
Department of Computer Science,
University of Otago

Technical Report OUCS-2001-02

The description of game actions in Cluedo

Author:H.P. van Ditmarsch

Status: Submitted to Game Theory and Applications VIII

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

 http://www.cs.otago.ac.nz/trseries/

The description of game actions in Cluedo

Submission to Game Theory and Applications VIII

Hans P. van Ditmarsch

Computer Science, University of Otago, New Zealand. Email: hans@cs.otago.ac.nz

Abstract

Game actions in the well-known murder game Cluedo involve interac-

tions of di�erent subgroups of players, that result in complex knowledge

changes. We introduce a dynamic epistemic language to describe actions

in Cluedo in formal detail. This provides us with a precise description of

Cluedo strategies. Optimal strategies are not yet known.

1 Overview

We start in section 2 with an introduction to the game of Cluedo. In section 3 we

continue in more detail with a simpler example: three players each holding one

card. In section 4 we present the syntax and semantics of a dynamic epistemic

language to describe game actions, we apply the language to describe the actions

in the three cards example, and we report on some theoretical results. In section

5 we (formally) describe the game actions and strategies of Cluedo. Cluedo is

an example of a knowledge game. In section 6 we relate on (knowledge) game

state descriptions and game aspects of knowledge games.

2 Cluedo

Imagine a country mansion with a couple of partying guests. Suddenly the host

is discovered, lying in the basement, and murdered. The guests decide to �nd

out among themselves who committed the murder. The body is discovered by

the butler, under suspicious circumstances that indicate that the location is not

the actual murder room. In order to solve the murder, it is required to �nd

out who the murderer is, what the murder weapon was, and in which room the

murder was committed. The butler is exonerated, the six guests are therefore

the suspects.

The guests are: Colonel Mustard (colour yellow), Professor Plum (colour

pink), the Reverend Green, Mrs. Peacock (colour blue), Ms. Scarlett (colour

red, i.e. `scarlet'), and Mrs. White. There are six possible murder weapons:

candlestick, rope, leaden pipe, wrench, gun, knife. The house consists of nine

1

Figure 1: Green has done it with a candlestick in the ballroom: the cards

di�erent rooms: hall, kitchen, dining room, study, sitting room, patio, ballroom,

library, pool room.

The game is played on a game board with a picture of the house, with the

nine rooms in it and `paths' leading in a certain number of steps from one room

to another. There are six players. There are six guest cards, six weapon cards,

and nine room cards. A pair of dice, six pawns for the (six) players, in colours

matching the guests' names, and six weapon tokens complete the picture.

The three categories of cards are shu�ed separately. One suspect card, one

weapon card and one room card are blindly drawn and put apart. These `murder

cards' represent the actual murderer, the murder weapon and the murder room.

All remaining cards are shu�ed together. They are then dealt to the players.

Every player gets three cards. Some player starts the game. A player's move

consists of the following:

Throw the dice. Try to reach a room by walking your pawn over the game

board. The number of steps on the board may not exceed the outcome of the

throw of dice. If a room is reached voice a suspicion about it, i.e. about a guest,

a weapon and that particular room. As a consequence of the suspicion, the pawn

with the same colour as that of the suspected player is moved to the suspected

room, and that weapon token is placed in that room. Gather responses to that

suspicion from the other players. The other players respond to the suspicion

in clockwise fashion: either a player doesn't have any of the requested cards,

he says so, and the next player responds to the suspicion; or a player holds at

least one of the requested cards, he shows exactly one of those to the requesting

player only, and no further responses may be gathered. You may now either end

your move (who is next in turn is again determined clockwise) or, if you think

you know enough, make an accusation. An accusation is also the combination

of a suspect, a weapon and a room card, but it plays another role in the game

than a suspicion does:

Each player can make an accusation only once. It is not voiced but written

2

•
player 1

•
player 4

•
player 5

•
player 6

•
player 3candlestick !

green
ballroom ?
candlestick

green
ballroom

no !

•
player 2

Figure 2: Green has done it with a candlestick in the ballroom: the players

down. The accusing player then checks the three murder cards, without showing

them to others. If the accusation is false, that player has lost and the game

continues. If the cards match the accusation, it is successful. The �rst player

who makes a successful accusation, wins the game.

In order to understand why the information changes that result from a move

may be complex, we now look in greater detail at an example move.

Example 1 Assume that one of the cards of player 3 is the candlestick card

and that two of the cards of player 4 are the green card and the ballroom card.

Assume that player 1 starts the game. In his �rst move, player 1 reaches the

ballroom. Player 1 voices the suspicion: `I think Reverend Green has committed

the murder with a candlestick in the ballroom'. Player 2 replies that he does not

have any of the requested cards (nocard). Player 3 shows the candlestick card to

player 1 (showcard). Player 1 ends his move (endmove).

Players 4, 5 and 6 never get to respond to the suspicion by player 1. If 4 had

been asked to, he could have chosen between two cards to show to player 1.

How is the knowledge of the players a�ected by the constituents of this game

move? Initially, the players only know their own cards, as this is the �rst move

in the game.

Any suspicion goes: provided one occupies that room, any combination of

a room, weapon and guest card can be asked. Also, it is permitted to ask for

one or more of one's own cards, so that one `knows' the suspicion to be false.

Therefore, nothing can be deduced from the suspicion. Although a suspicion of

course a�ects the beliefs and rational behaviour of the players (as we may assume

it to be strategically chosen), by itself it does not change their knowledge. The

function of a suspicion is to raise an issue, that is resolved by the replies of the

other players.

nocard The combination of the issue raised by a suspicion with a negative

answer results in an information change. After player 2 has said that he does not

3

have any of the requested cards, this is commonly known to all players: player

1 knows that player 2 doesn't have them, but also player 5 knows that player

1 knows that, etc. It has become common knowledge. What can further be

deduced from that information depends on the players' own cards. E.g. player

5 now knows that player 2 does not have 6 particular cards from the total of

21 cards: the three cards asked for by 1, and the three (di�erent) cards that 5

holds himself.

showcard The combination of the issue raised by a suspicion with a positive

answer also results in an information change. Player 3 has the candlestick card

and shows this card to player 1. He shows the card to player 1 only, by handing

the card face down to player 1. Player 1 then looks at the card, and returns the

card the same way. The other players therefore only see that a card has been

shown, and know that the others have seen that, etc.

Player 1 now knows that player 3 holds the candlestick card. Player 1 doesn't

know whether player 3 holds one, two or all three of the requested cards. That

he just holds candlestick, is however known by player 4, because 4 holds two

of requested cards himself. Curiously enough, neither player 1 nor player 3

know that player 4 knows that. So unlike the case of the nocard action, we

now cannot just continue stacking knowledge operators on top of the fact that 3

holds candlestick: it is not common knowledge. Common knowledge among the

6 players is, that player 3 holds at least one of the three requested cards, and

that the subgroup consisting of 1 and 3 commonly know which card of those

three. From this everybody can deduce that, e.g., 3 does not hold the cards

white, scarlett, and conservatory.

endmove Player 1 ends his move. That ending your move is an epistemic

action is rather implicit. It is a consequence of 1 not making a successful ac-

cusation, i.e. not declaring what the murder cards are (which is a win action,

as explained next). For fully rational players ending your move corresponds to

announcing that you are ignorant of the murder cards. Note that an endmove

action is independent of the issue raised by the suspicion. It merely depends on

the current epistemic state (which resulted of previous actions that depended on

the suspicion). In example 1 it is unclear how endmove changes the knowledge

of other players. We therefore present a di�erent example in which it is obvious:

Example 2 Player 1, who starts the game, reaches the kitchen in his �rst move.

He voices the suspicion `I think that Scarlett has committed the murder in the

kitchen with a knife'. None of the other players can show a card. Player 1

(con�dently) writes down an accusation, checks the murder cards and announces

that he has won (win).

Example 3 Same as example 2. However, instead of making an accusation,

player 1 now ends his move.

In example 2 it so happened that the murder cards were `kitchen, scarlett, knife'

and that player 1, by mere incredible luck, accidentally asked for precisely these

4

cards. When nobody shows a card, he therefore knows what the murder cards

are and wins. In example 3 however, the other players can deduce that player

1 holds at least one of the requested cards, because if he hadn't, he would have

known what the murder cards are and would have made the accusation, as in

example 2.

win Example 3 provided us with the one remaining sort of action occurring in

Cluedo. Apart from the nocard, showcard, and endmove actions the only other

sort of action occurring in Cluedo is that of winning it. The issue raised by

an accusation results in an information change if it is successful. Otherwise we

may assume that the accusing player didn't know the murder cards but merely

guessed them, wrongly. By telling the other players that he made the wrong

guess, he announces that he was ignorant of the murder cards at the moment

of the accusation, so the information change is as in endmove. Its strategic role

in the game is of course di�erent: a false accusation can only be made once,

whereas players end their moves every round.

Simpli�cations To describe Cluedo game actions in more detail we need to

make some simpli�cations: we disregard the role of the board, dice and pawns,

and we ignore that there are di�erent types of cards.

Board, dice, and pawns determine which suspicions players can make. The

outcome of the throw of dice determines which rooms you can reach with your

pawn, and therefore about which rooms you can utter a suspicion. Also, when

voicing a suspicion, the pawn for that guest is moved to the room of the sus-

picion. Therefore the player with that pawn has to start his next move from

that room. Again, that determines what room that player can reach later. To

make an obvious point: although pawns are identied with guests, you don't

even know whether you have committed the murder `yourself'; they only serve

as constraints on the suspicions that can be made in your move.1

Not just any suspicion can be made but only a suspicion consisting of a card

of each category. This restricts the strategies for gathering information. Also,

not just any three cards lie on the table but one of each type. This restricts

the number of relevant card deals. We assume that all cards are di�erent, and

forget about categories.2

1Disregarding board, dice and pawns is less of a simpli�cation than one might think,

because one can generally reach a room, because one is allowed to make other suspicions

about the room one already occupies, and because it is unclear why some suspicions should

be preferred over others, even if they are about the same room (see section 6). How unlikely
is it to reach a room? For each player, the �rst move in the game starts from his initial pawn

position. For Peacock, the closest room is reached from that position in 7 steps, for the other

pawns this is 8 steps. Therefore, the player playing with the pawn Peacock will reach a room

with probability 21

36
. For the other players the probability is 15

36
. Other moves typically start

from a room. From any room on the board, the number of steps needed to reach the closest

room is at most 4. (From a corner room one can reach the opposite corner with any throw.)

The average outcome of a throw of { two { dice is 7. Therefore, the probability to reach some

other room in one's move is at least 33

36
.

2How many deals are there in Cluedo? The murder cards come from di�erent categories.

so there are 6 �6 �9 = 324 possible combinations of cards on the table. Without the restriction

5

(Hexa; rwb)

brw

wrb

rwb rbw

bwr

wbr

1

1

1

2 2

23

3 3

brw

rwb rbw

bwr

1

1

23

brw

wrb

rwb rbw

bwr

wbr

1

1

1

3

3 3

rwb

bwr

2

nocard

showcard

endmove

win

Figure 3: The results of executing nocard and showcard in the state (Hexa; rwb), and

the result of both endmove and win in the state resulting from nocard. Points of states

are underlined. Worlds are named by the deals that (atomically) characterize them.

Assume re
exivity of access.

Given the simpli�cations, what remains is a card game for 21 cards and six

players, with game actions of the sort nocard, showcard, endmove and win. Be-

cause actions only consist of information change, we call this and similar games

knowledge games. See [vD01b] and section 6. To describe these game actions

in detail, we now move to the simplest game that still contains their essential

features.

3 Three players and three cards

Three players each hold one card. Suppose player 1 holds a red card, 2 holds a

white card and 3 holds a blue card. This initial game state is modelled by the

equivalence state (Hexa; rwb) in Figure 3. An equivalence state is a pointed

multiagent Kripke-model where all accessibility relations are equivalences. The

model called Hexa (because it looks like a hexagon) consists of the six deals of

three cards over three players. In a deal ijk player 1 holds card i, 2 holds j and

3 holds k. Two deals cannot be distinguished from each other by a player if he

holds the same card in both, e.g. rwb and rbw are the same for player 1, which

is indicated by a 1-labeled link in the �gure. The point rwb of the state, which

on categories, there would have been
�
21

3

�
= 1330 to consider. After the murder cards have

been drawn, the remaining cards are shu�ed again. Therefore, the total number of relevant

card deals is 324 � �6

i=1

�
3�i

3

�
.

6

stands for the `actual world', is underlined in the �gure. Some actions that can

be executed in (Hexa; rwb) are:

Example 4 (nocard) Player 1 says that he doesn't have the white card.

Example 5 (showcard) Player 1 shows (only) player 2 the red card. Player 3

cannot see the face of the shown card, but notices that a card is being shown.

Example 6 (endmove) After the nocard action, player 2 ends his move (im-

plicitly says that he cannot win).

Example 7 (win) After the nocard action, player 3 says that he has won.

We assume that only the truth is told and that it is publicly known what players

can and cannot see. To win is (being the �rst) to announce that you know the

deal of cards. Figure 3 pictures the states that result from updating the current

state (Hexa; rwb) with the information contained in the actions.

In nocard it suÆces to eliminate some worlds: after 1's action, the two deals

of cards where 1 holds white are eliminated. It is publicly known that they are

no longer accessible. This update is a public announcement.

In showcard we cannot eliminate any world. After this action, e.g., 1 can

imagine that 3 can imagine that 1 has shown red, but also that 1 has shown

white, or blue. However, some links between worlds have now been severed:

whatever the actual deal of cards, 2 cannot imagine any alternatives after exe-

cution of showcard.

The endmove action is another public announcement, just as nocard. Again,

only those deals of cards remain where the statement holds, i.e. where 2 still

has an alternative. This is the case in rbw and wbr. These also happen to be

the worlds where player 3 can win, therefore the win action results in the same

state. Incidentally, after 1 has shown his card to 2 in (Hexa; rwb), player 2

knows the deal of cards, and therefore can also perform a win action. Because

it is already publicly known that 2 knows the deal of cards, this action does not

result in an information change.

Finally note, that in the endmove action, because 2 announces that he cannot

win, 1 can win, even though 1 couldn't win before. Because 2 said that he didn't

know the deal of cards yet, 1 can conclude that 2 must have white, and therefore

1 knows that the deal of cards is rwb.

We can paraphrase some more of the structure of the actions. In nocard, all

three players learn that player 1 does not hold the white card, where `learning'

should be regarded as the dynamic equivalent of `common knowledge'. It is hard

to give a more precise informal meaning to `learning'. In particular, `learning' is

not the same as `becoming common knowledge'. Imagine that instead of saying

that he doesn't have white, 1 had said `one of you doesn't know that I don't

have white'. This is interpreted as: `1 does not have the white card, and 2

doesn't know that or 3 doesn't know that'. At the moment of utterance, this

statement can be truthfully made in all worlds of Hexa but wrb and wbr, so it

7

results in the same state as the execution of nocard. However, in that state is it

not common knowledge that 2 doesn't know that 1 does not have white or that

3 doesn't know that. To the contrary: 2 and 3 do both know that 1 doesn't

have white, it is even common knowledge.

We continue our conceptual analysis. The structure of endmove and win is

similar to that of nocard, because all three are public announcements. Action

showcard is more complex. In showcard, 1 and 2 learn that 1 holds red, whereas

1, 2 and 3 learn that 1 and 2 learn which card 1 holds, or, in other words: that

either 1 and 2 learn that 1 holds red, or that 1 and 2 learn that 1 holds white,

or that 1 and 2 learn that 1 holds blue. The choice made by subgroup f1; 2g
from the three alternatives is local, i.e. known to them only, because it is hidden

from player 3.

`Learning' is an operator in the dynamic language for actions that we will now

present. `Local choice' is another operator and is used to express that subgroup

choices are known `locally' only.

4 Knowledge actions

The area of dynamic epistemics has recently seen much progress [Par87, FHMV95,

Pla89, GG97, Ger99, Bal99, BMS00, vD99, vD00, vD01a]. An early example of a

dynamic epistemic logical language (as opposed to a metalevel treatment) is the

elegant logic of public announcements presented in [Pla89]. Plaza models public

announcements as binary operators that have a dynamic interpretation. An in-

tegrated approach including announcements to subgroups has been put forward

in [GG97]. Gerbrandy's thesis, [Ger99], presents this dynamic epistemics in

more generality. A treatment of epistemic actions as semantic objects, namely

Kripke frames for actions, is found in [BMS00, Bal99]. Our own work provides

both a relational action semantics [vD99, vD01a] and an action frame semantics

for game actions [vD01b]. These two di�erent interpretations are equivalent up

to bisimilarity [vD00]. Here, we present the extension of the relational seman-

tics to include concurrent actions. This builds upon work on concurrency in

dynamic logic PDL [Pel87, HKT00, Gol92] and also appears to be related to

game theoretical semantics for (extensions of) PDL [Par85, Pau00].

4.1 Syntax

To a standard multiagent epistemic language with common knowledge for a

set A of agents and a set P of atoms [MvdH95, FHMV95, vdHV01], we add

dynamic modal operators for programs that are called knowledge actions and

that describe actions. The language LA and the knowledge actions KAA are

de�ned by simultaneous induction.

De�nition 1 (Dynamic epistemic logic { LA) LA(P) is the smallest set such

8

that, if p 2 P; '; 2 LA(P); a 2 A;B � A;� 2 KAA(P), then

p;:'; (' ^);Ka';CB'; [�]' 2 LA(P)

Other propositional connectives and modal operators are de�ned by abbrevia-

tions. Outermost parentheses of formulae are deleted whenever convenient. As

we may generally assume an arbitrary P , write LA instead of LA(P).

De�nition 2 (Knowledge actions { KAA) Given a set of agents A and a

set of atoms P , the set of knowledge actions KAA(P) is the smallest set such

that, if ' 2 LA(P); �; �
0 2 KAA(P); B � A, then:

?';LB�; (� ; �0); (� [�0); (� ! �0); (� \ �0) 2 KAA(P)

Outermost parentheses of actions are deleted whenever convenient. We gen-

erally write KAA instead of KAA(P). The program constructor LB is called

learning. Action ?' is a test, (� ; �0) is sequential execution, (� [�0)
is nondeterministic choice, (� ! �0) is called local choice, and � \ �0 is a
concurrent knowledge action.

Actions without `!' operators are called knowledge action types, or just

action types, actions without `[' operators are called concrete knowledge

actions, or concrete actions. An inductively de�ned function t : KAA ! KAA

returns the type of a given action, with crucial clause t(� ! �0) = t(�) [t(�0).
An inductively de�ned function C : KAA ! P(KAA) returns the set of con-

cretizations of a given action; its crucial clause is C(� [�0) = f� ! �0 j � 2
C(�) and �0 2 C(�0)g [f�0 ! � j � 2 C(�) and �0 2 C(�0)g. Instead of � ! �0

we generally write !�[t(�0) or t(�0)[!�. This more clearly expresses that given

choice between � and �0, the agents involved in those actions choose �, whereas

that choice remains invisible to to the agents not involved (examples in the next

section).

4.2 Examples

We describe the actions nocard, showcard, endmove, and win in Lf1;2;3g (L123).

Example 8 (nocard) Player 1 says that he doesn't have the white card: L123?:w1.

Player 1 may be lying or su�ering from an exceptional case of colour-blindness.

Therefore the description L123?K1:w1. would be more accurate. However,

as we assume truthfulness and normal vision, i.e. as we restrict ourselves to

equivalence models, this amounts to the same as L123?:w1.

Example 9 (showcard) Player 1 shows (only) player 2 his red card:

L123(!L12?r1 [L12?w1 [L12?b1).

Before describing the concrete action showcard, in which 2 shows 1 his red card,

we describe the type of that action: 1 shows 2 his card. The action type can be

paraphrased as `players 1, 2 and 3 learn (that 1 and 2 learn that 1 holds red,

9

or that 1 and 2 learn that 1 holds white, or that 1 and 2 learn that 1 holds

blue)'. Its description in LA is L123(L12?r1 [L12?w1 [L12?b1). We assume

associativity of [(see section 4.5).

To describe the concrete action showcard we express what is known to agents

1 and 2, but not to agent 3, from the two choices to be made in L12?r1[L12?w1[
L12?b1: between (L12?r1 [L12?w1) and L12?b1, choose the �rst. So we get

L123((L12?r1 [L12?w1) ! L12?b1). Between L12?r1 and L12?w1, again choose

the �rst: L123((L12?r1 ! L12?w1) ! L12?b1). In more readable notation this

becomes L123(!(!L12?r1 [L12?w1) [L12?b1) and assuming associativity again

we get L123(!L12?r1 [L12?w1 [L12?b1). The action of player 1 showing player

2 his blue card is described as L123(L12?b1 ! (L12?r1 ! L12?w1)), which in more

readable notation becomes L123(!L12?b1 [t(L12?r1 ! L12?w1)) = L123(!L12?b1 [
(L12?r1 [L12?w1)) = L123(L12?r1 [L12?w1[!L12?b1).

Example 10 (endmove) Player 2 cannot win: L123?:K2Æ.

HereK2Æ is shorthand forK2Ærwb[K2Ærbw[:::, where Æijk is the atomic descrip-

tion of world (deal) ijk, e.g. Ærwb := r1^:r2^:r3^:w1^w2^:w3^:b1^:b2^b3.

Example 11 (win) Player 3 can win: L123?K3Æ.

To illustrate the use of KAA as a game action description language, we also

give an example card action involving concurrency.

Example 12 (twocards) There are three players (1,2,3) and four cards. The

cards are shu�ed and dealt to the players. Player 3 is dealt two cards. Player 3

now shows one card (only) to player 1, with his left hand, and (simultaneously)

the other card (only) to player 2, with his right hand.

Suppose the cards are called north, east, south and west (n; e; s; w). Atomic

propositions ca describe that player a holds card c. The action twocards is

described by the knowledge action L123(
S
i6=j2fn;e;s;wg(L13?i3 \ L23?j3)). In

each game state twocards has two possible executions: player 3 may choose

whether to show player 1 his i or his j card, the other card is then necessarily

shown to player 2. Abstract simultaneous move games [OR94] may provide

other examples of concurrent actions.

4.3 Semantics

Given a set of agents A and a set of atoms P , a (Kripke) model M =

hW; fRaga2A; V i consists of a domain W of worlds, for each agent a 2 A a bi-

nary accessibility relation Ra onW , and a valuation V : P ! P(W). Given

a model, the operator gr returns the set of agents: gr(hW; fRaga2A; V i) = A;

this is called the group of the model. The group of a set of models is the union

of the groups of these models. In an equivalence model (commonly known

as an S5 model) all accessibility relations are equivalence relations. We then

write �a for the equivalence relation for agent a. If w �a w
0 we say that w

10

is the same as w0 for a, or that w is equivalent to w0 for a. Write �B

for (
S
a2B �a)

�. For a given model M , D(M) returns its domain. Instead of

w 2 D(M) we also write w 2M . Given a modelM and a world w 2M , (M;w)

is called a state, w the point of that state, and M the model underlying

that state. Also, if M is clear from the context, write w for (M;w). Similarly,

we visually point to a world in a �gure by underlining it. If s = (M;w) and

w 2 D(M) we also write w 2 s. All notions for models are assumed to be

similarly de�ned for states. We introduce the abbreviations SA(P) for the class
of equivalence states for agents A and atoms P and S�A(P) :=

S
B�A SB(P).

As before, drop the `P '. Write either s is an equivalence state or, if the context

requires more precision, s 2 SA or s 2 S�A.
The semantics of LA (on equivalence models) is de�ned as usual [MvdH95],

plus an additional clause for the meaning of dynamic operators. The interpre-

tation of a dynamic operator is a relation between an equivalence state and a

set of equivalence states (to be de�ned in de�nition 5).

De�nition 3 (Semantics of LA) Let (M;w) = s 2 SA and ' 2 LA, where
M = hW; f�aga2A; V i. We de�ne s j= ' by induction on the structure of '.

M;w j= p :, w 2 V (p)
M;w j= :' :, M;w 6j= '

M;w j= ' ^ :, M;w j= ' and M;w j=

M;w j= Ka' :, 8w0 : w0 �a w)M;w0 j= '

M;w j= CB' :, 8w0 : w0 �B w)M;w0 j= '

M;w j= [�]' :, 8S � S�A : (M;w)[[�]]S) 9(M 0; w0) 2 S :M 0; w0 j= '

The notion h�i is dual to [�] and is de�ned as s j= h�i' , [9S � S�A :

s[[�]]S and 8s0 2 S : s0 j= ']. This may be intuitively more appealing: from

the given state s, we can reach a set of of states S where ' holds everywhere

(`simultaneously'). Our treatment of the dynamic operators is similar to that

in dynamic logic [Pel87, Gol92].

We lift equivalence of worlds in a state to equivalence of states and to equivalence

of sets of states. This is necessary because sets of states will occur as worlds in

de�nition 5 of local interpretation, so that access between such worlds will be

based upon properties of these sets of states.

De�nition 4 (Equivalences of states and of sets of states)

Let (M;w); (M;w0); (M 00; w00) 2 SA, let S; S
0 � S�A, let a 2 A. Then:

(M;w) �a (M;w0) :, w �a w
0

(M;w) �a (M
00; w00) :, 9v 2M : (M; v) $ (M 00; w00) and (M;w) �a (M; v)

S �a S
0 :, (8s 2 S : a 2 gr(s)) 9s0 2 S0 : s �a s

0) and

(8s0 2 S0 : a 2 gr(s0)) 9s 2 S : s �a s
0)

In the second clause of the de�nition, $ stands for `is bisimilar to' [BdRV01].

Bisimilarity is a notion of sameness between states that implies equivalence

11

of their logical descriptions (theories), though not vice versa. The implicit

symmetric closure in third clause of the de�nition is needed to keep �a an

equivalence relation.

We now continue with de�ning the local interpretation of knowledge actions. In

the de�nition we use the following notations: let M be a model, then D(M)' =

fv 2 D(M) j M; v j= 'g; let R;R0 : W ! P(W) be two binary relations from

some domain W to subsets of that domain (such as [[�]]), then the composition

(R Æ R0) of R and R0 is de�ned as follows: let v 2 W;V � W , then: (R Æ
R0)(v; V) :, 9V 0 : R(v; V 0) and 8v0 2 V 0 : 9V 00 � V : R0(v0; V 00) and V =S
v02V 0fV 00 j R0(v0; V 00)g.

De�nition 5 (Local interpretation of knowledge actions) Let � 2 KAA

and s = (M;w) 2 SA, where M = hW; f�aga2A; V i. Let S � S�A (and also all

other sets of states in the de�nition). The local interpretation [[�]] of � in s

is de�ned by inductive cases:

s[[?']]S , S = f(hW'; ;; V �W'i; w)g
s[[LB�

0]]S , 9S0 : S = f(hW 0; f�0
aga2B ; V

0i; S0)g; s[[�0]]S0; gr(W 0) � B

s[[�0 ; �00]]S , s([[�0]] Æ [[�00]])S
s[[�0 [�00]]S , s([[�0]] [[[�00]])S

s[[�0 ! �00]]S , s[[�0]]S

s[[�0 \ �00]]S , 9S0; S00 : s[[�0]]S0; s[[�00]]S00; and S = S0 [S00

In the clause for interpreting LB�
0, the model hW 0; f�0

aga2B ; V
0i is de�ned as

follows. Domain: W 0 := fS j 9v 2M : v �B w and (M; v)[[t(�0)]]Sg; Valuation:
Let s0 = (hWs0 ;�s0 ; Vs0i; ws0) 2 S0 2 W 0, p 2 P , then: S0 2 V 0(p) , ws0 2
Vs0(p); Access: Let S

0; S00 2W 0; a 2 B, then:

S0 �0
a S

00 , S0 �a S
00 and [a 62 gr(S0) [gr(S00)) 9v0; v00 2M :

(M; v0)[[t(�0)]]S0; (M; v00)[[t(�0)]]S00 and v0 �a v
00]

If the interpretation of � in s is not empty, we say that � is executable in s.

For all actions except concurrent knowledge actions it is more intuitive to think

of their interpretation as a relation between states than as a relation between

a state and a set of states: if s[[�]]fs0g, we like to think of s0 as the result of

executing � in s. The notational abbreviation s[[�]]s0 :, s[[�]]fs0g allows us to

keep using this helpful intuition. Further, if the interpretation is functional as

well, write s[[�]] for the unique s0 such that s[[�]]s0. If this is the case for arbitrary

s, we call � a state transformer. Note that tests and learning actions are state

transformers.

To execute an action LB�
0 in a state s, we do not just have to execute the

actual action �0 in the actual state s, but also any other action of the same

type t(�0) as �0 in any other state s0 that is relevant for the agents in B: any

state that is �B accessible from s. The results are the worlds in the state that

results from executing LB�
0 in s. Such worlds (that are sets of states) can be

distinguished from each other by an agent a 2 B in two cases: either a occurs in

12

brw

wrb

rwb rbw

bwr

wbr

1

1

1

2 2

23

3 3

rwb rbw rwb rbw1

brw

wrb

rwb rbw

bwr

wbr

1

1

1

3

3 3

?r1

L12?r1

L123(L12?r1 [L12?w1 [L12?b1)

Figure 4: Stages in the computation of (Hexa; rwb)[[showcard]]. The linked frames

visually emphasize identical objects: large frames enclose states that reappear as small

framed worlds in the next stage of the computation.

both sets of states and he cannot distinguish between them, or a doesn't occur

in these sets of states, so that he cannot distinguish between them anyway,

and as well he could not distinguish their [[t(�0)]]-origins either. The constraint

gr(W 0) � B in the clause for LB�
0 is for technical reasons [vD01a].

4.4 Examples

We compute the interpretation of showred in (Hexa; rwb). The interpretation

of nocard, endmove and win proceeds along similar lines but is simpler. For an

example interpretation of a truly concurrent action, see [vD01c].

Example 13 (Local interpretation of showcard) In state (Hexa; rwb), play-

er 1 shows his red card (only) to player 2: L123(!L12?r1[L12?w1[L12?b1).

All sets of states occurring in this computation are singleton sets, so assume

from now that [[�]] is a relation between states, not between states and sets of

states.

We apply clause LB of de�nition 5. To interpret showcard = L123(!L12?r1 [
L12?w1 [L12?b1) in rwb = (Hexa; rwb), we �rst interpret the type L12?r1 [
L12?w1 [L12?b1 of !L12?r1 [L12?w1 [L12?b1 in any state of Hexa that is

f1; 2; 3g-accessible from rwb, i.e. in all states of Hexa. The resulting states will

13

make up the domain of rwb[[showcard]] (we may write rwb[[showcard]] because

showcard is a learning action and therefore a state tranformer). We then compute

access on that domain, and, �nally, the required image is rwb[[!L12?r1[L12?w1[
L12?b1]]. We start with the �rst.

Action L12?r1 [L12?w1 [L12?b1 has a nonempty interpretation in all states

of Hexa. We give two examples. Apply clause [of de�nition 5 (assuming

associativity again): L12?r1[L12?w1[L12?b1 can be interpreted in rwb because

L12?r1 can be interpreted in that state. Similaryly, L12?r1 [L12?w1 [L12?b1
can be interpreted in brw because L12?b1 can be interpreted in that state. We

compute the �rst.

Again, we apply clause LB of de�nition 5. To interpret L12?r1 in rwb, we

interpret ?r1 in any state of Hexa that is f1; 2g-accessible from rwb, i.e. in all

states of Hexa. The interpretation is not empty when 1 holds red, i.e. in rwb

and in rbw. We compute the �rst.

We now apply clause ?' of de�nition 5. The state rwb[[?r1]] is the restriction

of Hexa to worlds where r1 holds, i.e. rwb and rbw, with empty access, and

with point rwb. Figure 4 pictures the result.

Having unravelled the interpretation of showcard to that of its atomic con-

stituents, we can now start to compute access on the intermediate stages of

our interpretation. The state rwb[[?r1]] is one of the worlds of the domain of

rwb[[L12?r1]] (as visualized in Figure 4 by linked frames) and is also the point

of that state. The other world is rbw[[?r1]]. As agent 1 does not occur in either

of these, and their origins under the interpretation of ?r1 are the same to him

(rwb �1 rbw in Hexa), therefore rwb[[?r1]] �
0
1 rbw[[?r1]] in rwb[[L12?r1]]. For the

same reason, both worlds are re
exive for both 1 and 2 in rwb[[L12?r1]]. Further

note that rwb[[?r1]] 6�
0
2 rbw[[?r1]], because in rwb 6�2 rbw in Hexa. The valuation

of atoms does not change. Therefore world rwb[[?r1]] is named rwb and world

rbw[[?r1]] is named rbw in Figure 4.

Similarly to the computation of rwb[[L12?r1]], we compute the �ve other

states where 1 and 2 learn 1's card. These form the domain of rwb[[showcard]].

For a more detailed computation of access on that model, see [vD01a].

The point of rwb[[showcard]] is rwb[[L12?r1]], because, applying the clause for

`!' in de�nition 5, rwb[[!L12?r1 [L12?w1 [L12?b1]] = rwb[[L12?r1]]. We have now

completed the interpretation. See Figure 4.

Note that in any world of the resulting model, player 2 knows the deal of

cards. Player 1 doesn't know the cards of 2 and 3, although he knows that 2

knows it. Player 3 knows that 2 knows the deal of cards.

4.5 Theory

We mention a few relevant theoretical results that have been proven for the

language without concurrency [vD00, vD01a] but that can be easily extended

to the more general language under consideration.

The class of equivalence states is closed under execution of knowledge ac-

tions; this trivially follows from de�nition 5. Various algebraic properties hold,

such as e.g. (�[�0)[�� = �[(�0[��) and (�[�0) ; �� = (� ; ��)[(�0 ; ��).

14

It is indeed the case that concrete actions have a functional interpretation. An

action's interpretation is included in that of its type: [[�]] � [[t(�)]]. If (s; S0)

is in the interpretation of �, then there is a concretization of � with precisely

that interpretation: s[[�]]S0) 9� 2 C(�) : s[[�]]S0. Every action is equivalent

to nondeterministic choice between all its concretizations: [[�]] = [[
S
�2C(�) �]].

The main theorems of interest (for proofs, see [vD01a]) are:

Theorem 1 (Bisimilarity implies modal equivalence) Let ' 2 LA. Let

s; s0 be equivalence states. If s $ s0, then s j= ', s0 j= '.

Theorem 2 (Action execution preserves bisimilarity) Let � 2 KAA. Let

s; s0 be equivalence states. For each set of (S�A) states S there is a set of states

S0 and a bijection f : S ! S0 such that: If s $ s0 and s[[�]]S, then s0[[�]]S0 and

for all s00 2 S : s00 $ f(s00).

A corollary of theorem 2 is the following:

Corollary 3 Let s; s0 be equivalence states and � a state transformer that is

executable in s. If s $ s0, then s[[�]] $ s0[[�]].

The axiomatization of the language has not been completed. Part of the problem

is that there are well-formed LA formulae that are uninterpretable. This is a

result of the restriction of our semantics to equivalence (S5) states. Finally, it is

as yet unclear how the expressive power of the current language relates to that

of the language without \, as presented in [vD00, vD01a].

4.6 Action frames

We have described game actions as knowledge actions, i.e. in a logical language.

We then computed the e�ect of a game action by determining the interpretation

of that knowledge action. This may be considered a roundabout way to proceed:

it is like working with the characteristic formula of a game state, instead of

the Kripke state that this formula describes. Why not �nd a direct semantic

representation of game actions? We outline the approach in [vD00]:

Just as a game state is represented by an equivalence state, a game action

can be represented by an equivalence frame. The computation of the next game

state from the current state and an action, or in other words the execution

of that action in that state, can be seen as multiplying a Kripke model and a

Kripke frame: it resembles the computation of a direct product.

De�nition 6 (Action frame) Let s = (M;w) = (hW; f�aga2A; V i; w) be an

equivalence (game) state. An action frame (relative to that state) is a pointed

equivalence frame � = (N; q) = (hQ; f�aga2Bi; q) such that Q � P(W), B � A,

and q 2 Q.

De�nition 7 (Executing an action frame) Let s = (M; v) = (hW; f�aga2A;
V i; v) be an equivalence state and let � = (N; r) = (hQ; f�aga2Bi; r) be an ac-

tion frame for s. The state s
� resulting from executing � in s is de�ned as fol-

lows: s
� := (hW 0; (�a)a2B ; V
0i; (v; r)), where W 0 = f(w; q) 2 W�Q j w 2 qg,

15

brw

wrb

rwb rbw

bwr

wbr

1

1

1

2 2

23

3 3

�

r w

b

3

33 (brw; b)

(wrb; w)

(rwb; r) (rbw; r)

(bwr; b)

(wbr; w)

1

1

1

3

3 3

brw

wrb

rwb rbw

bwr

wbr

1

1

1

3

3 3

Figure 5: Executing action Showcard in state (Hexa; rwb)

(v; r) 2 W 0, and 8a 2 B : 8w;w0 2 W : 8q; q0 2 Q : (w; q) �a (w
0; q0) :, (w �a

w0 and q �a q
0), and V 0

(w;q) := Vw

We then de�ne a game action as an action frame that satis�es some additional

frame properties [vD01b], corresponding to the roles of players. The general idea

of this product construction is, that the next state of the game consists of all

pairs (w; q) such that (N; q) `could also have been' the action and (M;w) `could

also have been' the state, plus access appropriately de�ned.

Example 14 (Showcard) Showcard is the game action (Q; frwb; rbwg) =

(hffrwb; rbwg; fwrb; wbrg; fbrw; bwrgg; f�1;�2;�3gi; frwb; rbwg) where �1 and

�2 are the identity `=' on Q, and �3 is the universal relation Q�Q. The ex-

ecution of Showcard in (Hexa; rwb) is pictured in Figure 5. In the �gure,

we abbreviate frwb; rbwg as r, fwrb; wbrg as w, and fbrw; bwrg as b. Do-

main: e.g. (rwb; frwb; rbwg) 2 Q because rwb 2 frwb; rbwg. Access: e.g.

(rbw; r) �3 (brw; b) because rbw �3 brw and r �3 b (if player 3 holds white, he

cannot distinguish 1 showing red from 1 showing blue). Valuation: Because val-

uations do not change (cards do not change hands) the names of world remain

card deals, as on the right in Figure 5. Note that game action Showcard and

knowledge action showcard, as in Figure 3 on page 6 and in Example 9 on page

9, induce the same relation between states.

There is a precise relation between action frames and knowledge actions

that are state transformers: instead of the local interpretation [[�]] of a state

transformer � we can also de�ne a product interpretation [[�]]
 of that action

as follows: [[�]]
 = (hT; f�aga2Ai; �) , where T = f� j � 2 C(t(�))g (T is

the set of all concrete actions of the same type as �), and �a is de�ned by

induction on the structure of actions (no details) such that, e.g., in the Hexa

example player 1 showing the red card to player 2 is the same for player 3 as 1

showing the blue card or the white card to 2: L123(!L12?r1[L12?w1[L12?b1) �3

16

L123(L12?r1[!L12?w1 [L12?b1) �3 L123(L12?r1 [L12?w1[!L12?b1). Naturally

for player 1 and 2, all these actions are di�erent. Observe that the resulting

frame is isomorphic to the game action in Figure 5.

Instead of using concrete actions as worlds, in [[�]]
, we may also, given

a state, replace them by the set of worlds in that state where they can be

executed (which is merely another way of saying that these worlds satisfy the

preconditions of these actions). That completes the link between game actions

(action frames) and knowledge actions. In [vD00] we prove the following result

for the restricted action language without concurrency: Let s be an equivalence

state, � a knowledge action that is a state transformer and that can be executed

in that state, and let � be the game action computed from � by the procedure

above. Then:

s[[�]] $ s
 [[�]]
 �= s
 �

We conjecture that this result can be generalized for the extended language

(access between actions is more complex for concurrent actions). The notion of

an action as a semantic object is similar to that in [BMS00, Bal99]. For the

relation to Baltag, see also [vD00].

5 Knowledge actions in Cluedo

In section 2 we have seen that in Cluedo there are only four sorts of action,

nocard, showcard, endmove and win. Compared to Hexa, instead of being asked

for `your card', which is basically the same as being asked for one of all (three)

cards, in Cluedo you are being asked for one out of three (out of 21). Compared

to Hexa, where `winning' was de�ned as knowing the deal of cards, in Cluedo

you only have to know the cards `on the table': the murder cards. Let Æ0d be

the atomic description of the cards on the table for deal d of cards. This is a

conjunction of 21 atoms or negations of atoms. For example, if `Scarlett has

done it with a knife in the kitchen' we get Æ0d = scarlett0 ^:plum0 ^:white0 ^
::::^ knife0^ :::kitchen0:::. Let KaÆ

0 = KaÆ
0
d _KaÆ

0
d0 _ ::: express that a knows

the murder cards. We suggest the following parameterized descriptions of the

four action sorts, their interpretation will by now be obvious:

nocard
a;fc;c0;c00g

b L123456?(:cb ^ :c
0
b ^ :c

00
b)

showcard
a;fc;c0;c00g

b;c L123456(!Lab?cb [Lab?c
0
b [Lab?c

00
b)

endmove
a L123456?:KaÆ

0

win
a L123456?KaÆ

0

If we do not use the parameters (as we have done throughout until now) assume

that they can take any value. Actual `moves' in Cluedo are composed of various

of these action constituents. A play of the game is a sequence of such moves,

where the last move ends with a win action. Therefore, we can describe an entire

play of the Cluedo game as a single KA123456 action; in the following, ��i means

a sequence of zero to i actions �, and �� a arbitrary �nite sequence of actions

17

� (where (�0 ; �) = (� ; �0) = �):

(nocard�5 ; showcard
�1 ; endmove)� ; (nocard�5 ; showcard

�1 ; win)

This way we can describe an entire strategy pro�le (we have combined all actions

of all players, not the actions of one player). A single player's strategy is then

the subset of a given play that consists of the actions of that player (i.e., all

actions with the same high index, as in endmove
a). In both cases we disregard

pruned subtrees of the game tree, and the choices that players are formally

required to make there in a fully speci�ed strategy.

6 Knowledge games

In Cluedo a �nite number of cards is dealt over a �nite number of players, and

actions consist of either questions and answers about cards, or are announce-

ments about (not) winning. We call Cluedo and similar games knowledge games.

A knowledge game is informally de�ned by a deal of cards over players, a set

of possible game actions of sort nocard, showcard, endmove, and nowin, and a

protocol to determine the order of actions. Cards do not change hands dur-

ing a play of the game, although they may be shown. Players know their own

cards and know how many cards all players have. Although cards do not change

hands, knowledge about cards does change during the game, and only knowledge:

therefore the term knowledge games.

Knowledge games are competitive games of imperfect information, where

the only �nal outcomes are that players can win or lose. Optimal strategies for

the players will obviously be mixed strategies. See e.g. [OR94, Bin92]. Is the

�rst player most likely to win a knowledge game? What is the value of Cluedo?

Much work has to be covered before answers can be given. We present some of

the obstacles on the way there.

We have already given a precise formal description of actions. One can

also give a precise formal description of initial game states. For any given

deal d 2 AC of cards over players, the initial knowledge game state is

the equivalence state (hW; f�aga2A; V i; d) with W the set of all deals where

each player has the same number of cards as in deal d, and where deals d; d0

are the same for player a (d �a d0) if he holds the same cards in both, and

V is the atomic description of deals (where the set of atoms P can be seen

as the product C � A: an atom ca describes that agent a holds card c). See

[vDvdHK01, vdHV01]. Now from a given game state and an action that is

executable in that state we can compute the next game state. Therefore, we can

compute any game state from an initial knowledge game state and an action

sequence. We must make a rather nice observation here: at any state of the

game, the model underlying that state is commonly known by all players. The

only thing they don't know, is `where they live' in that model, i.e. what the

point of the model is, the actual world.

18

The complexity of a game state is determined by the number of its (non-

bisimilar) worlds. In general the execution of an action in a state may lead to

a more complex state. In particular this is the case for showcard actions: if

in a given world a player can choose which card to show, the next state will

have as many successors of that world as there are choices. It is interesting to

observe that even if the �rst action in a Cluedo game is a showcard action, the

next state is not more but less complex, namely only 9
21
th the size of the initial

state [vD00]. The other sorts of actions are public announcements, so obviously

reduce the complexity. Had the rules been slightly di�erent, a showcard action

would have led to an increase. Does this explain why Cluedo is `playable'?

Yet another matter of interest here: endmove actions, where you publicly

announce that you cannot win yet, may result in information change. In Ex-

ample 6 on page 7 we have even seen a case where a player could win because

another player couldn't win. In that particular example, yet another player (3)

could have won anyway, before the endmove action. Is there a knowledge game

state where none of the players can win but where, as a result of one of them

announcing that, a player can win? In technical words: Let KÆ :=
W
KiÆ (one

of the players knows the deal of cards { or some derived property, such as the

cards on the table). Is there a game state s such that :KÆ is an unsuccessful

update: s j= :KÆ and s[[L123:KÆ]] j= KÆ? An answer to that question would

also be of strategic relevance.

Preference relation Because both actions and game states have so much

internal structure, this is di�erent from the usual picture [OR94] where these

are abstract objects, and where payo�s and/or preferences are stipulated. In

knowledge games, one has to compute the preference relation. You may prefer

one suspicion over another, if its expected answers may `on the long run' lead

to a greater reduction for you in possible card deals, which is more or less the

same as saying that you prefer the largest re�nement of the current partition

on the domain, as induced by your equivalence relation �a. However, it is not

so clear by what measure we should compare partitions. Smallest number of

card deals? Smallest number of nonsimilar worlds? Games like Mastermind face

similar questions that are not entirely answered, notwithstanding great e�orts

to solve them [Neu82]. It is not yet clear whether, e.g., `asking for three cards

that you do not have' is to be preferred over `asking for three cards of which

you hold one yourself'.

Optimal strategy Now you're really playing Cluedo. It's your move, you

know the murderer and the weapon but you still hesitate between the kitchen

and the conservatory. Naturally, all players are perfectly rational. You know

that unless you guess the murder cards now, some other player may do so in

the next round, and may win. Should you guess or not? (Note that unsuc-

cessful guesses are endmove sorts of action. So this does not add an epistemic

complexity.) Optimal strategies will be a function of the preference relation for

the players. The preference relation was induced by the partition re�nements

as a consequence of actions. These partition re�nements can be computed from

19

those actions and the current game state. It is therefore clear that in this ar-

ticle we have been laying some foundation stones for further game theoretical

research on knowledge games.

7 Historical note

Cluedo was invented in 1943 by Anthony E. Pratt, a solicitor's clerk, and (his

wife) Elva Pratt. Anthony Pratt said to have invented the game when he was

temporarily laid o� because of World War II and was instead doing a, mostly

boring, �re brigade duty. Elva Pratt devised the board. The Pratts' original

version was called `Murder'. It had ten weapons instead of six, and some sus-

pects had other names. In 1949 Cluedo was launched by Waddingtons Games

in the UK. In the USA the game is called Clue. Apart from the original Cluedo,

there are various other versions available. There is now even a Harry Potter

`Mystery at Hogwarts Game', that is obviously Cluedo-inspired.

Anthony Pratt died in 1994, in obscurity. His death only became generally

known in 1996, after a public appeal by Waddingtons. His tombstone reads

`inventor of Cluedo'.

References

[Bal99] A. Baltag. A logic of epistemic actions. Manuscript, 1999.

[BdRV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge

University Press, Cambridge, 2001. Cambridge Tracts in Theoretical

Computer Science 53.

[Bin92] K. Binmore. Fun and Games. D.C. Heath, Lexington MA, 1992.

[BMS00] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announce-

ments, common knowledge and private suspicions. Revised manuscript,

originally presented at TARK 98, submitted for publication, 2000.

[FHMV95] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about

Knowledge. MIT Press, Cambridge MA, 1995.

[Ger99] J.D. Gerbrandy. Bisimulations on Planet Kripke. PhD thesis, University

of Amsterdam, 1999. ILLC Dissertation Series DS-1999-01.

[GG97] J.D. Gerbrandy and W. Groeneveld. Reasoning about information

change. Journal of Logic, Language, and Information, 6:147{169, 1997.

[Gol92] R. Goldblatt. Logics of Time and Computation. CSLI Publications,

Stanford, 2 edition, 1992. CSLI Lecture Notes No. 7.

[HKT00] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic Foundations of Com-

puting Series. MIT Press, Cambridge MA, 2000.

[MvdH95] J.-J.Ch. Meyer and W. van der Hoek. Epistemic Logic for AI and Com-

puter Science. Cambridge Tracts in Theoretical Computer Science 41.

Cambridge University Press, Cambridge, 1995.

[Neu82] E. Neuwirth. Some strategies for mastermind. Zeitschrift f�ur Operations

Research, 26:257{278, 1982.

20

[OR94] M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT

Press, Cambridge MA, 1994.

[Par85] R. Parikh. The logic of games and its applications. In M. Karpinski

and J. van Leeuwen, editors, Topics in the theory of computation Annals

of Discrete Mathematics 24, pages 111{139, Amsterdam, 1985. Elsevier

Science.

[Par87] R. Parikh. Knowledge and the problem of logical omniscience. In R. Zas

and M. Zemankova, editors, Proceedings of the 2nd international sympo-

sium on methodologies for intelligent systems, pages 432{439, Amster-

dam, 1987. North Holland.

[Pau00] M. Pauly. Game logic for game theorists. Technical report, CWI, Ams-

terdam, 2000. CWI Technical Report INS-R0017.

[Pel87] D. Peleg. Concurrent dynamic logic. Journal of the ACM, 34(2):450{479,

1987.

[Pla89] J.A. Plaza. Logics of public communications. In M.L. Emrich, M.S.

Pfeifer, M. Hadzikadic, and Z.W. Ras, editors, Proceedings of the 4th

International Symposium on Methodologies for Intelligent Systems, pages

201{216, 1989.

[vD99] H.P. van Ditmarsch. The logic of knowledge games: showing a card. In

Eric Postma and Marc Gyssens, editors, Proceedings of the BNAIC 99,

pages 35{42, Maastricht University, 1999.

[vD00] H.P. van Ditmarsch. Knowledge games. PhD thesis, University of

Groningen, 2000. ILLC Dissertation Series DS-2000-06.

[vD01a] H.P. van Ditmarsch. Descriptions of game actions. Journal of Logic,

Language and Information, 2001. To appear.

[vD01b] H.P. van Ditmarsch. Knowledge games. Bulletin of Economic Research,

53(4):249{273, 2001.

[vD01c] H.P. van Ditmarsch. The semantics of concurrent knowledge actions. In

M. Pauly and G. Sandu, editors, ESSLLI 2001 workshop on Logic and

Games, 2001.

[vdHV01] W. van der Hoek and L.C. Verbrugge. Epistemic logic: a survey. sub-

mitted to Game theory and applications VIII, 2001.

[vDvdHK01] H.P. van Ditmarsch, W. van der Hoek, and B.P. Kooi. Descriptions

of game states. In I. van Loon, G. Mints, and R. Muskens, editors,

Proceedings of LLC9, Stanford, 2001. CSLI Publications. To appear.

21

