OpenCilk: Architecting a Task-Parallel Software Infrastructure for
Modularity, Extensibility, and Performance

PMAM
February 26, 2023
Montreal, Canada

Tao B. Schardl
MIT CSAIL

’

MIT

H

Y

Cilk task-parallel programming

OpenCilk provides a new implementation of the Cilk task-parallel

programming platform.

Cilk Fibonacci code

fib() {

if (n < 2) return n;

cilk_scope {
X

y
J

return x + y;

fib(n - 2);

)

fib(n - 1);

-

allowed to execute in parallel

N

The named child function is

with the parent caller.

~

J

@ : .
Control cannot pass this poin

_

until all spawned children
have returned.

~
t

4)

Cilk uses a provably-
efficient work-
stealing scheduler to
load-balance the

computation.

OpenCilk is largely compatible with its predecessor, Cilk Plus, but features an
entirely new design and implementation that aims to cater to parallel-
computing researchers and teachers.

OpenCilk components

The OpenCilk system provides several components, including:
A compiler, based on LLVM and Tapir,
+ A streamlined and efficient work-stealing runtime system,

+ A suite of provably good productivity tools, including a race detector and a
parallel-scalability analyzer.

These components are integrated, but modularized to make it easy modify
and extend OpenCilk without sacrificing performance.

This talk: OpenCilk’s design and the rationale behind it.

Example: Normalizing a vector using Cilk Plus (i.e., before OpenCilk)

Cilk code to normalize a vector
__attribute__((const)) double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in, int n) {

cilk_for (int i = 0; i < n; ++1)%
out[i] = in[i] / norm(in, n); Allow all loop 1terat1ons

)

) | toexecute in parallel.

J

Test: Random vector, n = 64M Machine: Amazon AWS c4.8xlarge

Running time of the original serial code: Ts = 0.312 s

- Terrible work efficiency:
Running time on 18 cores: T1s = 180.657 s T./T, =0.312/2600
Running time on 1 core: 17 = 2600.287 s ~1/8300

The story for OpenMP is similar, but more complicated.
Code compiled using GCC 6.2. The Cilk Plus/LLVM compiler produces worse results.

The LLVM compiler pipeline

~ A
LLVM’s Intermediate |
Representation) [Machme codej
))
o ™
[Front end} Middle-end [Back end]
optimizer

N Y

Compiler optimization of serial code

C pseudocode for LLVM IR
C COde,J __attribute__((const)) double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in, int n) {
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n); ~ ~
} D — T optimizer moves this

loop invariant computation

LLVM IR =P

C pseudocode for optimized LLVM IR

| VM IRJ._.’__attribute__((const)) double norm(const do outside of the IOOP- y
void normalize(double *restg] out, const double *restrict in, int n) {
CodeGen double tmp =|1 / norm(in, n);

for (int i = 0; i < n; ++i)
EXE J out[i] = in[i] * tmp;

) pd

The Cilk Plus/LLVM compiler pipeline

LLVM pipeline

LLVM IR

Cilk Plus/LLVM pipeline

LLVM IR

Cilk

LLVM IR

EXE

KA modified front end\

handles all parallel
klanguage constructs.

LLVM IR

CodeGen

f Cooegen

EXE

Compiling parallel code

Cilk code to normalize a vector

Cilk mesup

void normalize(double *restrict out, const double *restrict in, int n) {

e

L LVM IRl

:‘

LLVM IR

EXE

cilk_for (int 1 = 0; i < n; ++i) - ~
out[i] = in[i] / norm(in, n); Marshall inputs to the
J
loop body and call a

C pseudocode of LLVM IR . runtime function.)
void normalize(double *restrict ou st double *restrict in, int n) {

struct args_t = { out, in, n }; ~)

__cilkrts_cilk_for(normalize_helper, args, 0, n); Agenerated helper
J function implements
void normalize_helper(struct args_t args, int 1) { the 100p bOdy.

)

double *out = args.out;
double *in = args.in;

, 4
1Nt n = args.n;

out[i] = in[i]|/ norm(in, n) ; €&———mm r—

o

|
Problem: Optimizations

cannot move this outside
of the loop.

_J

Tapir: Fork-join parallelism within the compiler IR smii7

LLVM pipeline

Cilk Plus/LLVM pipeline

Tapir/LLVM pipeline

/\)

EXE |

Tapir -(Olfellelyl EXE

e R
: Tapir adds three With only minor changes,
instructions to LLVM IR LLVM'’s existing
that encode recursive optimizations and analyses
| tork-join parallelism. . work on parallel code.)

Previous approaches to parallel IR’s

- Parallel precedence graphs swo1, sHwog + HPIR zs11, Bzs13]

- Parallel flow graphs sce1, ses + SPIRE oAz

- Concurrent SSA Lvra7, NUS9s] - INSPIRE pptkri3)

- Parallel program graphs isses, ses - LLVM's parallel loop metadata

- “[LLVMdeV][RFC] Parallelization metadata and intrinsics in LLVM (for OpenMP, etc.)”

http://lists.llvm.org/pipermail/livm-dev/2012-August/0524 77 .html

- “[LLVMdevV|[RFC] Progress towards OpenMP support”

http://lists.livm.org/pipermail/llvm-dev/2012-September/053326.html

- LLVM Parallel Intermediate Representation: Design and Evaluation Using OpenSHMEM
Communications KJAcis

- LLVM Framework and IR Extensions for Parallelization, SIMD Vectorization and Offloading

[TSSGMGZ106] "

http://lists.llvm.org/pipermail/llvm-dev/2012-August/052477.html
http://lists.llvm.org/pipermail/llvm-dev/2012-September/053326.html

Folk wisdom about parallel [R’s

From “[LLVMdev] LLVM Parallel IR,” 2015:

- “[lIntroducing [parallelism] into a so far ‘sequential’ IR will cause severe
breakage and headaches.”

- “[Plarallelism is invasive by nature and would have to influence most
optimizations.”

- “[lt] is not an easy problem.”

- “IDlefining a parallel IR (with first-class parallelism) is a research topic.”

11

Implementing Tapir in LLVM 6.0

Compiler component

LLVM 6.0 (lines) Tapir/LLVM (lines)

Core middle-end 500,283 2,989
- Base classes 62,488 0
» |Instructions 141,321 1,013
- Memory behavior 18,907 536
-+ Other analyses 84,348 17
- Optimizations 193,219 1,423
Regression tests 3,482,802 5,745
Parallelism lowering 0 5,780
Parallel-tool support 0 3,341
Other 1,856,877 285
Total 5,839,962 18,140

12

Tapir: Fork-join parallelism within the compiler

Cilk code to normalize a vector

__attribute__((const)) double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in, int n) {
cilk_for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);

} -

Test: Random vector, n = 64M Machine: Amazon AWS c4.8xlarge

Running time of the original serial code: Ts = 0.312 s
Compiled with Tapir/LLVM, run on 1 core: T1 = 0.321 s
Compiled with Tapir/LLVM, run on 18 cores: T1s = 0.081 s

Great work
etficiency:

13

Work-efficiency improvement

" Same as Tapir/LLVM, but the front end handles
¢\ parallel language constructs the traditional way.

~

J

Ideal
efficiency

Is
T4

Reference X Tapir/LLVM

Machine: Amazon AWS c4.8xlarge, with 18 cores clocked at 2.9 GHz, 60 GiB DRAM

Decreasing difference between Tapir/LLVM and Reference

14

Outline
- Tapir: Embedding recursive fork-join parallelism into LLVM IR

-+ OpenCilk: A modular and extensible software infrastructure for fast task-
parallel code

- Software performance engineering and the end of Moore’s Law

15

Outline

- Tapir: Embedding recursive fork-join parallelism into LLVM IR

- OpenCilk: A modular and extensible software infrastructure for fast task-
parallel code

- Software performance engineering and the end of Moore’s Law

Coauthors: Wiliam S. Moses,
Charles E. Leiserson

16

Background on LLVM IR

LLVM represents each function as a control-flow graph (CFG).

C code

int fib(int n) {
if (n < 2) return n;
int x, y;
x = fib(n - 1);
y = fib(n - 2);
return x + y;

}

add = x + vy
[Basic block j—/)b'” St

exit

Control-flow graph

4 o entm{br (n < 2), exit, if.else :)
Control flow 5
a)
edge y x = fib(n - 1)
if.elsely = fib(n - 2)

J

N

rv = @([n,entry],[add,if.else])
return rv

-

~

17

Tapir's new LLVM IR Instructions

Tapir’s new instructions model parallel tasks asymmetrically.

Cilk Fibonacci code

Tapir CFG

int fib(int n) {
if (n < 2) return n;
int x, y;
cilk_scope {
X

y

fib(n - 2);
h

return x + y;

)

cilk_spawn fib(n - 1);

entry

-
X
br

_

alloca()
(n < 2), exit, if.else

if.else@etach det, cont)

v

>

_

x0 = fib(n - 1)
detfstore x0, x
reattach cont

<«

\

y = fib(n - 2)
sync synced
_

v

Y,
4 R

-

A control-flow edge connect

\

a parallel task to its
continuation, not to a sync.

V synced{add = x1 + vy
S

x1 = load x

br exit
- v

-
rv = @([n,entry],[add,cont])

// exit
return rv

_

~

4/

18

The serial-projection property

Tapir models the serial projection of the parallel program.

det

Tapir CFG

entry

~
X = alloca()
\Er (n < 2), exit, if.else

~

v

if.else@etach det, cont)

<

-
x0 = fib(n - 1)

~<’

cont

store x0, X
reattach cont
_ ___/
<<
synced

y = fib(n - 2)

\

sync synced

_ J
-)

x1 = load x

add = x1 + vy

det

Serial projection

entry

-
X = alloca()
\Er (n < 2), exit, if.else

v

19 m] my ,@r det

)

7
x0 = fib(n - 1)
store x0, Xx
br_cont

A’

-

.

Tapir’s model of parallelism asserts that serial projection
is one valid implementation of the parallel program.

~

X1t
Y,

—

J

<« 3\
y = fib(n - 2)
COWtbr synced
\ J
- v
X1 = load X
synced|ladd = x1 + vy
\Er exit)
v
-
rv = @([n,entry], [add,cont])
return rv
_

~

J

19

Reasoning about a Tapir CFG

Intuitively, many compiler optimizations can reason about Tapir as a minor
change to the serial projection.

a
Tapir CFG
- - ~ Rather than struggle to analyze concurrency,

x = alloca() . ,
br (n < 2), exit, if.else the compiler can understand the program’s

entry

v - semantics based on the serial projection.
if.else[detach det, cont]\>
\

4 a The compiler and runtime system have
x0 = fib(n - 1)
detfstore x0, x

reattach cont
\

iy:cf;;}f]ze; 2 flexibility to choose how to use the available

> ; / parallelism.
-

_/

X1 = load x

syncedladd = x1 + vy
J eXIt* / But not all parallel programs
- N . e
[TV = ©([n,entry], [add, cont 1) have a serial projection!
return rv

_ J

Focus of laplr

+ Shared-memory multicore
programming

+ Task parallelism

+ Serial-projection property
+ Simple execution model

- Extensible representation

* Deterministic debugging

- Etfective compiler optimizations
- Simple performance model

- Work etficiency

- Parallel scalability

+ Composable parallelism

+ Parallelism, rather than concurrency

21

Adoption of Tapir in parallel computing research and development

Tapir’s focus has enabled its use in many novel parallel-programming settings.

+ Margerm ef al. (Simon Fraser University and Intel) developed TAPAS [mscspis), a
hardware synthesis tool built on top of Tapir to synthesize parallel accelerators.

+ Siddharth Samsi (MIT LL) and I developed TapirXLA [ssi9, which integrates Tapir
with TensorFlow’s XLA compiler to optimize machine-learning applications.

+ Shajii et al. developed the Seq language for bioinformatics isxesai9, which uses
Tapir to compile and optimize parallel language constructs.

*Ying et al. developed the T4 compiler [vjs20, based on Tapir, to compile sequential
code for etfective speculative parallelization in hardware.

+ Lucata Corporation developed a back end to Tapir that targets their novel in-
memory-processing architecture. 22

Outline

- Tapir: Embedding recursive fork-join parallelism into LLVM IR

+ OpenCilk: A modular and extensible software infrastructure for fast task-
parallel code

- Software performance engineering and the end of Moore’s Law

Coauthor: |-Ting Angelina Lee

23

Recap: Compiling

parallel code the traditional way

Cilk code to normalize a vector

Cilk wupp

Clang

+ Cilk Plus

void normalize(double *restrict out, const double *restrict in, int n) {
cilk_for (int i = 0; i < n; ++i)
out[i] = in[i] / norm(in, n);

runtime AB|

C pseudocode of LLVM IR

LLVM IR

1.,

The compiler front end
must have built-in

knowledge of the

parallel runtime ABI.
- —7\i=)

/

void normalize(double *restrict out, const double *restrict in, int n) {
struct args_t args = { out, in, n };
__cilkrts_cilk_for(normalize_helper, args, 0, n);

¥

void normalize_helper(struct args_t args, int i) {
double *out = args.out;

double *in = args.in; : : :
int n = args.n: This compilation approach

outlil] = inlil] / norm(in, n); | creates several problems for /

researchers and developers.

24

Example: Complexity of the Cilk Plus runtime ABI

The front-end code to implement a runtime ABI is not simple.

Cilk Fibonacci code C

int x, vy;

X

y
¥

int fib(int n) {
if (n < 2) return n;

cilk_scope {
cilk_spawn fib(n - 1);
fib(n - 2);

return x + vy;

pseudocode of LLVM IR

Clang
+ Gilk Plus

runtime ABI

-

_

.
Call runtime functions

and implement }
necessary control.

The OpenMP runtime ABI has similar\

complexities and is larger.)

_Iy__cilkrts_leave_frame(&sf);

void __fib_helper{l

int fib(int n) {

__cilkrts_stack_frame

if (n < 2) return®n

int x, Vy;

__cilkrts_enter_frame(&sf);

if (!'__builtin_setjmp(sf.ctx))
__fib_helper(&x, n-1);

y = fib(n-2);

if (sf.flags & CILK_FRAME_UNSYNCHED)
if ()__builtin_setjmp(sf.ctx))

__cilkrts_sync(&sf);

J

return x + vy;

)

__cilkrts_stack_frame :
__cilkrts_enter_frame_helper(&sf);
__cilkrts_detach(&sf);

xx = fib(n);
__cilkrts_leave_helper_frame(&sf);

vt) {€«——1{ Create a helper

Insert local stack-
frame variables.

~

_/

4)

function.
_ _/

25

Problem: Modifying the runtime ABI

The runtime ABI | Cilk Clang
is hard to modity.

+ Cilk Plus
runtime ABI

+ Changing the runtime ABI
requires changing both the
library and compiler.

- Extending the ABI —e.g.,
to add DPRNG [Lss12, sLF14] Or
tool support [skLLL15, UALK17]
— requires compiler work.

LLVM

LLVM IR

o os |

°
‘ C pseudocode of LLVM IR

CodeGen,
Linking

int fib(int n) {

__cilkrts_stack_frame sf;

if (n

< 2) return n;

int x, y;
__cilkrts_enter_frame(&sf);

if (!

__builtin_setjmp(sf.ctx))

__fib_helper(&x, n-1);
y = fib(n-2);

if (sf.flags & CILK_FRAME_UNSYNCHED)

if (!setjmp(sf.ctx))

cilkrts_sync(&sf);

__cilkrts_leave_frame(&sf);
return x + y;

}

void __fib_helper(int *x, int n) {

__c1il
__c1il
cil

krts_stack_frame sf;
krts_enter_frame_helper(&sf);

krts_detach(&sf);

xx = fib(n);

_cilkrts_leave_helper_frame(&sf);

EXE |

Cilk Plus
runtime
library

-

<

R
.
The compiler and
runtime library
must agree about

runtime structures
and functions.

26

Problem: Hard to extend to new languages

Adding parallelism to a new language front end requires independent
engineering effort.

~

LLVM pipeline showing Clang

-
LL 1 mpile man
additional front ends VM is used to co pic many

+ Cilk Plus different languages via
C/C++ IS additional front ends.

Julia Ju“E.l /
compiler . .
PyTorch el To add support for a parallel runtime AB],

- each front end must be modified separately!
Rust rustc L)

+ OpenMP
runtime ABI

DSL MLIR

Problem: Hard to develop new parallel runtimes

Developing a new parallel runtime back end requires substantial engineering
effort in the compiler front end.

+ Gilk Plus
runtime AB
e)
+ OpenMP Each parallel runtime ABI requires
runtime ABI . . .
o additional compiler front-end work.
_ J

+ your hew
runtime ABI

Today, the Clang front end is approximately 1 million lines of code,
substantially larger than the sources for many parallel-runtime libraries.

OpenCilk architecture

OpenCilk uses Tapir and LLVM to address these issues with modifying and
extending task-parallel systems.

a The Momme™ framework, based on CSI [sDDKLL17], inserts
_instrumentation hooks around Tapir for productivity tools.

Simplified schematic of the OpenCilk system

Cilk

\\iuppoﬂ

f Runtime \

OpenCilk

runtime librarx/

OpenCilk

|

Tapir
lowering

Tapir LLVM IR

[The front end translates

Cilk constructs into Tapir]

(The Tapir-lowering framework translat

. Tapir to a parallel runtime ABI.

:

* Momme, In Japanese, Is a unit used to measure the quality of silk fabrics.

K\\¥bitcode ABI///
y

CodeGen,
Linking =i J \

OpenCilk uses a
bitcode ABI to
separate ABI details

_from the compiler. ,

Case study: Making a new front end

We used OpenCilk to add spawn, sync, and parallel_for constructs to
Kaleidoscope, a toy language used to teach LLVM internals.

Parallel Kaleidoscope Fibonacci code Implementing parallel constructs in Kaleidoscope
def fib(n) : Approx. hew
if (n < 2) then n Implementation task PP

lines of code

else

" (spawn x = Fib(n-1)) : Parsing and Tapir 400

y = fib(n-2) : generation
Zy(ni y); Invoke Tapir lowering and 150

R Momme
KWe extended Kaleidoscope’s LLVM-baseD Link external libraries 100
JIT compiler to use OpenCilk to compile
and execute parallel tasks and use Total 650
K OpenCilk’s productivity tools. J

30

Case study: Adding new parallel-runtime back ends

We extended OpenCilk to compile Cilk programs to different parallel runtime
systems, including Cilk Plus, OpenMP tasks, and oneTBB.

Schematic of Tapir-lowering framework

OpenCilk bitcode ABI /HBiteode ABI)

OpenMP task bitcode AB{/ | .
oneTBB bitcode ABI CTaP”’ t””'get} IZL::TIQZ)Z n’i’if; z);s
oneilet— LLVM IR, OpenCilkﬁ OpenCilk 1,680
Tapir eSS~ LLVM IR, Cilk Plus| Cilk Plus 1,900
lowering OpenMP LLVM IR, OpenMP OpenMP tasks S5()
oneTBB LLVM IR, oneTBB J oneTBB 780

Each new runtime back end required less than 2000 new lines of code.

31

Performance of OpenCilk

OpenCilk produces fast code that consistently achieves high work efficiency
and good parallel scalability.

{Comparable to the original Tapir/LLVM runtime back end.}
¥

® OpenMP @ oneTBB Cilk Plus X OpenCilk

1.2 F 1.2
L S REXE Y S Y XK % x S] BB PEREE R KKK X XXX
~ 0.8 ® b 4 ~ 0.3 ®
% 0.6 . I = 0.6 52 1D dhdie
~ 0.4 ® = 0.4 ° $ o
0.2 * 2 0.2 ® 9 $
0 S 0
Y3 §39k3 ey & RESILCEELEL2T3IZED
O O E w 0 U E O :H W © Y% O w0 O o4 N D O O O O ® W E S 4 w0
wn + w0 c © £ U c U o n C C wn C U nun n ¢ U ¥ +)
N (G (O O U %W A >S5 o — -1 (O (O Y ¥ T O S5 @© @) —
— s O o J) S O oo o) s < A — 0 o £ J) o)
o) C C C (@ - + O r-i 0 C - L
@) ny 4 Q. @) v @) Q. @)

Machine: Amazon AWS c5.metal, with 48 cores clocked at 3 GHz, 192 GiB DRAM

For more on OpenCilk’s design...

Come to the PPoPP talk!

T1ime:
Tuesday, February 28 at
10:00am.

Room: Montreal 4.

OpenMP task bitcode AB{/

oneTBB bitcode ABI

_—

OpenCilk bitcode ABI ﬁBitcode ABI}

(Tapir target }

Tapir

lowering

OpenCilk
Cilk Plus

OpenMP

onel BB

LLVM IR, OpenCilk\\\
LLVM IR, Cilk Plus

LLVM IR, OpenMP

—

LLVM IR, onelBB

LW IR, oneTe

33

Status of OpenCilk Opeq)Ci lk

+ OpenCilk is completely open source and freely available online:
https:/ /www.opencilk.org

+ The latest stable release is OpenCilk 2.0.1, which includes:
- A compiler, based on LLVM 14.0.6, that implements Tapir,
+ A streamlined and fast work-stealing runtime system, and

+ Two productivity tools, built using Momme: A provably etfective race detector —
Cilksan — and a fast parallel-scalability analyzer — Cilkscale.

- OpenCilk features new linguistic and runtime support for reducer hyperobjects [rrrLo9)
and optimized and streamlined support for DPRNG's [Lss121.

+ OpenCilk’s components are integrated, yet modularized to make it easy to modify and
extend OpenCilk with new front ends, back ends, productivity tools, and more.

34

https://www.opencilk.org

Design goals of OpenCilk

+ Support a simple model of parallelism with a simple performance model
that is easy to reason about and teach.

* Enable deterministic parallel programming.

+ Support debugging and performance-analysis tools that offer mathematical
guarantees of their effectiveness.

+ Ensure that all components are integrated.
- Make it easy for researchers and developers to modify and extend the system.

+ Produce high-performing parallel code that is both work-efficient and
achieves good parallel scalability, both in theory and in practice.

35

Outline

Tapir: Embedding recursive fork-join parallelism into LLVM IR

OpenCilk: A modular and extensible software infrastructure for fast task-
parallel code

Software performance engineering and the end of Moore’s Law

Coauthors: Charles E. Leiserson, Nell C. Thompson,

Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson,
Daniel Sanchez

36

The “popular” Moore’s Law

People often think of Moore’s Law as the trend of computing technology
growing more powerful over time.

~
Connection Machine CM-5 Apple 15” MacBook Pro
+ 60 GFLOPS in LINPACK - 120 GFLOPS in LINPACK

* $47 million in 1993 + $2799 in 2018

37

The “real” Moore’s Law

This growth in computing performance has been driven by semiconductor

miniaturization.
/ \ In 1965 and 1975, Gordon Moore predicted that

“There’s plenty of room the number of transistors on a semiconductor
at the bottom!” [rso chip would double every two years.

Processor scaling trends

1e+05 -

1e+03 -

Transistors

‘ 1e+01 -

g | 1970 1980 1990 2000 2010
Gordon Moore Date

Richard Feynman

The end is nigh!

Problem: Semiconductor miniaturization is running out of steam.

Example: Intel’s recent struggles
with their 10nm process resulted
in significant delays.

We’re now reaching physical limits
on miniaturization.

tom'sHARDWARE PRODUCTREVIEWS GAMING BUYING GUIDES HOWTO

CPUS > NEWS

Intel's 10nm Is Broken, Delayed
Until 2019 COMMENTS

by Paul Alcorn April 26, 2018 at 6:30 PM

37

wE

O OO0 (< Silicon lattice constant: 202 """ Intel

Intel announced its financial results today, and although it posted yet

10nm processor

0.543 nanometers
(5.43 angstroms)

another record quarter, the company unveiled serious production

problems with its 10nm process. As a result, Intel announced that it is
shipping yet more 14nm iterations this year. They'll come as Whiskey
Lake processors destined for the desktop and Cascade Lake Xeons for

the data center.

Intel nailed a nearly perfect quarter with top-line numbers that include record Q1 revenue of $16.8

What will drive growth in computing performance after Moore’s Law ends?

39

There’s plenty of room at the Top rexss2o

We see substantial

o, o C o Q
Technology 01010011 01100011 v ! ?
opportumtles for 01101001 01100101 @ f
1 1 01101110 01100011
growth in computing —\

01100101 00000000

per formance at the Software Algorithms Hardware architecture

Top of the computing Opportunity| ~ Software performance Newalgorithms Hardware streamlining
t k f t engineering

Stack: 50 Ware’ Examples Removing software bloat New problem domains Processor simplification

alg()]_‘ithms, and Tailoring software to New machine models Domain specialization

hardware features
hardware
architecture.

~— TheBottom

for example, semiconductor technology

Opportunity in software

Considerable performance is available by addressing software inefficiencies.

Example: Version Implementation R.unnlng GELOPS Absolute Relative Fraction
. time (s) speedup speedup of peak
Mult1ply two 1 Pyth 25,552.48 0.005 1 0%
ytnon ; : : — 0
4k-by-4k
matrices 2 Java 2,372.68 0.058 11 10.8 0.01%
. 3 C 542.67 0.253 47 4.4 0.03%
Version 1: Three
nested 100pS mn 4 Parallel loops 69.80 1.969 366 7.8 0.24%
Python 5 raralieldide- 3.80 36.180 6,727 18.4 4.33%
and-conquer
6 +vectorization 1.10 124914 23,224 3.5 14.96%
Machine: Amazon
AWS c4.8xlarge { +AVX intrinsics 0.41 337.812 62,806 2.7 40.45%

But software performance is complicated!

A modern multicore system contains:

parallel-processing cores,

vector units,

caches,

prefetcher S, 2021 Intel Onm Processor

hyperthreading,

dynamic frequency scaling, | How can we enable average programmers to
GPU'’s, contend with this complexity and realize the

and more! performance gains from writing fast code?

42

Science-based performance engineering

We need technologies that enable a scientific approach to software performance
engineering.

Systems one can reason about because they obey simple mathematical
properties, such as monotonicity and composability.

- Theories of performance that are borne out in practice.

- Diagnostic tools for correctness and performance whose efficacy is
mathematically grounded.

Reliable measurement and ubiquitous instrumentation.

OpenCilk aims to provide these foundations and make it easy for programmers to
write fast parallel code and educators to teach software performance engineering.

3

Questions?

) Cilk

https: / / www.opencilk.org

Special thanks to the OpenCilk team — I-Ting Angelina Lee, Tim Kaler, Alexandros-Stavros
[liopoulos, John Carr, Dorothy Curtis, Bruce Hoppe, and Charles E. Leiserson — and everyone
who has contributed to and supported OpenCilk.

44

https://www.opencilk.org

