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Abstract

This document provides technical details of our neural network model of visual object
classification and attention, and of experiments using the system in a visual search task.

1 Overview
The model of the classification and attentional subsystems can be thought of as a collection
of retinotopic map representations. We implement a map as a matrix. The input map I is a
greyscale image measuring 128 × 128 pixels, with element values in the range 0 to 255. The
input is read directly from bitmap image files. Other maps are computed from this using a variety
of operations. Most of these maps also measure 128 × 128 pixels with the exception of some
employed by the classifier, as noted in Section §2. Except where noted it is safe to assume that the
output of a map operation has the same dimensions as its inputs. Because of this we sometimes
refer to pixels in maps other than I even though they don’t, strictly speaking, form an image.

The map operations used are convolution (matrix convolution, denoted ∗ with pixels lying
beyond the map edge assumed to be white unless noted otherwise), addition, subtraction and
scalar multiplication (computed as for their matrix equivalents), modulus (denoted |X|, computed
by taking the modulus of each element) and some more complicated operations which will be
defined where they occur. The matrix or map element at the ith row and jth column of X is
denoted Xi, j.

Some special maps have additional information associated with them, such as regions. Re-
gions are sets of contiguous pixels in a map and we implemented these as either maps with char-
acteristic pixel values for each region or as sets of maps, one per region, depending on which was
more convenient. The map itself can still be considered just a matrix, with this extra information
represented separately and bound to the map.
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Eighth ply 2 cells x 2 cells

(convolving)
First layer
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(convolving)
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Eighth layer
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Seventh ply 3 cells x 3 cells

Sixth ply 6 cells x 6 cells

Fifth ply 7 cells x 7 cells

Fourth ply 14 cells x 14 cells

Third ply  15 cells x 15 cells

Second ply  30 cells x 30 cells

First ply 31 cells x 31 cells

Figure 1 The general structure of our convolutional neural network. Plies of cells are connected
by layers of weights. Each cell contains one unit for every feature represented by that ply.

2 The classifier

2.1 Classifier structure
The classifier used was a convolutional neural network which takes a set of input maps and acti-
vates a set of output category units via a series of layered plies which alternately combine visual
features from the ply below into more complex features and abstract over the spatial location of
visual features. The CNN was mostly as described in Walles et al. (2008), except that the number
of features used in each ply was different and there was some additional input preprocessing.

Figure 1 illustrates the overall structure of our CNN.
The units of the network are arranged in a series of plies, with units in each ply connected to

units in the one above by a layer of weights. Our network used had nine plies and eight layers.
Units within each ply are clustered into cells, which are arranged retinotopically. Every cell in
a particular ply contains the same number of units, one for each feature that the ply represents.
Each unit in a cell represents the strength of its associated feature at the cell’s location, and so
each cell in a ply represents in parallel the presence of a set of features at the corresponding
location in the input field. The successive plies of our network (going from input to output,
measured in terms of cells) 31×31, 30×30, 15×15, 14×14, 7×7, 6×6, 3×3, 2×2 and 1×1.

The features in the first (input) ply were divided into two groups. One feature was provided
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for high-frequency input which represented luminance directly. Four features represented low-
frequency input: these were obtained with 9× 9 convolution filters tuned to horizontal, vertical
and diagonal black-on-white lines.

Units receive input from a small square region of the ply beneath, the integration window,
meaning they are connected locally and can only make use of local features. we used a window
measuring 2× 2 cells in all layers. All units in a cell have the same window, which can thus
also be called the cell’s window. The region of the retina that contributes to a unit’s input is
its receptive field. In addition the weights for corresponding units in different cells of a ply
are constrained to be the same, effectively sharing the weights. This means that the response to
activity inside a cell’s window will be the same irrespective of where in a ply the cell is located.

Successive plies divide the visual field more and more coarsely, so contain fewer cells than
their predecessors, each of which has a wider receptive field than those in earlier plies. However
later plies generally represent more features than earlier plies, and therefore contain more units
per cell.

The function and structure of the weight layers alternates throughout the network between
convolution and abstraction. Convolving layers compute combinations of features in the previous
ply with little change in the number of cells between plies, while abstracting layers reduce the
number of cells of the input ply without interaction between different features.

In convolving layers, an output unit receives input from every unit within its 2× 2 integra-
tion window. A unit receiving input from a ply representing n features will have 4n+ 1 inputs
(including a bias).

Weights in abstracting layers are simpler. Input and output plies contain the same number of
features and there is no interaction between features. A unit receiving input from its 2×2 window
will have 5 inputs (including a bias). The window of a cell in the output ply precisely abuts
but does not overlap with the windows of neighbouring cells. The effect is that the integration
windows of cells in the output ply tile the input ply. Weights are shared even further within
abstracting layers, with all weights for a feature constrained to be identical. This means that each
abstracting layer really has only two variable parameters per feature: one weight shared among
all the inputs units, and the bias.

Apart from the varying structure of the layers, unit activation is computed in the same way
throughout the network. For a unit with n inputs p1 . . . pn (excluding the bias) and n+1 weights
(including the bias) w1 . . .wn+1 the unit’s activation, a weighted sum, σ is computed:

σ =
n

∑
i=1

piwi +wn+1

which for an abstracting unit can be simplified further to:

σ = wply

n

∑
i=1

pi +wbias

because of weight sharing.
The output of the unit is then computed via the logistic function:
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f =
1

1+ e−σ

This is conventional for feed-forward networks.
Going from the input ply to the output ply the number of features in each ply were 5, 25, 25,

32, 32, 32, 32, 7 and 7.
Although inputs to the system as a whole measure 128 × 128 pixels, inputs to the classifier

always measure 31x31 pixels as in our original design. This is a practical limitation of the
classifier to allow training in reasonable time and the disparity is resolved by always centring the
attended region in the classifier’s input for classification purposes. This ensures that the bounding
rectangle of the attended region is centred in the classifier’s input.

2.2 Training regime
The network was trained using the RPROP algorithm (Riedmiller, 1994). This is a variation of
the BACKPROP algorithm (Rumelhart et al., 1986). The training algorithm is described in more
detail in Walles et al. (2008).

We trained with small (high-frequency) shapes, each presented at a randomly chosen third of
possible retinal locations. We also trained with large (low-frequency) shapes each at a random
third of all possible retinal locations for each of four densities. These included solid shapes as
well as large shapes with pixels randomly ablated to the background colour with probabilities 1

6 ,
1
3 or 1

2 . Thus for the low-frequency training total spatial coverage was likely. The small shapes
were presented at the high-frequency inputs only and the large shapes at the low-frequency inputs
only. During operation only one of the sets of inputs is used at a time, the other being suppressed
entirely. There were 1566 high-frequency training examples and 2152 low-frequency training
examples. As in Walles et al. (2008) these included 371 noise examples which were each fed to
the low- and high-frequency inputs in turn. New noise examples were generated on each cycle
of training. In other respects the architecture and training of the CNN was as described in Walles
et al. (2008).

3 Parallel attention component: saliency analysis
Saliency analysis is based on the model presented by Itti and Koch (2000) and Walther and Koch
(2006), modified to fit the size constraints of the classifier and support scale-based attention in
the selection mechanism.

The saliency analysis module parses the visual field and produces a saliency representation: a
saliency map, identifying a number of salient regions. Each region contains either a single shape,
or a set of shapes which are treated as a single item (i.e. grouped) due to their proximity and/or
similarity. Salient regions are identified by computing partial saliency maps from the input.
Two local contrast maps are computed, using Laplacian of Gaussian (LoG) filters tuned to two
different spatial frequencies. A single texture homogeneity map at the higher spatial frequency
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Visual input

Salient regions identified
(a) (b) (c) (d)

Figure 2 Salient regions identified by the system for four sample visual inputs. Different shades
of grey indicate different salient regions.

is computed using a statistical histogram-based method Liu and Wang (2000). The two local
contrast maps and the homogeneity map are combined to produce the saliency representation.

Prima facie, there may seem to be a conflict between local contrast and homogeneity as indi-
cators of saliency. Saliency computed from contrast, and saliency computed from homogeneity
(which implies no contrast) seem inconsistent with each other. However, while the principles
may be in conflict at a single spatial scale, we suggest that they are complementary at different
spatial scales. In our model, maximally salient stimuli are those which contrast from their back-
ground at a spatial frequency commensurate with their size, and which are composed of uniform
texture elements. Thus uniformity is required at a higher spatial frequency than contrast.

Some illustrations of the regions found by the saliency analysis module are given in Figure
2. These demonstrate the module’s ability to identify salient regions of different sizes: the input
stimuli in Figure 2(a) are grouped into a single large region, those in Figure 2(b) are grouped into
two medium-sized regions and those in Figures 2(c) and 2(d) are identified as four small regions.
They also show how the module reconciles conflicting local contrast and homogeneity cues to
salience. If items are close enough (2(a)) then grouping can occur even among heterogeneous
items. At an intermediate separation, grouping is determined by homogeneity: homogeneous
stimuli are grouped (2(b)) and heterogeneous stimuli are not (2(c)). Finally, if items are separated
widely enough, they are not grouped even if they are homogeneous (2(d)).

The contributions of the local contrast and homogeneity maps to overall salience are de-
termined by the weights of two parameters, whose relative value determines the separation at
which homogeneous stimuli are grouped. These parameter settings can be related to individual
variations in grouping behaviour found in experiments on human subjects. Quinlan and Wilton
Quinlan and Wilton (1998) explored the interaction of the Gestalt properties of similarity and
proximity in humans. They found that proximity always dominates similarity if stimuli are suffi-
ciently close, but that the distance at which this happens varies from subject to subject. The ratio
between contrast and homogeneity weights in the computation of salience directly models this
parameter of variation between subjects.

5



3.1 Local contrast
Local contrast computation begins by taking the input image (a luminance image) and stretching
the values into the range −128 (black) to 127 (white).

I′ = stretch(I,−128,127),where (1)

stretch(X,L,U)i, j =
(Xi, j−min(X))(U−L)

max(X)−min(X)
+L (2)

and min and max are functions that produce the minimum and maximum element values, respec-
tively, of a matrix or map. Local contrast is then computed by convolving with two normalised
Laplacian of Gaussian filters, one for each spatial frequency (σ = 1 and σ = 15, chosen by trial
and error to produce strong response to shapes of the relevant scale while trying to minimise
response to shapes at the other scale). The absolute value of these results is then taken. Given

LoG(σ)i, j = (1− r2

σ2 )e
− r2

σ2 ,where (3)

0 ≤ i, j < 5σ

o = b5σ

2
c

r2 = (i−o)2 +( j−o)2

(4)

and normalisation was achieved using

norm(X)i, j =
Xi, j

s
,where (5)

s = ∑
i

∑
j
|Xi, j|

we compute the high-frequency local contrast Chi and low-frequency local contrast Clo using

Chi = |norm(LoG(σ = 1))∗ I′| (6)

Clo = |norm(LoG(σ = 15))∗ I′| (7)

We use LoG filters here rather than the orientation-specific filters used in the classifier for
two reasons. First, the orientation-specific filters used in the classifier grew out of the existing
orientation-specific features used by Mozer and Sitton (1998), which our classifier is based on.
Second, while one of the purposes of filtering the classifier inputs is to provide directed infor-
mation (orientation) to aid classification, here we are only interested in contrast of suitably-sized
shapes whatever their orientation. Having said that, it would be desirable in future to find a way
to use the classifier’s filters to produce these contrast maps instead of the LoG.
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3.2 Homogeneity
The similarity measure is computed by the procedure described in Liu and Wang (2000). This
procedure samples a small 7×7 pixel region around each pixel in the input image, computing
its spectral histogram which can be thought of as a high dimensional feature vector, and finally
finds the closest match to this histogram among those belonging to a set of texture templates
derived from images of the small shapes used in the experiment both closely packed and sparsely
scattered.

The spectral histogram is constructed by first convolving the 7x7 window with each of seven
normalised filter matrices. The first three are the Kronecker δ filter, which constitutes an identity
operation in this instance and the Dxx and Dyy filters:

δ =
[

1
]

(8)
Dxx =

[
−1 2 −1

]
(9)

Dyy =

 −1
2
−1

 (10)

There are also two Laplacian of Gaussian filters (see Equation (3)) LoG(σ = 1) and LoG(σ =
2).

Finally there are three Gabor filters G(σ = 2,θ = π

6 ), G(σ = 2,θ = π

2 ) and G(σ = 2,θ = 5π

6 )
where

G(σ ,θ)i, j = e
−1

2σ2r cos(
−2π

σ
(( j−o)cosθ (11)

+(i−o)sinθ))

0 ≤ i, j < w = b 8σ√
2
c

o = bw
2
c

r = (( j−o)cosθ +(i−o)sinθ)2

+((o− j)sinθ +(i−o)cosθ)2

The filter matrices are each normalised with the norm function given in Equation (5). Their
choice is justified by Liu and Wang (2000). The window is convolved with each normalised filter
with pixels at the edge of the map replicated to infinity to ensure a result for every pixel in the
input. The histograms of the resulting maps (with unit-sized bins) are concatenated to produce
the spectral histogram. Spectral histograms are compared using the χ2 value. If H1 and H2 are
two spectral histograms, and H(i) is the ith element of the histogram H then this is computed as
follows.

χ
2 = ∑

i

(H1(i)−H2(i))2

H1(i)+H2(i)
(12)
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For each pixel’s associated histogram, the template histogram which has the lowest χ2 value
relative to it determines the category assigned to the pixel.

Once each pixel is assigned a category (square, ell, etc. or background), boundaries are de-
termined by comparing each pixel with its four-neighbours. The four-neighbours of a pixel at
coordinates (i, j) are the pixels at coordinates (i−1, j), (i+1, j), (i, j−1) and (i, j+1). When-
ever a pair of pixels differs in category, the pixel that was least certainly classified (measured by
the χ2 of its histogram relative to its category’s template) is marked as a texture boundary. In the
resulting boundary map B homogeneous regions are marked with zero, boundaries with one.

For the experiments presented here we wanted some stimuli to be considered similar enough
for saliency analysis to group them even though they were distinct. To this end we defined that
boundaries between ells and squares, crosses and arrows, arrows and arms, arrows and triangles
and triangles and arms would not be marked in the boundary map.

This confusion of types was based on the confusion patterns of the CNN but is effectively
arbitrary. It is intended to model the Gestalt principle of similarity between types. We would have
preferred to model this confusion using comparisons between the histograms of neighbouring
pixels directly but the small size of the retina made this impractical (we consider this to be just
an implementation detail).

3.3 Partial saliency maps
The boundary map B is combined with the low-frequency local contrast map Clo by a weighted
sum and thresholded to produce the low-frequency saliency map Slo:

Slo = H(τlo;αClo−βB) (13)

where

H(τ;X)i, j =

{
1 if Xi, j > τ

0 otherwise (14)

τlo = 0.060 (15)
α = 15.5 (16)
β = 1.45 (17)

These scalings were chosen by trial and error so that contrast and homogeneity would interact
without one dominating all the time. The high-frequency saliency map Shi is just the same as
high-frequency local contrast map, thresholded.

Shi = H(τhi;Chi) (18)

where
τhi = 0.4 (19)

The threshold values were chosen by trial and error so that regions of both frequencies at a
reasonable contrast would become salient.
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Contrast Homogeneity Max. separation Min. separation
weight (α) weight (β ) between grouped between separate

hetero stimuli homogen. stimuli
15.5 0.8 3 4
15.5 1.45 1 3
15.5 2.5 1 1

Table 1 Effect of changing contrast and homogeneity weights in grouping behaviour.

The ratio between contrast and homogeneity weights (α and β in Equation (13)) determines
the relative contributions of contrast and homogeneity to overall salience. Table 1 shows the
effect on grouping behaviour of changing β while keeping α constant. Column 3 shows the
maximum separation between heterogeneous stimuli for which they are grouped together, and
Column 4 shows the minimum separation between homogeneous stimuli for which they are
treated as separate regions, for a range of different weight ratios. Distances are measured in
pixels. The second column corresponds to the parameter values used in the experiments in the
current paper.

3.4 Combination of partial saliency maps
Regions which are four-neighbour contiguous are next identified and labelled by region merging
(Gonzalez and Woods, 1992, see Section §3.2 for a definition of four-neighbouring pixels). Any
labelled region in the low-frequency map containing fewer than 55 pixels is discarded, yielding
a new low-frequency saliency map S′lo which is used for further operations:

S′lo = F(Slo) (20)

where F is a function that just sets pixels belonging to such regions in the input to zero.
This was done to remove high-frequency objects strong enough to stimulate the low-frequency

saliency map as well as occasional artifacts between objects, both of which we consider to be
noise. It acts as a kind of low-pass filter, removing regions too small to be of interest to the
low-frequency map. The point-wise sum of these maps yields the master saliency map in which
contiguous regions are also identified and labelled.

S = S′lo +Shi (21)

3.5 Inhibition and suppression
The preceding operations have been all bottom-up, but further computation relies on some top-
down influence in the form of inhibition. A map is inhibited by combining a top-down inhibition
map with its bottom-up activation. It can be thought of as an additional factor in the computation
of the map. If X is a map and XI its corresponding inhibition map then the inhibited version of
the map X′ (its effective value, used by operations which depend on the map) is given by
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X′i, j =
{

Xi, j if XI
i, j = 0

0 otherwise
(22)

It is also possible to inhibit an entire map at once, equivalent to inhibiting with a map con-
taining no zero elements.

In this paper we use the term suppression where inhibition is only temporary as part of a
computation. Where applicable inhibition and suppression are governed by independent inhibi-
tion maps associated with the primary map.

3.6 Computation of salient regions
The final stage of saliency analysis is the extraction of a well-defined set of salient regions,
each tagged with a default classification scale based on its size. In our implementation these
are represented in a series of maps, one for each salient region — though a single map with
an appropriate coding could be used because the regions do not overlap. First, any of the most
strongly activated pixels in the master saliency map is chosen (we used the left- and top-most
such point but this is arbitrary). If there is a low-frequency salient region at that point, the low
frequency is selected as the salient scale, otherwise the high frequency is selected. Standard
morphological dilation (Gonzalez and Woods, 1992) is then applied to the corresponding region
(radius 2 pixels for high frequency, 4 pixels for low frequency). Finally, pixels are removed from
the region if they overlap salient regions that have already been computed, other active pixels
in the master saliency map or pixels inhibited by attention operations (for which the associated
inhibition map will be active).

The resulting region is added to the set of salient regions, tagged with its associated scale.
The region is suppressed in the corresponding scale saliency map and the master saliency map
and any overlapping regions in the non-selected scale saliency map are also suppressed. The
above process is repeated until all activity in the master saliency map has been suppressed.

Once the set of salient regions is computed, one is chosen at random by the selection mech-
anism and the associated region and scale become the subjects of attention. We do not select
salient regions by decreasing order of saliency, as is typically done, because our stimuli are very
simple and the standard measure of “degree of saliency” doesn’t really apply. The randomisation
of selection can be viewed as the addition of noise to simulate the variation of saliency found in
real-world stimuli.

After the winner is selected, suppression of the saliency maps introduced during computation
of salient regions is then removed. Salient regions are recomputed whenever there is a change
to the maps that the computation depends on, which happens when the selection mechanism
inhibits the saliency maps.

4 Serial attention component: the selection mechanism
The saliency representation just described provides input to the serial attention component of
our model, whose role is to selectively deliver information from the retina to the classification
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subsystem. Selection occurs in two different attentional media. One is spatial location: the
classifier can be restricted to receive input only from a particular region of the visual field. The
other is classification scale: the classifier can be restricted to receive input from visual features
at a particular spatial frequency (high or low).

Processing in the serial attention component takes the form of a sequence of attentional op-
erations. There are two operations. One is the selection of a new salient region to attend to.
When this happens, an appropriate classification scale is also automatically selected, namely the
default classification scale for the selected region. The other is the selection of a new classifi-
cation scale, without a change in the currently attended region. Each attentional operation has
lasting side-effects on the master saliency representation. Selection of a new salient region in-
volves inhibiting the currently selected salient region (if there is one), a process analogous to
the spatial inhibition-of-return found in humans Posner (1980). Selection of a new classification
scale also involves inhibition, namely inhibition of the currently selected classification scale.

When a display is presented to the system, the first attentional operation is the selection of a
random salient region in the master saliency representation, and the classification of this region
at its default classification scale. The region’s default classification scale is a function of its size:
if it is large, the coarse-grained (low-frequency) classification scale is the default; if it is small,
the fine-grained (high-frequency) scale is the default. If the region is large, it is then re-analysed
at the fine-grained classification scale, after which a new salient region is selected, by inhibiting
the currently selected region and picking a new one. If the region is small, it is not re-analysed at
a finer classification scale, since the model only features two spatial scales; instead, a new salient
region is selected immediately. This cycle continues until all the salient regions in the original
stimulus have been selected and inhibited.

The reanalysis of a large salient region at a finer classification scale allows the classification
of a group of objects occupying this region, if it is homogeneous. For instance in Figure 2(b), two
large salient regions are selected, each containing a homogeneous group of two objects. When
these groups are classified at the default scale, the classifier will not return a result, because
there is no global form to be detected. But when they are classified at a finer-than-default scale,
the classifier will return their local form: ‘square’ for the left-hand region, and ‘cross’ for the
right-hand one. By using homogeneity as a cue to the formation of salient regions, and by allow-
ing salient regions to be reparsed at a finer classification scale, the attentional system naturally
exploits the classifier’s ability to operate on homogeneous groups.

4.1 Attentional gating operations
Serial attentional operations are implemented as inhibition and gating operations. We have
already described inhibition in Section §3.5. In this section we describe the gating operation.

Where inhibition inhibits a map in place, gating inhibits the elements of a map as they feed
into another operation. A map Y gates another map X with the result given by the gate function:

gate(X,Y)i, j =

{
Xi, j if Yi, j 6= 0
0 otherwise (23)
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(a) (b) (c) (d)

Figure 3 Example displays for each search condition. (a) t-d similar, d-d similar (target ell); (b)
t-d similar, d-d different (target arrow); (c) t-d different, d-d similar (target ell); (d) t-d different,
d-d different (target square).

In addition to this spatial gating there is scale gating which is achieved by entirely gating a
scale-specific set of classifier input maps (equivalent to gating the maps with a map containing
only zero elements). When the low frequency is selected, the high frequency maps are entirely
gated off and vice-versa.

5 Performance of the system in a visual search task

5.1 Defining four search tasks
To test the search performance of our model, we created four different search tasks, defined by
varying two independent binary parameters based on those used by Duncan and Humphreys:
target-distractor similarity (with values ‘t-d similar’ and ‘td-different’) and distractor-distractor
similarity (with values ‘d-d similar’ and ‘d-d different’).

Our system was required to find a single target in displays of varying size (the target was
always present). The displays were carefully set up to produce the desired condition, while
controlling for other variables, similar to the strategy used by Duncan and Humphreys. Our
displays are less controlled than those used with humans because some of the variables that must
be controlled in human subjects need not be in our model. We do not have to guard against
inter-trial priming, for example. Figure 3 shows example displays for the four different search
conditions. In t-d similar conditions ((a) and (b)), distractors adjacent to the target are similar to
it, and tend to be grouped with it; in t-d different conditions ((c) and (d)), the distractors adjacent
to the target are different to it, and tend not to be grouped with it. In d-d similar conditions
((a) and (d)), adjacent distractors are similar to another, and tend to be grouped; in d-d different
conditions ((b) and (c)), adjacent distractors are different from one another, and tend not to be
grouped. For the purposes of perceptual grouping, similarity is arbitrarily defined in the saliency
analysis phase. Ells are similar to squares, crosses to arrows, arrows to arms, arrows to triangles
and triangles to arms. As shown in Figure 3, search displays were all based on the same spatial
configuration: twenty items were arranged in five groups of four, in locations appearing at fixed
positions in the visual field. In each condition a full display with twenty items was created. One
group was chosen randomly and the target placed at the left side of it. Next fifteen search trials

12



t1 t2 t3

Class: [discarded] Class: TRIANGLE
t4 t5 t6

Class: [discarded] Class: TRIANGLE Class: ELL

Figure 4 An example sequence of operations during simple search. At t1 the input is presented
and at subsequent time steps attention is directed as shown until the target (ell) is found. Thick
borders around a region indicate attention to the low spatial frequency, thin borders attention to
the high spatial frequency.

were run. First the original display was run. Then one item was removed randomly with the
constraints that at least one item remained in each group (the leftmost item) and the items in
each group remained contiguous. Now this case was run and the process repeated until only one
item remained in each group.

Each trial display was passed to the system, which was configured for search as follows.
The attention system directs the sequence of operations on the salient regions. At each step
attention is directed at the selected region. If the region is small, it is classified at the fine-grained
classification scale. If the region is large, it is first classified at the coarse-grained classification
scale and then at the fine-grained scale, but the former result is discarded, as the search is for
small shapes. If the classifier returns a category at the fine-grained classification scale, and this
matches the search target, search is complete and the attention system halts. Otherwise the region
is inhibited and selection begins again. If the system runs out of candidates for selection then
all inhibition is removed, the low-frequency saliency map is entirely suppressed and selection
begins anew: in this second pass, each small shape is identified as a separate salient region.

For each trial display the number of selection steps needed to locate the target was recorded.
Figure 4 shows the steps taken by the system during one trial.

5.2 Results
For each of the four search conditions the mean number of steps taken by the system to find the
target was plotted against the number of distractor items present, to create four search graphs,
and the slope of each graph was determined by linear regression (see Figure 5). The slope of
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Figure 5 Search slopes for each search condition. Regression lines are also shown.

each graph was significantly different to zero (p < 3.2×10−12). t-tests were used to compare the
slopes of each pair of graphs; in each case the null hypothesis that slopes are equal was rejected,
with p-values ranging from 0.0039 to 0. This result shows that different search conditions have
a range of different slopes: in our model there is no dichotomy between flat pop-out search
and slow serial search. Instead, there are a range of gradients for different search conditions.
Our simulation reproduces Duncan and Humphreys’ main experimental results: when targets are
dissimilar to distractors but distractors are similar to one another the search slope is close to flat,
and when targets are similar to distractors the slopes are highest.

There are some results which we do not reproduce. Duncan and Humphreys Duncan and
Humphreys (1989) found no effect of d-d similarity when targets are very different from distrac-
tors and only a small effect of t-d similarity when distractors are all very similar. We found some
effect of d-d similarity when targets are very different from distractors. We also found a large
effect of t-d similarity when distractors are all identical. However, in these cases there is also con-
siderable variability within human search experiments: much depends on details of the particular
stimuli used, and on the way ‘similarity’ between stimuli is defined Pashler (1998). Like other
modellers Wolfe (2007) we claim only qualitative consistency with Duncan and Humphreys’
main results. But our reproduction of these results is still interesting, because it is achieved
through a novel mechanism.

6 Visual search refined
In the t-d similar condition, targets can be grouped with adjacent distractors, creating heteroge-
neous groups, whose local form the classifier typically cannot identify. In the system described
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above, if the system attends to a heterogeneous group that cannot be group classified, the group
is assumed not to contain the target; if all salient regions are visited without finding the target, a
second pass search is conducted, with each shape identified as a separate salient region. This is
an expensive policy. An alternative is to examine the contents of an unclassifiable group as soon
as it is identified.

With this in mind we extended the model to allow a new kind of attention shift, allowing the
system to treat any selected region whose local form it cannot classify as a saliency map in its
own right, within which sub-regions can be attended to and classified individually. This recursive
‘search within a search’ is somewhat similar to Treisman and Gormican’s group scanning theory
Treisman and Gormican (1988). Technical details are again given in Walles et al. (2013). Search
slopes were recomputed for each condition. In this extended model, the t-d similar conditions
both have shallower slopes than the original: as might be expected, search is now more efficient
if the target is missed in a group of distractors. But the main findings of Duncan and Humphreys
are still reproduced: search slopes are still highest in these t-d similar conditions, and they are
lowest when targets are dissimilar to distractors and distractors are homogeneous.

7 Comparison to existing models of visual search
Our model of visual search is closely related to several other models in which a map of salient
locations functions to bias processing in a separate object classification pathway. The closest
model is probably that of Walther and Koch Walther and Koch (2006), which uses a modified
saliency map for the attentional processing stream and a variety of convolutional neural network
for the classification stream. But this model does not perform any kind of grouping or group
classification.

There are also several models of visual search which posit that attentional processing occurs
within the system which performs object categorisation, rather than in a separate visual stream.
One of these models has a number of similarities to ours—the ‘search by recursive rejection’
(SERR) model of Humphreys and Müller Humphreys and Müller (1993). Their model also
reproduces the distractor similarity effects in visual search found by Duncan and Humphreys.
The way our system performs visual search is in fact very similar to SERR: homogeneous groups
of distractors are selected and classified in parallel. However, in SERR, grouping of similar
items happens within the categorisation network. This network features a set of match maps:
each region of the retina is associated with several specialised maps, one for each object shape
which can be recognised. Each match map accumulates evidence for nearby objects of one
particular shape, feeding activation to a localist ‘shape’ unit. Locations within each match map
activate one another, so each map is most strongly activated by a homogeneous group of objects
of the appropriate shape. This architecture allows the model to reproduce distractor similarity
effects in visual search: homogeneous groups of distractors are selected and classified as groups,
while heterogeneous groups must be selected and classified individually. But while SERR’s
behaviour in visual search is similar to that of our model, it is achieved very differently. In
SERR, selection and classification are tightly integrated: the maps which select individual items
or homogeneous groups are connected one-to-one with shape units. As has been noted before
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Heinke and Humphreys (2005), it is unrealistic to scale this model up to work with large numbers
of complex types. In our system scaling is easier, because grouping is performed on the basis
of simple visual features: once a region of homogeneous features is selected, classification of
the objects possessing this feature is performed by a separate more powerful system, whose
resources are directed at this region. This system is still able to classify homogeneous groups in
parallel, but the classifier does not need to be replicated all over the retina.
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