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Consistency of polychronous neural group activation
supports a role as an underlying mechanism for
representation and memory: detailed methods and
results

Mira Guise*, Alistair Knott, Lubica Benuskova

Dept of Computer Science, University of Otago, Dunedin

Abstract

Izhikevich (2006a) has proposed that certain strongly connected groups of neurons known as polychronous
neural groups (or PNGs) might provide the neural basis for representation and memory. Polychronous
groups exist in large numbers within the connection graph of a spiking neural network, providing a large
repertoire of structures that can potentially match an external stimulus (Izhikevich, 2006a; Izhikevich
et al., 2004). In this paper we examine some of the requirements of a representational system and test
the idea of PNGs as the underlying mechanism against one of these requirements, the requirement for
consistency in the neural response to stimuli. The results provide preliminary evidence for consistency
of PNG activation in response to known stimuli, although these results are limited by problems with the
current methods for detecting PNG activation.

Keywords: spiking network, polychronous neural group, activation,
representation, memory

1. Introduction

It is widely assumed that synaptic plasticity provides the neural basis for
long-term memory in the brain (Abraham, 2008; Caporale and Dan, 2008;
Martin et al., 2000) although the precise nature of the underlying represen-
tation is still unclear (Caroni et al., 2012). Izhikevich (2006a) has proposed
that certain strongly connected groups of neurons known as polychronous
neural groups (or PNGs) might provide this representational mechanism.
Polychronous groups exist in large numbers within the connection graph of
a spiking neural network, providing a large repertoire of structures that can
potentially match an external stimulus (Izhikevich, 2006a; Izhikevich et al.,
2004). In this report we examine some of the requirements of a representa-
tional system and test the idea of PNGs as a mechanism of representation
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against one of these requirements, the requirement for consistency in the
neural response to stimuli.

Polychronous groups exist as distributions of synaptic weights and ax-
onal lengths in the network structure. In order for these structural PNGs
to provide the basis of a representational system they must be capable of
activation in response to stimuli. Activation of structural PNGs is limited
to those that match the input pattern (Izhikevich, 2006a) and produces dis-
tinct spatio-temporal patterns in the network firing data known as activated
PNGs (Martinez and Paugam-Moisy, 2009). When activated, the neurons
in the polychronous group are said to polychronize in a causal chain of firing
events that generates a reproducible and precisely timed response pattern
(Izhikevich, 2006a; Izhikevich et al., 2004). Analysis of the firing response to
stimuli should therefore allow the detection of PNG activation and may also
allow the original stimulus to be inferred.

Izhikevich (2006a) observed that the number of PNGs in the network is
typically many times larger than the number of neurons. Given this large
repertoire of structural PNGs, how might we use it to build a representational
system? Several attributes immediately present themselves as necessary for
a robust system and we will refer to these with the terms selectivity, consis-
tency, stability and capacity. A selective system produces a neural response
to a stimulus that is sufficiently specific to allow the unique identification
of the stimulus. A consistent system is able to dependably produce PNG
activation on every presentation of the stimulus. A stable system is able to
maintain a long-term representation, and a system with good capacity allows
a biologically plausible number of representations.

The selectivity of the neural response to repeated stimulation has been
previously examined by Izhikevich in an experiment that tracked the evolu-
tion of polychronous groups in response to one of two input patterns (Izhike-
vich, 2006a). Specific structural groups were found to evolve in response
to each input pattern although only a subset of these groups was activated
on each presentation of the pattern. Importantly, different groups were ac-
tivated for each pattern, suggesting that the underlying structural groups
might provide a unique long-term representation of each pattern.

Although this experiment provided some initial evidence in support of
selective PNG activation, it did not address any of the other attributes nec-
essary for a representational system based on polychronous groups. In addi-
tion, the method used in Izhikevich (2006a) for measuring PNG activation is
not described, providing some hurdles to the reproduction of these results.
The experiment described below employs a template matching technique for
detecting PNG activation that is described in detail. In the remainder of this
report we will focus on the requirement for a consistent representational sys-
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Figure 1: The ascending and descending patterns: each spatio-temporal in-
put pattern is composed of 40 firing events. Note that both patterns share
the same neurons, differing only in the temporal order of their firing events.

tem, using the pattern-specific activation of polychronous groups to measure
the dependability of the neural response to known stimuli.

2. Methods

Twenty independent networks were created for these experiments, each
composed of 1000 Izhikevich neurons (800 excitatory and 200 inhibitory) with
parameters as described in Izhikevich (2006a). The networks were matured
for two hours by exposure to 1 Hz random input generated by a Poisson
process. Following maturation, the networks were trained on one of two
input patterns or were left untrained. The current experiments reproduce
the few known details of the repeated stimulation experiment described in
Izhikevich (2006a), namely a twenty minute training period, and the use of
an ascending or descending input pattern as the stimulus (see Fig. 1).

The technique used by Izhikevich (2006a) for detecting PNG activations
in the firing data was not described and therefore needed to be redeveloped
from the beginning. It was clear that this technique needed to discriminate
pattern-specific PNG activations from unrelated PNG activations, and from
other spiking events generated by the network. The original method was
assumed to make use of the Izhikevich search algorithms (Izhikevich, 2006b)
to find structural PNGs in the network, suggesting the use of a template



matching technique for the detection of PNG activation.

This assumed template matching technique is reproduced as follows: first,
a network is trained with a specified input pattern; next, pattern-specific
structural PNGs are isolated from the network using one of the PNG search
algorithms; and finally, the isolated PNGs are used as spatio-temporal tem-
plates to match the firing data. For convenience, the experiment is split into
multiple phases: in an initial training phase, the network is repeatedly stim-
ulated with the ascending or descending pattern at 5 or 25 Hz for twenty
minutes; in the following test phase of the experiment, the network is stimu-
lated with the same ascending and descending patterns at 1 Hz and pattern-
specific templates isolated during the training phase are used to probe for
group activation.

Throughout the training phase, the isolation of pattern-specific templates
occurs at one minute intervals over the course of training. Note that the
identification of pattern-specific templates in the training phase requires the
use of a modified version of the PNG search algorithm that confines the search
to groups that are triggered by input pattern firing events. Combinations
of these firing events from the input pattern are tested for their ability to
initiate PNG activation (see the Detailed Methods section for more details).
For performance reasons, the PNG search algorithm limits these triggering
spatio-temporal patterns to combinations of three firing events, a triplet.

The test phase involves scanning the stream of firing events generated by
the stimulated network for template matches. For each temporal offset in
the network firing data, each of the templates is matched in sequence (using
a matching threshold of 50% and jitter of + 2 milliseconds) and successful
matches are saved to a file. The use of a 1 Hz stimulation frequency in the
test phase creates a well-defined temporal frame for each stimulus and its
response. Stimulus onset occurs at ¢ = 0 in each one second response frame,
and the remainder of the frame has sufficient temporal length to include
all of the firing events in the resulting neural response. Note that a 1 Hz
random background pattern is also presented throughout each test period.
Additional method details can be found in the Detailed Methods section.

3. Results

Together the training and testing phases of the experiment produce a
large set of data that supports multiple analyses. Training phase data pro-
vides a view of the evolution of structural PNGs in response to the stimulus,
while test phase data provides a snapshot of the process of PNG activation.
Figure 2 uses a combination of both datasets to show a selection of the match-
ing templates following low-intensity (1 Hz) test stimulation of a network.
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Figure 2: A selection of ten templates that match the firing data following
stimulation with the ascending input pattern. The x- and y-axes for each
template represent time in milliseconds and neuron index respectively (the
y-axis is ordered so that inhibitory neurons are at the top of the graph).
Nodes depict firing events generated by excitatory or inhibitory neurons and
are drawn using either open circles (excitatory neurons) or gray-filled circles
(inhibitory neurons). Lines between nodes represent causal connections be-
tween firing events. The network was trained on the ascending pattern at 5
Hz.

These matching templates are sampled from a larger pool of pattern-specific
templates whose initial firing event triplets correspond to some triplet com-
bination from the ascending input pattern. Each of the templates in Figure 2
therefore has an upward-sloping initial triplet reflecting its isolation from a
network trained on the ascending pattern. Each group consists of multiple
convergent connections that support the propagation of neural firing across
the members of the group before terminating at an inhibitory neuron (gray-
filled circles).

Temporal alignment of just these initial triplets (and with all other firing
events removed) produces sloping firing patterns that can be seen in Fig. 3.
The gray-scale intensity in this figure encodes the number of times the corre-
sponding firing event acted as a trigger for the initiation of PNG activation,
where activation was measured by the number of matching templates accu-
mulated across twenty independent networks. The figure therefore provides
a picture of which of the input pattern firing events succeeded or failed at
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Figure 3: The initial triplets from all templates that match the ascending
input pattern (left) or the descending input pattern (right). The first three
firing events from each matching template were extracted and aligned in
order to show the coverage of the input pattern firing events. Firing events
are represented by filled circles; the intensity of the fill color for each firing
event represents the number of templates that matched PNG activations
triggered by the event. This number, accumulated across twenty independent
networks, is greatest in the early stages of each input pattern (darker fill
color) and decreases in later stages of the input pattern (lighter fill color).
The missing firing events in the later stages correspond to input pattern firing
events that failed to initiate a group response during the test period.

initiating PNG activation. As we can see, many of the forty firing events that
make up each input pattern failed to initiate a responding group over the ten
minutes (six hundred response frames) of the testing phase. Significantly,
the majority of these failures are clustered in the later stages of the input
pattern, suggesting that group response is concentrated on the early part of
each stimulus presentation.

Nevertheless, the PNG activation response as a whole shows a high degree
of consistency. Figure 4 shows the activation response of forty networks
(twenty trained and twenty untrained) in the first one hundred seconds of
the ten minute test run (only the first 100 of 600 response frames are shown
in Fig. 4). The stimulus is presented at the start of each frame and any
templates that match the firing events in the remainder of the frame are
taken as evidence of PNG activation. Each row in Fig. 4 represents a single



network and is divided into one hundred segments representing each of the
one hundred response frames. The presence of a filled circle in each segment
indicates the detection of a PNG activation response in the corresponding
response frame. If there was no response, or the method was unable to detect
the response, the segment is left empty.

The first 25 frames in this experiment used the ascending pattern, the
next 25 used the descending pattern, the third group of 25 frames repeated
the use of the ascending pattern, and in the final 25 frames no input pattern
was provided (the null pattern). Using a combined pool of all templates to
measure the PNG activation response, the twenty trained networks at the
top of Fig. 4 show a consistent response to the ascending pattern but little
or no response to the descending pattern or the null pattern. In contrast,
the twenty untrained networks at the bottom of Fig. 4 show only sporadic
activation and no apparent correlation with the type of input pattern. Com-
paring the activation response of the trained networks with the response of
the untrained networks, we see a high degree of consistency in the response
to the ascending pattern only where the network has been previously trained
on the ascending pattern.

Using the template matching method there is a trade-off in specificity
versus sensitivity in using either a single template, or a combined group
of templates. A single template has a lower probability of matching the
network’s firing response to a random spatio-temporal input pattern, and is
therefore more specific than a set of templates. However, a combined pool of
templates is more likely to match some part of the firing response providing
greater sensitivity. In the next figure we compare the activation results of
the single best template for each network with the results using a combined
pool of all templates for that network. The best template for each network
is the template with the most matches over the entire test period.

The PNG activation response using a combined pool of all templates is
shown at the top of Fig. 5 while the response to the best single template is
shown at the bottom of the figure. The activation response in this figure was
measured on networks that had been trained and tested on the ascending
pattern, although a similar result is seen for networks that were trained and
tested on the descending pattern (results not shown). The results for the
combined templates suggest a high degree of response consistency across all
networks, with PNG activation detected in nearly every response frame. Con-
sistency in the activation response can also be seen in some of the networks
when PNG activation is measured using the single best template, although
there is considerable variation between networks.

In order to quantify the results it is useful to calculate the number of
response frames that record a template match as a proportion of the total
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Figure 4: The PNG activation response of twenty trained networks and
twenty untrained networks over one hundred response frames. A single stim-
ulus was provided in each frame and the network response was measured.
A filled circle represents a positive response to the stimulus while an empty
space denotes a lack of response. Four different input patterns were used
as stimuli in this experiment: the stimulus for the first and third quarter
of the one hundred frames was the ascending pattern and the stimulus for
the second quarter was the descending pattern. No stimulus was provided in
the fourth quarter (null pattern) although a 1 Hz random background was
present in all frames. The response in each frame was measured using the
template matching method and a combined pool of all templates. The top
figure shows the measured response for a network trained on the ascending
pattern at 5 Hz and the bottom figure shows the result using an untrained
network. The trained networks in the top figure were derived from the un-
trained networks in the corresponding row of the bottom figure.
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Figure 5: Measurement of the PNG activation response using either a com-
bined pool of all templates or the single best template for each network. The
PNG activation response to the ascending input pattern was measured over
one hundred frames on twenty networks trained on the ascending pattern at
5 Hz. The top figure shows the measured response using a combined pool
of all templates and the bottom figure shows the result using a single tem-
plate, the best (highest responding) template for each network. Test data
was generated using the twenty trained networks used for Fig. 4. A filled
circle represents a positive response to the stimulus while an empty space
denotes a lack of response.



number of frames (the template match ratio). When calculated for each
frame, the match ratio provides a measure of the empirical likelihood of
a PNG activation given the stimulus. However, the template match ratio
can also be calculated at a finer temporal resolution, providing an empirical
measure of the likelihood of a response at each temporal offset in the response
frame following the stimulus. Using this procedure provides some insight into
the temporal evolution of PNG activation following the stimulus and allows
the delay between stimulus onset and PNG activation to be determined.

To compute this measure, each one second response frame is sliced into
1000 consecutive sub-frames and the number of template matches at each one
millisecond sub-frame is counted. The template match ratio for each offset is
then computed by aggregating the number of matches for each offset across
all response frames. Using this procedure we expect to see an isolated peak
in the number of matches at a short delay following the stimulus at time
t = 0, reflecting the transient activation of a responding PNG. However,
due to limitations in the template matching method the delay can only be
calculated to within half the length of each template (i.e. +15 milliseconds),
depending on where on each template the match occurs.

Figure 6 shows the template match ratios for each network distributed
over the first twenty sub-frames of each response frame. As predicted there is
an isolated peak that consistently occurs in the first ten milliseconds following
the stimulus. Within this small temporal window the likelihood of a template
match typically reaches 50% or more, indicating that PNG activation is in
full swing. As PNG activation comes to an end, the likelihood of a template
match decreases to zero and remains at zero for the remainder of the response
frame.

We can also measure the template match ratio at the level of each frame.
The proportion of response frames in which a PNG activation is detected
provides an overall measure of the empirical likelihood of a response given the
presentation of a known stimulus at the start of each frame. Figure 7 shows
this response likelihood for each of the trained networks in Fig. 5. As before
the response measured using a combined pool of templates is shown in the
top of the figure, and the response as measured using the single best template
is shown in the bottom of the figure. The template match ratio as a measure
of the response likelihood is represented by the vertical axis. Although the
ratios computed from the single best template are quite variable, many of
the networks respond with a near perfect consistency (i.e. a template match
ratio of 1.0) when measured using combined templates.

Although these positive results support the consistency of PNG activa-
tion, it is worth noting that the majority of templates are ineffective in match-
ing the firing data. Here, we define an effective template as one that is able to
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Figure 6: Template match ratios distributed over each one second frame
for each of twenty independent networks. The template match ratio was
computed for each one millisecond slot in the response frame, accumulated
over multiple frames. The response for each network is confined to the first
ten milliseconds following the stimulus and therefore only the first twenty
milliseconds of the frame are shown. The network ordering is top-to-bottom
and left-to-right allowing comparison of individual networks across Figs. 5,
6 and 7. Each network was trained on the ascending pattern at 5 Hz and
tested on the same pattern at 1 Hz. Note that the data shown here does not
show the precise temporal offset of PNG activation relative to stimulus onset
as this will depend on whether each template matches at the beginning or
near the end of the template.
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Figure 7: The template match ratio for each of the trained networks in Fig. 5.
The template match ratio measures the number of frames in which a template
matched as a proportion of the total number of frames. A template match
ratio of one indicates perfect consistency in the response to the repeated
stimulus. Each network was trained on the ascending pattern at 5 Hz and
tested on the same pattern at 1 Hz.
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Figure 8: Comparison of the total number of templates and the number of
templates that found a match. Results for the ascending pattern are shown
in the left figure and results for the descending pattern are on the right.
Each bar shows the number of templates averaged across twenty independent
networks. Error bars show the upper and lower confidence limits relative to
the sample mean (99% confidence interval).

match the firing data at least once during a ten minute period of stimulation
with the corresponding input pattern. Figure 8 shows the mean proportion
of effective templates relative to total templates for both the ascending and
descending input patterns and their corresponding templates. The average
number of pattern-specific templates isolated from networks trained on the
ascending input pattern (averaged across twenty independent networks) is
152. Of these an average of 49 templates were effective at finding a match
over a ten minute period of stimulation with the ascending pattern. The
results for the descending pattern are similar with 143 templates in total,
of which only 62 found a match. Hence, only 32% of ascending templates
and 43% of descending templates were effective at finding a match. It is also
worth noting the high variability in template matching performance between
networks. As shown in Fig. 9 some networks average as few as three matches
in each response frame, suggesting that the template matching method is
near to the limit of sensitivity for some networks.
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4. Discussion

The template matching method attempts to match spatio-temporal tem-
plates derived from the structural PNGs found in a trained network with the
sequence of firing events that are produced when the network is stimulated
with the same pattern. For the purposes of this experiment the scope of the
PNG search algorithm was limited to searching just for templates derived
from triplets that are some combination of the input pattern firing events.
These firing event triplets are spatio-temporal triggering patterns that evoke
a group activation response. The pool of pattern-specific templates that were
generated in the training phase of this experiment are therefore all able to be
activated by triggering patterns consisting of just three firing events taken
from the input stimulus. We can imagine that groups exist in the network
that require larger, more complex, triggering patterns although it seems likely
that the probability of finding groups with larger triggers decreases with the
size of the triggering pattern.

Templates that match the firing data such as those shown in Fig. 2 provide
an impression of the corresponding PNG activations that occur in the mil-
liseconds following each stimulus. However, looking at a selection of matching
templates creates only a partial picture of the complex pattern of neural fir-
ing in response to spatio-temporal stimuli. Visualization of all of the PNG
activations that are initiated by combinations of firing events from the input
pattern produces a complex graph in which individual PNGs interact and
merge (results not shown).
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Izhikevich et al. (2004) has proposed that competitive interactions occur
within the network, with neurons that are shared by multiple PNGs synchro-
nising their firing times with different polychronising pathways at different
times. However, cooperative interactions are also possible in which firing
events generated by separate PNG activations together produce the required
spatio-temporal initiators for additional PNG activations. The emerging
picture is one in which the activation response to complex stimuli is a com-
position of individual PNG activations that interact and merge in a complex
manner.

Interestingly, all of the templates that found a match in the neural re-
sponse were initiated by triplets made up of firing events from just the early
portion of the input pattern. This effect was found across all networks and for
both the ascending and descending input patterns. A possible explanation is
that competition during PNG formation for use of shared neurons creates an
interference effect between early PNG activations and those that come later,
with the earlier activating groups forming first and therefore dominating the
available neural resources.

This explanation has implications for the maximum number of simulta-
neous activations that a network of a given size is able to support, and might
in turn impact the maximum number of representations that can simultane-
ously be “held in mind” in a representational system based on polychronous
groups. However, note that this explanation does not contradict the extraor-
dinary potential capacity of a PNG-based representational system (Izhike-
vich, 2006a) because any potential limitation in the number of simultaneous
activations supported by a representational system does not necessarily af-
fect the network capacity i.e. the total number of representations that can
be stored within the network.

Despite any interference caused by interactions between simultaneous ac-
tivations, the template matching method provides good support for the con-
sistency of a PNG-based representational system. Using a combined pool of
all templates, one or more template matches are detected in almost every
response frame, suggesting a consistent PNG activation response following
each presentation of the stimulus. The best single template for each net-
work is also able to show quite a high degree of consistency although most
individual templates match only rarely.

Computing the template match ratio for each one millisecond time-slot in
the response frame shows that all matches are confined to a narrow temporal
window following each stimulus presentation (see Fig. 6). This strong inter-
action between the time of the stimulus and the time of template matching
supports the view that template matching reflects the causal relationship
between stimulus onset and subsequent PNG activation.

15



Summing the template match ratio across all response frame timeslots
and across all response frames produces an aggregated result that reflects
the empirical likelihood of PNG activation given the stimulus. With the
combined templates, this likelihood value approaches certainty for many of
the networks (see Fig. 7), although there is considerable variation between
networks.

Together these results indicate a high degree of consistency in the PNG
activation response following a stimulus. However, despite this consistent
response there are occasional response frames where no neural response is
detected, despite the presence of a known stimulus. The lack of a detectable
response does not mean that PNG activation did not occur and may instead
be due to limitations in the template matching method. Examination of
the precise timing of the firing events in consecutive response frames shows
considerable jitter in the spike times of PNG neurons between frames (results
not shown) and competition for neural resources between activating groups
may increase this jitter to the point where the corresponding template fails
to match.

The lack of tolerance of the template matching method to temporal jit-
ter is just one of the flaws of this method for detecting PNG activations.
Although this technique is able to respond selectively to substantially dif-
ferent stimuli (e.g. discriminating between the ascending and descending
patterns, or the ascending and null patterns in Fig. 4), the low matching
threshold potentially allows templates to match unrelated spatio-temporal
patterns and the template matching method may therefore have difficulty in
resolving stimuli that are too closely related.

Another problem with the template matching method is that it treats
matching as a local process when it is likely to be a global one. The neural
response to a complex stimulus is a unique set of PNG activations; it is
therefore the set as a whole and not individual activations that provide a
unique signature of the stimulus. Given a set-oriented view of the neural
response, if a single template happens to match a single PNG activation,
does this provide good evidence of the presence of the stimulus? For example,
two stimuli with partial overlap in their spatio-temporal firing patterns could
both match the same template and the two stimuli would therefore not be
resolvable. In recognition of a set-oriented view of the neural response, the
template matching method makes use of a pool of templates that are able
to detect multiple PNG activations. However, the current method does not
take into account the number of unique matches in each response frame and
is therefore unable to counter the problem of overlapping stimuli.

Each of the templates generated in the training phase contribute to the
time it takes to scan the firing data in the testing phase. It is therefore a
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problem that the majority of templates are ineffective, with less than half
of the templates ever able to generate a match. Although the single best
template for each network matches the neural response very consistently, the
majority of templates that match at all do so only rarely. In addition, the
number of matches in each response frame is sometimes very low suggesting
that this method is close to the threshold for maximum sensitivity for some
networks. For example, although the trained network in the bottom row of
Fig. 4 (Network 1) shows a high degree of consistency, the evidence for most
of these PNG activations comes from only a few matches and in some cases
just a single match. In contrast, the templates from the best performing
network averages more than thirty matches per frame (see Fig. 9 for the
average number of matches per frame for each network).

It is likely that Izhikevich (2006a) used a similar technique to show se-
lectivity in the neural response, despite the flaws of the template matching
method. The issues with this method, while limiting the scope and accu-
racy of the current results, do not invalidate our overall finding. Here we
provide preliminary evidence for the consistency of PNG activation in re-
sponse to stimuli, suggesting that polychronous groups may be able to meet
at least one of the necessary criteria for a representational system. The neu-
ral response to complex stimuli appears to involve multiple interacting PNG
activations suggesting that an alternative method for measuring the neural
response must treat any single PNG activation as only partial evidence in
favor of a particular stimulus. Work is in progress on such an alternative
technique that will address these limitations.
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Figure 10: Input stimulation patterns used in the PNG activation experiment
at 1, 5 and 25 Hz. Note that the 25Hz pattern is continuous in that at least
one input pattern neuron is fired in every millisecond.

5. Detailed Methods

The methods in this report are described via a series of scripts that allow
the reproduction of each experiment. Execution of these scripts requires the
installation of the Spinula software package (Guise et al., 2013), a small suite
of dynamic link libraries that provide functions for network construction,
execution and analysis.

There is one script each for the training and testing phases of the ex-
periment and a modified version of the testing phase script that supports
the use of multiple input patterns. An additional script is used to generate
structural descriptions of each matching template for the purpose of visual-
izing the PNG structure. All experiments were performed on a set of twenty
independent spiking networks, each composed of 1000 Izhikevich neurons
with parameters taken from Izhikevich (2006a). The stimuli used in these
two phases (at either 1, 5 or 25 Hz) are shown for the ascending pattern in
Figure 10.

5.1. Training Phase

The primary purpose of the training phase was to train each network on
a selected input pattern so that subsequent exposure to that pattern would
produce PNG activation. The training phase began with twenty untrained
networks that had previously been matured for two hours in the presence of
1 Hz random background stimulation. Each of these networks was trained
with either the ascending or descending input patterns at either 5 Hz or 25
Hz for 20 minutes with continuous 1 Hz random background stimulation. At
the end of the training period the network state was saved for use in the
testing phase of the experiment.
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Structural groups were accumulated over the course of the training phase
for later use as templates to probe for group activation. At regular intervals
during training the network was scanned for these templates and the accu-
mulated templates were saved to a file. The search for templates used the
slower, more precise version of the Izhikevich search algorithm (Izhikevich,
2006b) although a modified version of this PNG search algorithm was created
to confine the search to pattern-specific structural groups.

5.1.1. Pattern-specific templates

The Izhikevich search algorithms find structural PNGs in the network by
searching for spatio-temporal triplets of three neurons whose non-synchronous
firing is able to trigger a causal chain of firing along pathways of a minimum
length. One such triplet in the ascending pattern is (1, 1), (2, 21), (3, 41)
where each tuple is of the form (time, neuron index).

By default, the search algorithms find all structural PNGs in the net-
work that are initiated by triplets composed from any combination of three
neurons in the network. If the network has been previously trained on a
known pattern then it is assumed that some of these structural groups will
be pattern-specific such that presentation of the pattern will produce group
activation. In order to select these pattern-specific PNGs we restrict the
search algorithm to the use of triplet initiators that are subsets of the input
pattern. Although the search for theoretical PNGs is based on triplets only,
it is likely that other pattern-specific groups could be found if the search
was extended to include larger combinations e.g. quintuplets etc. It is also
worth noting that, in addition to these pattern-specific groups, the network
structure may also simultaneously contain many thousands of groups that
respond to spatio-temporal patterns unrelated to the input pattern.

5.1.2. Training phase script

A script that implements the training phase of the experiment is shown
in Listing 5.1. The first argument to the script is the pattern type (ascending
or descending) followed by the input pattern stimulation frequency and the
background stimulation frequency. The next argument specifies the path to a
state file representing a mature network state, and the remaining arguments
set the output folder, where the trained network and the isolated structural
PNGs will be saved, and the base name from which the names of save files
will be derived.

Lines 13 and 14 of the training phase script define the network specifier.
We will use this specifier to load a mature network state and then run this
network in the presence of coherent stimulation. All possible triplet combi-
nations are generated from the input pattern in lines 19 to 22. Note that the
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rainWithCoherentStimulation patternType patternStimulationsPerSecond backgroundFrequency
stateFilePath pathToOutputFolder basename =

let numExcitatoryNeurons = 800
let numInhibitoryNeurons =
let numSynapsesPerNeuron = 100
let maxDelay = 20

let runSeconds = 1200

let savestate = true

let networkSpecifier = new IzhikevichNetworkSpecifier (
numExcitatoryNeurons, numInhibitoryNeurons, numSynapsesPerNeuron, maxDelay)

let patternStep = if patternType = InputPatternType.Ascending then 1 else -1

// single repeat of an & g descending pa
let inputPattern = Span.CreateLinearInputPattern (
Span.CreateTripletListFromPattern (inputPattern)

, patternStep, 40)

if patternStimulationsPerSecond = 0 then
null
else
Span.CreatelLinearInputPattern (patternStimulationsPerSecond, 40, 1, patternStep, 40)

/ run the net

work anc 2ct a 5s that match the ir

Span.ScanForTheoreticalGroups (networkSpecifier
triplets, inputPattern, patternStimulationsPerSecond, backgroundFrequency, runSeconds
stateFilePath, pathToOutputFolder, basename, saveState)

Listing 5.1: Training phase script

firing times and neural indices in each triplet need not be consecutive, and
therefore the number of triplet combinations is high (nearly ten thousand).
Lines 26 to 30 define the stimulation pattern, and lines 33 to 35 perform the
actual training. Internally, this function runs the network in the presence
of external stimulation, pausing every minute to scan the network structure
for PNGs; any discovered PNGs are saved into a file indexed by the time (in
minutes) of their discovery. Following training, the network state is saved to
a file in the output folder.

5.2. Testing Phase

In the testing phase of the experiment, each of the saved networks from
the training phase is stimulated with either the ascending or descending input
pattern and the accumulated templates are used to probe the resulting firing
data for matches. The algorithm for the detection of group activation in the
original Izhikevich experiment has not been published, and therefore a new
template matching algorithm was developed (Guise et al., 2013). Broadly, the
procedure is to generate a spike raster from the network firing data and then
slide a set of template-specific windows across the spike raster and score each
match. At each window position in the scan, each of the templates discovered
during the training phase is sequentially matched using a matching threshold
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of 50% and jitter of + 2 milliseconds. The selected input pattern and a 1 Hz
random background pattern are both presented at 1 Hz throughout each test
period (typically 600 seconds). The use of a 1 Hz test stimulus allows the
test period to be divided into one second stimulus-response frames which are
of sufficient length to ensure that PNG activation in each frame is complete
before the next stimulus presentation.

5.2.1. Testing phase script

The testing phase script is shown in Listing 5.2. The first argument to
this script determines the input pattern type, either ascending or descending.
The second and third arguments specify the training time and the path to
the trained state file. Remaining arguments specify the stimulation intensity,
the location of the saved templates, and the output file respectively.

Lines 13 and 14 define the specification for the network that will later be
reloaded with the selected network state. The ascending or descending input
pattern is created in lines 18 to 20 and line 23 loads the saved templates.
The critical part of the script occurs in the function call on the last two lines.
Internally this function loads the selected state file into a new network and
runs it for (typically) six hundred seconds while collecting firing data. It then
scans the firing data using the specified templates, saving any matches. Note
that longer templates are clipped to a maximum of thirty firing events, the
justification being that while the head of each activated group can be quite
stable over multiple stimulations, the trailing portion shows considerable
variation (Izhikevich, 2006a).

5.2.2. Modified testing phase script for multiple stimuli

Figure 4 uses a modified version of the testing phase script (shown in
Listing 5.3) that allows the input stimuli to change over the course of the
test period. This script was run for each of twenty untrained networks, and
again with the same twenty networks after they had been trained on either
the ascending or descending input patterns. The test period for this script
was limited to 100 seconds (100 response frames with one stimulus per frame),
allowing 25 frames per input pattern. Note the creation of multiple input
patterns in lines 19 to 25 and an alternative scanning function in the last two
lines that allows the network to be stimulated with multiple input patterns.

5.8. Script for generating PNG structural diagrams

Listing 5.4 shows a script that takes a file of matches and extracts a struc-
tural description of each of the matching templates, allowing the structure
of the templates to be graphically displayed. Line 8 retrieves the matching
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patternStimulationsPerSecond (groupsFilePath:string) outputFilePath =

let numExcitatoryNeurons =
let numInhibitoryNeurons =

let numSynapsesPerNeuron = 100
let maxDelay = 20
let maxTemplateSize = 30 // trim large templates to this

let runSeconds = 600

let networkSpecifier = new IzhikevichNetworkSpecifier (
numExcitatoryNeurons, numInhibitoryNeurons, numSynapsesPerNeuron, maxDelay)

ti y re
inputPattern =

let patternStep = if patternType = InputPatternType.Ascending then 1 else -1
Span.CreatelinearInputPattern (patternStimulationsPerSecond, 40, 1, patternStep, 40)

ead the groups file and re tem

let templatelist = Span.GetTemplates (groupsFilePath, maxTemplateSize)

e ma S
roups (stateSaveTime, stateFilePath, templatelList,
networkSpecifier, inputPattern, runSeconds, outputFilePath)

Listing 5.2: Testing phase script

templates, filtering out those few template matches that do not match the fir-
ing events in the initial triplet of each template. The majority of templates
that include the initial triplet in their matching firing events are likely to
have matched spatio-temporal firing patterns that are initiated by the input
pattern (pattern-specific PNG activation). In lines 11 and 12 the retrieved
templates are saved to a new file. A flag on the Save method specifies that
duplicates be removed prior to saving. At line 15 structural descriptors are
generated for each matching template using linkage data from the specified
groups file. The set of descriptors is then saved to a file in lines 18 and 19.
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// Provide a selection of stimuli to a network loaded from the specified state file

// and scan the firing data for evidence of PNG activation

let ScanForActivationsMultiPattern stateSaveTime stateFilePath patternStimulationsPerSecond
(groupsFilePath:string) outputFilePath =

let numExcitatoryNeurons = 800

let numInhibitoryNeurons = 200

let numSynapsesPerNeuron = 100

let maxDelay = 20

let maxTemplateSize = 30 // trim large templates to this size
let runSeconds = 100

let secsPerPattern = 25

let networkSpecifier = new IzhikevichNetworkSpecifier (
numExcitatoryNeurons, numInhibitoryNeurons, numSynapsesPerNeuron, maxDelay)

// create four different 40 msec input patterns
// continuously repeated over Sla ~ond at the specified frequen
let patterns = // ascending, descending, ascending, null

[
Span.CreatelLinearInputPattern (patternStimulationsPerSecond, 40, 1, 1, 40);
Span.CreateLinearInputPattern (patternStimulationsPerSecond, 40, 1, -1, 40);
Span.CreateLinearInputPattern (patternStimulationsPerSecond, 40, 1, 1, 40);
null

]

// read the groups file and prepare PNG templates
let templatelist = Span.GetTemplates (groupsFilePath, maxTemplateSize)

// load the network state file and run the network with stimulation

// scan the firing data for template matches

Span. ScanNetworkForActivatedGroupsMultiPattern (stateSaveTime, stateFilePath, templatelist,
networkSpecifier, patterns, secsPerPattern, runSeconds, outputFilePath)

Listing 5.3: Modified testing phase script for multiple stimuli

// Get matching tem,
let GetPNGMatchDescriptors stateSaveTime matchesFilePath (groupsFilePath:string)
pathToOutputFolder templateFileName descriptorSetFileName =

lates for the specified sample time and generate structural descriptors

let distinctOnly = true

// get the matching templates at this sample time
let matches = Span.GetMatchingTemplatesAtTime (stateSaveTime, matchesFilePath)

// save the matching templates to a file
let templateOutputPath = PathDescriptor.Create (pathToOutputFolder, templateFileName)
matches.Save (distinctOnly, templateOutputPath)

// generate a set of linkage-data-based descriptors for each matching template
let descriptorSet = matches.CreatePNGDescriptorSet (groupsFilePath)

// save the descriptors to a file
let descriptorOutputPath = PathDescriptor.Create (pathToOutputFolder, descriptorSetFileName)
descriptorSet.Save (descriptorOutputPath)

Listing 5.4: Script for generating structural descriptors
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