

shared memory to use
threads and pointers

I'll give you

distributed memory

Then at least supply
hardware cache

coherenc
4 Ok, but only with a

weak memory model

| can't reason about

state then, give me
atomic operations -

Ok, but that's ex-
tremely expensive,
so don't use them
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Programming a multicore architecture
without
coherency and atomic operations
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Programming a multicore architecture
without
coherency and atomic operations

... by starting from a functional language
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Dependency-only description

Program definition:

1 main h = cylinder 2 h
2 cylinder r = = (* w (sqr r))

3 sqr X = % X X
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Dependency-only description

Program definition: @

1 main h = cylinder 2 h

2 cylinder r = = (* 7w (sqr 1)) @
3 sqr X = % X X

Evaluation sequence: @ @
1 main (* 3 3) ‘ @

2 cylinder 2 (* 3 3)
3 % (x m (sqr 2)) (* 3 3)
4 % (¢ (x»22)) (+33)

5ok (o (4)) (+ 33)
6 % (12.57...) (x 3 3)
7 % (12.57...) 9

s 113.10...
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Dependency-only description

Program definition:

1 main h = cylinder 2 h

2 cylinder r = = (* 7w (sqr 1))

3 sqQr X = *

X X

Evaluation sequence:

1 main

2 cylinder 2

3 % (x m (sqr 2))
4 % (xm (% 22))

5 % (v m (4))
6 % (12.57...)
7 % (12.57...)
g 113.10...

« 3 3)

3 3)

* 3 3)
% 3 3)
* 3 3)

33
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Dependency-only description

» Terms are constant @

» Duplicates are identical <2

» No order in execution o‘Q @

» No memory/state

» No implicit behavior @ @
... therefore. . . ‘ @

» Parallel description

» Shortcuts in synchronization

» Lossy work distribution @ a

» Only atomic pointer writes

» atomic free
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A \-term's life

O _

1. Memory allocation
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A \-term's life

O O

Memory allocation

Memory initialization (construction)
Add to expression

Replace with result (indirect)

Die

Garbage collect, free

o 0k =
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A A-term'’s life

O O

1. Memory allocation private
2. Memory initialization (construction) r/w access, private
3. Add to expression read-only, shared
4. Replace with result (indirect) pointer write, shared
5. Die private
6. Garbage collect, free private
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From phases to rules

1. Memory allocation

2. Memory initialization (construction)

Rule 1: construction must be completed; flush / fence
3. Add to expression

Rule 2: pointer write is atomic, in total order; (flush)

Rule 3: reads are in total order
4. Replace with result (indirect)

(Rule 2 again)
5. Die

Rule 4: all operations are completed; flush / fence

6. Garbage collect, free
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M-calculus in C++

» \-terms implemented as C++ templates/classes

» gcc; ()-operator overloading gives FP-like syntax

» data type: (complex) doubles, large integers (GNU MP)
» one worker thread per core

» Haskell-like par and pseq

» local vs. global data and garbage collection

» mark—sweep GC (global GC is stop-the-world)

» ~400 instructions in run-time per created A\-term

» ~5500 LoC

» GPLv3

» https://sites.google.com/site/jochemrutgers/lambdacpp

9/13


https://sites.google.com/site/jochemrutgers/lambdacpp
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Speedup
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Time spent (fraction of execution time)
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Thanks!

Jochem Rutgers
j.h.rutgersQutwente.nl

Programming a multicore architecture
without coherency and atomic operations

UNIVERSITY OF TWENTE.
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Accept the hardware trends
Another programming model might be more suitable
Extreme example: FP is hardware-friendly. . .

...cache coherency and atomics are avoided
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Jochem Rutgers
j.h.rutgers@utwente.nl
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without coherency and atomic operations

UNIVERSITY OF TWENTE.
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local local a
benchmark applications® constants® globals
coins 0.418 0.582 1.36-107*
parfib 0.379 0.621 1.44-1074
partak 0.351 0.648 5.47-107*
prsa 0.412 0.583 4.97-1073
queens 0.445 0.555 9.10-107°

@ Fraction of sum of all global and local terms

Table 2. Generated terms during evaluation (LambdaC++, x86, 12

cores)
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