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Motivation

@ Reduction operations widely used in parallel loops

Reduction impacts the performance of parallel loops significantly

OpenACC reduction performance in commercial compilers varies and
not fully supported

@ No open-source implementation of OpenACC reduction
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Overview of OpenACC

@ The standard of directive-based programming
model for accelerator programming (GPU, APU, Xeon Phi, etc.)

@ Compute Directives

e parallel: more control by user
e kernels: more control by compiler

@ Three levels of parallelism
e gang: coarse-grained
o worker: fine-grained
e vector: vector parallelism
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OpenUH - An Open Source OpenACC Compiler
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Mapping Parallel Loops onto GPGPU Architecture
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Figure: GPGPU Thread Block Hierarchy

@ gang: map to thread block
@ worker: Y-dimension of a thread block

@ vector: X-dimension of a thread block
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Parallelization of Reduction Operations for GPGPUs

Reduction Properties

@ Reduction: Use binary operator to operate an input array and
generate a single output value

@ Reduction operator in OpenACC: +, *, &&, ||, &, |, /", max, min
@ Associativity:
e al + a2 + a3

o (al + a2) + a3
o al + (a2 + a3)

o Commutativity:
e al 4+ a2 + a3

e a3 + al + a2
e a2 + a3 + al
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Reduction in Single-level Thread Parallelism

Reduction only in vector

#pragma acc parallel copyin(input) copyout (temp)
{
#pragma acc loop gang
for (k=0; k<NK; k++){
#pragma acc loop worker
for(j=0; j<NJ; j++){
int i_sum = j;
#pragma acc loop vector reduction(+:i_sum)
for(i=0; i<NI; i++)
i_sum += input[k][j][i];
temp[k][j1[0] = i_sum;
}
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism

Reduction only in vector
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in vector (OpenUH way)
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Reduction in Single-level Thread Parallelism

Reduction only in vector

threads

iterations

Figure: Interleaved Log-step Reduction Algorithm

Optimizations:
@ Sequential addressing
@ Loop unrolling
@ Algorithm cascading
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Reduction in Single-level Thread Parallelism

Reduction only in worker

#pragma acc parallel copyin(input) copyout (temp)
{
#pragma acc loop gang
for (k=0; k<NK; k++){
int j_sum = k;
#pragma acc loop worker reduction(+:j_sum)
for(j=0; j<NJ; j++){
#pragma acc loop vector
for(i=0; i<NI; i++)
temp[k][j]1[i] = input[k][jI[i];
j-sum += temp[k] [j][0];
}
temp [k] [0] [0] = j_sum;
}
}
February 15, 2014 12 / 24



Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism

Reduction only in worker
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in worker (OpenUH way)
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Reduction in Single-level Thread Parallelism

Reduction only in gang

@ No built-in synchronization mechanisms to synchronize all
blocks/gangs

@ Create a temporary buffer in global memory with the size equal to the
number of blocks/gangs

@ Populate the buffer by all blocks/gangs

@ Launch another kernel to do the vector reduction within only one
block
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Parallelization of Reduction Operations for GPGPUs

Reduction across Multi-level Thread Parallelism (RMP)
RMP in different loops

#pragma acc parallel copyin(input) copyout (temp)
{
#pragma acc loop gang
for (k=0; k<NK; k++){
int j_sum = k;
#pragma acc loop worker reduction(+:j_sum)
for(j=0; j<NJ; j++){
#pragma acc loop vector reduction(+:j_sum)
for(i=0; i<NI; i++)
j_sum += input[k][j1i];
}
temp [k] = j_sum;
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Parallelization of Reduction Operations for GPGPUs

Reduction across Multi-level Thread Parallelism (RMP)
RMP in different loops

CAPS compiler adds reduction clause to both j and i loops
OpenUH compiler adds reduction clause to only one place
The reduction is done ONCE by all threads in one block
Alternative way: vector reduction first, then worker reduction

Other possible combinations

e gang worker
e gang worker vector

o If gang involved, use global memory and launch another reduction
kernel
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Reduction across Multi-level Thread Parallelism (RMP)

RMP in the same loop

sum = O0;
#pragma acc parallel copyin(input)
{

#pragma acc loop gang worker vector reduction(+:sum)
for(i=0; i<NI; i++)
sum += input[i];

o Create a buffer with size of all threads doing reduction
@ First perform partial reduction, then launch another kernel

@ Shared or global memory? - decided by gang
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Results

Experimental Platform

Host: 24 Intel Xeon x86_64 cores, 32GB memory

Device: NVIDIA Kepler GPU (k20c), 5GB global memory
Software: CAPS 3.4.0, PGI 3.10, OpenUH, CUDA 5.5, GCC 4.4.7
Reduction data size: 1M

Evaluation benchmarks:

Self-written reduction testsuite
e 2D Heat Equation

o Matrix Multiplication

e Monte Carlo PI
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Results

Result of reduction testsuite

F: test failed. CE:

compilation error

Reduction Reduction Data Type
Position Operator »
Int [ Float | Double
OpenUH | PGI [ CAPS [ OpenUH  PGI | CAPS | OpenCH [ PGI | CAPS
gang + 15127 2464 | 15129 | 14299 41176 | 14378 | 24461 | 507.02 | 249.13
* 15601 | 430.77 | 15392 | 24927 41591 | 14412 | 25490 | 483.59 | 266.09
worker + 39925 F 29083 | 401.33 F 32297 | 61061 F 54320
* 41335 | 73435 | 29286 | 41450 70829 | 30925 | 664.87 | 973.88 | 541.80
veclor + 26847 Foo| 21232 | 27406 F 27874 | 53201 F 520.14
* 20980 | 54471 | 26998 | 28468  555.58 | 279.58 | 52937 | 800.89 | 52211
gang worker + 10749 F F 115.10 F F 21231 F F
* 11336 | 356.00 | 10250 | 10444  357.50 | 10853 | 22330 | 463.34 | 217.15
worker vector + 50.58 | 298.33 F 5485 304.82 F 107.75 | 347.90 F
* 5120 | 20972 | 5682 5275 31460 | 5246 10597 | 349.44 | 9578
gang worker vector + 8.71 CE F 706 CE F 7.65 CE F
* 815 | 23084 | 550 561 CE 309 487 CE 382
sané line ' 155 | 25167 | 460 | 757 25L8 | 49 | 1124 | 25502 | 726
gang worker vector
* 125 24363 | 521 786 256.18 | 5.361 11.90 260249 | 690
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Results

Performance comparison
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Results

Performance comparison
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Results

Performance comparison
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Conclusions

Conclusions
@ Present all possible reduction cases in OpenACC
@ Demonstrate efficient reduction parallelization strategies in an
open-source OpenACC compiler - OpenUH
@ OpenUH performance is competitive to commercial compilers
@ Similar strategies can be applied to OpenMP 4.0, ignore worker
@ OpenUH: http://web.cs.uh.edu/ openuh/
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