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Descriptions of game actions

Hans P. van Ditmarsch (hans@cs.otago.ac.nz)
Computer Science, University of Otago, PO Box 56, Dunedin, New Zealand

Abstract. To describe simultaneous knowledge updates for di�erent subgroups we

propose an epistemic language with dynamic operators for actions. The language is

interpreted on equivalence states (S5 states). The actions are interpreted as state

transformers. Two crucial action constructors are learning and local choice. Learning

is the dynamic equivalent of common knowledge. Local choice aids in constraining

the interpretation of an action to a functional interpretation (state transformer).

Bisimilarity is preserved under execution of actions. The language is applied to

describe various actions in card games.

Keywords: multiagent systems, modal logic, dynamic epistemics, action language

1. Introduction

The area of dynamic epistemics, how to update models for reason-

ing about knowledge, has come to the full attention of the research

community by the treatment of public announcements in the famous

`Muddy Children Problem' (Fagin et al., 1995; Parikh, 1987). In the

`runs and systems' approach of (Fagin et al., 1995), an update is a

functional relation between two global states of an interpreted system,

and a run is a sequence of such transformations. Such a global state

corresponds in a natural way to a Kripke state where all relations

are equivalence relations: an equivalence (or S5) state. They do not

introduce an object (logical) language for both updates and epistemic

statements. An early example of such a dynamic epistemic language

is the elegant logic of public announcements as presented in (Plaza,

1989). Plaza models public announcements as binary operators that

have a dynamic interpretation. An integrated approach including an-

nouncements to subgroups has been put forward in (Gerbrandy and

Groeneveld, 1997). Gerbrandy's thesis, (Gerbrandy, 1999), presents this

dynamic epistemics in more generality. Gerbrandy's approach is based

on non-well-founded set theory, a non-standard semantics. Based on a

standard semantics, (Baltag et al., 2000) also treats epistemic actions in

general. This is still being extended to an entire framework for dynamic

epistemic logic in (Baltag, 1999).

Our research (van Ditmarsch, 1999; van Ditmarsch, 2000; van Dit-

marsch, 2001a) should probably be seen as a special case of the more

general framework as presented by Gerbrandy and under development

c
 2001 Kluwer Academic Publishers. Printed in the Netherlands.
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2 Hans van Ditmarsch

by Baltag. Part of its interest lies in the detailed description of new sorts

of epistemic action, namely actions in games. We restrict ourselves to

equivalence states. We base ourselves on standard Kripke semantics.

Our contribution consists of a concise language to describe equiva-

lence state transformations, and a new relational semantics to interpret

these actions, namely one based on standard Kripke semantics. We de-

scribe and interpret combined updates for di�erent subgroups by local

interpretation: �rst complete the interpretation `locally', for a given

subgroup only, and then use that to determine the global interpretation,

for the entire group of agents. Apart from the usual programming con-

structs: test, sequential execution, and nondeterministic choice (Harel,

1984; Harel et al., 2000; Goldblatt, 1992), we introduce as well: learning

and local choice. Learning is the dynamic equivalent of common knowl-

edge (of re
exive common knowledge (Meyer and van der Hoek, 1995))

and is related to truthful (factive) updating (Gerbrandy, 1999). Local

choice aids in making the interpretation of an action functional. We

start with some examples to illustrate the need for these operations.

Hexa Three players each hold one card. Suppose player 1 holds a red

card, 2 holds a white card and 3 holds a blue card. This is modelled by

a (hexagonal) equivalence state (Hexa; rwb). See Figure 1. There are

six deals of three cards over three players. The model Hexa consists

of these deals. In deal ijk player 1 holds card i, 2 holds j and 3 holds

k. Two deals cannot be distinguished from each other by a player if he

holds the same card in both. The following actions can be executed in

this state (Hexa; rwb):

EXAMPLE 1 (table). Player 1 puts the red card (face up) on the table.

EXAMPLE 2 (show). Player 1 shows (only) player 2 the red card.

Player 3 cannot see the face of the shown card, but notices that a card

is being shown.

EXAMPLE 3 (whisper). Player 2 asks player 1 to tell him a card that

he (1) doesn't have. Player 1 whispers in 2's ear \I don't have blue".

Player 3 notices that the question is answered, but cannot hear the

answer.

We assume that only the truth is told. In show and whisper, we assume

that it is publicly known what 3 can and cannot see or hear.

Figure 1 also pictures the states that result from updating the cur-

rent state (Hexa; rwb) with the information contained in the three

actions. In table it suÆces to eliminate some worlds: after 1's action,

the four deals of cards where 1 does not hold red are eliminated. It
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Figure 1. The results of executing table, show, and whisper in the state (Hexa; rwb)

where 1 holds red, 2 holds white and 3 holds blue. The points of the states are

underlined. Worlds are named by the deals that (atomically) characterize them.

Assume re
exivity and transitivity of access.

is publicly known that they are no longer accessible. This update is a

public announcement. In show we cannot eliminate any world. After

this action, e.g., 1 can imagine that 3 can imagine that 1 has shown

red, but also that 1 has shown white, or blue. However, some links

between worlds have now been severed: whatever the actual deal of

cards, 2 cannot imagine any alternatives after execution of show. In

whisper player 1 can choose whether to say \not white" or \not blue",

and the resulting game state has twice as many worlds as the current

state, because for each deal of cards this choice can be imagined to

have been made.

We can paraphrase some more of the structure of the actions. In

table, all three players learn that player 1 holds the red card, where

`learning' should be regarded as the dynamic equivalent of `common

knowledge'. It is hard to give a more precise informal meaning to `learn-

ing'. In particular, `learning' is not the same as `becoming common
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4 Hans van Ditmarsch

knowledge': indeed in table it becomes common knowledge that 1 holds

red; however, imagine that instead of putting his card on the table, 1

had said to 2: `You don't know that I have the red card' (interpreted

as: `I have the red card and you don't know that'). At the moment

of utterance, this statement can be truthfully made in the worlds rwb

and rbw of Hexa, so it results in the same state as execution of table.

However, in that state is it not common knowledge that 2 doesn't know

that 1 has red. To the contrary: after this announcement 2 knows that

1 has red.

We continue our conceptual analysis. In show, 1 and 2 learn that

1 holds red, whereas the group consisting of 1, 2 and 3 learns that 1

and 2 learn which card 1 holds, or, in other words: that either 1 and 2

learn that 1 holds red, or that 1 and 2 learn that 1 holds white, or that

1 and 2 learn that 1 holds blue. The choice made by subgroup f1; 2g
from the three alternatives is local, i.e. known to them only, because

it is hidden from player 3. This can be expressed by the `local choice'

operator. The need for such an operator becomes more apparent in the

case of the action whisper: the action of 1 whispering in 2's ear a card

that he doesn't have, has two di�erent executions in any given state.

`Local choice' �xes one of those executions, in this case `1 and 2 learn

that 1 doesn't have blue'.

In section 2 we de�ne the logical language LA and the knowledge

actions KAA. We give descriptions of the card game actions in the

introduction. In section 3 we de�ne the interpretation of LA. We also

give some other game action descriptions. In section 4 we present some

theoretical results. In section 5 we discuss extensions of LA and compare

our research to that of others.

2. Knowledge actions

To a standard multiagent epistemic language with common knowledge

for a set A of agents and a set P of atoms (Meyer and van der Hoek,

1995; Fagin et al., 1995), we add dynamic modal operators for programs

that are called knowledge actions and that describe actions. The lan-

guage LA and the knowledge actions KAA are de�ned by simultaneous

induction.

DEFINITION 1 (Dynamic epistemic logic { LA). LA(P ) is the small-

est set such that, if p 2 P;';  2 LA(P ); a 2 A;B � A;� 2 KAA(P ),

then

p;:'; (' ^  );Ka';CB'; [�]' 2 LA(P )

HVD-JoLLI.tex; 17/10/2001; 19:08; p.4



Descriptions of game actions 5

Formula Ka' stands for a knows ', CB' stands for group B com-

monly know ', and [�]' stands for ' holds after every execution

of action �. Other propositional connectives and modal operators are

de�ned by abbreviations (let p 2 P ): ' _  := :(:' ^ : ), ' !
 := :' _  , ' $  := (' !  ) ^ ( ! '), EB' :=

V
a2B Ka',

> := p _ :p, ? := p ^ :p. Outermost parentheses of formulae are

deleted whenever convenient. As we may generally assume an arbitrary

P , write LA instead of LA(P ). The set of agents A is called the public.

DEFINITION 2 (Knowledge actions { KAA). Given a set of agents A

and a set of atoms P , the set of knowledge actions KAA(P ) is the

smallest set such that, if ' 2 LA(P ); �; �
0 2 KAA(P ); B � A, then:

?';LB�; (� ; �0); (� [ �0); (� ! �0) 2 KAA(P )

Outermost parentheses of actions are deleted whenever convenient. We

generally write KAA instead of KAA(P ). We name knowledge actions

after their main constructor. Action ?' is a test. The program con-

structor LB is called the learning operator. LB� stands for group

B learn �. Instead of Lf1;2;:::;ig write L12:::i. Operator `;' stands for

sequential execution; � ; �0 means �rst execute � and then execute

�0. Operator `[' stands for nondeterministic choice; � [ �0 means

execute either � or �0. Operator `!' is called local choice; � ! �0 means

from � and �0, choose � (locally). Instead of � ! �0, write either !�[�0 or
�0[ !�. This will make the relation between local and nondeterministic

choice clearer, as we will also see in the examples. In combination with

learning, local choice helps to constrain the interpretation of a (possibly

nondeterministic) action to a functional interpretation.

The subclass of KAA generated by all constructors except `!' is called

the knowledge action types or action types (for A and P ). The

subclass of KAA generated by all constructors except [ is called the

concrete knowledge actions or concrete actions (for A and P ).

We now give some examples of actions, related to the model Hexa

from the introductory section. Assume (nine) atoms ca describing that

player a holds card c:

EXAMPLE 4 (Knowledge action for table). Player 1 puts the red card

on the table: L123?r1.

EXAMPLE 5 (Knowledge action type for show). Player 1 shows (only)

player 2 his card: L123(L12?r1 [ L12?w1 [ L12?b1).

Assume associativity of [ (see proposition 2, in section 4). The action

can be paraphrased as `players 1, 2 and 3 learn (that 1 and 2 learn that
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1 holds red, or that 1 and 2 learn that 1 holds white, or that 1 and 2

learn that 1 holds blue)'. This almost describes the action show from

example 2, where the red card was shown. Almost, but not quite: show

can not be executed in a state (Hexa; brw) where 1 holds blue, whereas

the action of showing a card can be executed in that state. The last is

a knowledge action type, and the �rst a concrete knowledge action (of

that type).

EXAMPLE 6 (Knowledge action for show). Player 1 shows (only) player

2 his red card: L123(!L12?r1 [ L12?w1 [ L12?b1).

The type of show is L123(L12?r1 [L12?w1 [L12?b1). We must be more

precise now and choose it, e.g., to be L123((L12?r1 [L12?w1)[L12?b1).

We now express what is known to agents 1 and 2, but not to agent

3, from the two choices to be made: between (L12?r1 [ L12?w1) and

L12?b1), choose the �rst. So we get L123((L12?r1 [ L12?w1) ! L12?b1).

Between (L12?r1 and L12?w1), again choose the �rst: L123((L12?r1 !

L12?w1) ! L12?b1). In the other notation that becomes L123(!(!L12?r1[
L12?w1)[L12?b1) and assuming associativity again we get L123(!L12?r1[
L12?w1 [ L12?b1). There are two other concrete actions of the same

type. These are L123(L12?r1[ !L12?w1 [ L12?b1) (1 shows white to 2)

and L123(L12?r1 [ L12?w1[ !L12?b1) (1 shows blue to 2).

EXAMPLE 7 (Knowledge action type for whisper). Player 1 whispers

in 2's ear a card that he (1) doesn't have: L123(L12?:r1 [ L12?:w1 [
L12?:b1).

EXAMPLE 8 (Knowledge action for whisper). Player 1 whispers in 2's

ear "I don't have blue": L123(L12?:r1 [ L12?:w1[ !L12?:b1).

In the case of whispering a card that you do not have, the three options

are not having a card, instead of having a card. The action whisper is

one of three concrete actions of that type.

Even though 3 knows that 1 can only have whispered `not white' or

`not blue', this is not publicly known, e.g. 2 doesn't know that 3 knows

that. The knowledge action describes the publicly known alternatives,

therefore all three.

These example actions each `involve' precisely all agents for which

access is de�ned in Hexa. This is not accidental, because it apparently

corresponds to our intuition of what a fully speci�ed action is: for each

agent occurring in a state of knowledge, we have to specify how his or

her knowledge is updated.
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We relate an action type to all concrete actions of that type by a

simple operation C : KAA ! P(KAA) (C for Concrete). It is inductively

de�ned with crucial clause C(�[�0) = f� ! �0 j � 2 C(�); �0 2 C(�0)g[
f�0 ! � j � 2 C(�); �0 2 C(�0)g (tests are concrete actions and the

remaining clauses merely carry on results). We relate a concrete action

to its type by the simple operation t : KAA ! KAA (t for type). The

crucial clause in the inductive de�nition of t is t(� ! �0) = t(�) [ t(�0)
(tests are types and the remaining clauses merely carry on results). In

the next section we will see that the interpretation of an action LB� is

de�ned in terms of the interpretation of t(�). In section 4 we will show

that the interpretation of an action � is equivalent to nondeterministic

choice between all its concretizations: � =
S
�2C(�) �.

3. Local interpretation

Given a set of agents A and a set of atoms P , a (Kripke) model

M = hW; fRaga2A; V i consists of a domainW ofworlds, for each agent

a 2 A a binary accessibility relation Ra on W , and a valuation

V : P ! P(W ). Given a model, the operator gr returns the set of

agents: gr(hW; fRaga2A; V i) = A; this is called the group of the model.

The group of a set of models is the union of the groups of these models.

In an equivalence model (also known as an S5 / S5n / S5A model)

all accessibility relations are equivalence relations. We then write �a

for the equivalence relation for agent a. If w �a w
0 we say that w is the

same as w0 for a, or that w is equivalent to w0 for a. Write �B for

(
S
a2B �a)

�. For a given modelM , D(M) returns its domain. Instead of

w 2 D(M) we also write w 2M . Given a modelM and a world w 2M ,

(M;w) is called a state, w the point of that state, and M the model

underlying that state. Also, ifM is clear from the context, write w for

(M;w). Similarly, we visually point to a world in a �gure by underlining

it. If s = (M;w), instead of w 2 D(M) we also write w 2 s. All notions
for models are assumed to be similarly de�ned for states. We introduce

the abbreviations SA(P ) for the class of equivalence states for agents A
and atoms P and S�A(P ) :=

S
B�A SB(P ). As before, drop the `P '. We

write either s is an equivalence state or, if the context requires more

precision, s 2 SA (s 2 S�A).
The semantics of LA (on equivalence models) is de�ned as usual

(Meyer and van der Hoek, 1995), plus an additional clause for the

meaning of dynamic operators. The interpretation of a dynamic op-

erator is a relation between equivalence states (see also de�nition 5).

These may be (and generally are) states for di�erent groups of agents.
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DEFINITION 3 (Semantics of LA). Let (M;w) = s 2 SA and ' 2 LA,

where M = hW; f�aga2A; V i. We de�ne s j= ' by induction on the

structure of '.

M;w j= p :, w 2 V (p)
M;w j= :' :, M;w 6j= '

M;w j= ' ^  :, M;w j= ' and M;w j=  

M;w j= Ka' :, 8w0 : w0 �a w )M;w0 j= '

M;w j= CB' :, 8w0 : w0 �B w )M;w0 j= '

M;w j= [�]' :, 8s 2 S�A : (M;w)[[�]]s ) s j= '

The notion h�i is dual to [�] and is de�ned as s j= h�i', 9s0 2 S�A :

s[[�]]s0 and s0 j= '.

We lift equivalence of worlds in a state to equivalence of states. This

is necessary because states will occur as worlds in de�nition 5 of local

interpretation, so that access between such worlds will be based upon

properties of these states.

DEFINITION 4 (Equivalence of states). Let (M;w), (M;w0), (M 00; w00)

2 SA, let a 2 A. Then:

(M;w) �a (M;w0) :, w �a w
0

(M;w) �a (M
00; w00) :, 9v 2M : (M;v)$ (M 00; w00) and

(M;w) �a (M;v)

In the second clause, $ stands for `is bisimilar to', we refer to (Black-

burn et al., 2001) for a de�nition. The overloading of the notation �a

is justi�able: if s and s0 are states for di�erent (nonsimilar) underlying

models, they can by de�nition never be the same for any agent. There-

fore, when s �a s
0 we can see �a as the equivalence for a in the model

(modulo bisimilarity) underlying both s and s0.

We now continue with de�ning the local interpretation of knowledge

actions.

DEFINITION 5 (Local interpretation of knowledge actions). Let � 2
KAA and (M;w) 2 SA, where M = hW; f�aga2A; V i. Let (M

0; w0) 2
S�A. The local interpretation [[�]] of � in (M;w) is de�ned by

inductive cases:

(M;w)[[?']](M 0; w0) , M 0 = hW'; ;; V �W'i and w
0 = w

(M;w)[[LB�
0]](M 0; w0) , M 0 = hW 0; f�0

aga2B ; V
0i;

(M;w)[[�0]]w0; and gr(W 0) � B

(M;w)[[�0 ; �00]](M 0; w0) , (M;w)([[�0]] Æ [[�00]])(M 0; w0)

(M;w)[[�0 [ �00]](M 0; w0) , (M;w)([[�0]] [ [[�00]])(M 0; w0)

(M;w)[[�0 ! �00]](M 0; w0) , (M;w)[[�0]](M 0; w0)
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In the clause for ?', W' is the restriction of W to the worlds where

' holds: W' = fv 2 W j M;v j= 'g. In the clause for interpret-

ing LB�
0
, the model hW 0; f�0

aga2B ; V
0i is de�ned as follows. Domain:

W 0 := fs j 9v 2 M : v �B w and (M;v)[[t(�0)]]sg; Valuation: Let

s = (hW s;�s; V si; ws) 2 W 0
, p 2 P , then: s 2 V 0(p) , ws 2 V s(p);

Access: Let s1; s2 2W
0; a 2 B, then:

s1 �
0
a s2 , s1 �a s2 or [ a 62 gr(s1) [ gr(s2) and 9v1; v2 2M :

(M;v1)[[t(�
0)]]s1; (M;v2)[[t(�

0)]]s2 and v1 �a v2 ]:

We start with general observations on the de�nition. We continue with

introducing a notational abbreviation and additional terminology. After

that we give examples of local interpretation.

In dynamic logic, a successful test does not change the current state. In

our framework, a test removes all worlds in the current state where the

test does not hold and removes all access between worlds. Therefore, a

test generally results in a di�erent state. What remains unchanged is

merely the point of the current state.

To interpret an action LB�
0 in a state s, we do not just have to

interpret �0 in s. We also have to interpret any action of the same type

as �0 in any other state s0 that is �B-accessible from s. The results are

the worlds in the state that results from interpreting LB�
0 in s. Such

worlds can be distinguished from each other by an agent a 2 B in two

cases: either a occurs in both states and he cannot distinguish between

them, or a doesn't occur in either state but he could not distinguish

their [[t(�0)]]-origins.

The constraint that gr(W 0) � B for interpreting LB�
0 guarantees

that agents in B learn only about groups of agents that already occur

in t(�0). Without this constraint some actions would be incorrectly

interpreted, e.g., if 1 and 2 learn about an action involving 1 and 3,

then in the resulting state 3 would not consider the actual state, where 2

also knows something, to be possible. The resulting state will therefore

not be an equivalence state. However, also without this constraint the

computations in de�nition 5 would result in an equivalence state, that

therefore would be incorrect. (Alternatively to this semantic restriction,

we could have made a syntactic restriction on the formation of LB�
0

when de�ning class KAA.)

The case �0 ; �00 uses ordinary composition Æ of binary relations,

the case �0 [ �00 union of binary relations.

The interpretation of �0 ! �00 is that of �0. However, the function

of �0 ! �00 is to constrain the interpretation of �0 [ �00 to that of �0.

This is because the use of �0 ! �00, even though its interpretation is

compositional, depends on the context of a learning operator LB that

HVD-JoLLI.tex; 17/10/2001; 19:08; p.9



10 Hans van Ditmarsch

binds it (even: of all learning operators that bind it). The choice made

for �0 in �0 ! �00 is local, i.e. for agents occurring in �0 or �00 only. For

agents in B not occurring in �0 or �00, �0 ! �00 is the same as �0 [ �00.

If the relation [[�]] is functional, write s[[�]] for the unique s0 such

that s[[�]]s0. Note that all actions ?' and LB� have a functional in-

terpretation (are state transformers). An action � is executable in an

equivalence state s, if the local interpretation of � in s is not empty.

Local interpretation is called local, because we only interpret the

agents that are actually learning something in the action. In contrast

to (Gerbrandy, 1999), we do not worry about what other agents have

learnt at that stage of the interpretation, i.e. we postpone computing

the global e�ects of learning. See section 5.

We illustrate de�nition 5 by computing in detail the interpretation of

the action show in the state (Hexa; rwb). After that, we remark shortly

on the interpretation of table and whisper in that same state.

EXAMPLE 9 (Local interpretation of show). In state (Hexa; rwb), play-

er 1 shows his red card (only) to player 2: L123(!L12?r1[ L12?w1[
L12?b1).

We apply clause LB of de�nition 5. To interpret show = L123(!L12?r1[
L12?w1 [ L12?b1) in rwb = (Hexa; rwb), we �rst interpret the type

L12?r1 [L12?w1 [L12?b1 of !L12?r1 [ L12?w1 [ L12?b1 in any state of

Hexa that is f1; 2; 3g-accessible from rwb, i.e. in all states of Hexa.

The resulting states will make up the domain of rwb[[show]]. We then

compute access on that domain, and, �nally, the required image is

rwb[[!L12?r1 [ L12?w1 [ L12?b1]]. We start with the �rst.

Action L12?r1 [ L12?w1 [ L12?b1 has a nonempty interpretation in

any state of Hexa. We give two examples. Apply clause [ of de�ni-

tion 5 (assuming associativity again): L12?r1 [ L12?w1 [ L12?b1 can

be interpreted in rwb because L12?r1 can be interpreted in that state.

Similaryly, L12?r1[L12?w1[L12?b1 can be interpreted in brw because

L12?b1 can be interpreted in that state. We compute the �rst.

Again, we apply clause LB of de�nition 5. To interpret L12?r1 in

rwb, we interpret ?r1 in any state of Hexa that is f1; 2g-accessible
from rwb, i.e. in all states of Hexa. The interpretation is not empty

when 1 holds red, i.e. in rwb and in rbw. We compute the �rst.

We now apply clause ?' of de�nition 5. The state rwb[[?r1]] is the

restriction of Hexa to worlds where r1 holds, i.e. rwb and rbw, with

empty access, and with point rwb. Figure 2 pictures the result.

Having unravelled the interpretation of show to that of its atomic

constituents, we can now start to compute access on the intermediate
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Figure 2. Stages in the computation of (Hexa; rwb)[[show]]. The linked frames visu-

ally emphasize identical objects: large frames enclose states that reappear as small

framed worlds in the next stage of the computation.

stages of our interpretation. The state rwb[[?r1]] is one of the worlds of

the domain of rwb[[L12?r1]] (as visualized in Figure 2 by linked frames)

and is also the point of that state. The other world is rbw[[?r1]]. As

agent 1 does not occur in either of these, and their origins under the

interpretation of ?r1 are the same to him (rwb �1 rbw in Hexa), there-

fore rwb[[?r1]] �
0
1 rbw[[?r1]] in rwb[[L12?r1]]. For the same reason, both

worlds are re
exive for both 1 and 2 in rwb[[L12?r1]]. Further note that

rwb[[?r1]] 6�
0
2 rbw[[?r1]], because in rwb 6�2 rbw in Hexa. The valuation

of atoms does not change. Therefore world rwb[[?r1]] is named rwb, and

world rbw[[?r1]] is named rbw in Figure 2 that pictures the result.

Similarly to the computation of rwb[[L12?r1]], compute the �ve other

states where 1 and 2 learn 1's card. These form the domain of rwb[[show]].

We compute access on the model in some typical cases. Again, re
exiv-

ity follows for all worlds: either because an agent occurs in that world

and the �rst case applies, or because an agent doesn't occur in that

world and the origins are identical, so obviously the same for that

agent. We have that rwb[[L12?r1]] �
0
1 rbw[[L12?r1]] (as worlds), because

rwb[[L12?r1]] �1 rbw[[L12?r1]] (as states), because, applying de�nition

4, the points rwb[[?r1]] and rbw[[?r1]] are the same for 1 in (the domain

of the model underlying the) state rwb[[L12?r1]]. We also have that
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12 Hans van Ditmarsch

rwb[[L12?r1]] �
0
3 wrb[[L12?w1]], because 3 62 f1; 2g and rwb �3 wrb in

Hexa. However, on the other hand rwb[[L12?r1]] 6�
0
2 bwr[[L12?b1]] (as

worlds), because 2 occurs in both and rwb[[L12?r1]] 6�2 bwr[[L12?b1]] (as

states), because rwb[[L12?r1]] 6$ bwr[[L12?b1]].

Again, the valuation of atoms in the worlds of rwb[[show]] does not

change. Therefore world rwb[[L12?r1]] is named rwb in Figure 2, etc.

The point of rwb[[show]] is rwb[[L12?r1]], because rwb[[!L12?r1[L12?w1[
L12?b1]] = rwb[[L12?r1]] (a more instructive point can be computed in

whisper, next). We have now completed the interpretation. Figure 2

pictures the result.

Note that in any world of the resulting model, player 2 knows the

deal of cards. Player 1 doesn't know the cards of 2 and 3, although he

knows that 2 knows it. Player 3 knows that 2 knows the deal of cards.

EXAMPLE 10 (Local interpretation of table). In state (Hexa; rwb),

player 1 puts the red card on the table: L123?r1.

We do not show details of the computation. Figure 1 pictures the result.

World rwb is actually state rwb[[?r1]] and world rbw is actually state

rwb[[?r1]].

EXAMPLE 11 (Local interpretation of whisper). In state (Hexa; rwb)

player 1 whispers in 2's ear `I do not have the blue card': L123(L12?:r1[
L12?:w1[ !L12?:b1).

We do not show details of the computation. Figure 1 pictures the

result. Note that access is assumed to be transitive. Again, we have

named the worlds by their atomic characterizations. We can distin-

guish worlds with the same name from each other, because they have

di�erent access to other worlds. Actually, e.g. the world rwb `in front'

is the state rwb[[L12?:w1]] and the world rwb `at the back' is the

state rwb[[L12?:b1]]. The last is also the point. This can be observed

by computing constraint (M;w)[[�0]]w0 in clause LB in de�nition 5:

rwb[[L12?:r1 [ L12?:w1[ !L12?:b1]]w
0 , rwb[[L12?:b1 ! (L12?:r1 !

L12?:w1)]]w
0 , rwb[[L12?:b1]]w

0 so w0 = rwb[[L12?:b1]].
In the `back' rwb, that corresponds to the answer `not blue', 2 knows

that 1 holds red. In the `front' rwb, that corresponds to the answer `not

white', 2 still considers bwr to be an alternative, so 2 does not know

the card of 1. In both the `back' and the `front' rwb, neither 1 nor 3

know whether 2 knows 1's card!

We conclude with some other examples of actions in games.

EXAMPLE 12 (Win and pass). Actions such as showing and telling

other agents about your card(s), occur in card games where players
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also perform other actions. We call these games knowledge games (van

Ditmarsch, 2001a). The goal of the game is to be the �rst to know (or

guess rightly) the deal of cards, or some property derived from that.

In Hexa, the condition of player 2 knowing the deal of cards can be

described as win2 := K2Ærwb [ K2Ærbw [ :::. Here Æijk is the atomic

description of world (deal) ijk, e.g. Ærwb := r1 ^ :r2 ^ :r3 ^ :w1 ^
w2 ^ :w3 ^ :b1 ^ :b2 ^ b3. The action of player 2 winning is therefore

described as the public announcement of that knowledge: L123?win2.

If the players are perfectly rational, ending one's move and passing

to the next player also amounts to an action, namely announcing that

you do not yet have enough knowledge to win. In the case of player 2:

L123?:win2.

EXAMPLE 13 (Cluedo). The `murder detection game' Cluedo is a

concrete example of a knowledge game. The game consists of 21 cards

and is played by six players. Each player has three cards and there are

three cards on the table. The �rst player to guess those cards wins the

game. The following actions are possible in Cluedo (and only those

actions): showing (only to the requesting player) one of three requested

cards (of di�erent types, namely a murder suspect card, a weapon card,

and a room card), con�rming that you do not hold any of three requested

cards (by public announcement), and `ending your move', i.e. announc-

ing that you cannot win. As each player has three cards, and there is no

restriction on what cards are asked, a show action may involve actual

choice, as in whisper. That `ending your move' informs other perfectly

rational players had previously not been noted.

A play of the game Cluedo can therefore be described by a sequence

of these di�erent actions, so in a way by a single KAA action. See (van

Ditmarsch, 2000) for details.

Other standard applications of multiagent dynamics, such as the muddy

children problem, also have simple descriptions in LA.

4. Theory

In this section we prove some properties of knowledge actions and their

interpretation.

FACT 1 (Equivalence preservation). The class of equivalence states is

closed under execution of knowledge actions.

This trivially follows from de�nition 5.
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14 Hans van Ditmarsch

PROPOSITION 2 (Action algebra). Let �; �0; �� 2 KAA. Then:

(a) (� [ �0) [ �� = � [ (�0 [ ��)
(b) (� ; �0) ; �� = � ; (�0 ; ��)

(c) (� [ �0) ; �� = (� ; ��) [ (�0 ; ��)

(d) (� ; �0) [ �� = (� [ ��) ; (�0 [ ��)
Proof. By using simple relational algebra. We show (c), the rest

is similar: [[(� [ �0) ; ��]] = [[� [ �0]] Æ [[��]] = ([[�]] [ [[�0]]) Æ [[��]] =
([[�]] Æ [[�0]])[ ([[�]] Æ [[��]]) = [[� ; �0]][ [[� ; ��]] = [[(� ; �0) [ (� ; ��)]].

�

We have not further investigated algebraic properties of action type

operators. The next proposition relates concrete actions and action

types to other actions.

PROPOSITION 3 (Concrete actions). Let s; s0 be equivalence models,

let � 2 KA. Then:

(a) [[�]] � [[t(�)]]

(b) concrete actions have a functional interpretation

(c) s[[�]]s0 ) 9� 2 C(�) : s[[�]]s0

(d) [[�]] = [[
S
�2C(�) �]]

Proof.

(a) Induction on �. The only nontrivial case is �0 ! �00. We have

that: [[�0 ! �00]] = [[�0]] � [[�0 [ �00]] = [[�0]][ [[�00]] �IH [[t(�0)]][ [[t(�00)]] =
[[t(�0) [ t(�00)]] = [[t(�0 ! �00)]].

(b) Induction on �. The only nontrivial case is nondeterministic

choice. Let � 2 C(�0 [ �00). Then either � = �0 ! �00 or � = �00 ! �0,

with �0 2 C(�0) and �00 2 C(�00). In the �rst case, by induction [[�0]] is

functional, and therefore also [[�0 ! �00]] = [[�0]]. In the second case, this

follows from the functionality of [[�00]].

(c) Induction on �. A typical case: If s[[�0 [ �00]]s0, then either s[[�0]]s0

or s[[�00]]s0. If s[[�0]]s0 then, by induction, there is a �0 2 C(�0) such that

s[[�0]]s0. Let �00 2 C(�00) be arbitrary. Then �0 ! �00 2 C(�0 [ �00) and
s[[�0]]s0 = s[[�0 ! �00]]s0.

(d) Induction on �. Some cases. Case �0 ; �00: use proposition 2:c

and 2:d. Case �0 [ �00: [[�0 [ �00]] =IH [[
S
�02C(�0) �

0 [
S
�002C(�00) �

00]] =

[[
S
�02C(�0);�002C(�00)(�

0 ! �00) [
S
�02C(�0);�002C(�00)(�

00 ! �0)]] = [[
S
�2C(�) �]].

Case LB�
0: use that s[[LB�

0]](M 0; w0) implies s[[�0]]w0. �

Proposition 3:a expresses that the interpretation of an action is

contained in the interpretation of its type. Proposition 3:b expresses

that concrete actions are state transformers. Proposition 3:c expresses

that every state that results from action execution can be seen as the
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result of a concrete action. Proposition 3:d expresses that every action is

equivalent to nondeterministic choice between all its concretizations (a

kind of normal form, therefore). In particular, all clauses of proposition

3 hold when the arbitrary action is an action type or a concrete action.

That suits the intuition even better: the interpretation of a concrete

action is included in that of its type (a), an action type is equivalent

to choice between all actions of that type (d), etc.

Preservation of bisimilarity We may expect that bisimilarity of

states is preserved under execution of actions. This is indeed the case

(theorem 5). However, to prove this we also need to show that bisimilar

states have the same theory (theorem 4). This is not trivial, because

modal formulas may contain dynamic modal operators for the e�ect of

actions. We prove the theorems by simultaneous induction, assuming

that ' is less complex than ?' and that both � and ' are less complex

than [�]'.

THEOREM 4 (Bisimilarity implies modal equivalence). Let ' 2 LA.

Let (M;w); (M 0; w0) be equivalence states. If (M;w)$ (M 0; w0), then

M;w j= ',M 0; w0 j= '.

Proof. By induction of the structure of '. The proof is standard

except for the clause ' = [�] that we therefore present in detail.

Assume M;w j= [�] . We have to prove M 0; w0 j= [�] . Let (M�; w�)

be arbitrary such that (M 0; w0)[[�]](M�; w�). By simultaneous induc-

tion hypothesis (theorem 5) it follows from (M 0; w0)[[�]](M�; w�) and

(M;w)$(M 0; w0) that there is a (M�; w�) such that (M;w)[[�]](M�; w�)

and (M�; w�)$(M�; w�). FromM;w j= [�] (given) and (M; w)[[�]](M�;

w�) follows M�; w� j=  . From (M�; w�)$ (M�; w�) and M�; w� j=  

follows, by induction, that M�; w� j=  . AsM�; w� was arbitrary, from

(M 0; w0)[[�]](M�; w�) and M�; w� j=  follows M 0; w0 j= [�] .

THEOREM 5 (Action execution preserves bisimilarity). Let � 2 KAA.

Let (M;w), (M 0; w0) be equivalence states. For every equivalence state

(M�; w�) there is an equivalence state (M�; w�) such that:

If (M;w)$(M 0; w0) and (M;w)[[�]](M� ; w�), then (M 0; w0)[[�]](M�; w�)

and (M�; w�)$ (M�; w�).

Proof. By induction on the structure of �. The proof consists of

constructing a proper bisimulation R� from a given bisimulation R,

for each inductive case.

Case ?': Suppose R : (M;w)$ (M 0; w0) and (M;w)[[?']](M�; w�).

Then (M�; w�) = (M;w)[[?']] and w = w�. By simultaneous induction

hypothesis (theorem 4) it follows from (M;w)$(M 0; w0) andM;w j= '
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16 Hans van Ditmarsch

that M 0; w0 j= '. Therefore (M 0; w0)[[?']] exists. For all worlds v� 2
M� and v� 2 (M 0; w0)[[?']], de�ne R?'(v�; v�) :, R(v�; v�). Then

R
?' : (M�; w�)$ (M 0; w0)[[?']], because (Points:) R?'(w;w0), (Back

and Forth:) both states have empty access, and (Valuation:)R?'(v�; v�)

implies R(v�; v�) implies, for all p 2 P : v� 2 V (p), v� 2 V (p).

Case LB�
0: Suppose R : (M;w)$ (M 0; w0) and (M;w)[[LB�

0]](M�;

w�). Note that (M 0; w0)[[LB�
0]] exists, as its domain is not empty: by in-

duction its point is a state bisimilar to w�. We claim that (M 0; w0)[[LB�
0]]

is the (M�; w�) that we are looking for, and we de�ne a RLB�
0

to

establish the the required bisimulation.

The relation RLB�
0

between (M�; w�) and (M 0; w0)[[LB�
0]] is de-

�ned as follows: Let w�
1 2 (M�; w�) and w�

1 2 (M 0; w0)[[LB�
0]]. Ac-

cording to the construction of LB�
0, there is a v1 2 M such that

(M;v1)[[t(�
0)]]w�

1 and v1 �B w, and there is a v01 2 M 0 such that

(M 0; v01)[[t(�
0)]]w�

1 and v01 �B w0. If R(v1; v
0
1), then by induction there

is a Rt(�0) such that Rt(�0) : w�
1 $ w�

1 relates the points of w�
1 and w�

1.

De�ne RLB�
0

(w�
1; w

�
1) :, R

t(�0) : w�
1 $ w�

1. It is important to observe

that the de�nition is well-de�ned: because w �B v1 inM , world v1 will

have an R-image in M 0, and vice versa.

We now proceed to prove that RLB�
0

: (M�; w�)$ (M 0; w0)[[LB�
0]].

(Points:) RLB�
0

(w�; w�), because Rt(�0)(w�; w�), because R(w;w0)

(given).

(Forth:) Let a 2 B, w�
2 2 M�, w�

1 �
0
a w

�
2, and R

LB�
0

(w�
1; w

�
1). As-

sume (M;v2)[[t(�
0)]]w�

2. We distinguish case a 2 gr(w�
1) (and, because

of w�
1 �

0
a w

�
2, therefore also a 2 gr(w

�
2)) from case a 62 gr(w�

1)[ gr(w
�
2).

In the �rst case we use that Rt(�0) is a bisimulation to establish the

required world w�
2, in the second case we use that R is a bisimulation

and that Rt(�0) preserves bisimilarity, to establish that.

If a 2 gr(w�
1), then from w�

1 �0
a w�

2 follows w�
1 �a w�

2 (i.e., as

states), so the points of these states are the same for a as well. From

R
LB�

0

(w�
1 ; w

�
1) follows Rt(�0) : w�

1 $ w�
1, therefore R

t(�0) relates the

points of w�
1 and w

�
1. From that and from the fact that the points of w�

1

and w�
2 are the same for a, and because Rt(�0) is a bisimulation, follows

that there is a w�
2 such that the point of w�

1 is the same for a as the

point of w�
2 and R

t(�0) : w�
2$w�

2. But we now also have RLB�
0

(w�
2; w

�
2)

and w�
1 �

0
a w

�
2 (as worlds)!

If a 62 gr(w�
1) [ gr(w

�
2), then v1 �a v2 in M , by the de�nition of

access in (M�; w�). From v1 �a v2 and R(v1; v
0
1), and because R is a

bisimulation, follows that there is a v02 2 M 0 such that v01 �a v02 in

M 0 and R(v2; v
0
2). By induction we may assume that Rt(�0) preserves

bisimilarity, therefore there is a w�
2 such that (M 0; v02)[[t(�

0)]]w�
2 and
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R
t(�0) : w�

2 $ w�
2. We now have that w�

1 �
0
a w

�
2 (from v01 �a v

0
2) and

R
LB�

0

(w�
2 ; w

�
2) (from R

t(�0) : w�
2 $ w�

2). Done.

(Back:) Similar to forth.

(Valuation:) Obvious.

Case �0 ; �00: SupposeR : (M;w)$(M 0; w0) and (M;w)[[�0 ; �00]](M�;

w�). As [[�0 ; �00]] = [[�0]] Æ [[�00]], there is an (M1; w1) such that (M;

w)[[�0]](M1; w1) and (M1; w1)[[�
00]](M�; w�). By induction we have an

(M 0
1; w

0
1) such that (M

0; w0)[[�0]](M 0
1; w

0
1) andR

�0

: (M1; w1)$(M 0
1; w

0
1).

Again by induction we have an (M�; w�) and an R�0;�00

such that

(M 0
1; w

0
1)[[�

00]](M�; w�) and R�0;�00

: (M�; w�)$ (M�; w�). R�0;�00

is the

required bisimulationR�0 ; �00

, as we also have (M 0; w0)[[�0 ; �00]](M�; w�).

Case �0[�00: SupposeR : (M;w)$(M 0; w0) and (M;w)[[�0[�00]](M�;

w�). Then either (M;w)[[�0]](M�; w�) or (M;w)[[�00]](M�; w�). If (M;

w)[[�0]](M�; w�), then by induction there is an (M�; w�) and a R�0

such that (M 0; w0)[[�0]](M�; w�) and R�0

: (M�; w�)$ (M�; w�). From

(M 0; w0)[[�0]](M�; w�) follows (M 0; w0)[[�0 [ �00]](M�; w�), so R�0

is the

required bisimulation. Similarly, if (M;w)[[�00]](M�; w�).

Case �0 ! �00. Similar to �0 [ �00. �

A direct consequence of theorem 5 is:

COROLLARY 6. Let s; s0 be equivalence states and � a concrete ac-

tion. Then s$ s0 ) s[[�]]$ s0[[�]].

5. Further observations

The interpretation of some LA formulas is unde�ned. An obvious ex-

ample is the following: The formula [?K1r1]K1r1 { `after a test on

1 knowing red, 1 knows red' { can not be interpreted on any state.

Suppose rwb j= [?K1r1]K1r1, then rwb[[?K1r1]] j= K1r1. However,

gr(rwb[[?K1r1]]) = ;: it is an equivalence state with empty access,

on which K1r1 can therefore not be interpreted. For similar reasons,

formulas as [L12?r1 ; L123?r1]r1 are uninterpretable. Expanding the

notion gr of `group' to include actions may provide a solution. We then

put a constraint ' 2 Lgr(�) on the formation of [�]' in de�nition 2,

so that formulas such as [?K1r1]K1r1 are no longer well-formed. With

this syntax restriction we can derive validities as [?'] $ (' !  ).

We have not yet completed the axiomatization of LA. It appears to

HVD-JoLLI.tex; 17/10/2001; 19:08; p.17



18 Hans van Ditmarsch

become the axiomatization of a `family' of logics LB for all B � A

(given a global set of atoms P ).

We have extended the language with the operation of concurrent

execution (van Ditmarsch, 2001b). This relates to (Peleg, 1987; Gold-

blatt, 1992). Using concurrency, we can describe that a player shows

two cards simultaneously to di�erent players, say, one with his left hand

and the other one with his right hand. The notion of local interpretation

is `lifted' from a relation between states to a relation between states

and sets of states.

The action language would be further enhanced if we could refer

not just to the current game state, but also the action history. We

could then describe, e.g., that a player asks another player to show him

`another' card.

We make some closing remarks on the relation of our work to that

of others.

A public update with formula ' in (Plaza, 1989) naturally corre-

sponds to learning: (' +  ) is equivalent to [LA?'] (where A is the

public).

Learning is rather similar to updating in (Gerbrandy, 1999). The

semantics of actions is also relational. However, in Gerbrandy out-

siders to a group learning (`updating') something are assumed to learn

nothing at all. We do not make that assumption. Because outsiders

learn nothing, they cannot imagine the actual state of the world: no

re
exivity. Indeed, his approach is more general than for equivalence

states only. In (Gerbrandy, 1999) the crucial operator is the (sub)group

update UB. Actions LA� (for the public A, i.e. fully speci�ed actions)

correspond to `truthful updates' (� ; UB�) �a la Gerbrandy.

Apart from interpreting an action as a relation between states, an

action can also be interpreted as a semantic object corresponding to a

Kripke frame, an `action frame'. Executing an action in a state then

amounts to computing a direct product of that state and that frame.

This is the approach in (Baltag, 1999; Baltag et al., 2000). See also

(van Ditmarsch, 2000; van Ditmarsch, 2001a). The di�erent notions

of interpretation correspond up to bisimilarity (van Ditmarsch, 2000).

It is also interesting to observe that a concrete action corresponds to

a pointed action frame (a state transformer), whereas an action type

corresponds to an `ordinary' action frame (i.e. with no point).
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6. Conclusion

We proposed a dynamic epistemic language LA, that includes a lan-

guage KAA of knowledge actions. Basic to our approach is the concept

of local interpretation of an action type in a model: the interpretation

for a subgroup of agents only. We performed detailed computations on

some example knowledge actions taken from card games, to illustrate

the language and its interpretation. We compared our research to that

of others.
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