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JPEG Decompression
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Sequential JPEG Decompression
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 JPEG is an asymmetric compression

 Compression performs once per image

 Decompression performs once per use

 463 out of the 500 most popular websites use JPEG 

images

 Operates in blocks of 8x8 pixels

 Sequential JPEG decoders apply IDCT, upsampling

and color conversion block-by-block



Parallelism in JPEG Decompression
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 Sequential Part

 Huffman decoding

 NOT suitable for data-parallelism

 Codewords have variable lengths.

 The starting bit of a codeword in the 

encoded bitstream is only known 

once the previous codeword has been 

decoded.

Parallelizable PartSequential Part

Huffman

decoding
IDCT Upsampling

Color 

Conversion
.jpg



Parallelism in JPEG Decompression
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 Sequential Part

 Huffman decoding

 NOT suitable for data-parallelism

 Codewords have variable lengths

 The starting bit of a codeword in the 

encoded bitstream is only known 

once the previous codeword has been 

decoded

 Parallelizable Part

 IDCT, upsampling and color 

conversion

 Suitable for GPU computing and 

SIMD operations on CPU

 low data dependency

 operates same instructions repeatedly

 has fixed input and output sizes
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Research Question
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How to orchestrate JPEG decompression on CPU+GPU architectures?

 Input image characterized by

 Width

 Height

 Entropy

 Need: work partitioning, schedule, execution infrastructure

Parallelizable PartSequential Part

Huffman

decoding
IDCT Upsampling

Color 

Conversion
.jpg



Our Contributions

12

 Heterogeneous JPEG decoder on CPU+GPU architectures

 profiling based performance model

 dynamic partitioning scheme that automatically distributes the workload at run-time

 Pipelined execution model overlaps sequential Huffman decoding with

GPU computations

 Parallelizable part is distributed across CPU and GPU

 data-, task- and pipeline-parallelism

 GPU kernels designed to minimize memory access overhead

 libjpeg-turbo implementation and experimental evaluation for libjpeg-turbo 

library



libjpeg & libjpeg-turbo
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 libjpeg is a sequential JPEG compression reference implementation by Independent JPEG 

group

 First version released in 1991

 libjpeg-turbo is a re-implementation of libjpeg

 Utilizes SIMD instructions on x86 and ARM platforms.

 Used by Google Chrome, Firefox, Webkit, Ubuntu, Fedora and openSUSE

 Both libraries strictly designed to conserve memory

 Inhibits coarse-grained parallelism

 A non-goal with today's target architectures



Re-engineering libjpeg-turbo

 To conserve memory, libjpeg-turbo 

decodes images in units of 8 pixel rows:

 8 rows at a time do not contain enough 

computations to keep the data-parallel 

execution units of a GPU busy.

 Significant constant overhead per kernel 

invocation and data transfer 

(hostdevicehost).

 Store an entire image in memory:

 Fully utilizes all GPU cores by processing 

several larger image chunks.

 Reduce number of kernel invocations and 

data transferring overhead.  
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libjpeg-turbo Our Approach



GPU-Only

Heterogeneous JPEG Decompression Overview
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 Motivation: One architecture is unutilized when the other is 

processing

 Observation: No dependency among 8x8 pixel blocks. Thus, 

the CPU and the GPU can compute in parallel

 Goal: Find partitioning size at runtime such that the load on 

the CPU and the GPU are balanced

 Requirement: Performance model through offline profiling





Performance Model
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 Offline profiling step on image training set

 19 master images cropped to various sizes

 Maximum image size is 25 megapixels

 Profile execution time of the sequential part and the parallelizable part on CPU and GPU 

 Model all decompression steps using multivariate polynomial regression up to degree 7

 Select the best-fit model by comparing Akaike information criterion (AIC) values



Performance Model for the Parallelizable Part
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 Linearly scales as image size increased

 Image dimension is known at the beginning of the decompression step

 Parameters: width and height
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Performance Model for the Sequential Part
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 Unlike the parallelizable part, Huffman decoding time does NOT have a high correlation 

with image width and height.
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Performance Model for the Sequential Part
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 Huffman decoding time has a high correlation with the size of entropy coded data.

 We have observed a linear trend as entropy density increased, entropy size in bytes per pixel.

 Parameters: width, height and entropy size

 Entropy size can be roughly approximated from JPEG file size.
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 Idea: Share workload of the parallelizable part on the 

CPU and the GPU.

 Partitioning equation can be formulated as

where    is number of rows given to CPU, and

are image width and height.

 When             , the time spent on the CPU and GPU 

are equaled. 

 and    are known at runtime. We can use Newton’s 

method to solve for   .

 Problem: GPU is unutilized during Huffman decoding.



to GPU

to CPU



GPU-Only

Pipelined
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 Increase parallelism by 

performing Huffman 

decoding and GPU kernel 

in pipelined fashion

 Sharing workload of the 

parallelizable part between 

CPU and GPU



Pipelined Partitioning Scheme

 Idea: Execute Huffman decoding in a pipelined fashion 

with GPU kernel. 

 Split an image into several chucks of    rows.

 An optimal chunk size is found through a profiling. 

 We can start kernel invocation as soon as an image 

chunk is decoded.

 On a fast GPU, only the execution time of last chunk is 

visible to users.

 Problem: Does NOT guarantee improvement over CPU 

computation. 
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GPU-Only Combined
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Combined Partitioning Scheme

 Combining overlapped and pipelined model to 

guarantee improvement.

 where   is number of rows in a chunk, and

is entropy density in bytes per pixel

 Using Newton’s method to solve for   at runtime.

 Estimation errors from Huffman decoding

 Assume the same Huffman decoding time for every 

pixel across an image

 Entropy is not distributed evenly in practice.

 Perform re-partitioning before Huffman decoding 

for the last GPU kernel
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GPU Optimizations
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 We implemented GPU kernels for IDCT, 

upsampling and color conversion.

 Optimizations

 Vectorization to reduce number of reads/writes 

to global memory

 Store intermediate results in local memory 

(NVIDIA’s shared memory)

 Map work-items with consideration of coalesced 

memory access

 Combine color conversion kernel with the prior 

kernel to avoid global memory store between 

kernels.
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Experimental Setup

Machine Name GT 430 GTX 560 GTX 680

CPU model Intel i7-2600k Intel i7-2600k Intel i7-3770k

CPU frequency 3.4 GHz 3.4 GHz 3.5 GHz

GPU model NVIDIA GT 430 NVIDIA GTX 560Ti NVIDIA GTX 680

GPU core frequency 700 MHz 822MHz 1006MHz

No. of GPU cores 96 384 1536

GPU memory size 1024 MB 1024 MB 2048 MB

Compute Capability 2.1 2.1 3.0
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 Test set

 A new set of images. No images are reused from the training set

 3591 images of various size

 Maximum image size is 25 megapixels

 Hardware specification



Speedup Over SIMD Version
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Amdahl's Law, Theoretical Maximum Speedup
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Partitioning Errors
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Conclusions
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 JPEG decoding contains high amount of massive data computation

 We proposed JPEG decoding scheme for heterogeneous architectures

 Performance model using polynomial regression

 Dynamic partitioning scheme

 Up to 4.2x (2.5x average) speedup over the SIMD version of libjpeg-turbo

 Guaranteed improvement regardless of CPU+GPU combinations

 Workload is well distributed across CPU and GPU

 Our combined partitioning scheme achieves up to 95% of the theoretically attainable 

speedup, with an average of 88%

 Future work

 Extension to mobile systems



Q&A
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Thank you
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GPU Results

35

 An 2048x2048 image
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