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Parallel render example

One master thread:

1 data = read_3d_model_from_file();

2 go = 1;

3 while(done!=N) sleep();

4 display_frame(frame);

N slave threads:

1 while(!go) sleep();

2 render_my_part_of_frame(data,frame);

3 done++;
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Parallel render Pthread example

One master thread:

1 data = read_3d_model_from_file();

2 pthread_barrier_wait();

3 pthread_barrier_wait();

4 display_frame(frame);

N slave threads:

1 pthread_barrier_wait();

2 render_my_part_of_frame(data,frame);

3 pthread_barrier_wait();
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programmers say. . . hardware architects say. . .

I want C, so I need
sequential execution

Can’t do, use parallel
execution instead

Hmm, then I need
shared memory to use

threads and pointers
I’ll give you

distributed memory
Then at least supply
hardware cache
coherency

Ok, but only with a
weak memory model

I can’t reason about
state then, give me
atomic operations Ok, but that’s ex-

tremely expensive,
so don’t use them
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Dependency-only description

Program definition:

1 main h = cylinder 2 h

2 cylinder r = * (* π (sqr r))

3 sqr x = * x x

Evaluation sequence:

1 main (* 3 3)

2 cylinder 2 (* 3 3)

3 * (* π (sqr 2)) (* 3 3)

4 * (* π (* 2 2)) (* 3 3)

5 * (* π (4)) (* 3 3)

6 * (12.57...) (* 3 3)

7 * (12.57...) 9

8 113.10...

app

main app

app

* 3

3

app

cyl 2
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Dependency-only description

I Terms are constant
I Duplicates are identical
I No order in execution
I No memory/state
I No implicit behavior

. . . therefore. . .

I Parallel description
I Shortcuts in synchronization
I Lossy work distribution
I Only atomic pointer writes
I atomic free
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A λ-term’s life

new

init

1. Memory allocation

private

2. Memory initialization (construction)

r/w access, private

3. Add to expression

read-only, shared

4. Replace with result (indirect)

pointer write, shared

5. Die

private

6. Garbage collect, free

private
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A λ-term’s life

newinit

1. Memory allocation
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A λ-term’s life

newinit

1. Memory allocation private
2. Memory initialization (construction) r/w access, private
3. Add to expression read-only, shared
4. Replace with result (indirect) pointer write, shared
5. Die private
6. Garbage collect, free private
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From phases to rules

to requirements

1. Memory allocation
2. Memory initialization (construction)

Rule 1: construction must be completed; flush / fence
3. Add to expression

Rule 2: pointer write is atomic, in total order; (flush)

Rule 3: reads are in total order
4. Replace with result (indirect)

(Rule 2 again)
5. Die

Rule 4: all operations are completed; flush / fence
6. Garbage collect, free
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λ-calculus in C++

I λ-terms implemented as C++ templates/classes
I gcc; ()-operator overloading gives FP-like syntax
I data type: (complex) doubles, large integers (GNU MP)
I one worker thread per core
I Haskell-like par and pseq

I local vs. global data and garbage collection
I mark–sweep GC (global GC is stop-the-world)
I ≈400 instructions in run-time per created λ-term
I ≈5500 LoC
I GPLv3
I https://sites.google.com/site/jochemrutgers/lambdacpp
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Figure 3. Speedup of NoFib parallel benchmarks

benchmark
local

applicationsa
local

constantsa globalsa

coins 0.418 0.582 1.36 · 10−4

parfib 0.379 0.621 1.44 · 10−4

partak 0.351 0.648 5.47 · 10−4

prsa 0.412 0.583 4.97 · 10−3

queens 0.445 0.555 9.10 · 10−5

a Fraction of sum of all global and local terms

Table 2. Generated terms during evaluation (LambdaC++, x86, 12
cores)

cores is used. The table shows that the number of local terms is
orders of magnitude higher than that of the global terms.

If all local terms can be kept local, traffic to main memory and
the effects of the memory bottleneck will be reduced significantly.
Although untested, a solution could involve having a (large) scratch-
pad memory for every processor, and using this memory for all new
local terms, i.e. the nursery of the GC. Anderson [24] reports that
99.8% of the data does not survive that private nursery stage, so
they are dead at the successive GC. Such a modification to the RTS
can be done transparently to the application. However, testing such
a setup is left as future work.

Finally, the distribution of where time is spent during execution
is measured. Figure 4 shows the most important states a worker
can be in: global GC; local GC; stalling on a black hole, where
another worker computes it; idle, because the work queue is empty;
and running the application, which involves doing β-reductions.
The time is the sum of of the time spent in such a phase, presented
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Figure 4. Time spent during execution (LambdaC++, x86, 12
cores)

as a fraction of the combined total time of all workers. Only a
small fraction is used for global GC, which is expected, because the
number of global terms is much smaller than local onces. Interesting
to see is that even local GC contributes only for 3.2% of the total
execution time.

6. Conclusion
One of the hardware design issues of a multiprocessor platform
is atomic global communication between cores, such as cache
coherency and synchronization. In this paper, we showed that these
hardware issues can be overcome at a different level. To this extend,
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From phases to rules to requirements

1. Memory allocation
2. Memory initialization (construction)

Rule 1: construction must be completed; flush / fence
3. Add to expression

Rule 2: pointer write is atomic, in total order; (flush)

Rule 3: reads are in total order
4. Replace with result (indirect)

(Rule 2 again)
5. Die

Rule 4: all operations are completed; flush / fence
6. Garbage collect, free

8 / 13

From phases to rules to requirements

1. Memory allocation
2. Memory initialization (construction)

Rule 1: construction must be completed; flush / fence
3. Add to expression

Rule 2: pointer write is atomic, in total order; (flush)

Rule 3: reads are in total order
4. Replace with result (indirect)

(Rule 2 again)
5. Die

Rule 4: all operations are completed; flush / fence
6. Garbage collect, free

8 / 13

0

I$ D$

1

I$ D$

2

I$ D$

i

I$ D$

31

I$ D$

in-order NoC

DDR

10 / 13

0

I$ D$

1

I$ D$

2

I$ D$

i

I$ D$

31

I$ D$

in-order NoC

DDR

10 / 13

Thanks!

Jochem Rutgers
j.h.rutgers@utwente.nl

Programming a multicore architecture
without coherency and atomic operations

15 / 13

Thanks!

Jochem Rutgers
j.h.rutgers@utwente.nl

Programming a multicore architecture
without coherency and atomic operations

15 / 13

I Accept the hardware trends

I Another programming model might be more suitable

I Extreme example: FP is hardware-friendly. . .

I . . . cache coherency and atomics are avoided
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Figure 3. Speedup of NoFib parallel benchmarks

benchmark
local

applicationsa
local

constantsa globalsa

coins 0.418 0.582 1.36 · 10−4

parfib 0.379 0.621 1.44 · 10−4

partak 0.351 0.648 5.47 · 10−4

prsa 0.412 0.583 4.97 · 10−3

queens 0.445 0.555 9.10 · 10−5

a Fraction of sum of all global and local terms

Table 2. Generated terms during evaluation (LambdaC++, x86, 12
cores)

cores is used. The table shows that the number of local terms is
orders of magnitude higher than that of the global terms.

If all local terms can be kept local, traffic to main memory and
the effects of the memory bottleneck will be reduced significantly.
Although untested, a solution could involve having a (large) scratch-
pad memory for every processor, and using this memory for all new
local terms, i.e. the nursery of the GC. Anderson [24] reports that
99.8% of the data does not survive that private nursery stage, so
they are dead at the successive GC. Such a modification to the RTS
can be done transparently to the application. However, testing such
a setup is left as future work.

Finally, the distribution of where time is spent during execution
is measured. Figure 4 shows the most important states a worker
can be in: global GC; local GC; stalling on a black hole, where
another worker computes it; idle, because the work queue is empty;
and running the application, which involves doing β-reductions.
The time is the sum of of the time spent in such a phase, presented
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Figure 4. Time spent during execution (LambdaC++, x86, 12
cores)

as a fraction of the combined total time of all workers. Only a
small fraction is used for global GC, which is expected, because the
number of global terms is much smaller than local onces. Interesting
to see is that even local GC contributes only for 3.2% of the total
execution time.

6. Conclusion
One of the hardware design issues of a multiprocessor platform
is atomic global communication between cores, such as cache
coherency and synchronization. In this paper, we showed that these
hardware issues can be overcome at a different level. To this extend,
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