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Abstract

In this report we present technical details of a neural network model of sentence
generation, including details of the artificial languages it was trained on, its training
regime, and of the performance of the trained network.

1 Introduction

This report provides a detailed description of a neural network model of sentence gener-
ation, and of its training and evaluation. The network receives a semantic representation
(an episode representation) as input, and delivers a sequence of words (a sentence)
as output. The network is trained on a corpus of training items derived from an artificial
language, which maps episode representations onto sentences. Each training item consists
of an epsiode, along with the sentence which describes it in the training language. The net-
work is then tested on a set of unseen episodes, for which it must produce an appropriate
sentence.

The format of episode representations which provide input to the network is described
in Section 2. The architecture of the network and its training are described in Sections 3–5.
The way sentence generation happens in the complete model after training is described in
Section 6. The artificial languages used to train the network are described in Section 7.
The performance of the networks trained on these languages is described in Section 8.

2 Semantic input representations

The network’s semantic input representations are assumed to represent concrete episodes,
of the kind which can be directly apprehended through sensorimotor experience of the
world. Experiencing an episode is assumed to involve a canonical sequence of sensorimotor
processes; for justification of this idea, see Knott (2012). Experienced episodes are stored
in working memory as prepared sensorimotor sequences, which can be internally replayed:
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the process of sentence generation involves replaying a stored sensorimotor sequence in a
special mode where sensorimotor signals can have linguistic side-effects.

The complete sequence of signals in Knott’s account of a rehearsed reach-to-grasp
deictic routine is shown in Table 1. The sequence involves four sensorimotor operations,

Table 1: The time course of signals occurring during the replay of the cup-grabbing deictic
routine from working memory

Sustained Transient
signals signals

Initial Sensorimotor Reafferent New
context operation SM signal context

planattend agent,attend cup,grasp C1 attend agent agent rep C2

planattend agent,attend cup,grasp C2 attend cup cup rep C3

planattend agent,attend cup,grasp C3 grasp agent rep C4

planattend agent,attend cup,grasp C4 cup rep

each of which takes place in a particular sensorimotor context (the initial context) and
results in an updated sensorimotor context (the new context), generating a reafferent
sensorimotor signal as a side-effect.

Note that the sequence involves a mixture of transient and sustained signals. The
sustained signals are part of the static representation in working memory which supports
the replay operation. The transient signals are the ones which are evoked when the replay
actually occurs. Note also that there are two reafferent sensory reprsentations of the
agent at different points during the sequence, and also two reafferent representations of
the patient. For detailed motivation of all aspects of this model of reaching-to-grasp, see
Knott (2012).

All the episode representations which we will use in our network take the form of
sequences with the kind of structure shown in Table 1. They all encode ‘transitive episodes’,
involving an agent, a patient and a transitive action.

3 A core network for learning abstract syntactic rules

The complete sentence generation network consists of several functional modules that work
together: an episode rehearsal network, which replays a working memory episode rep-
resentation to generate a sequence of sensorimotor signals; a word production network,
which maps individual sensorimotor signals onto word forms; a control network, which
determines the points during episode rehearsal when these word forms should be pro-
nounced; and a word sequencing network which learns surface regularities in word
sequences. In this section, we describe how the first three of these modules work together.
For technical details of all networks see Section 5.2.
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3.1 The episode rehearsal network

First we present the network which replays sensorimotor sequences, which constitutes the
main technical innovation in the model. This network is responsible for generating se-
quences of the kind shown in Table 1 and provides the (semantic) input for other modules
of the language production system.

Current object
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num

Planned 

motor action

. . . . .

Context

Object type
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WM episode

Planned attn

pers

num

pers

num

Attention

to object

episode rehearsal network

C1

C2

C3

C4

to patient

Figure 1: The episode rehearsal system. The working memory (WM) episode comprises
planned actions of attention (attn) to an agent and a patient and a planned motor action.
Each planned action of attention encodes the person (pers) and number (num) of the
attended object using a 1-hot localist scheme where exactly one unit is active at a time.
(The pers units represent first, second and third person; the num units represent singular
and plural.) The planned motor action uses a similar 1-hot scheme to encode a planned
open-class motor action. The current object area holds a transient representation of the
currently attended object (which alternates between the agent and the patient). This
comprises an attentional action, which represents person and number information as above,
and an object type, which uses a 1-hot scheme to encode an open-class object category.
The context area holds a representation of the current stage during episode rehearsal (see
Table 1), again using a 1-hot scheme.

The episode rehearsal network is shown in Figure 1. The WM episode area models
a working memory episode representation that takes the form of a prepared sensorimotor
sequence tonically active in PFC. Besides a planned motor action, it comprises planned
actions of attention to an agent and a patient. The diagram only shows information which
can be linguistically expressed.

Planned attentional actions interface rather weakly with the linguistic system: they
convey basic information about whether the attended object is the agent himself or his
interlocutor or something else, and about whether the attended object is a single entity or
a group. (This information ends up being expressed in grammatical person and number
inflections on verbs.) For each component of a planned attentional action, we use 1-hot
localist coding, i.e. there is exactly one active unit at a time, out of three units specifying
(first, second and third) person, and one out of two units for (singular or plural) number of
the agent. The same holds for the patient person and number units. The planned motor
action interfaces more strongly with language: there is one active unit for each motor
action.
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The current object area holds a transient representation of the currently attended
object. During the course of episode rehearsal, this area alternately holds representations
of the agent and the patient. This area conveys person and number information in the
same format as the WM episode (i.e. coarse information about an action of attention),
but unlike the WM episode it also conveys fine-grained information about the type of the
attended object. Again we use a 1-hot coding scheme to represent type information; i.e.
there is a dedicated unit for each possible object concept (regardless of the role it appears
in). Together these sources of information will eventually enable the generation of inflected
open-class nouns, and of pronouns.

The context area holds a representation of the current stage during episode rehearsal.
This representation helps to drive the episode rehearsal process. In our simulation there
are four possible contexts (see Table 1), each represented by a single localist unit. The
thick arrows in the diagram reflect the fact that the sequence of transient representations
in the current object and context areas are generated by a WM episode representation.

The episode rehearsal system provides input to the word production and control net-
works, which we will describe next.

3.2 The word production network

The word production network is shown in Figure 2. It serves as the system’s lexicon, in
that it learns to generate a (possibly inflected) word in response to an input signal from
the episode rehearsal system. The inputs to the network are the WM episode and current
object areas of the episode rehearsal network. The output layer holds a set of units that
represent all possible words—or more precisely, all possible word stems and all possible
inflections, including the null inflection. Word stems and inflections are represented in a
localist fashion: i.e. there is one unit for each stem and each inflection. Total activation
of all units in the word stem area can be scaled to sum to 1 and treated as a probability
distribution; likewise for the inflection area. We envisage that individual word stems and
inflections represent premotor articulatory plans, rather than actual utterances.

The input and output layers are fully connected. These connections are gated by
inhibitory links from a cyclic pattern generator (depicted as ‘Phase’ in Fig. 2) so that
at any time input comes either wholly from the WM episode or wholly from the current
object. During episode rehearsal, the pattern generator cycles through two phases in each
context, providing first an opportunity to read out the tonically active WM episode, and
then an opportunity to read out the current object representation, as shown in Table 2.
Pattern generators are commonly postulated in models of the prosodic aspects of language
production; see for instance Hartley and Houghton (1996) neural network model of syllabic
structure. We propose that a pattern generator is also involved in syntactic processing,
to produce the regular alternation between heads and specifiers characteristic of X-bar
structure.

The word production network is trained on the utterances of mature speakers, paired
with episode representations. We are simulating an infant who experiences episodes in the
world and who also hears mature speakers talking. We assume the infant is well enough
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Figure 2: The word production network. This network receives inputs from the episode
rehearsal system (shown in Figure 1), and training signals from the phonological (phon.)
input buffer. Note that the episode rehearsal system is augmented with a cyclic pattern
generator (Phase). During episode rehearsal, the pattern generator cycles through two
phases in each context, providing first an opportunity to read out the tonically active WM
episode, and then an opportunity to read out the current object representation, as shown in
Table 2. The training sentences presented to the system are stored in a phonological input
buffer, from where they can be replayed word-by-word. An error term (err) is calculated
based on the difference between the next word (wd) predicted by the production network
and the actual next word of the training utterance, and this term is used to train the word
production network.
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Table 2: The sequence of inputs to the word production network after modulation by the
pattern generator. Object representations and WM episodes alternate.

Context Phase WM episode rep Object rep
C1 a man

b planattend agent/attend cup/grasp

C2 a cup
b planattend agent/attend cup/grasp

C3 a man
b planattend agent/attend cup/grasp

C4 a cup

attuned to the pragmatics of communicative actions to pair the utterances of mature
speakers somewhat reliably with semantic representations of the episodes they report,
using devices such as joint attention and intention recognition (see e.g. Tomasello, 2003),
though of course there is a great deal of noise in the mapping between semantic signals
and words, especially to begin with.

The mature utterances the system hears are stored in a phonological input buffer,
from where they can be replayed word-by-word. The episodes the system experiences are
stored in the episode rehearsal network. Note that episodes and utterances are stored
in quite separate media in working memory. We assume, following Baddeley (2000), a
distinction between a phonological input buffer, holding a recently presented sequence
of words, and an ‘episodic buffer’, holding semantic material. (The episodic buffer is
implemented in our model by the episode rehearsal system.) words replayed from the
phonological input buffer function as training signals for the word production network.
They are represented in exactly the same way as words generated by the word production
network.1 An error term is calculated based on the difference between the ‘next word’
predicted by the production network and the ‘actual next word’ of the training utterance,
and this term is used to train the production network.

Note that the word production network is trained on a replayed sequence of words,
rather than words arriving in real time. Initially, the effect of this ‘offline’ form of training
is to allow several training words to be presented for each sensorimotor signal, which helps
to combat the noisiness of the training data. (There is a well-attested relationship between
phonological working memory capacity and early vocabulary size; see e.g. Gathercole and
Baddeley, 1990.) However, we argue later in the paper that offline training also has a role
in syntactic development.

1We assume that phonological word representations in the input buffer are stored as articulatory plans
(see e.g. Browman and Goldstein, 1995) and are therefore directly comparable to words generated by the
word-production network.
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3.3 The control network

Assume that some learning has taken place in the word production network, and that it
can reliably map some sensorimotor signals onto words. Now consider what happens when
an episode is rehearsed. The word production network receives a sequence of sensorimotor
signals—two in each context—and for each signal it will generate a word form. As is
clear from Table 2, each sensorimotor signal occurs more than once in this sequence:
the planning representations occur once per context, and the transient representations of
agent and patient each occur exactly twice. As already noted, sentences do not contain
wholesale repetition of words—at least, not to this degree. We therefore envisage a device
which learns when to pronounce the word forms evoked by the word production network,
and when to withhold them. Our suggestion is that different languages have different
conventions about which versions of the agent, patient and action signals to pronounce, and
that these conventions determine the basic word order of the language. In our model, the
device which learns a policy about when to pronounce these repeated sensorimotor signals
is called the control network. For instance, in a VSO (verb, subject, object) language,
the control network must learn to pronounce the action signal at the first opportunity,
and the agent and patient signals each at the second opportunity, as shown in Table 3.
In Minimalist terms, the episode rehearsal network implements the logical form (LF) of a

Table 3: A control policy which produces VSO (verb subject object) word order (‘—’ and
‘↓’ denote ‘withhold’ and ‘pronounce’ respectively).

Context/phase C1a C1b C2a C2b C3a C3b C4a
SM sequence man grab-plan cup grab-plan man grab-plan cup
control policy — ↓ — — ↓ — ↓
output words grabs man cup

sentence, and the control network learns to map this logical form onto a surface sequence
of words, or phonetic form (PF).

The control network, with its connections to the networks described earlier, is shown
in Figure 3. It takes its input from the context and phase areas of the episode rehearsal
network. These areas are fully connected to a hidden layer, which is in turn fully connected
to one output unit that serves as a gating signal between the output layer of the word
production network and the actual phonological output.2

In neural terms, we think of the word forms generated by the word production network
as premotor articulatory plans, rather than overt motor outputs. This allows for a separate
system to decide whether to overtly pronounce any given word form. The idea that one can
prepare an action without executing it is well established in models of the motor system; see

2As indicated in Figure 3, we assume the phonological output system has internal structure of its own.
Items to be pronounced sit in a phonological output buffer where phonological planning effects at the
level of prosody can be modelled. For a review of evidence for a separate phonological output buffer, see
e.g. Shallice et al. (2000).
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Figure 3: The control network. The control network is a device which learns when to pro-
nounce and when to withold the words evoked by the word production network; thereby
learning the basic word order of the particular language. If the output of the word pro-
duction network matches the next word replayed from the phonological input buffer, the
control network is trained to generate a ‘pronounce’ signal, which allows this word into
the phonological output buffer. At the same time, it generates a signal to advance to the
next item in the training utterance. If there is no match, on the other hand, the control
network is trained to generate a ‘withhold’ signal, which prevents the output of the word
production network from being pronounced and there is no signal to advance to a new
word in the training utterance.
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for instance Fadiga et al. (2002) for evidence specific to articulatory actions. The control
network’s role is to decide which premotor word forms evoked during a rehearsed episode
should be overtly pronounced: in other words, its role is to selectively enable and disable
a connection from premotor to motor articulatory cortex. We assume the control network
is part of Broca’s area, because Broca’s area is known to have a general nonlinguistic role
in suppressing habitual responses (see Novick et al., 2005 for a review of evidence to this
effect).

Like the word production network, the control network is trained on utterances paired
with episode representations. As already noted, the episode is stored as a replayable
sensorimotor sequence, and the utterance is stored as a separately replayable sequence of
words. The words replayed from the input buffer again function as training signals for the
control network, but in a slightly different way. For the control network we use a ‘match’
operation, which compares the word predicted by the word production network with the
‘next word’ replayed from the phonological input buffer and returns a Boolean value: either
the word matches or it does not. This Boolean value functions as a training signal for the
control network, but it also has a procedural role in synchronising the training utterance
being replayed with the episode being rehearsed. This is important, because there are
many more iterations in episode rehearsal than there are words in the training utterance:
we cannot advance to a new word in the training utterance at each iteration.

The ‘match’ circuit works as follows. If the output of the word production network
matches the ‘next word’ replayed from the phonological input buffer, the control network
will be trained to generate a ‘pronounce’ signal, which allows this word into the phonological
output buffer. At the same time, it generates a signal to advance to the next item in the
training utterance. If there is no match, on the other hand, the control network is trained
to generate a ‘withhold’ signal, which prevents the output of the word production network
from being pronounced—and there is no signal to advance to a new word in the training
utterance.

To illustrate the training mechanism, assume the system is exposed to training items
from a VSO language. A training item representing the episode ‘a man grabs a cup’ is
shown in Table 4.3 The training item consists of a sensorimotor sequence representing this
episode, paired with an utterance which reports the episode in a VSO language. During
training, the sensorimotor sequence is rehearsed one step at a time. At each step, the table
shows the sensorimotor signal providing input to the word production network, along with
the word this network predicts from this signal. It also shows the ‘actual next word’ in
the training utterance, as replayed from the phonological input buffer. At each stage, the
‘match’ signal reflects whether these two words are the same. If they are not, the control
network is trained to give the ‘withhold’ signal, and the word is retained at the next step.
If they are, the control network is trained to give the ‘pronounce’ signal, and we advance
to the next word in the training utterance. With enough training examples of this kind,
the control network will learn a policy of generating ‘pronounce’ at context/phases C1b,

3We distinguish words and concepts by font: words are in italics and concepts are again given in small
caps.
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Table 4: A typical training item in a VSO exposure language, with the ‘match’ signal
generated in each context/phase. The ‘actual next word’ field steps through the words of
the target utterance one at a time, advancing to a new word when it matches the predicted
next word.

Context/phase C1a C1b C2a C2b C3a C3b C4a
Target utterance grabs man cup
SM signal man grab-plan cup grab-plan man grab-plan cup
predicted next wd man grabs cup grabs man grabs cup
actual next wd grabs grabs man man man cup cup
‘match’ signal no yes no no yes no yes
training signal
for ctrl network — ↓ — — ↓ — ↓

C3a and C4a, and ‘withhold’ at all other contexts/phases.
There are two interesting things to note about the control network’s training regime.

Firstly, note that the control network is content blind. It does not receive any information
about individual words or word meanings—only about contexts and phases. It learns that
in some contexts/phases the output of the word production network should be pronounced,
while in others it should be witheld, but it does not know anything about the content of
the words it is controlling. In other words, it learns ‘structural’, content-independent word-
ordering rules. We will demonstrate some of these rules in Section 8.2. Secondly, note that
the control network learns its rules ‘offline’: it learns to map a replayed sensorimotor se-
quence onto a replayed sequence of words, by selectively advancing the sequence of words so
it is synchronised with the sensorimotor sequence. The system has precise control over the
way the training utterance is presented, advancing to a new word in some context/phases,
but not in others. This is only possible because training happens offline.

4 Extensions allowing the learning of surface patterns

in language

The model described so far can learn a lexicon and a set of abstract word ordering conven-
tions for a given target language. In this section, we will describe two additional networks
which allow the model to learn surface structures in language. One is a word sequencing
network—a familiar SRN-style network. The other is a more novel entropy network,
which controls how the sequencing network operates. These networks are shown in Fig-
ure 4, which also shows some of the components of the earlier network which they interact
with.
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Figure 4: The word sequencing network and its interaction with the word production
network. Both networks are trained using the ‘actual’ next word replayed from the phono-
logical input buffer (err). However, the word sequencing network has one hidden layer with
recurrent connections, which enables it to take into account the history of previous inputs.
Using this surface context representation, the network can learn to produce different words
for a given semantic input depending on the history of preceding inputs (while the word
production network would produce the same output word regardless of the context). The
aggregated output of the two networks is gated by a confidence signal provided by the
entropy network. The basic function of the entropy network is to make sure a word is
not pronounced unless the production/sequencing network is reasonably confident it is the
right one. Early during development, the network has the function of preventing the gen-
eration of ‘nonsense’, i.e. random outputs. Later in development, the network has a role
in identifying surface linguistic patterns.
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4.1 The word sequencing network

The word sequencing network is a variant of a Simple Recurrent Network (Elman, 1990).
In a way it mimics the word production network: as shown in Figure 4, its input layer
consists of the WM episode and current object areas of the episode rehearsal system (gated
by the phase generator), and its output layer has an identical structure to the output layer
of the word production network. Both networks are trained using the ‘actual’ next word
replayed from the phonological input buffer. However, the word sequencing network has one
hidden layer with recurrent connections, which enables it to take into account the history
of previous inputs. In each step, activities of the hidden layer from the previous step are
copied to a context layer, which provides an additional input to the hidden layer at the next
time step. We will refer to the context layer as the surface context, to distinguish it from
the context representation used in the episode rehearsal network. Using this surface context
representation, the network can learn to produce different words for a given semantic input
depending on the history of preceding inputs (while the word production network would
produce the same output word regardless of the context). Moreover, the word sequencing
network can produce a sequence of different output words for one (unchanging) semantic
input, because of its recurrently defined surface context layer. This allows it to produce
an ‘idiomatic’ sequence of words, which collectively express a single semantic input.

The output of the aggregated network depicted in Figure 4 (the top ‘next word stem/inflection’
box) is a simple average of the activities in the output layers of the word production and
word sequencing networks. Because each of the output layers represents two probability
distributions (see Section 3.2), the aggregated result also represents probability distribu-
tions of a predicted word stem and an inflection.4

We will refer to the word production and word sequencing networks together as the
word production/sequencing network or WPSN. In a mature system, we argue that
the production/sequencing network interacts with the control network to support the gen-
eration of sentences containing a mixture of surface and abstract linguistic patterns. How-
ever, we also argue that it has an important developmental role, in generating early pre-
syntactic multi-word utterances before the control network is fully developed. These roles
of the production/sequencing network will be discussed in Section 5.1.

Note that the word-sequencing network is not a standard SRN. A standard Elman net-
work takes a ‘current word’ as input (as well as the current surface context) and predicts
the next word. Our network takes a word meaning as input (as well as the current sur-
face context) and predicts the form of this word as output: so as well as learning about
sequential patterns of words, it learns a mapping from word meanings to word forms, just
like the word-production network. (However, the word-production network still has an
important function in its own right, in making predictions about the next word which are
based purely on its meaning, and not conditioned on the current context.)

4Computing simple linear combinations of probabilistic population codes is biologically plausible (Ma
et al., 2006).
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4.2 The entropy network

The word-production/sequencing network operates in conjunction with another network:
the entropy network shown at the top left of Figure 4. This network generates the same
kind of output as the control network: a gating signal determining whether the word form
chosen by the combined word production and word sequencing networks is pronounced or
witheld. But its decision has an altogether separate motivation, to do with the confidence
of the production/sequencing network in its choice of word. The basic function of the
entropy network is to make sure a word is not pronounced unless the production/sequencing
network is reasonably confident it is the right one. Early during development, the network
has the function of preventing the generation of ‘nonsense’, i.e. random outputs. Later in
development, the network has a role in identifying surface linguistic patterns and treating
these in a special way, as we will describe in Section 5.

The entropy network receives inputs from both the word production and word se-
quencing networks. Each of these networks computes a measure of confidence in its own
prediction about the next word stem. We use the statistical measure of entropy. (As
already noted, the output of each network can be understood as a probability distribution
over possible word stems. The entropy of a probability distribution is a measure of how
evenly probabilities are distributed; entropy is low when just one word is strongly predicted,
and high when there are many competing alternatives.) The entropy network’s function
is basically to decide how confident the word production/sequencing networks need to be
in order to warrant their predicted word being produced. It learns a simple threshold
function, which takes the entropies of the word production and sequencing networks and
returns a binary decision: ‘pronounce’ or ‘withhold’.

The entropy network is a feed-forward network (multi-layer perceptron) with one hid-
den layer. It has two input units, holding the entropy values computed from the word
production and word sequencing networks, and one output unit, encoding a ‘pronounce’
or ‘withhold’ signal. The network learns its threshold function from the same signal as the
control network: a binary ‘match’ between the predicted next word and the actual next
word. For details, see Section 5.2.

4.3 Interactions between the sequencing and entropy networks:
a model of idioms

As discussed in Section 4.1, the word sequencing network is able to learn idiomatic con-
structions in language: that is, constructions expressing a single semantic signal as an
extended pattern of several words. Note that when the sequencing network is producing
an idiomatic pattern of words, it can often make confident predictions about several words
in a row from just one semantic input. For instance, consider the continuous idiom Winnie
the Pooh, a sequence of words which collectively express the object concept winniethe-
pooh, or wtp for short. Imagine the network has encountered this construction many
times during training. It will learn that when it first sees the concept wtp it can con-
fidently predict the word Winnie—but after having produced this word and updated its
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own surface context representation, it can confidently predict the next word (the), without
any additional semantic inputs. And after another update of its surface context, it can
confidently predict the last word of the idiom, Pooh.5 At this point, of course, it can no
longer be confident about the next word without receiving an additional semantic input.
Like any Elman network predicting the next word on the basis of recently produced words,
it will know what class of word to expect, but outside idiomatic constructions it cannot se-
lect a particular word from this class without knowing its semantics. In our system, idioms
are modelled using the concept of entropy—or more specifically, of an entropy threshold
on pronunciation. As a first approximation, we define an idiom as a sequence of words
which can each be predicted (with enough confidence to be pronounced) by the produc-
tion/sequencing networks, from a single semantic input, and the recurrent representations
produced in the sequencing network’s surface context layer. In the next section we will re-
fer to this definition of idioms in our account of how the word sequencing network interacts
with the control network.

5 The complete model of word-learning and syntactic

development

So far we have introduced the submodules of our model and outlined their developmental
role. In this section we describe the complete model in the form we implemented it, as well
as the model’s training regime.

5.1 Overview: structure and training of the complete network

The structure of the complete model is shown in Figure 5. It combines the word production
and sequencing networks described in Section 4 with the episode rehearsal and control
networks described in Section 3.

The combined model consists of several networks that need to be trained. Training
happens in parallel, in a coordinated way that ensures learning can bootstrap. There are
two basic systems which must bootstrap one another: one is the control network and one
is the WPSN.

On one hand, there must be some learning in the WPSN before the control network
can start to learn. Learning in the control network is governed by whether the next word
predicted by the WPSN ‘matches’ the actual next word in the training utterance. Until the
WPSN is reliably mapping some sensorimotor signals to words, the ‘match’ signal provides
no information about when to pronounce and when to withhold words.

5Note that the sequencing network is not predicting the words which follow Winnie from the word
‘Winnie’, but from the word representation ‘wtp’. Our sequencing network can basically learn a lexicon
of idiomatic expressions, as well as the meanings of individual words. An ordinary Elman network making
predictions about the next word would have difficulty deciding between Winnie the Pooh and Winnie
Mandela.
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Figure 5: The complete model of language production. In the complete model, generating a
sentence involves replaying an episode in the episode-rehearsal system, and at various points
during replay, pronouncing one or more words (i.e. dispatching words to the phonological
output buffer). A key issue in the combined model is the synchronisation between the
episode rehearsal and word sequencing networks. Besides gating overt pronunciation, this
coordination is the job of the control network and the entropy network as described in
detail in the text.
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On the other hand, it also makes sense for learning in the WPSN to be dependent
on learning in the control network. The word production and sequencing networks are
trained to reproduce the ‘actual next word’ in the phonological input buffer. But this
training should only happen in a context/phase where the control network is going to
pronounce a word. Training the WPSN in other contexts simply adds noise to the train-
ing data, mapping semantic signals onto the wrong words in the training utterance. We
therefore specify that the word production and word sequencing networks are only trained
to reproduce the next word in the training utterance in contexts/phases for which the
control network generates the ‘pronounce’ signal. Similar reasoning applies to the entropy
network. The ‘match’ signal used to train the entropy network is only meaningful in con-
texts/phases where the control network thinks a word should be pronounced. In other
contexts, we expect a mismatch, regardless of how much learning has taken place in the
production/sequencing networks. In summary, the control network is trained in all con-
texts/phases, while the word production, word sequencing and entropy networks are only
trained in phases permitted by the control network.

During training, the model alternates between the same two modes as during genera-
tion. In the first mode, episode rehearsal advances (and the control network is trained)
until a context/phase is reached in which the control network gives the ‘pronounce’ signal.
Then the network switches into the word sequencing mode. As long as the WPSN predicts
the next word with sufficient confidence and it matches the actual word in the phonologi-
cal input buffer, the WPSN keeps predicting (based on a changing surface context), being
trained, and advancing the phonological input buffer. If the prediction does not match or
has a low confidence, the actual word stays in the phonological input buffer, the surface
context is not copied and the model switches back to the episode rehearsal mode. Details
of the training algorithm are given in Section 5.2.

This way of training creates a circular dependence: each network’s training relies on
the others already giving meaningful output. Our intention is to model the development
of language production from scratch. So at least one of the systems involved must have
some ability to do some learning on its own.

Our crucial assumption is that learning in the WPSN (and the entropy network) starts
earlier than in the control and episode-rehearsal networks. To be concrete, we assume that
learning in the WPSN begins around 12 months, when infants begin learning their first
word meanings (Tomasello, 2003), while learning in the control network begins around
18–24 months, when infants first show evidence of using abstract syntactic rules (Hirsh-
Pasek and Golinkoff, 1996; Tomasello and Broooks, 1998). The idea that cognitive control
strategies mature fairly late in development is well supported (see Novick et al., 2005 for a
review), but some simple control strategies start to emerge at around 18 months (Posner
and Rothbart, 2000). Our model simulates linguistic development from around 12 months,
when the word-learning circuit becomes active. We simulate gradual maturation of the
control network by adding a measure of noise to the control signal which is gradually
reduced during training.6 While the control network is delivering random output, it is

6Syntactic development would also be affected by the maturation of episodic working memory, but
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still possible for the WPSN to learn word-meaning mappings, because there are higher-
than-chance correlations between concepts and the words which denote them: this is the
principle on which ‘cross-situational’ models of word learning are founded (see e.g. Siskind,
1996; Yu and Ballard, 2007).

We also simulate gradual maturation of the phonological input buffer. This is a separate
developmental process: we assume that an infant begins with an immature input buffer, in
which a number of recently-heard words are active in parallel, but gradually transitions to
a mature mode in which words are replayed from the buffer one by one.7 In this scheme,
the initial role of the phonological buffer is simply to increase the amount of data available
to a cross-situational learning algorithm, as mentioned in Section 3.2. But when it has
matured it has a more precise role in delivering words from the training utterance one by
one. This maturation basically models a transition from a stage where the system learns
(and generates) single words, to a stage where it learns (and generates) word sequences.
Details are again given in Section 5.2.

5.2 Technical description of the complete network

In this section we will describe the modules of the complete network shown in Figure 5 in
more detail, as well as the training and sentence generation algorithms.

5.2.1 Modules of the network

The episode rehearsal system is a layer of input neurons with 1-hot localist coding in
each of the four parts: the episode context (4 neurons coding contexts C1, . . . , C4), the
phase (2 neurons coding phases a, b), the WM episode (3+2 neurons for person (1,2,3)
and number (Sg,Pl) of the agent, 3+2 for person and number of the patient, 34 neurons
coding possible motor actions), and the current object (3+2 neurons for person and
number, 46 neurons coding possible objects).

The word production network consists of one layer of linear perceptrons taking
input from all the units in the WM episode and the current object parts of the episode
rehearsal system (95 neurons). The connections are gated by the phase generator in the
way that input from the WM episode part is blocked and that from the current object is let
through in the phase a (and vice versa in the phase b). The output neurons are grouped in
two blocks: one representing the next word stem (localist coding—106 units for all possible
word stems, including one unit representing a conventional ‘utterance-boundary’8 signal),

for simplicity’s sake we assume that the episode rehearsal system is fully mature from the outset in our
simulations.

7There are many models of the phonological buffer in which words are represented in parallel; see e.g.
Burgess and Hitch (1999). In these models, inhibitory connections between words result in the most active
word temporarily suppressing the others, and then habituating or inhibiting itself to make way for the
next most active word. We assume that it takes time for these inhibitory connections to develop.

8The ‘utterance-boundary’ or ‘period’ signal is the last element of the sequence of word in each training
utterance. It allows the trained network to explicitly predict the end of the sentence, which is utilised
for early stopping in sentence generation (after having generated the ‘utterance boundary’, the network
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the other possible word inflections9 (9 units, one of them representing null inflection).
Activities of linear neurons in each of the blocks are combined using the softmax function

pi =
exp(oi)∑
j exp(oj)

,

where oi, oj are activities of the linear output neurons, j ranges over all neurons in the block,
and pi is the resulting activity of the i-th neuron. Hence, combined activities in each block
sum to 1 and so can be treated as probability distributions. The word production network
is trained using the delta rule (Widrow and Hoff, 1960) for error minimisation.

The word sequencing network is a recurrent neural network with one hidden layer
of 100 units with a sigmoidal activation function. It is connected to the same input as the
word production network (including the gating). The recurrent connections are mediated
through a surface context layer (100 units), which carries a copy of activities of the hidden
layer from the previous time step. The output layer of 106+9 linear neurons has exactly
the same structure as that of the word production network. The network is trained using
the back propagation through time (BPTT) algorithm (Werbos, 2002) with a time window
of size 3.

The layer aggregating outputs from the word production and word sequencing networks
also has 106+9 neurons, and the activity of each aggregated unit is computed as a simple
average of the activities of corresponding units in the two output layers.

The phonological input buffer holds a sequence of words (an utterance that the
infant heard), which are activated one by one and serve as a source of training signal for
other subnetworks. The currently active (actual) word is accessible in a layer of units of
the same structure as the output layers of the word production/sequencing networks (and
their aggregated output), i.e. 106 units representing a word stem and 9 units representing
an inflection.

We assume that the sequencing ability of the phonological input buffer is not mature
from the very beginning, but matures gradually. In early stages, the activity in the actual
next word layer is a noisy blend of all words in the sequence:

~vi =
|U |∑
j=1

gp(i, j)~uj ,

where ~uj is the j-th word in the sequence (represented as a vector of 1-hot localist code of
the word stem concatenated with the code of the word inflection), |U | is the length of the
word sequence, and ~vi is the i-th representation activated in the actual next word layer.

gp(i, j) = exp(−p(i− j)2)

is a Gaussian neighbourhood function with parameter p regulating the width of the Gaus-
sian. The most strongly present representation in ~vi is ~ui, then ~ui−1 and ~ui+1 etc, decreasing

proceeds to the next episode).
9The possible inflections were -sg, -pl (for nouns), -1sg, -2sg, -3sg, -1pl, -2pl, -3pl (for verbs), and null.
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with the distance between time points i and j. The parameter p is initially zero (a Gaussian
with infinite width) and all words are represented in the actual word layer with the same
strength, which models a cross-situational concept of associating a current sensorimotor
signal with all words heard within some time span. The p increases with time and provides
a smooth transition from ‘associate with all words’ training mode to ‘associate with the
current item in the sequence’.

The entropy network is a feed-forward network with two input units, one hidden layer
of three neurons with hyperbolic tangent activation function and one sigmoidal output
neuron. The input units represent the entropy in word stem parts of the word production
and word sequencing networks computed as

H = −
b∑

i=1

pi logb pi ,

where the logarithm base b = 106 is the size of the word-stem part, pi are output activities
of units in the word stem block after application of the softmax combination function.

The network is trained on a match between the aggregated next word stem and an
actual next word stem representation in the phonological input buffer, using simple back
propagation (Rumelhart et al., 1986). The training signal is 1, if the phonological output
buffer is not empty and the cosine between vectors representing the two word stems is
bigger than 0.5, otherwise it is 0. The output of the entropy network has a gating and
mode-switching function (see Section 6) and is interpreted as a ‘let through’ signal if greater
than 0.5.

The control network is a feed-forward network with one hidden layer of three neurons
with hyperbolic tangent activation function and one sigmoidal output neuron. The network
takes its input from episode context (4 units) and phase (2 units) parts of the episode
rehearsal system. It is trained on the same match signal as the entropy network, using
back propagation. Like in the entropy network, the output neuron activity has a gating
and mode-switching function (see Section 6) and is interpreted as ‘let through’ signal if
greater than 0.3.10 We simulate gradual maturation of the control network in the way that
decisions based on the control network’s output are interleaved with a certain proportion of
random decisions. In each phase, the decision is random with probability p(epoch), where
p linearly decreases from 1 in epoch 0 to 0 in epoch 15, i.e. at the start 100% of decisions
are random, while after epoch 15 all decisions are based on the real control network output.

5.2.2 Training and sentence generation algorithms

All training algorithms use the same learning rate (0.1) and zero momentum.11 Connection
weights in all networks are initialised with random values between (−0.5, 0.5), the surface

10The threshold is lower than 0.5 to boost learning in early phases, when the WPSN does not yield good
predictions yet.

11The parameter values have been determined experimentally. Generally, the model is not very sensitive
to learning rates. We have experimented with several sizes of hidden layers and have chosen such that
yield the best performance at the lowest possible computational cost.
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context layer of the word sequencing network is initialised with random values from (0, 1).
In addition to that, before each new episode rehearsal, the word sequencing network makes
five ‘dummy’ passes on inactive episodic input (all zeros), which eliminate the influence
of the previous episode. (We use multiple passes to allow the SRN’s internal dynamics to
settle after the episode boundary; see Cernansky et al., 2007 for a similar operation.)

The model is trained for 30 epochs. (Its generation accuracy on the training set typically
reaches its maximum point some time before this, but we continue to train until its accuracy
on the text set begins to drop, indicative of overfitting; this can be discerned around epoch
30). The annealing/maturation parameter p of the phonological input buffer rises linearly
from 0 in the first epoch to 8 in the final epoch of training.

Recall that the complete network alternates between two different modes when process-
ing training sentences and when generating test sentences (see Sections 6 and 5.1). In one
mode, there are iterations in the episode rehearsal system, and in the other mode, there
are iterations in the word-sequencing network. Flow charts for the training and generation
algorithms showing the two modes are given in Figures 6 and 7.
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Figure 6: Training algorithm for the complete model. Abbreviations: PhInBuf—the phono-
logical input buffer (other abbreviations are explained in a legend to Fig. 7). The first call
of ‘advance ERS’ (*) puts the network into the C1a context/phase. Control network train-
ing (**) is skipped in the first developmental stage (before the control network goes online).
Also, the output of the CtrlN (***) is substituted with a random signal in that stage.
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opmental stage (before the control network goes online).
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Note that in the training algorithm, there is a forward pass through the WPSN in
each phase of episode rehearsal, generating a ‘predicted word’ to compare with the current
word in the training utterance and create the Boolean match signal which trains the control
network. In the generation algorithm, the control network is already trained, so there is
only a forward pass through the WPSN in contexts/phases where a word is to be overtly
pronounced.

6 Language generation in the complete network after

training

In the full network model, generating a sentence involves replaying an episode in the
episode-rehearsal system, and at various points during replay, pronouncing one or more
words (i.e. dispatching words to the phonological output buffer). A key issue in the
combined model is the synchronisation between the episode rehearsal and word sequencing
networks. Both these networks are iterative in nature: the episode rehearsal network
iterates through a sequence of sensorimotor signals, and the word sequencing network
iterates over a sequence of surface contexts/words. Sometimes these iterations should be
synchronised, so that each new sensorimotor signal results in a pronounced word. But
sometimes they are out of synch. There are occasions when a sensorimotor signal should
occur without any words being pronounced: these are the contexts in which the control
network has learned to ‘withhold’ a word, to conform to the abstract syntactic word-
ordering constraints of the exposure language. There are also occasions when multiple
words should be produced for a single sensorimotor signal: this is the case for idiomatic
constructions, as just discussed in Section 4.2. In our combined network, the control and
entropy networks jointly manage the synchronisation of the episode rehearsal and word
sequencing networks.

When training is complete, the combined network alternates between two modes of
iteration. In one mode, the episode rehearsal system iterates through a sequence of senso-
rimotor signals until it reaches an episode context and a phase at which the control network
allows a word to be overtly pronounced. Then it switches to the other mode, in which the
word production/sequencing network generates a prediction about the next word. If it can
confidently predict the next word (a decision based on the output of the entropy network),
the word is pronounced, the sequencing network updates its surface context layer and the
WPSN attempts to predict another word (from the same sensorimotor signal). Iteration
continues in this mode, with a static sensorimotor signal, until the WPSN can no longer
confidently predict the next word. Then the model switches back into the episode rehearsal
mode. The algorithm is described in detail in Section 5.2.

To illustrate, say that the system is given as input an episode in which Winnie the
Pooh grabs a cup. Assume this time that the system has been trained to produce an
SVO language (like English). The generation process involves replaying the sensorimotor
sequence encoding this episode, and generating a sequence of words. The representations
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computed during the first seven iterations of this process are shown in Table 5. Notice that
iterations can now be over surface contexts (denoted c1, c2 etc) as well as over episode-
rehearsal context/phases (C1a, C1b etc). The first sensorimotor signal is wtp (short for

Table 5: Processing involved in generating Winnie the Pooh grabs (the) cup. (We assume
the system trained on an SVO language, including the idiom ‘Winnie the Pooh’.) Only
the first three context/phases are shown.

Context/phase C1a C1b C2a
Surface context c1 c2 c3 c4 c5
SM signal wtp wtp wtp wtp grab-plan grab-plan cup
predicted next wd winnie the pooh ? grabs ? cup
confident? yes yes yes no yes no yes
control network ↓ ↓ ↓ ↓ ↓
output word winnie the pooh grabs cup

winniethepooh). From this signal, and the ‘start-of-sentence’ surface context (c1), the
WPSN can confidently predict the word winnie. Since the control network has learned to
pronounce words in context/phase C1a, this word is produced. Before a new context/phase
is established, the WPSN first updates to a new surface context (c2) to reflect the newly
produced word, and the WPSN predicts another word from the same sensorimotor signal
wtp. In the updated context, it now predicts the, again with high confidence, so this
word is also produced, and the WPSN update the surface context to c3. In this context,
the WPSN network predicts pooh with high confidence, and updates to surface context c4.
In c4, the WPSN can no longer confidently predict the next word. At this point, control
reverts to the episode-rehearsal network, which updates to context/phase C1b, in which
the sensorimotor signal grab-plan is activated. The control network for an SVO language
allows words to be pronounced in this phase, and the WPSN confidently predicts the word
grabs. (This word is consistent with the semantic signal, and is also commonly attested
following the surface word sequence Winnie the Pooh.) Now the WPSN updates to a new
surface context and attempts to predict another word, but it cannot: grabs is not part of
an idiom. So the episode-rehearsal system advances to the context/phase C1b, activating
the sensorimotor signal cup. The SVO control network has learned to pronounce words
in this context/phase, and the WPSN confidently predicts cup, so the last word in the
sentence is pronounced. As this example demonstrates, during sentence generation the
network alternates between updates in the episode rehearsal system and updates to the
surface context. Portions of the sentence generated when the surface context is updating
by itself reflect idiomatic surface structures in the exposure language. Portions generated
after an update in the episode rehearsal system reflect content-independent word-order
rules.

In our model, the phonological input buffer’s ability to replay utterances accurately
matures some time before the control network delivers reliable output. This creates a
sequence of three developmental stages. In the first stage (roughly before epoch 3–5), before
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the phonological input buffer has matured, the system can generate individual words, but
cannot learn word sequences, because it receives no sequential training signals. In the next
stage (from epoch 3–5 till 10–15), it can learn something about word sequences, but since
the control network is still unreliable, it cannot yet learn abstract syntactic rules. In the
final stage (from epoch 15), once the control network has matured, it can learn both word
sequences and abstract syntactic rules. Of course, vocabulary learning takes place during
all three stages. Very roughly, we see the first stage as modelling infants between 10 and 18
months, the second stage as modelling infants from 16 to 30 months, and the third stage
as modelling infants after 24 months.12

7 Training languages

The model we have just described has been implemented and tested on several artificial lan-
guages. One of these languages, with SVO word order, is described in detail in Section 7.1.
The other languages are described in Section 7.2.

7.1 Structure of the training languages

The model was trained on episodic representations paired with sentences from an artifi-
cial target language containing a mixture of idioms and syntactically regular sentences.
Although the sentences varied in their degree of idiomaticity, they were syntactically ho-
mogeneous in that they all were transitive (i.e. containing three semantic roles agent,
patient, action—“who did what to whom”). The reason for this is that we have a
detailed sensorimotor model of simple transitive actions (that of Knott, 2012). We will
introduce other syntactic constructions in due course.

A basic language we used for most of our experiments was an invented language with the
SVO word order, English vocabulary, English-like inflections on nouns signalling number,
and ‘rich’ inflections on verbs signalling the person and number of their subjects. The
inflections were represented schematically as a suffix on word stems, e.g. mummy-sg (a
singular noun inflection), see-3sg (a third-person singular verb inflection). Some words
had irregular morphology; we modelled these as words with null inflections (e.g. mice).
We also included an English-like system of pronouns, distinguishing person, number and
nominative/accusative case.

The core of our 105-word vocabulary consisted of words commonly used by 16-30 month-
old toddlers according to the Child Development Inventory (CDI, Fenson et al., 1994). The
grammar of our language allowed for regular transitive sentences and also for two types of
idiom (possible inflections not shown):

• continuous NP idioms (teddy bear, Winnie the Pooh, play dough, ice cream, french
fries),

12These age spans overlap to take into account individual differences between children, as well as the
continuous character of language development.
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• discontinuous VP idioms (kiss NP good bye, give NP a hug, give NP five).

Note that these idioms do not all have the same degree of idiomaticity. For instance give
NP a hug is not fully idiomatic; it contains a noun phrase (NP) ‘slot’ whose filler can
have arbitrary (accusative) NP structure. Rather they exemplify the spectrum of possible
idioms. However, there is some evidence that even phrases not considered idiomatic in adult
language could be learned by children first as surface patterns or item-based constructions
(Tomasello, 2003). Similarly, Pine and Lieven (1997) claim that although children use
determiners with different noun types, there is no evidence for them possessing an adult-
like syntactic category of determiners, which rather evolves gradually by broadening the
range of lexically specific frames in which different determiners appear. Therefore, we
omitted determiners (a and the) from our language, except for cases where they were part
of an idiom, as in give NP a hug or Winnie the Pooh.

The language also featured semantic dependencies, in that all subjects were animate,
some verbs could only be followed by animate objects, others only by inanimate objects.
It also contained synonyms and lexical ambiguities (the word give could be a part of either
give NP a hug or give NP five, the word hug could be a regular verb as in I hug-1sg you
or a part of the idiom give NP a hug and the word kiss could be either a regular verb
as in grandpa-sg kiss-3sg grandma-sg or a part of an idiom with a different meaning as in
grandpa-sg kiss-3sg grandma-sg good bye).

To allow for all mentioned phenomena, we made some extensions to the core CDI-based
vocabulary. Out of the idioms used in our language, CDI explicitly contains teddy bear,
play dough, ice cream, french fries and give me five. It also contains single words give, hug,
kiss, good, bye that we used in discontinuous idioms. We also added the word rabbit to
feature as a synonym of bunny, and the idiom Winnie the Pooh.

Utterances of the target language were generated from a context-free grammar speci-
fying syntactic constructions and words that could appear in specific positions (described
below). The rules for inflections were as follows:

• All proper names were singular. (Proper names include mummy, daddy, grandpa and
grandma.)

• The person/number of the verb agreed with that of the subject. (We did not include
tense inflections.)

• Nouns with irregular plural forms (e.g. mice), personal pronouns (I, you, he, she, it,
we, they, me, him, her, us, them) and words appearing as fixed parts of idioms (e.g.
winnie) all had null inflections.

Each target utterance was paired with an episode representation: a role frame associat-
ing agent, patient and action roles with sensorimotor signals. During training/generation,
the role frame description was used to generate a sequence of sensorimotor signals in the
episode rehearsal system (Table 2), while the target utterance was replayed from the phono-
logical input buffer. For example, the sentence We like-1pl mummy-sg was paired with the
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role frame description

AG:pron/1/pl, ACT:like, PAT:mummy/3/sg

while the sentence Winnie the Pooh-sg kiss-3sg Helen-sg good bye was paired with

AG:WinnieThePooh/3/sg, ACT:farewell, PAT:Helen/3/sg

Note that while in non-idiomatic sentences there is a one-to-one correspondence between
words and concepts, multi-word idiomatic phrases are still represented by single concepts.

All personal pronouns were represented by a single concept pron combined with an
appropriate person and number.

The grammar could generate 127088 possible sentences, out of which approximately
20% contained idioms (13% continuous NP idioms and 6.4% discontinuous VP idioms).13

To test the generalisation ability of the model, we only trained it on a small subset of all
possible sentences (approx. 3%).

Utterances in training and test sets for our SVO model subjects were stochastically
generated by the rules of a context-free grammar shown in Table 6. The rules were as-
signed different probabilities (not shown in the table) to ensure balanced generation and
a sufficient number of idiomatic sentences. Morphological inflections were then added,
respecting subject-verb agreement and irregular plurals.

Examples of sentences composed of single words, continuous idioms, and discontinuous
idioms (with morphological inflections added) are given below. Note that a discontinuous
VP idiom can be interleaved with a continuous NP one. Mummy-sg love-3sg me. I like-1sg
ice cream-sg. Helen-sg tickle-3sg Winnie the Pooh-sg. Grandpa-sg give-3sg grandma-sg a
hug. Daddy-sg kiss-3sg teddy bear-sg good bye.

7.2 Other languages with different word-ordering conventions

The basic language we have just described has SVO word order. To test the hypothesis that
our model can acquire any possible word order, we created five variant artificial languages
with SOV, VSO, VOS, OSV and OVS order. These languages were created by changing
the word-ordering rules in the SVO grammar, but retaining the same English vocabulary
and morphological rules.

8 Results

In all our experiments we used 10 simulated ‘model subjects’. Each subject was an instance
of our model with network connections initialised to different random initial weights, and
exposed to a its own training set containing 4000 stochastically generated sentences of the
target language, and a test set containing another 4000 sentences of the target language
(not present in the training set). In this way we modelled 10 individuals each with their

13A description of how the ‘degree of idiomaticity’ of utterances is determined is given in Section 8.4.1.
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Table 6: Transcription rules for the syntax of the language used in our simulations. All
non-terminals are written in all capital letters (TRANSITIVE is the initial non-terminal),
all terminals contain small letters. Period (.) is a terminal and stands for the sentence
boundary (SB).

TRANSITIVE → SUBJ VERB GEN OBJ GEN .
| SUBJ VERB INANIM OBJ INANIM .
| SUBJ VERB ANIM OBJ ANIM .
| SUBJ kiss OBJ ANIM good bye .
| SUBJ give OBJ ANIM five .
| SUBJ give OBJ ANIM a hug .

SUBJ → ANIM NP | S PRONOUN
OBJ GEN → OBJ ANIM | INANIM NP

OBJ ANIM → ANIM NP | O PRONOUN
ANIM NP → mummy | daddy | Samko | Mia | Helen | grandma

| grandpa | nanny | Winnie the Pooh | man | men
| woman | women | mouse | mice | fish | goose | geese
| dog | kitty | duck | bunny | rabbit | cow | pig | bug
| puppy | bee | monkey | teddy bear

INANIM NP → ball | book | balloon | toy | doll | block | crayon | pen
| play dough | ice cream | cookie | banana | apple
| cheese | cracker | bread | pizza | leaf | leaves | tooth
| teeth | french fries

S PRONOUN → I | you | he | she | it | we | they
O PRONOUN → me | you | him | her | it | us | them

VERB GEN → see | love | hold | bite | wash | hit | push | like | draw
| hide | kick | carry | watch | find | wipe | touch
| share | pull | lick | pick

VERB ANIM → kiss | tickle | hug | help | feed | chase
VERB INANIM → break | throw | buy | drop
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own personal history of exposure to the same target language. All the model subjects
were trained on their training sets for 30 epochs. The phonological input buffer was set to
mature at around epoch 5, and the control network’s output was mixed with a gradually
decreasing component of noise which accounted for 100% of decisions at the start of the
training (epoch 0) and decreased gradually to 0% at epoch 15 (for details see Section 5.2).
After each epoch, the weights were temporarily frozen and the models were tested for their
ability to correctly generate sentences for meanings paired with the sentences in their test
sets. The results were averaged over the 10 model subjects.

When charting the linguistic development of a child, several separate metrics must be
used, relating to vocabulary size, acquisition of surface language patterns, and acquisition
of fully mature syntactic and morphological rules. In this section we evaluate the learning
of our system using an array of metrics of these kinds.

8.1 Acquisition of open-class vocabulary

We begin by presenting some basic results about the model’s learning of individual words.
There are different ways this can be assessed. Most obviously we could simply inspect the
word-production network in isolation, and measure the number of word meanings which
are correctly mapped onto word forms. But it is more realistic to measure vocabulary
by inspecting the model’s output utterances. (This corresponds to the measure of ‘active
vocabulary’ used in studies of child language.) We defined the active vocabulary size of
the model in a given epoch as the number of word types which were produced correctly at
least once during that epoch. A word was deemed ‘correct’ if it matched at least one of the
semantic signals in the input episode (ignoring inflections). Active vocabulary development
for the 10 SVO model subjects is charted in Figure 8.14

As the figure shows, after an initial peak, active vocabulary size rises steadily and
asymptotes around epoch 11. By the end of this epoch, the model is correctly producing
all the words it can represent. The initial peak is an interesting effect, which has its origins
in the way the phonological input buffer matures between epochs 0 and 5. As this happens,
the entropy network temporarily becomes more conservative about producing words:15 the
drop in vocabulary size between epochs 2 and 4 is actually due to a drop in the number of
produced words rather than to any regression in the word-production/sequencing networks.

14We could also define vocabulary size as the number of word types which were always correct when
produced, or at least correct most of the time. In fact, because our model only produces a word when it
is confident about its correctness, it hardly ever produced incorrect words, so this definition produces a
graph very similar to that in Figure 8.

15The entropy network is trained by the ‘match’ signal which compares the WPSN output and the
current content of the phonological input buffer. As this content changes from parallel representation of
all words to one word at a time, the match criterion becomes more strict.
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Figure 8: Active vocabulary size after each training epoch. We define the active vocabulary
size of the model in a given epoch as the number of word types which were produced
correctly at least once during that epoch. The results are averaged over the 10 SVO model
subjects.

8.2 Acquisition of word-ordering conventions

A key novel element of our model is the control network, which learns the word-ordering
conventions of the training language. We predict that this network will be able to learn
any of the possible word orders. To test this prediction, we trained the model on the five
variant languages featuring SOV, VSO, VOS, OSV, OVS word orders as well as on the
original SVO language.

Acquisition of word-ordering conventions requires the control network to learn what
contexts/phases should be inhibited. To verify that the models have really learned the
conventions for all the word-orders, we inspected output values of the control network
for all contexts/phases during sentence generation on the test set for each language. The
results are shown in Figure 9. For each training language, the same inhibition pattern was
learned by each of the 10 model subjects: the learned inhibition patterns for the different
languages are shown more concisely in Table 7. In each case, the inhibition pattern led to
the right word-ordering convention; in other words, the control network learns a correct
policy in 100% of cases for each possible language.

Note that for some word orders there are multiple possible inhibition patterns which
give a correct result; for instance for SVO word order we could inhibit C2b–C4a, or C1a–
C2b. Our match-based training algorithm results in a ‘greedy’ strategy, where words are
pronounced on the first permissible occasion.
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Figure 9: Control network output values for each episode context recorded during training,
for model subjects trained on each language (averaged over 10 model subjects in each case).
For each training language, the network learns to return above-threshold values for contexts
where semantic signals should be pronounced and below-threshold values for those where
they should not. (The threshold is set at 0.3.) A summary of the learned inhibition
patterns for each language is given in Table 7.
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Table 7: Inhibition patterns learned by the control network for each word-order language
type. ‘↓’ means an above-threshold activity for a given context (the ‘pronounce’ signal),
‘—’ means an under-threshold activity (the ‘withhold’ signal).

SM signals in contexts
C1a C1b C2a C2b C3a C3b C4a

Lang. type AG ACT PAT ACT AG ACT PAT
SVO ↓ ↓ ↓ — — — —
SOV ↓ — ↓ ↓ — — —
VSO — ↓ — — ↓ — ↓
VOS — ↓ ↓ — ↓ — —
OSV — — ↓ — ↓ ↓ —
OVS — — ↓ ↓ ↓ — —

Since the control network only takes input from the context and phase representations
of the episode rehearsal system, we also predict that the word-ordering conventions it
learns will generalise well to episodes not encountered during training. We will test this
prediction in Section 8.4, when we evaluate the system’s ability to generate full sentences.

8.3 Acquisition of morphological agreement rules

Our model was also designed to learn morphological agreement rules. As discussed in
Section 3.1, these rules exploit structure in the ‘WM episode’ and ‘current object’ areas
of the episode-rehearsal system. The WM episode area, which delivers the semantics of
inflected verbs, conveys fine-grained information about a planned motor action to the lin-
guistic system, but also coarser-grained information about planned attentional actions to
the agent and patient. The current object area, which delivers the semantics of inflected
nouns, conveys information about an object, but also about the attentional action which
delivered this information. In our account, grammatical person and number features ex-
press coarse-grained information about attentional actions. The fact that this information
is present in WM episodes as well as in the current object area is what allows agreement
between verbs and argument nouns. In our model, an ‘agreement rule’ in a given language
is really just a policy about how much of this multiply presented information should be
explicitly conveyed by nouns and verbs. This is what the word production/sequencing
network must learn from the training language.

We define a word generated during by the system to be morphologically incorrect
if it incorrectly expresses person/number information. For a word with regular inflections,
this will mean an incorrect inflection; for an irregular word it will mean an incorrect word
stem.16 The graph in Figure 10 shows the proportion of the words generated in each epoch

16Using an incorrect pronoun (e.g. you instead of they) also counts as morphologically incorrect on this
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which were morphologically incorrect, averaged over 10 SVO model subjects.
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Figure 10: Proportion of words pronounced with morphological errors in sentences gen-
erated for meanings from training and test sets after each training epoch. Results are
averaged over 10 SVO model subjects.

The basic finding is that the model is successfully able to learn the morphology of the
training language. This involves learning about subject-verb agreement rules, irregular
plural nouns (e.g. leaves as the plural of leaf), and about the semantics of pronouns. How-
ever, it is also interesting to look at performance in relation to that of the control network.
The output of the control network is still dominated by noise at epoch 5. The network
clearly learns a good deal about morphology without help from the control network. But
its performance is clearly aided by learning in the control network.

Note that while the model architecture has a potential for representing over-regularisations,
e.g. leaf-pl (leafs) or tooth-pl (tooths), we hardly observed any of these.

8.4 Overall accuracy of generation

Can our model achieve mature linguistic performance, i.e. can it be trained to generate
fully correct sentences in the training language? We consider an utterance generated for
a given meaning to be correct if all the roles (agent, patient, action) are expressed with
semantically appropriate words, the sentence is syntactically correct (i.e. it complies with
the transcription rules) and all the words have correct morphology (inflections). And we
define the generation accuracy of a model being trained as the proportion of correct

metric, because the mistake relates solely to person/number information.
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utterances it produces, evaluated either in relation to its training set of meaning-utterance
pairs, or to an independent test set.
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Figure 11: The generation accuracy—relative number of correct sentences generated af-
ter each training epoch for meanings from the training set and an independent test set,
averaged over 10 model subjects trained on samples of the SVO language.

Figure 11 shows the generation accuracy of 10 model subjects trained on the SVO
language. As is very obvious, the control network, which accounts for more than 50% of
decisions since epoch 8, has a dramatic impact on generation accuracy: before it comes
online, the model produces almost no correct sentences, and by the time it is fully trained,
accuracy has improved to close to 100%. Before the control network has learned abstract
constituent-ordering rules, the model is not able to produce fully correct sentences. We
should stress that during this time the model is not ‘silent’: it is learning vocabulary and
surface word regularities, and it produces a range of single-word and multi-word utterances,
which often convey a good deal of the message to be expressed. We will analyse these pre-
syntactic utterances in more detail in Section 8.4.2.

One interesting feature of the model’s learning is that accuracy does not increase mono-
tonically: it undergoes small fluctuations. These are mainly caused by adaptations in the
entropy network, which has to modify its function as the other networks learn new mate-
rial. To prevent overtraining, we considered each model subject as fully trained in the
epoch in which it achieved the best generation accuracy on the independent test set.

On average, a model subject became fully trained after 18.8 training epochs (SD=1.47),
and at this point achieved 99.4% (SD=0.2%) generation accuracy on the training set and
97.7% (SD=0.4%) on the test set. Given that each model subject was only trained on 3%
of the training language, this suggests the network has very good generalisation abilities.
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This is largely due to the control network, whose word-ordering rules make no reference to
the semantics of particular words.

To further test our complete model’s ability to generalise away from the training sen-
tences, we created a new set of test sentences for each model SVO subject, each comprising
100 sentences which were not only unseen, but contained unseen pairings of actions and
patients, and accordingly, unseen transitions between verbs and objects. We generated
these by altering one of the selectional restrictions in the standard grammar, so that ac-
tions which normally require animate patients were given inanimate ones. This resulted
in sentences like Helen-sg tickle-3sg banana-sg and We hug-1pl pizza-sg. We let the 10
fully trained SVO model subjects described in this section generate sentences for meanings
in these new test sets. Their average generation accuracy was 84.1% (SD=3.8%). While
this is somewhat lower than their accuracy on ‘standard’ unseen sentences, it still provides
evidence that the rules our network learns generalise quite successfully away from token
words.

8.4.1 Acquisition of surface regularities (idioms)

The target language contained a mixture of syntactic patterns (produced by abstract
constituent-ordering rules) and surface linguistic patterns (expressing idiomatic construc-
tions). We were interested whether the model learned both types of pattern equally well.
We divided generated sentences into several groups: regular sentences—those that do not
contain any idioms; continuous NP idioms—sentences with an idiomatic noun phrase in
at least one of the agent/patient roles, and not containing a discontinuous verb idiom; and
discontinuous VP idioms—sentences containing an idiomatic verb phrase (regardless of
the presence or absence of continuous idioms in the sentence).

We measured the generation accuracy of fully trained model subjects for each group
separately; the results are shown in Figure 12. The model performs well for all sentence
types. Its high accuracy on discontinuous idioms is especially significant, given that these
constructions only feature in about 6.4% of the training sentences.17 The average genera-
tion accuracy on previously unseen episodes (test set) was 98.1% (SD=0.4%) for regular
sentences, 97.2% (SD=0.7%) for continuous idiomatic sentences and 93.1% (SD=2.9%) for
discontinuous idiomatic sentences.

It is interesting to examine how the model is able to generate discontinuous idioms. For
instance, consider Daddy-sg kiss-3sg me good bye. ‘Kiss X good bye’ is a pattern of words
collectively expressing the semantic signal farewell/3/sg, but production of this pattern
must be interrupted by production of the word me—which realises its own semantic signal,
pron/1/sg. Say the model has already produced the word Daddy-sg, and the episode-
rehearsal network has just presented farewell/3/sg for the first time. The WPSN will
confidently predict the first word of the idiom, kiss-3sg. But when the surface context is
updated, it is unable to make a confident prediction, since it needs information about the

17In a training epoch the model is exposed to around 250 (SD=15.9) discontinuous idiomatic sentences,
compared to 3235 (SD=28.1) non-idiomatic and 515 (SD=17.9) continuous idiomatic sentences (averaged
over 10 SVO model subjects). The figures for the test sets are similar.
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Figure 12: Generation accuracy of fully trained model subjects by idiomaticity type of
generated sentences. Reg—regular (non-idiomatic) sentences, Cont—sentences with con-
tinuous NP idioms, Disc—sentences with discontinuous VP idioms.

patient at this point. So we update the episode-rehearsal network until the context/phase
which presents the patient signal, pron/1/sg. At this point the WPSN can confidently
predict me. The important thing is that we now update the surface context, to give the
WPSN an opportunity to generate an idiomatic continuation. And in fact the WPSN can
confidently predict good and then bye, the remainder of the discontinuous idiom. This
is mainly due to learning in the sequencing network. Recall that this network receives
a sequence of word meanings as inputs, and learns to represent the relevant recently-
presented word meanings in its context layer. So even though its current semantic input is
some arbitrary object representation, its context layer still holds a record of the semantics
of the partially produced idiom. Moreover, it knows that . . . me good bye is a common
word sequence. This knowledge is sufficient for it to be confident about predicting good
and then bye.

8.4.2 Early syntactic development

Before the model learns to correctly generate sentences with full-fledged syntax, it produces
a range of single-word and fragmentary multi-word utterances. In this section we will look
at these. The discussion will focus on development of word-ordering rules.

Figure 13 shows the proportions of utterances of length 1, 2, 3 and over 3 words
generated for meanings in the test set after each training epoch. We can see that before the
control network starts to significantly participate in decision making, one-word and two-
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Figure 13: Proportion of sentences of the length n among sentences generated for an
independent test set after each training epoch. Results are averaged over 10 SVO model
subjects.

word utterances predominate. As the control network starts to take over after epoch 7,
the model produces more utterances containing three or more words (and these utterances
become more likely to be correct, as already shown in Figure 11).

In early development, single-word utterances can reflect any aspect of the meaning to
be expressed: agent, patient or action. Two-word utterances often reflect two components
of meaning; in these cases they mostly have the form S V or O V (where S, V and O realise
the agent, action and patient respectively). Sometimes they are idiomatic expressions
reflecting the agent or patient (e.g. teddy bear). Sometimes they reflect an agent or patient
and an action, but contain a fragment of an idiom (e.g. teddy tickle). And sometimes they
result from the (incorrect) repetition of a word.

Interestingly, the system’s earliest semantically productive multi-word utterances ap-
pear to reflect ‘item-specific’ rules for word combination—i.e. rules which are tied to partic-
ular individual words. As already noted, children’s early uses of grammatical constructions
are typically item-based (see e.g. Pine and Lieven, 1997; Lieven et al., 1997; Tomasello,
2003). For instance, a child’s first utterances productively combining a transitive verb with
an object noun typically involve particular verbs, rather than all the transitive verbs in the
child’s vocabulary (Lieven et al., 1997). Something similar occurs in our system. We anal-
ysed the set of verb-noun constructions generated by the system at each epoch of training
in the SVO language.18 We investigated whether there was a bias towards particular verbs

18A verb-noun construction was defined as a pair of consecutive words correctly expressing either the
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in verb-noun constructions by finding the verb which appeared most frequently in these
constructions and comparing the frequency of the constructions featuring this verb with the
average frequency of constructions featuring other verbs. Results are shown in Figure 14.
As the figure shows, at around epochs 5–6 the most frequent verb combines with nouns
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Figure 14: Ratio of the frequency of verb-noun constructions featuring the most common
verb to the average frequency of verb-noun constructions featuring other verbs, recorded
on the test set for the SVO language, at each epoch of training. (Results averaged over all
10 model subjects.)

around 3 times more often than an average verb. This ratio decreases to around 1.5 after
epoch 10, and it stays at this lower level for the remainder of training. The asymptote
of 1.5 probably reflects sampling biases towards particular concept combinations in the
training set. The fact that the ratio is much larger earlier in training is a clear indication
of the item-specific character of the network’s early verb-noun constructions.

The system’s item-specific constructions early in training reflect the influence of the
word-sequencing network on generation before the control network is fully mature. When
the control network is mature, it supports the generation of arbitrary verb-noun combi-
nations, even entirely new combinations of action and patient, as shown in Section 8.4.
But before it is mature, the task of generating these combinations falls partly to the word-
sequencing network—which learns patterns which make reference to particular words. As
the control network matures, it takes over responsibility for generating these patterns, and
the sequencing network retains responsibility only for idiomatic constructions.

agent and action, or the action and the patient of the episode to be communicated, in the order required
by the SVO language: examples would be teddy tickle or tickle teddy. (Morphology was ignored, and we
excluded episodes where the same object was the agent and the patient from the analysis.)
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One final interesting feature of the ‘mature’ stage of language production after epoch
15 is that our model sometimes uses idiomatic forms to express productive combinations
of concepts. For instance, the SVO model subjects sometimes generated a verb in con-
text/phase C1b, as normal, but then continued to generate the object in this same con-
text/phase, before the semantic signal for the object had actually been delivered. This
happened in around 4% of utterances. We surmise that the behaviour is due to sampling
biases in the training set, which caused certain concepts to be combined in predictable
ways. For instance, it may be that in a certain training set, if the agent was mummy and
the action was eat, the patient was always pizza. In such a case, our system could gen-
erate pizza as an idiomatic continuation of Mummy eats.19 Something similar may happen
in humans when expressing messages whose components combine with particularly high
frequency (e.g. How are you doing?, Get out of here! etc). In fact, it has often been sug-
gested that idioms have their origin in this kind of over-representation of particular concept
combinations. It is interesting to see our network learning to express such combinations
using surface word patterns.
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