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Abstract

We present a new class of space deformations suitable for
interactive virtual sculpture. The artist describes a basic
deformation as a path through which a tool is moved. Our
tools are simply shapes, subsets of 3D space. So we can use
shapes already created as customized tools to make more
complex shapes or to simplify the modeling process.

When a tool is moved it causes a deformation of the work-
ing shape along the path of the tool. This is in accordance
with a clay modeling metaphor and easy to understand and
predict. More complicated deformations are achieved by us-
ing several tools simultaneously in the same region.

It is desirable that deformations for modeling are
‘foldover-free’, that is parts of deformed space cannot overlap
so that the deformations are reversible. There are good in-
tuitive reasons to believe that our deformations are foldover-
free but we have not yet completed a proof.

We have an efficient formulation for a single tool follow-
ing a simple path (translation, scaling or rotation) and we
can demonstrate the effects of multiple tools used simulta-
neously. The prototype implementation described has been
used to create a variety of models quickly and conveniently.

CR Categories: I.3.5 [Computer Graphics]: Object
Modeling—Deformations, Geometric Modeling, Curves and
surfaces

Keywords: free-form deformation, shape modeling, non-
linear transformations

1 Introduction
The process a sculptor uses to create a shape can be regarded
as a definition of the shape. From this point of view, a
representation such as a NURB or implicit surface is merely
an intermediate device between the acts of modeling and
rendering. Foley and Van Dam remark, “The user interfaces
of successful systems are largely independent of the internal
representation chosen” [Foley et al. 1994]. This, surely, is
evidence that the representations are inherently unsuitable.

Our thesis is that the primary representation of a model
must allow straightforward and intuitive editing by an artist.
By intuitive, we mean that the editing operations must work
in accordance with a consistent metaphor that is clear to the
artist.

Existing mathematical representations are not directly
suitable for editing operations, while most existing edit-
ing operations are not intuitive according to a suitable
metaphor. For most virtual modeling tools, this observation
results from the fact that the mathematical representation is
strongly linked to the editing operations; for example edit-
ing the control points of a NURB patch manually. Space
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Figure 1: Squirrel character modeled out of an initial ball.
The artist modeled only one side, while the other is auto-
matically made at the same time thanks to the simultaneous
tool. There are no discontinuities caused by the symmetry.

deformations stand apart from this, and can be used with
any mathematical model, including implicit surfaces when
the deformation is reversible. However, space deformation
has had more success adjusting existing models than with
creating entirely new ones, mainly because the deformation
operations have not been developed to create a rich set of
features. With the exception of [Mason and Wyvill 2001],
deformation operations do not prevent surfaces from self-
intersecting. This is crucial, since space deformation cannot
un-intersect a self-intersecting surface.

We see all these things as obstacles to the creativity of
artists. This paper proposes a class of operations for sculp-
ture independent of the shape’s underlying mathematical
model. It can be applied in principle to any standard model.
All the examples in this paper, however, are deformations of
a single sphere. These deformation operations are specified
intuitively as transformations of tools where a tool is any
shape. They are continuous (at least C0 and in most cases
C2). They are local in operation, within some user-defined
distance of the tools and most importantly they are foldover-
free, preserving the shape’s coherency. The remainder of
this paper is organized as follows. In Section 2, we discuss
the limits of existing techniques. In Section 3 we introduce
our new deformations as a class of operations applicable to
space in any number of dimensions. In section 4 we develop
closed forms for the efficient application of a single tool in a
3-dimensional scene. In Section 5 we present the details re-
quired to implement the technique in an interactive modeler.
We show our results in Section 6.



2 Related work
Space deformation provides a formalism to specify any
editing operation, by successively deforming the space in
which an initial shape St0 is embedded:

Sn =

�
n−1

Ω
i=0

f ti �→ti+1(p)|p ∈ St0

�

where f ti �→ti+1 : �n → �
n is a deformation of space1.

The reason why space deformations are independent of the
mathematical model of a surface is that they apply to the
space in which the model is embedded and can deform
regions of space where there is no surface, if required. Note
that, as for non-virtual sculpture, the operations do not
commute under function composition, ◦.

This section reviews existing classes of deformations, orga-
nized in three groups according to what we call their generic-
ity: the deformations that are not suitable for sculpture and
can produce a limited set of shapes, the deformations that
can produce a large set of shapes given enough parameters
for a few functions f ti �→ti+1 , and the deformations that can
produce a large set of shapes given enough simple functions
f ti �→ti+1 .

2.1 Global deformations

[Barr 1984] defines space tapering, twisting and bending
transformations via a matrix that is a function of a space co-
ordinate. An interesting result is the proof that the surface
normal vector transformation is given by the transforma-
tion’s Jacobian co-matrix2. [Blanc 1994a] generalizes this
work to deformations that are functions of more than one
space coordinate. [Chang and Rockwood 1994] propose a
polynomial deformation that efficiently achieves “Barr”-like
deformations and more, using a Bézier curve with coordi-
nate sets defined at control points. [Mikita 1996] extends
this method to triangular Bézier surfaces. A restriction of
these methods is the initial rectilinear axis or planar surface.
[Crespin 1999] proposes to use a technique based on recursive
subdivision in order to use an initially deformed tool. His
deformations do not prevent the shape from self-intersecting.

All these deformations are global, and can be handled
easily by the user because they have few control parameters.
However because of their non-locality, they are not suitable
for surface sculpture.

2.2 Many parameters, few functions

[Sederberg and Parry 1986] introduced Free-Form Deforma-
tions (FFDs) which allow continuous space deformations
with multiple points transformed. The method involves
defining the lattice of a Bézier volume, and then moving
its control points. The embedded space is then smoothly
deformed by interpolating the control point coordinates. A
major restriction of FFD is the regularity of the grid. [Co-
quillart 1990] and [Blanc 1994b] extend this work for a non-
regular lattice. Still, a problem is that a correspondence
between the edited shape and the lattice has to be done
manually. [Hsu et al. 1992] propose a way of doing direct
manipulation of a single point or multiple points in space
with FFD. Still, the regularity and fixed size of the grid
along with computing costs restrict its utility.
[MacCracken and Joy 1996] use subdivision volumes, allow-
ing arbitrary lattices. Customizing the lattice onto the shape

1We denote
n−1
Ω

i=0
fti �→ti+1(p) = f tn−1 �→tn ◦ · · · ◦ f t0 �→t1(p)

2Matrix of the cofactors

is however tiresome.
[Borrel and Bechmann 1991] generalize this to arbitrarily
positioned control points, where no lattice is needed: the
shape is non-linearly projected into a space of higher dimen-
sion; the deformation is a linear projection back onto �

3

(or �4 for controlling animation). In Scodef (Simple Con-
strained Deformation) instead of just control points, [Borrel
and Rappoport 1994] use also control areas, and the con-
trol features can be assigned orientations to perform twists.
These methods define the deformation as a projection of a
built space of higher dimension. Issues arise for controlling
the deformation, because the pseudo-inverse computation in-
volved does not always behave intuitively.
[Moccozet and Magnenat-Thalmann 1997] propose another
approach to get rid of lattice regularity. They use a
method developed by [Farin 1990] to define a continuous
parametrization over the Sibson coordinates. Still, control
points have to be placed manually, and computing the Sib-
son coordinates is expensive and difficult.

These methods can achieve very complex deformations
but at a cost: either they are computationally intensive, or
the effort required from the user is high.

2.3 Many functions, few parameters

Another approach to space deformation is the definition of
simple deforming tools. In this framework a shape is mod-
eled by combining many simple deformations.
The first introduced surface editing tool that looks like space
deformation is warping, by [Parent 1977]. Vertices within a
distance (discrete number of edges) to a selected vertex are
warped, that is, a weighted transformation of the selected
vertex is applied to them.
[Decaudin 1996] proposes a tool that allows modeling a shape
by iteratively adding or removing the volume of simple 3D
shapes (eg. sphere, ellipsoid). These deformations do not
allow bending or twisting shapes.
[Wyvill et al. 1996] introduce feature modeling, local space
deformations applied to a parametric surface. A translation,
twist or bend is applied around a point within a limiting
ellipsoid. The deformation has a second-order continuity.
The interesting point is that intuitive editing is performed
within the scene’s space, as opposed to the surface’s para-
metric space. Also, it shows that a space deformation tool
can easily be turned into a surface editing tool.
[Kurzion and Yagel 1997] present deformations they call ray
deflectors. An inverse deformation can be computed, thus al-
lowing to deform the rendering instead of the shape. Their
tool can translate, rotate and scale space, contained in a
sphere, locally and smoothly: the deformation is however
interpolated only by the center point of the tool. Moreover,
they define a discontinuous deformation that allows one to
cut space.
[Singh and Fiume 1998] introduce wires, a geometric defor-
mation technique which can easily achieve a very rich set of
deformations with curves as control features; however the de-
formation does not prevent the object from self-intersecting,
and the only features that can remain undistorted are curves.
[Crespin 1999] introduces the IFFD (Implicit Free Form De-
formation). Note that though it is called implicit, the defor-
mation applied to an embedded shape is explicit: the field
generated by a skeleton modulates affine transformations.
He also proposes two ways to combine many transforma-
tions simultaneously.
[Mason and Wyvill 2001] introduce blendeforming, using re-
versible (foldover-free) local deformations that can specify
the deformation by controlling the position of a point or the



control points of a curve.
The modeling philosophy of all these methods is to apply

simple deformations one after the other as a sculptor would
do. In the zone deformed by the tool, the portion of the
shape that is undistorted is not or can hardly be controlled.

A drawback of all the methods above resides in the re-
lation between the deformation and the clay: either it is
manually defined by the user, or making the correspondence
is the bottleneck of the algorithm. As a result it is difficult
to push or pull a particular part of the surface predictably.

3 Definitions and algorithm
Before describing how we perform the general deformations,
we define the subsets and the matrix notation we use. Then,
we introduce how we handle foldover-free deformation with
a single tool. We conclude this section with the complete
deformation expressions.

3.1 Terminology and notations

We call tool j a scalar field φt
j : p ∈ �

n �→ [0, 1] (the super-
script t denotes time). To specify tools easily, we use the
following C2 piecewise polynomial function µj : � �→ [0, 1]
of a distance field dt

j : �n �→ �:

µj(d) =

�
0 if λj ≤ d

1 + ( d
λj

)3( d
λj

(15 − 6 d
λj

) − 10) if d < λj

We define φt
j = µj ◦ dt

j , as shown in Figure 2. Note that
each tool has a different coating thickness λj . For the
following, the minimum of its derivative will be needed:

min(
δµj

δd
) =

−1.875

λj

where this field is local, and C2 where the distance is smooth
within a λj-neighborhood of the tool. We distinguish three
zones:

• the inside T t
j , where φt

j(p) = 1.

• the coating Kt
j , where φt

j(p) ∈ (0, 1).

• the outside Ot
j , where φt

j(p) = 0.

We represent a tool’s transformations by keyframes
(t0, . . . tn), with the corresponding matrices (the transforma-
tions we consider are 4 × 4 matrix products of translations,
uniform scaling and rotations):

• absolute transformations M ti
j , used to compute the dis-

tance to the tool.

• relative transformations M
ti �→ti+1
j =M

ti+1
j (M ti

j )−1.

In order to compute the transformed scalar field φti
j at ti,

we need the transformed distance:

dti
j (p) = det(M ti)

1
3 dt0

j ((M ti)−1p)

Loosely speaking, the scalar φti
j (p) is the amount of defor-

mation of tool j at time ti at p. To blend or to compute
fractions of deformations, we use the operator � and ⊕
defined by M. Alexa [Alexa 2002]3 . The näıve deformation
of a point with a single tool would be:

f ti �→ti+1(p) = φti
j (p) � M

ti �→ti+1
j p

The latter does not prevent however the space from folding
onto itself.

3� and ⊕ for matrices behave like · and + for scalars.
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Figure 2: 2D scalar field for a disk of radius 1, with λj = 1.

3.2 Single tool and foldover issue

We introduce our deformations with a single tool j to un-
derline how we solve the foldover issue. Suppose for instance

that M
ti �→ti+1
j is a translation of length larger than the coat-

ing thickness λj ; it would map points from T ti
j onto points

of O
ti+1
j , folding space onto itself, as shown in the left of

Figure 3. However, if we decompose the transformation into
a series of s small enough transformations, foldovers can be
avoided, as shown in the right of the figure. If there was a
closed form expression for the deformation when s → +∞,
we would not need to bother with stating a foldover-free
condition. In practice, computing this closed form is impos-
sible, and taking the smallest number for which the defor-
mation is foldover-free is enough. We will therefore define a
lower bound to s, and create equally spaced sub-keyframes
{τ0, . . . τs}, such that τ0 = ti and τs = ti+1.

Let us simply note the relative transformation

Mj = M
ti �→ti+1
j , as for the rest of the paper we will

focus on a single interval [ti, ti+1]. The in-between absolute
transformations are:�

k

s
� Mj

�
∗ M ti

j , k ∈ [0, s − 1]

and the in-between relative transformations are all the same:
1

s
� Mj

We have shown in appendix A that the following is a lower
bound to the required number of steps:

−min(
δµj

δd
) max
l∈[1,8]

||log(Mj)pl|| < s (1)

where pl∈[1,8] are the corners of a bounding box around Kti
j .

3.3 Deforming with many tools

Applying more than one tool at the same time at the same
place has applications such as shown in Figure 1, where we
modeled a symmetric object by applying the same tool sym-
metrically with respect to a plane. It is also used when
defining a deformable tool made of several rigid parts such
as a hand, and it allows the surface to be pinched. This could
be useful later when we extend our method to incorporate
topology changes.

Let us define n tools sharing the same keyframes ti, with
each tool associated with a scalar field φti

j . Each tool is also

associated with a relative transformation M
ti �→ti+1
j between

keyframes ti and ti+1. The following expression provides a
piecewise smooth4 combination of all the transformations at

any point p in space (we note φj = φti
j and Mj = M

ti �→ti+1
j

to simplify the expression):�
I if

�n
k=1 φk(p)=0�n

j=1

��
(1−�n

i=1(1−φi(p)))
�

n
k=1 φk(p)

φj(p)
�
� Mj

�
if
�n

k=1 φk(p) 
=0

4as smooth as the φi.
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Figure 3: 2D illustration of our solution to foldovers. Left:
the deformation maps space onto itself. Right: the deforma-
tion is decomposed into small foldover-free steps.

This expression can be computed more efficiently:

�
I if

�n
k=1φk(p)=0

exp
1−�n

i=1(1−φi(p))
�n

k=1φk(p)
�n

j=1(φj(p) log(Mj))
if
�n

k=1φk(p) 
=0
(2)

where:

• 1�n
k=1 φk(p)

is required to produced a normalized com-

bination of the transformations. This prevents for in-

stance two translations of vector �d producing a trans-

lation of vector 2�d, which would send a point far away
from the tools (the problem is also discussed in [Singh
and Fiume 1998]).

• 1 −	n
i=1(1 − φi(p)) smooths the deformation in the

entire space, required in the boundary between Kti
j and

Oti
j . Indeed, smoothness would be lost if we only used

the above normalization.

An interesting point about this expression is that when
compared to the solution proposed by [Crespin 1999],
there is no extra scalar field required (only φj) to ensure
continuity in �n . The following expression is a lower bound
to the required number of steps, generalizing the single tool
condition (see appendix A):

−



j

min(
δµj

δd
) max
l∈[1,8]

����log Mjplj

���� < s (3)

where plj∈[1,8] are the corners of the bounding box around

Kti
j . To apply the deformation, the steps are the following:

1. Compute the number of steps, s, using expression (3).

2. Deform the vertices s times using expression (2), re-
placing Mj with 1

s
� Mj , and updating the absolute

transformation with the latter matrix.

Normal deformation: In order to deform the normals, we
need to compute the co-matrix of the Jacobian [Barr 1984].
Even though a closed form can be derived from the above
transformation, its length makes it difficult to code and time
consuming. In practice, computing the Jacobian with finite
differences works well enough5.

4 Fast expressions for interactive sculpture
When using multiple tools, the time of the scene must be
frozen in order to input each tool one at a time. How-
ever this is not the case for editing with a single tool. In
this scenario, the transformations may just be pure transla-
tions, uniform scaling and rotations. The transformations
of a point and its normal are much simpler to compute,
as there is a closed form to the logarithm of such simple
transformations. In this section, in addition to efficient ex-
pressions for computing the number of required steps, we
provide fast deformation functions for a vertex and its nor-
mal. For the normal, computing the Jacobian’s co-matrix
is not always required: (comJt)�n leads to much simpler ex-
pressions for translations and uniform scaling. Note that the
normal’s deformations do not preserve the normal’s length.
It is therefore necessary to divide the normal by its mag-

nitude. We note �γt = (γt
x, γt

y, γt
z)

� the gradient of φt at
p.

4.1 If M is a translation:

The use of � can be simplified with translation vector �d.
The minimum number of steps is:

−min(
δµti

δd
)||�d|| < s

The s vertex deformations are:

fτk �→τk+1(p) = p +
φτk(p)

s
�d

The s normal deformations are:

gτk �→τk+1(�n) = (1 +
1

s
�γτk

� �d)�n − 1

s
(�d��n) �γτk

4.2 If M is a uniform scaling operation:

Let us define the center of the scale c, and the scaling factor
σ. The minimum number of steps is:

−min(
δµti

δd
)σ log(σ)Smax < s

where Smax is the largest distance between a point in the
deformed area and the center c, approximated using a
bounding box. The s vertex deformations are:

fτk �→τk+1(p) = σ
φτk (p)

s (p − c) + c

Let �χ = 1
s

log(σ)(p − c). The s normal deformations are:

gτk �→τk+1(�n) = (1 + �γτk
�

�χ)�n − (�χ��n) �γτk

5We used C++ double precision float numbers with ε = 1e−12,
with coating values λj between 0.2 and 10.



4.3 If M is a rotation:

Let us define a quaternion q(θ) of rotation angle θ, center

of rotation r and vector of rotation �v = (vx, vy , vz)
�. The

minimum number of steps is:

−min(
δµti

δd
)θRmax < s

where Rmax is the distance between the axis of rotation and
the farthest point from it, approximated using a bounding
box. The s vertex deformations are:

fτk �→τk+1(p) = q(θ
µτk (p)

s
)(p − r)q(θ

µτk(p)

s
) + r

As the expression we obtained for (comJτk )�n was not as
simple as in previous cases, the s normal deformations are
simply given as:

gτk �→τk+1(�n) = (comJτk )�n

where:

Jτk =
�
vxA+γτk

x B+�nx vyA+γτk
y B+�ny vzA+γτk

z B+�nz


�a = p − r �nx = (C, Svz,−Svy)�

�ξ = �a − (�a�v)�v �ny = (−Svz, C, Svx)�

C = cos
�

θµτk (p)
s

�
�nz = (Svy ,−Svx, C)�

S = sin
�

θµτk (p)
s

�
A = (1 − C)�v

B = θ
s
(C�v ∧ �a − S�ξ)

5 Outline for an interactive modeler
Though modeling could be performed by a script, it is much
more convenient to provide the designer with immediate vi-
sual feedback of the current state of the shape. We provide
in this section complementary information for a practical
implementation. The limitations imposed by speed require-
ments are discussed.

5.1 Shape model

Because modern graphics hardware accelerates the render-
ing of polygons, we chose to handle a polygonization of the
surface for interactive display. Although our deformations
could be applied to the control points of any parametric sur-
face, we chose to represent the modeled shape with a mesh,
refined or simplified in order to keep a homogeneous sam-
pling. Thus, the scene is initialized with a polygonal model
of a sphere with sampling properties on the size of the edges
and the normal variation6. To refine and simplify the mesh,
a simple edge split/collapse algorithm is applied at runtime,
between each sub-keyframes. In order to quickly fetch the
vertices that are deformed and the edges that require split-
ting or collapsing, these are inserted into octrees. Note that
this spatial limitation is not restrictive for the artist, as he
can scale and translate the entire model with our deforma-
tions. To fetch the part of the scene requiring update, a
query is done with the tool’s bounding box. Note that this
bounding box is the one used in expression (3).

6A simple way to obtain an homogeneous sphere polygoniza-
tion consists of starting with an octahedron, putting all its edges
longer than k in a queue, splitting them and putting the pieces
longer than k back in the queue. Each time a split is performed,
the new edges are flipped to maximize the smallest angle.

Limitation: Suppose the scene is at time tk, so that the
shape Stk is shown to the user, and that he performs a de-
forming operation f tk �→tk+1 with the mouse. All the mesh
refinements and simplifications are performed in Stk . This is
however an approximation, as ideally the operations should

be performed in the initial shape St0 , and
k

Ω
i=0

f ti �→ti+1 should

be applied to the new vertices. This would however become
more and more time consuming as k gets longer. The ap-
proximation works well enough in practice.

5.2 Tool model

We propose to control the position, size and orientation of
the tools by clicking on a controller with the mouse that
allows to perform translations, uniform scaling and rotations
along three axes or in the viewing plane. The tools can have
three modes: if the user performs a right click on a tool, it is
in positioning mode, and can be translated, scaled or rotated
without deforming the space. If the user performs a left click,
the tool is in deforming mode, and any transformation will
deform space and the shape embedded in it in real time.
If the user performs a middle click, the clock of the scene is
frozen, the tools are in multiple deforming mode. This allows
the user to position as many tools as required between ti

and ti+1, which will deform space in parallel when the user
presses an acknowledge key.

Computing the distance to a tool is required to compute
the scalar field µj . The easiest tools that can be imple-
mented are simple objects (sphere, cube) which have closed
form expression for their distance to a point. It is however
convenient for an artist to choose or to manufacture his own
tools, as every artist has his own way of sculpting. For this
purpose, we propose the possibility to bake the pieces of clay
in order to use them as a tools (see Figure 4). By baking,
we mean pre-computing a data structure such that the dis-
tance field can be efficiently computed. Various algorithms
exist, and information can found in [Guéziec 2001]. Present-
ing them is however beyond the scope of this paper. In our
implementation, we have used a BSP of the Voronöı dia-
gram of the vertices, and computed the distance using the
surrounding triangles.

Figure 4: Example of customized tools deforming a sphere.

6 Results
Even though we limited ourselves to a few transformations
(translation, uniform scale and rotation), the set of possible
deformations is already very high because of the arbitrary
shape and coating of the tools, and also because many tools’
deformations can be blended. The shapes shown were mod-
eled in an hour at most, and were all made starting with a
sphere.

Figures 1, 5(a) and 5(b) show the use of the multi-tool to
achieve smooth and symmetric objects. Figure 5(d) shows
that sharp features can be easily modeled. Figure 5(d)
and 5(h) show the advantage of foldover-free deformations,
as the artist did not have to concentrate on avoiding self-



intersections: our deformations do not change the topology
of space and thus preserve the topology of the initial object.

7 Conclusion and future work
We have presented a new class of smooth and normalized
space deformations that are intuitive corresponding to a clay
modeling metaphor and preserve the shape’s coherency. In
order to do this, we combine transformations non-linearly
in matrix logarithmic space, allowing us to parametrize and
decompose the deformations using a foldover-free conjecture
that still has to be proved. In the case of simple transfor-
mations for single tools, we provide fast expressions used
for real time modeling. Future work consists of specifying
more useful scalar fields, possibly using convolution surfaces.
Also, for deforming implicit surfaces a fast way of inverting
the function is required. This is theoretically feasible since
our deformations are diffeomorphisms of space. We are also
investigating ways to incorporate changes in topology.

A Foldover-free conjecture
To simplify notation, let us note:

βj(p) =
1 −�n

i=1(1 − φi(p))�n
i=1 φi(p)

φj(p)

Let us define two points in space p, q ∈ �
d. To find a condition on

the deformation being foldover-free, we prove the following: if q �= p,

then their image should be different:

n�
j=1

(βj(q) � Mj) q �=
n�

j=1

(βj(p) � Mj) p

We consider q being in the neighborhood of p, i.e. the reachable

space along the n paths of the deformation, with hj → 0+:

q =

n�
j=1

(hj � Mj) p

We substitute q and rearrange the equation:

n�
j=1

(−βj(p) � Mj)

n�
j=1

(βj(q) � Mj)

n�
j=1

(hj � Mj) p �= p

Because hj → 0+, the two leftmost matrices commute, and their

product commutes with the rightmost matrix. We can therefore

write the condition:

n�
j=1

((βj(q) − βj(p) + hj) � Mj) p �= p

We suppose p is not an eigenvector associated with eigenvalue 1 of

the above matrix, so we can generalize this vertex inequality to a

matrix inequality:

n�
j=1

((βj(q) − βj(p) + hj) � Mj) �= I

Applying the determinant and rearranging the expression:

n�
j=1

det(Mj)
− βj(q)−βj (p)

hj �=
n�

j=1

det(Mj)

Since hj → 0+:

n�
j=1

det(Mj)
− δβj(q)

δhj �=
n�

j=1

det(Mj)

Because ∀α, x ∈ � the function x �→ αx is increasing with respect to

x, the deformation is foldover-free if ∀j:

− δβj(q)

δhj

�= 1

By substituting for βj:

− δ

δhj

�
(1 −�i(1 − µi(di(q))))�

i µi(di(q))
µj(dj(q))

�
�= 1

Applying the chain rule:

�
k

− δdk(q)

δhj

δ

δdk

�
(1 −�i(1 − µi(di)))�

i µi(di)
µj(dj)

�
�= 1

By developing the derivative:

− δdj(q)
δhj

δµj(dj)
δdj

�
i(1−µi(di))
1−µk(dk)

−�k �=j

δdk(q)
δhj

δµk(dk)
δdk

µj(dj)�
i µi(di)

(
�

i(1−µi(di))
1−µk(dk)

− 1−�i(1−µi(di))�
i µi(di)

) �= 1

It can be easily shown that
µj(dj)
�

i µi(di)
∈ [0, 1],

�
i(1−µi(di))
1−µk(dk) ∈ [0, 1]

and
1−�i(1−µi(di))�

i µi(di)
∈ [0, 1]. Also, we have shown in appendix B that

∀h ∈ �,
δd(h�Mp,T ti )

δh ≤ || δh�Mp
δh ||, and we know that ∀d ∈ [0, 1],

− δµ(d)
δd ≤ −min( δµ

δd ). Thus, the deformation is foldover-free if ∀j:

−min(
δµj
δd )
������ δh�Mj p

δh

������
h=0

−�k �=j min(
δµk
δd )
���
��� δh�Mkp

δh

���
���
h=0

< 1

We can rewrite these n conditions in a single one:

−
�

i

min(
δµi

δd
)

����
���� δh � Mip

δh

����
����
h=0

< 1

Note that
���
��� δh�Mj p

δh

���
���
h=0

= ||log Mjp||. Because a matrix is a

diffeomorphism, we can define n bounding boxes pkj∈[1,8] around

K
ti
j to approximate ||log Mjp||. Also, since taking fractions of the

transformations prevents the space to fold on itself, we can introduce

the number of steps we look for:

−
�

j

min(
δµj

δd
) max
kj∈[1,8]

����
����log(

1

s
� Mj)pkj

����
���� < 1

Since 1 < s:

−
�

j

min(
δµj

δd
) max
kj∈[1,8]

������log Mjpkj

������ < s

This does not constitute a proof since we haven’t shown that p is not

an eigenvector associated with eigenvalue 1 of the concerned matrix.

B Proof ∀h ∈ IR, δd(h�Mp,T ti )
δh

≤ || δh�Mp
δh

||
Let q ∈ T ti be the point of the tool that is closest to p:

d(p, T ti ) = d(p, q). Once p has moved, q may not be the closest

point anymore, so ∀h ∈ �,d(h � Mp, T ti ) ≤ d(h � Mp, q). Therefore

we can introduce this inequality:

δd(h�Mp,T ti )
δh ≤ lim

ε→0

d((h+ε)�Mp,q)−d(h�Mp,q)
ε

≤ δd(h�Mp,q)
δh

To compute the derivative of the distance to a point, we use the

following formula, obtained by deriving
�

(h � Mp − q)2:

δd(h � Mp, q)

δh
=

(h � Mp − q) ∗ δh�Mp
δh�

(h � Mp − q)2

And finally, because the length of a vector is shorter when multiplied

by a normal vector:�����(h � Mp − q)
δ

δh h � Mp

|| δ
δh h � Mp||

����� ≤
	

(h � Mp − q)2

So we can substitute the latter:

δd(h � Mp, q)

δh
≤ || δh � Mp

δh
||
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Figure 5: All these shapes were obtained starting with a sphere, in

at most one hour. In (c), the first modeling step was to squash the

sphere into a very thin disk. In (g), eyeballs were added.




