Reduction Operations in Parallel Loops for GPGPUs J

Rengan Xu, Xiaonan Tian, Yonghong Yan,
Sunita Chandrasekaran and Barbara Chapman

Department of Computer Science
University of Houston

February 15, 2014

Presented by Rengan Xu February 15, 2014 1/24

N —
Outline

© Motivation

© Overview of OpenACC

© Mapping Parallel Loops onto GPGPU Architecture
@ Parallelization of Reduction Operations for GPGPUs

© Results

© Conclusions

Presented by Rengan Xu February 15, 2014 2 /24

Motivation

@ Reduction operations widely used in parallel loops

Reduction impacts the performance of parallel loops significantly

OpenACC reduction performance in commercial compilers varies and
not fully supported

@ No open-source implementation of OpenACC reduction

Presented by Rengan Xu February 15, 2014 3/24

Overview of OpenACC

@ The standard of directive-based programming
model for accelerator programming (GPU, APU, Xeon Phi, etc.)

@ Compute Directives

e parallel: more control by user
e kernels: more control by compiler

@ Three levels of parallelism
e gang: coarse-grained
o worker: fine-grained
e vector: vector parallelism

Presented by Rengan Xu February 15, 2014

4 /24

OpenUH - An Open Source OpenACC Compiler

OpenUH Compiler Infrastructure
Source Code
with OpenACC
Directives

IPA(Inter Procedural Analyzer)

o

NVCC
Compiler

A pssembir
) Loaded
Dynamically

Runtime

m&— Library

Presented by Rengan Xu February 15, 2014 5/ 24

Mapping Parallel Loops onto GPGPU Architecture

Grid . e
block(0,0)] [block(0,1)

0 -

Figure: GPGPU Thread Block Hierarchy

@ gang: map to thread block
@ worker: Y-dimension of a thread block

@ vector: X-dimension of a thread block

Presented by Rengan Xu February 15, 2014 6 /24

Parallelization of Reduction Operations for GPGPUs

Reduction Properties

@ Reduction: Use binary operator to operate an input array and
generate a single output value

@ Reduction operator in OpenACC: +, *, &&, ||, &, |, /", max, min
@ Associativity:
e al + a2 + a3

o (al + a2) + a3
o al + (a2 + a3)

o Commutativity:
e al 4+ a2 + a3

e a3 + al + a2
e a2 + a3 + al

Presented by Rengan Xu February 15, 2014 7/ 24

Reduction in Single-level Thread Parallelism

Reduction only in vector

#pragma acc parallel copyin(input) copyout (temp)
{
#pragma acc loop gang
for (k=0; k<NK; k++){
#pragma acc loop worker
for(j=0; j<NJ; j++){
int i_sum = j;
#pragma acc loop vector reduction(+:i_sum)
for(i=0; i<NI; i++)
i_sum += input[k][j][i];
temp[k][j1[0] = i_sum;
}

Presented by Rengan Xu February 15, 2014 8 /24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism

Reduction only in vector

threadldx.x

o) a0) 02) (3
D6 O
o
S 6 @) @
x
“HO®®

ealy)

(a) Data and threads layout in (b) Data and threads layout in
global memory shared memory. Has bank conflict

February 15, 2014

9/ 24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in vector (OpenUH way)

threadldx.x threadldx.x

o) a0) 02) (3
D6 O
S)) @
< 966 ®

XpIpeaIy)

(c) Data and threads layout in (d) Data and threads layout in
global memory shared memory. NO bank conflict
Relnters b, Y L2

Reduction in Single-level Thread Parallelism

Reduction only in vector

threads

iterations

Figure: Interleaved Log-step Reduction Algorithm

Optimizations:
@ Sequential addressing
@ Loop unrolling
@ Algorithm cascading

Presented by Rengan Xu February 15, 2014 11 /24

Reduction in Single-level Thread Parallelism

Reduction only in worker

#pragma acc parallel copyin(input) copyout (temp)
{
#pragma acc loop gang
for (k=0; k<NK; k++){
int j_sum = k;
#pragma acc loop worker reduction(+:j_sum)
for(j=0; j<NJ; j++){
#pragma acc loop vector
for(i=0; i<NI; i++)
temp[k][j]1[i] = input[k][jI[i];
j-sum += temp[k] [j][0];
}
temp [k] [0] [0] = j_sum;
}
}
February 15, 2014 12 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism

Reduction only in worker

threadldx.x threadldx.y

@ 6) @3 @
6 @ 6 @
5 (9 () a2) 6 : @Lw
<)) @6 ®L-L®

pIpealy}
XpIpeaiy)

X

(b) Data and threads layout in
shared memory. Has bank conflict,
more shared memory.

(a) Data and threads layout in
global memory

Presented by Rengan Xu February 15, 2014 13 /24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in worker (OpenUH way)

threadldx.x threadldx.x

ol %
3 (960) 10006

(d) Data and threads layout in
shared memory. NO bank conflict,
less shared memory.

(c) Data and threads layout in
global memory

February 15, 2014 14 / 24

Reduction in Single-level Thread Parallelism

Reduction only in gang

@ No built-in synchronization mechanisms to synchronize all
blocks/gangs

@ Create a temporary buffer in global memory with the size equal to the
number of blocks/gangs

@ Populate the buffer by all blocks/gangs

@ Launch another kernel to do the vector reduction within only one
block

Presented by Rengan Xu February 15, 2014 15 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction across Multi-level Thread Parallelism (RMP)
RMP in different loops

#pragma acc parallel copyin(input) copyout (temp)
{
#pragma acc loop gang
for (k=0; k<NK; k++){
int j_sum = k;
#pragma acc loop worker reduction(+:j_sum)
for(j=0; j<NJ; j++){
#pragma acc loop vector reduction(+:j_sum)
for(i=0; i<NI; i++)
j_sum += input[k][j1i];
}
temp [k] = j_sum;

Presented by Rengan Xu February 15, 2014

16 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction across Multi-level Thread Parallelism (RMP)
RMP in different loops

CAPS compiler adds reduction clause to both j and i loops
OpenUH compiler adds reduction clause to only one place
The reduction is done ONCE by all threads in one block
Alternative way: vector reduction first, then worker reduction

Other possible combinations

e gang worker
e gang worker vector

o If gang involved, use global memory and launch another reduction
kernel

Presented by Rengan Xu February 15, 2014 17 / 24

Reduction across Multi-level Thread Parallelism (RMP)

RMP in the same loop

sum = O0;
#pragma acc parallel copyin(input)
{

#pragma acc loop gang worker vector reduction(+:sum)
for(i=0; i<NI; i++)
sum += input[i];

o Create a buffer with size of all threads doing reduction
@ First perform partial reduction, then launch another kernel

@ Shared or global memory? - decided by gang

Presented by Rengan Xu February 15, 2014 18 / 24

Results

Experimental Platform

Host: 24 Intel Xeon x86_64 cores, 32GB memory

Device: NVIDIA Kepler GPU (k20c), 5GB global memory
Software: CAPS 3.4.0, PGI 3.10, OpenUH, CUDA 5.5, GCC 4.4.7
Reduction data size: 1M

Evaluation benchmarks:

Self-written reduction testsuite
e 2D Heat Equation

o Matrix Multiplication

e Monte Carlo PI

Presented by Rengan Xu February 15, 2014 19 / 24

Results

Result of reduction testsuite

F: test failed. CE:

compilation error

Reduction Reduction Data Type
Position Operator »
Int [Float | Double
OpenUH | PGI [CAPS [OpenUH PGI | CAPS | OpenCH [PGI | CAPS
gang + 15127 2464 | 15129 | 14299 41176 | 14378 | 24461 | 507.02 | 249.13
* 15601 | 430.77 | 15392 | 24927 41591 | 14412 | 25490 | 483.59 | 266.09
worker + 39925 F 29083 | 401.33 F 32297 | 61061 F 54320
* 41335 | 73435 | 29286 | 41450 70829 | 30925 | 664.87 | 973.88 | 541.80
veclor + 26847 Foo| 21232 | 27406 F 27874 | 53201 F 520.14
* 20980 | 54471 | 26998 | 28468 555.58 | 279.58 | 52937 | 800.89 | 52211
gang worker + 10749 F F 115.10 F F 21231 F F
* 11336 | 356.00 | 10250 | 10444 357.50 | 10853 | 22330 | 463.34 | 217.15
worker vector + 50.58 | 298.33 F 5485 304.82 F 107.75 | 347.90 F
* 5120 | 20972 | 5682 5275 31460 | 5246 10597 | 349.44 | 9578
gang worker vector + 8.71 CE F 706 CE F 7.65 CE F
* 815 | 23084 | 550 561 CE 309 487 CE 382
sané line ' 155 | 25167 | 460 | 757 25L8 | 49 | 1124 | 25502 | 726
gang worker vector
* 125 24363 | 521 786 256.18 | 5.361 11.90 260249 | 690

Presented by Rengan Xu

February 15, 2014

20 / 24

Results

Performance comparison

450 450 —
OpenlH tzzs OpenUH 2z
P! m— P! m—
o 1 a - B
00 5 e 00 B s
350 " 350 1
3 K 3 K
) Y
£ R £ R
E 250 1 E 250 5 £
E [4 AN]
§ 20 K § 200 | "
H R H K N
§ 150 bl § 150 b Ml RN K
H g H o NISINE
100} g Jrryme—. N b
[[N K
sl g sl ! Ko
g BN K F i NN
0 D ; IS N g ,]
Gng worker vetor gw W gw sgw gng worker vector gw we gw sgwv
700
OpenUH ===
P! m—
60 R caps s
z 500 K
£
)
£
g
S 200 [
100 [SN K- 4 F

gang worker vector gw Wy gwv squv

(g) Double [+]

Presented by Rengan Xu February 15, 2014 21 /24

Results

Performance comparison

800

700

600

500

400

Execution Time (ms)

300

200

800 T T T T T T
OpenH 2z OpenuH oz
PGI m— PGI m—
caps 1 700 caps 1
600
E
i = a0 f
5 K
H K
) K
H %
H)
200 £
X s S,
f K
+ 100 - XN DD
o NS NENY N N L
gang worker vetor gw W gw sgw gang worker vector gw W gw sgw
1000
OpenH 2z
900 P! |
caps
800
3 70
£
s 60
£ u
£ os00 A
: w £
& 30 %
20 - i N
4 S
100 1 H
. } s
gang worker vector gw wv gw sgwv

(j) Double [*]

Presented by Rengan Xu

February 15, 2014

22 / 24

Results

Performance comparison

350 350
Openut z2n OpenuH e
PG PGl
300 |- Caps mmm - 300 |- Caps -

250

250

200

200

Time (s)
Time (s)

150

150

100

100

. R 3 o _ KX .
2928 250256 s12012 208 w06

Grid size Matix Size

(k) 2D Heat Equation (1) Matrix Multiplication
[max] [+]

1800

[OpenuH sz m
PGl T
1600 - CaPS

1400

1200

Time (ms)

1000

168 268 468
Sampled Data Size

(m) Monte Carlo PI [+]
February 15, 2014 23 / 24

Conclusions

Conclusions
@ Present all possible reduction cases in OpenACC
@ Demonstrate efficient reduction parallelization strategies in an
open-source OpenACC compiler - OpenUH
@ OpenUH performance is competitive to commercial compilers
@ Similar strategies can be applied to OpenMP 4.0, ignore worker
@ OpenUH: http://web.cs.uh.edu/ openuh/

Presented by Rengan Xu February 15, 2014 24 / 24

	Motivation
	Overview of OpenACC
	Mapping Parallel Loops onto GPGPU Architecture
	Parallelization of Reduction Operations for GPGPUs
	Results
	Conclusions

