
Department of Computer Science,
University of Otago

Technical Report OUCS-2016-03

How to compute a mean?

Author:
Richard O'Keefe

Department of Computer Science, University of Otago, New Zealand

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.php

How to compute a mean?

Richard A. O’Keefe
Computer Science, Otāgo

August 2016

Abstract

Computing the mean of a sequence of numbers is easy; computing
means of other kinds of measurements, and for other kinds of container,
is harder. This note presents some algorithms and benchmarks.

1 Introduction
Computing an arithmetic mean seems so simple:

x = n−1
n∑
i=1

xi

Of course, if the xi are floating-point numbers we run into the usual “floating-
point addition is not associative” problems, but mostly we do not expect any
problems. The following C code is typical:

double mean(double const *x, int n) {
double s = 0.0;
for (int i = 0; i < n; i++) s += x[i];
return s/n;

}

However, on closer inspection, the problem has several parameters which
require different approaches. In this working note, I examine some of these
parameters in the context of developing a Smalltalk library.

The parameters select between

• linear or circular statistics,

• absolute, ratio, or interval scale measurements,

• levels of numerical accuracy, and

• off-line or on-line algorithm.

1

2 Linear or circular statistics?
For ordinary linear measurements, like the difference between two prices, we
have

mean x = n−1
∑n
i=1 xi

sample variance Vx = (n− 1)−1
∑n
i=1(xi − x)2

sample standard deviation sx =
√
Vx

Aside from the fact that the mean is undefined unless n ≥ 1 and the variance
and standard deviation is undefined unless n ≥ 2, there are no special difficulties
here. If the xi are rational numbers, the mean and variance can be calculated
exactly. If they are floating-point numbers, they have the problems common to
sums, which we consider later.

But what if the measurements are things like angles, such as compass di-
rections, time of day, day of week, or day of year? These things are not even
ordered: Wednesday follows Saturday, but Saturday also follows Wednesday.1
Such data are quite common, yet even commercial statistics packages may fail
to handle them. (There is a third-party “CircStat2009” toolbox for Matlab. For
R there are packages “CircStats”, “Circular”, and “Directional”.) This leads to
absurdities like a date distribution with many observations in January and De-
cember and no observations in February to November being reported as having
a mean at the end of June. Some references:

• Topics in Circular Statistics, Jammalamadaka, S. Rao, and A. SenGupta,
2001, World Scientific Press, Singapore.

• Statistical analysis of spherical data, N. I. Fisher, T. Lewis, and B. .J. J. Em-
bleton, 1987, Cambridge University Press.

• Statistical Analysis of Circular Data, N. I. Fisher, 1993, Cambridge Uni-
versity Press.

• Circular Statistics in R, A. Pewsey, M. Neuhauser, and G. D. Ruxton,
2014, Oxford University Press.

• Mean of circular quantities, Wikipedia.

Simple circular statistics are
mean θ = arctan2(S,C)

sample variance Vθ = 1−R
sample standard deviation sθ =

√
−2 lnR

where

C =

n∑
i=1

cos θi

1A colleague reminded me of a sign “No parking before midnight”, which entails no parking
at any time.

2

S =

n∑
i=1

sin θi

R =
√
C2 + S2

R = R/n

The intuition is straightforward: represent a circular (or spherical) datum
as a unit vector in 2D (or 3D) space, compute the mean of the vectors, take the
direction of the mean as the mean direction, and take the length of the vector
as an indication of how scattered the data are (1: the data all point the same
way, 0: the data point every which way). The mean is a direction, the variance
and standard deviation are not.

The point here is that the calculations are different. We can for example
compute the mean day-of-year from a collection of Dates like this:

require: ‘date-angles.st’

angles := dates collect: [:each | dayOfYearRadians].
meanAngle := angles circularMean.
meanDay := (meanAngle radiansToDegrees * (365/360) + 1) rounded.

Some directional data is “axial”. Think of it as reporting a diameter of a
circle or sphere instead of a radius. The direction of a road is axial. The 2D
axial mean is computed by doubling the angles, computing the circular mean,
and halving the result.

Strictly speaking, we’d want at least linear, circular, 2D axial, spherical
(points on the surface of the Earth, say), and 3D axial sets of methods.

3 Smalltalk
Smalltalk is a class-based object-oriented programming language with no compile-
time types. A ⊕ beside a class name means it is peculiar to my Smalltalk system,
called astc.

3.1 Numbers
Here is part of the class hierarchy relating to numbers. The “abstractSubclass:”
and “valueSubclass:” forms are extensions to ANSI Smalltalk: an abstract sub-
class is one which may have no direct instances, and a value subclass is one
which may not be mutated by public methods, and in particular may not be
created in an uninitialised state.

Object abstractSubclass: #Magnitude
comment: “things that can be compared”
methods:

3

< other
self subclassResponsibility.

> other . . .
>= other . . .
<= other . . .
between: lower and: upper
↑self <= other and: [self >= lower]

max: other . . .
min: other . . .

Magnitude abstractSubclass: #MagnitudeWithAddition ⊕
comment: “Types T such that there is a type D for which

T +D → T , T −D → T , T < T → Boolean.”

MagnitudeWithAddition valueSubclass: #DateAndTime
comment: “The ANSI standard timestamp class; D = Duration.”

MagnitudeWithAddition valueSubclass: #Date
comment: “The Smalltalk-80 date class; D = Integer”

MagnitudeWithAddition valueSubclass: #IntervalScaleQuantity ⊕
comment: “Physical measurements without a zero; D = Quantity.”

MagnitudeWithAddition abstractSubclass: #QuasiArithmetic ⊕
comment: “Roughly speaking, measurements on a ratio scale.

D +D → D, D −D → D, D ∗N → D, D/D → N .”

QuasiArithmetic valueSubclass: #Duration
comment: “The ANSI standard amount-of-time class.”

QuasiArithmetic valueSubclass: #Money ⊕
comment: “Represents an amount of money in a specified currency.”

QuasiArithmetic valueSubclass: #Quantity ⊕
comment: “A physical measurement on a ratio scale.”

QuasiArithmetic abstractSubclass: #Number
comment: “Real and rational numbers.”

Number abstractSubclass: #AbstractRationalNumber ⊕
comment: “exact integers and rationals.”

AbstractRationalNumber abstractSubclass: #Integer
comment: “integers, immediate or boxed.”

AbstractRationalNumber valueSubclass:: #Fraction

4

comment: “n/d where d > 1.”

AbstractRationalNumber valueSubclass: #ScaledDecimal
comment: “n× 10s where n, s are integers.”

Number abstractSubclass: #AbstractFloatingPointNumber ⊕
comment: “floating-point numbers in general.”

AbstractFloatingPointNumber valueSubclass: #FloatE
comment: “IEEE single precision.”

AbstractFloatingPointNumber valueSubclass: #FloatD
comment: “IEEE double precision.”

AbstractFloatingPointNumber valueSubclass: #FloatQ
comment: “IEEE double extended precision.”

Number valueSubclass: #DualNumber ⊕
comment: “x+ yε where ε2 = 0.”

Number valueSubclass: #QuadraticSurd ⊕
comment: “(a+ b

√
k)/c where a, b, c, k are integers,

k > 0 is square-free, c > 0, and gcd(a, b, c) = 1.”

Object valueSubclass: #Complex ⊕
comment: “x+ iy where i2 = −1.”

Object valueSubclass: #Quaternion ⊕
comment: “x+ iy + jz + kw where i2 = j2 = k2 = −1.

3.2 Containers
Here’s part of the class hierarchy for containers.

Object abstractSubclass: #Enumerable ⊕
comment: “containers that can be traversed once”
methods:
do: aBlock
“for each element of the container, invoke aBlock passing that element as its argument.”
self subclassResponsibility.

inject: initial into: binaryBlock
“Combine the elements, e.g., for sums.”
|accumulator|
accumulator ← initial.
self do: [:each |

5

accumulator ← binaryBlock value: accumulator value: each].
↑accumulator

detectSum: f
↑self inject: 0 into: [:s :each | s+(f value: each)]

size
“Answer the number of elements.”
↑self inject: 0 into: [:n :each | n+1]

sum
↑self inject: 0 into: [:s :each | s+each]

Enumerable abstractSubclass: #Collection
comment: “containers that know their size and can be traversed multiple times”
methods:
detectMean: f
↑(self detectSum: f)/self size

mean
↑self sum/self size

size
“This should be an O(1) operation.”
self subclassResponsibility.

The distinction between Enumerable and Collection is an important one.
Smalltalk has a large number of “enumeration” methods that can be used to
iterate over or summarise collections. Enumerable provides those methods that
only require a single traversal; after using such a method you should not in gen-
eral use the enumerable object again. Here is a typical example. We’re going
to print the sum of the numbers in the standard input stream.

s ← PluggableInputStream
atEndBlock: [StdIn skipSeparators]
nextBlock: [Number readFrom: StdIn]. “stream of numbers”

Transcript print: (EnumerableWrapper on: s) sum; cr.

In contrast, Collection is used for collections that can be traversed multiple
times, such as arrays, strings, and internally generated collections.

4 Mean in a single traversal
With the definitions above, we cannot compute the mean of the stream of num-
bers in standard input, because that requires traversing the stream twice. We
can fix that by changing the definition of #mean.

Enumerable
methods:
mean

6

|s n|
n ← 0.
s ← 0.
self do: [:each |
n ← n + 1.
s ← s + each].
↑s / n

detectMean: aBlock
|s n|
n ← 0.
s ← 0.
self do: [:each |
n ← n + 1.
s ← s + (aBlock value: each)].
↑s / n

Here we have fused the two #inject:into: loops into one. We could add that
as a new higher-order method:

Enumeration
methods:
inject: a0 into: aBlock and: b0 into: bBlock finally: wrapup
|a b|
a ← a0.
b ← b0.
self do: [:each | |t|
t ← aBlock value: a value: b value: each.
b ← bBlock value: a value: b value: each.
a ← t].
↑wrapup value: a value: b

mean
↑self inject: 0 into: [:s :n :each | s+each]

and: 0 into: [:s :n :each | n + 1]
finally: [:s :n | s / n]

Whichever definition we put into Enumerable, we have now solved the prob-
lem of being able to compute the mean of a stream. But we have also created
a performance issue: if we use this definition with a stored collection, we are
recomputing the #size, thus taking extra time.

This is where Object Orientation comes in handy. We can have two defini-
tions of #mean: one in Enumeration which (re)computes the size, and one in
Collection which uses the stored size.

However, astc’s library includes #mean, #geometricMean, #harmonicMean,
#rootMeanSquare, and #powerMean:, plus #trimmedMean, #trimmedMean:,
#winsorisedMean, and #winsorisedMean:, which is more methods than I’d prefer
to duplicate this way. So later in this note we shall look at the actual perfor-
mance cost.

7

5 It’s not just about Numbers
ANSI Smalltalk includes Duration and DateAndTime objects. Other Smalltalks
have things like Money or Length or Quantity. One way of thinking about com-
puting arithmetic means is to think in terms of types and operations. The types
we need are

M Measurements, like temperatures on the Celsius or Fahrenheit scales, or
timestamps measured relative to some epoch.

D Differences of measurements.

N Numbers, such as rationals or floating-point.

P Positive integers.

What are the operations we need on these types?

• M +D →M

• M −M → D

• D +D → D

• D/P → D

Examples include
M D
Number Number
Point Point2

Point3D Point3D
Money Money
Duration Duration
DateAndTime Duration

In general, D classes correspond to statistical variables measured on a “ratio
scale” andM classes correspond to statistical variables measured on an “interval
scale”. Directional and axial data as described above fall outside the traditional
“nominal scale”, “ordinal scale”, “interval scale”, “ratio scale” classification. Cir-
cular means having been considered above, Angle and Time are not considered
here.

What happens if we try to compute the mean of a collection of sums of
money? We run into the problem that the very first sum, 0+$1.24, say, is not
defined.

Here’s the simplest solution I can think of. The fiddling at the end of each
method is to ensure that we get a division by zero error for an empty collection.

Enumeration
methods:
mean

8

|s n|
n ← 0.
s ← nil.
self do: [:each |
n ← n + 1.
s ← s ifNil: [each] ifNotNil: [each + s]].
↑(s ifNil: [0] ifNotNil: [s])/ n

Collection
methods:
mean
|s|
s ← nil.
self do: [:each |
s ← s ifNil: [each] ifNotNil: [each + s]].
↑(s ifNil: [0] ifNotNil: [s]) / self size

This avoids the initial each+0 at the price of an extra conditional branch on
every iteration. Can we do better?

All the D classes I’ve had occasion to use have several more operations. One
of them is

• D −D → D

There is a popular but nonstandard operation #anyOne that returns an arbi-
trary element of a Collection. We can put these two observations together to
get

Collection
methods:
mean
|s|
s ← self anyOne. “take any element”
s ← s - s. “convert it to the right kind of zero.”
self do: [:each | s ← each + s].
↑s / self size

The #anyOne method is not available in Enumerable because that would
require visiting an element twice.

6 Mean DateAndTime
We still have a problem. Measurements on an interval scale (like DateAndTime,
or temperature on the Celsius or Fahrenheit scale, or height above mean sea
level) cannot be added, but it is still meaningful to compute means of them.

9

If you choose to represent interval scale measurements just as numbers, in-
stead of an appropriate data type, then you lose compile-time or run-time sanity
checking. For example,

aTemperature + heightAboveMSL reciprocal

will be allowed. In compensation, the numeric mean will give you the right
answer. So the problem here is to get means and sanity checking. Note that
the harmonic or geometric mean of an interval scale measurement still doesn’t
make sense; it is only the arithmetic mean that fortuitously works.

The trick is that we can subtract any such measurement from all of the
others, compute the mean, and add what we subtracted back. This relies on
laws such as

• (m1 −m2) + d = (m1 + d)−m2 = m1 − (m2 − d)

Enumeration
methods:
mean
|m s n|
n ← 0.
s ← nil.
self do: [:each |
n ← n + 1.
s ifNil: [
m ← each.
s ← m - m “zero in D”]
ifNotNil: [
s ← (each - m) + s]].

↑m + (s / n)

Collection
methods:
mean
|m s|
m ← self anyOne.
s ← m - m “zero in D”.
self do: [:each | s ← (each - m) + s].
↑m + (s / self size)

7 Handling runs
Smalltalk systems have a wide range of collection classes, which Java has only
recently caught up with. Traditionally these include Bag and RunArray. A
RunArray is a sequence stored as blocks of equal values, e.g., 5 6 5 5 6 6 6
5 7 7 5 5 5 would be stored as (1,5), (1,6), (2,5), (3,6), (1,5), (2,7), (3,5) or

10

as something from which that can be derived. (astc uses a representation
that allows O(log n) indexing.) In order to permit efficient iteration of such
collections and over “ordinary” collections, astc includes the following method:

Enumerable
methods:
runsDo: aBlock
“Report the elements of the receiver to aBlock in runs.
All the elements of a run have the same value, as defined by
the receiver’s notion of equality, typically #=.
The arguments of aBlock are this common value and the length
of the run. Runs need not be maximally long.
For Sets, Bags, and AbstractSequences, they will be
maximally long. The order in which the runs are reported is
not in general defined, but for AbstractSequences the
elements are reported in their natural order.
This makes bag construction and traversing more efficient.”
self do: [:each | aBlock value: each value: 1].

With the aid of this method, we can compute the mean of a collection of
Numbers or Durations etc. thus:

Enumerable
methods:
mean
|s n|
n ← 0.
s ← nil.
self runsDo: [:each :count |
n ← n + count.
s ← s ifNil: [each × count]
ifNotNil: [each × count + s]].

↑s / n

Collection
methods:
mean
|s|
s ← self anyOne. “take any element”
s ← s - s. “convert it to the right kind of zero.”
self runsDo: [:each :count |
s ← each × count + s].
↑s / self size

This pays off for Bags and RunArrays, but for ordinary collections, like Arrays,
just adds overhead.

11

8 Other Kinds of Average
There is a family of “power” means:

µp = (n−1
n∑
i=1

xpi)
1/p

Examples of this include the #harmonicMean (p = −1), the #rootMeanSquare
(p = 2), and as limits, the #max (p→∞) and the #geometricMean (p→ 0).

Like the #median, #max depends only on ordering, so need not detain us
here.

Power means are straightforward for numbers (N). For measurements on a
ratio scale (D), we have to do this:

Enumerable
methods:
powerMean: p
|s n scale|
n ← 0.
self do: [:each |
n ← n+1.
scale ifNil: [scale := each. s := 1] ifNotNil: [
s ← (each / scale raisedTo: p) + s]].

↑(s / n raisedTo: p reciprocal) × scale

This is analogous to the subtract-then-add-back technique for computing
means of interval scale measurements.

I am not aware of any way to define power means for measurements on an
interval scale, such as DateAndTime. Except for #max, which works, I’m also
unaware of any need for them.

9 A Digression on Durations
The next section presents benchmark results for several ways of calculating the
mean of an array of Integers, of 64-bit FloatDs, and of Durations.

Straight away we run into a problem. What we want to know is the ef-
fect of the different algorithms. But the three Smalltalk systems I measured
represent Durations differently and implement their operations differently. You
cannot measure a mean method fairly if the underlying arithmetic is poorly
implemented.

An important issue is the range of unboxed integers.
My system, astc, uses a scheme where the bottom 2 bits of a word are

00 for a SmallInteger, 10 for nil, Booleans, and Characters, and 01 for all other
objects. This gives immediate numbers a range of -536,870,912 to +536,870,911
in a 32-bit environment.

Squeak and Pharo use a scheme where only 1 bit is taken from a word, giving
a range of -1,073,741,824 to +1,073,741,823 in a 32-bit environment. Although

12

VisualWorks and Squeak are both derived versions of the original Smalltalk-80,
the range of immediate numbers in VW matches astc, not Squeak and Pharo.

Integer results outside these ranges can be computed in any Smalltalk, they
are just more expensive to calculate, to calculate with, and to store.

How big a range do we need for Durations? A number that’s easy to re-
member is that a year is approximately 31 megaseconds, so a century is about
32 bits. (Which is why UNIX’s time_t has historically been 32 bits, and why
the 68-year gap between the UNIX epoch and the year 2038 gives rise to the
“2038 bug”.) To interoperate with data bases, we’d like a range of ±10000 years
around 2000 AD, which is about 239 seconds, but only 223 days. If we want to
measure times to higher precision than seconds, we’re going to need 10, 20, or
30 bits more for millisecond, microsecond, or nanosecond precision. If we record
Durations as single numbers, we’ll need 49, 59, or 69 bits respectively.

Millisecond counts could be held as IEEE doubles (boxed in all three sys-
tems). Microsecond counts could be held in immediate integers in a 64-bit-only
Smalltalk. Nanosecond counts would need arbitrary-precision integers, referred
to using the Lisp term “bignums” henceforth.s.

Here is part of astc’s definition:

QuasiArithmetic valueSubclass: #Duration
instanceConstantNames: ‘days milliseconds’
methods for: ‘checking’
invariant
(days isKindOf: Integer) and: [
(milliseconds isMemberOf: SmallInteger) and: [
(days >= 0 and: [
milliseconds between: 0 and: 86399999]) or: [

(days <= 0 and: [
milliseconds between: -86399999 and: 0])]]]

methods for: ‘accessing’
days
↑days

millisecondPart
↑milliseconds

methods for: ‘comparing’
= other
↑ other class == self class and: [
other days = days and: [
other millisecondPart = milliseconds]]

< other
↑other days = days
ifTrue: [milliseconds < other millisecondPart]
ifFalse: [days < other days]

methods for: ‘arithmetic’
pvtD: dd m: mm
“This completes an addition or subtraction.”

13

|d m|
d ← (mm quo: 86400000) + dd.
m ← mm rem: 86400000.
(0 < d and: [m < 0])
ifTrue: [d ← d - 1. m ← m + 86400000].

(d < 0 and: [m > 0])
ifTrue: [d ← d + 1. m ← m - 86400000].
↑self
days ← d.
milliseconds ← m.

+ other
↑(other isKindOf: DateAndTime)
ifTrue: [other + self]
ifFalse: [self pvtClone pvtD: days + other days

m: milliseconds + other millisecondPart]
- other
↑self pvtClone pvtD: days - other days

m: milliseconds - other millisecondPart
* scale
“may involve bignum or rational arithmetic”

/ scale
“may involve bignum or rational arithmetic”

The aim here was to do as much as possible with immediate integers. For
Durations less in magnitude than about 1 1

2 million years, this aim was met. Di-
viding two Durations is exact, meaning you can get non-integral rational results.

VisualAge Smalltalk uses a similar representation, and functionally similar
code. It makes the split between seconds and microseconds rather than days
and milliseconds. The important thing about splitting a Duration into two parts
is that the less significant part should have its value bounded by a value U such
that 2U − 1 fits in a SmallInteger. VAST and astc both satisfy this.

Here is the corresponding code in Pharo, using astc syntax and edited
lightly.

Magnitude subclass: #Duration
instanceVariableNames: ‘nanos seconds’
methods for: ’checking’
invariant “not actually in Pharo”
↑ (nanos isKindOf: Integer) and: [
(seconds isKindOf: Integer) and: [
(nanos between: -999999999 and: 999999999) and: [
nanos sign * seconds sign >= 0]]]

class methods for: ‘instance creation’
nanoSeconds: ns
|s|
s ← ns quo: NanosInSecond.

14

↑self basicNew seconds: s nanoSeconds: ns-(q*NanosInSecond)
methods for: ‘private’
seconds: s nanoSeconds: ns
seconds ← s.
nanos ← ns rounded.
[nanos < 0 and: [0 < seconds]] whileTrue: [
seconds ← seconds + 1.
nanos ← nanos + NanosInSecond].

[0 < nanos and: [seconds < 0]] whileTrue: [
seconds ← seconds - 1.
nanos ← nanos - NanosInSecond].

methods for: ‘accessing’
asNanoSeconds
“breaks the style rules for capitalisation”
↑seconds * NanosInSecond + nanos

methods for: ‘comparing’
= other
↑ self == other or: [
self species = other species and: [
self asNanoSeconds = other asNanoSeconds]]

< other
↑self asNanoSeconds < other asNanoSeconds

methods for: ‘arithmetic’
+ other
↑self class nanoSeconds:
self asNanoSeconds + other asNanoSeconds

- other
↑self class nanoSeconds:
self asNanoSeconds - other asNanoSeconds

* other
↑self class nanoSeconds:
(self asNanoSeconds * other) rounded

/ other
↑other isNumber
ifTrue: [self class nanoSeconds:
(self asNanoSeconds / other) rounded]

ifFalse: [self asNanoSeconds / other asNanoSeconds]

This holds Durations to nanosecond precision. A nanosecond count will cer-
tainly fit in a Pharo SmallInteger, but if a Duration is more than ±34 years the
second count will be a bignum. Comparing, adding, or subtracting two Dura-
tions will involve creating (and then discarding) two bignums and doing bignum
quotient and remainder. It appears that efficiency of Duration operations was
not a priority in this design.

We can improve Pharo’s efficiency here by adding three private methods and
changing four others.

15

methods for: ‘private’
privateSeconds
↑seconds

privateNanos
↑nanos

privateSeconds: s nanos: ns
seconds ← s.
nanos ← ns.

methods for: ‘comparing’
= other
↑ other class == Duration and: [
other privateSeconds = seconds and: [
other privateNanos = nanos]]

< other
↑seconds = other privateSeconds
ifTrue: [nanos < other privateNanos]
ifFalse: [seconds < other privateSeconds]

methods for: ‘arithmetic’
+ other
|s ns|
s ← seconds + other privateSeconds.
n ← nanos + other privateNanos.
(n between: -999999999 and: 999999999) ifFalse: [
n < 0 ifTrue: [n ← n + NanosInSecond. s ← s - 1]
ifFalse: [n ← n - NanosInSecond. s ← s + 1]].

s sign * n sign < 0 ifTrue: [
s < 0 ifTrue: [n ← n - NanosInSecond. s ← s + 1]
ifFalse: [n ← n + NanosInSecond. s ← s - 1]].

↑Duration basicNew privateSeconds: s nanos: n
- other
|s ns|
s ← seconds - other privateSeconds.
n ← nanos - other privateNanos.
(n between: -999999999 and: 999999999) ifFalse: [
n < 0 ifTrue: [n ← n + NanosInSecond. s ← s - 1]
ifFalse: [n ← n - NanosInSecond. s ← s + 1]].

s sign * n sign < 0 ifTrue: [
s < 0 ifTrue: [n ← n - NanosInSecond. s ← s + 1]
ifFalse: [n ← n + NanosInSecond. s ← s - 1]].

↑Duration basicNew privateSeconds: s nanos: n

This is not as simple, nor as obviously correct, as the existing Pharo code, but
like the astc code, it avoids bignum arithmetic. The difference is astonishing.
The three lines are the original times, the improved times, and the ratios.

16

2486 2478 3588 3564 2536 2544 3653 3630 6142 6181 4217
139 110 424 436 2536 2544 2723 2716 293 297 1583
17.9 22.5 8.5 8.2 1.0 1.0 1.3 1.3 21.0 20.8 2.7
There’s a block where the ratio is close to 1. That’s where there are many

multiplications. Despite the improvement to #+ and #-, the benchmarks are
still dominated by bignum arithmetic. The reason is simple: pushing up against
the limits of the representation means that Durations are stored compactly, but
nearly half of adds or subtracts still produce one bignum intermediate.

What about the premier commercial system, VisualWorks?

Magnitude subclass: #Duration
instanceVariableNames: ‘period scale’
methods for: ‘checking’
invariant “not actually in VW”
↑ (period isKindOf: Number) and: [
(scale isKindOf: Number) and: [
0 < scale]]

methods for: ‘accessing’
period
↑period

scale ↑scale
methods for: ‘comparing’
= other
“You would not believe me if I told you the truth.”
↑ (other isKindOf: Duration) and: [
other scale = scale
ifTrue: [period = other period]
ifFalse: [(period * other scale) = (other period * scale)]

< other
“You would not believe me if I told you the truth.”
↑other scale = scale
ifTrue: [period < other period]
ifFalse: [(period * other scale) < (other period * scale)]

methods for: ‘arithmetic’
+ other
“Simplified.”
(other isKindOf: Duration) ifTrue: [
|s|
s ← self asSeconds asRational + other asSeconds asRational.
↑self class period: s numerator scale: s denominator].

“other standard (and nonstandard) cases.”
- other
↑self + other negated

negated
↑self class period: period negated scale: scale

17

The main idea here is that period * scale is the amount of time in seconds,
and that if you only need low precision (like seconds), you should not have to
pay for high precision (like nanoseconds).

VisualWorks 8.1 Personal Use Licence does not include scaling operations
on Durations, although these operations are required by the ANSI Smalltalk
standard. This deviation is explained in the class comment. I do not regard
the argument given as having any validity, certainly not as justifying a situa-
tion where standard-conforming code cannot be executed at all. I show here
perfectly satisfactory implementations. The Duration class in VW8.1 also fails
to respond to the ANSI standard #seconds: message, requiring #fromSeconds:
instead. Three methods were added:

Duration
class methods for: ‘instance creation’

seconds: s
↑self period: s scale: Seconds

methods for: ‘arithmetic’
* other
↑Duration period: period * other scale: scale

/ other
↑(other isKindOf: Duration)

ifTrue: [self period * scale / other asSeconds]
ifFalse: [Duration period: period / other scale: scale]

The *Runs measurements for VisualWorks are therefore either unfair to VW
(because its Duration is clunky) or to the other systems (because the native
speed here is “infinitely slow”).

But what about adding and subtracting? One thing leaps to the eye: many
such operations will involve Durations with the same scale. So it’s worth inves-
tigating

methods for: ‘arithmetic’
+ other
(other isKindOf: Duration) ifTrue: [
scale = other scale ifTrue: [
↑Duration period: period + other period scale: scale].

everything else as before
- other
(other isKindOf: Duration) ifTrue: [
scale = other scale ifTrue: [
↑Duration period: period - other period scale: scale].

everything else as before

This is a simple and obvious change. What does it do to the measured times?

18

314 308 428 431 373 370 500 512 1193 1186 1622
226 225 283 291 287 284 346 357 484 499 401
1.4 1.4 1.5 1.5 1.3 1.3 1.4 1.4 2.5 2.4 4.0
This is not as dramatic as the improvement for Pharo, but it is enough that

any kind of benchmarking would have been wholly misleading without examining
Duration.

Another issue with VisualWorks is that in Squeak and Pharo, and in astc
(which copied them), “α ifNil: [β] ifNotNil: [γ]” is a primitive control structure
which is at least as efficient as “α isNil ifTrue: [β] ifNotNil: [γ]”, but in Visu-
alWorks it is emulated. Converting from ifNil: to ifTrue: doubled the speed of
most of the methods that use it. The times for VW in the next section include
this change.

GNU Smalltalk was not benchmarked because the version that works for
me does not compile to native code, so the comparison would be misleading.
(It does not define the ANSI DateAndTime class, but does have a DateTime
class, which it strangely claims to be ANSI. It does have Duration. In a feat of
surpassing strangeness, it derives the linear measure Duration from the circular
measure Time, with the oddity that Duration midnight is defined.

Smalltalk/X was not benchmarked because it does not have the ANSI Date-
AndTime and Duration classes, although it has not entirely dissimilar Timestamp
and TimeDuration classes. Like GNU Smalltalk, it derives a linear measure
(TimeDuration) from a circular one (Time) and so uses a representation suitable
for periods up to 24 hours for periods up to thousands of years.

10 Measurements
The goal of this mini-project was to decide what definitions to provide for#sum,
#detectSum:, #mean, and #detectMean:.

The following measurements were made on an early 2011 15-inch MacBook
Pro with a 2 GHz intel Core i7 processor and 8 GiB of 1333 MHz DDR3 mem-
ory running Mac OS X 10.11.5. The Smalltalk systems used were Pharo 5.0,
VisualWorks Personal Use Licence 8.1, and astc built and using Apple LLVM
version 7.3.0, which came with Xcode 7.3. The test data were Arrays of 999,999
Integers, 999,999 FloatDs, and 999,999 Durations. All times are in milliseconds.
The last digit must be regarded as noise.

19

Integer Float Duration
Variant Pharo VW Astc Pharo VW Astc Pharo VW Astc
Basic 57 89 28 20 40 26 N/A N/A N/A
BasicNoSize 62 92 30 21 41 28 N/A N/A N/A
NoZero 58 117 29 20 42 27 139 226 58
NoZeroNoSize 61 124 31 23 43 29 110 225 59
Shift 291 117 31 24 65 53 424 283 120
ShiftNoSize 295 121 33 28 69 55 436 291 121
Runs 310 127 43 26 68 56 N/A N/A N/A
RunsNoSize 302 129 44 24 70 58 N/A N/A N/A
RunsNoZero 316 131 43 21 71 55 2536 287 86
RunsNoZeroNoSize 317 134 44 22 74 57 2544 284 87
RunsShift 323 139 44 25 105 81 2723 346 150
RunsShiftNoSize 312 137 46 26 99 81 2716 357 151
Comp 101 170 71 35 117 106 N/A N/A N/A
CompNoSize 103 173 72 36 124 105 N/A N/A N/A
CompNoZero 108 171 71 36 120 104 293 484 249
CompNoZeroNoSize 109 174 72 38 122 108 297 499 249
Summary 147 67 102 35 174 103 N/A N/A N/A
SummaryNoZero 152 72 104 40 188 104 1583 401 1366

The differences between the first four methods are within noise level, so it
makes sense to pick the most general implementation in that group.

The *Shift and *Runs implementations are clearly slower than the others.
The only advantage of the *Shift methods is that they can compute the mean
of a collection of DateAndTimes, while the other methods cannot. The price
of not having this is that if you want to compute the mean of a collection of
DateAndTimes you have to write

n ← DateAndTime now.
m ← aCollection detectMean: [:each | each - n].
m ← m + n.

which does not seem onerous, given the rarity of this usage.
The code that was originally written for astc was the meanRuns variant,

but it has never been sent to a Bag or RunArray except for testing purposes.
Therefore, the #meanNoZeroNoSize variant has been chosen.

11 Arithmetic and Accuracy
Integers, Fractions, and ScaledDecimals are exact. Durations and Times recorded
in milliseconds are exact. Angles recorded in degrees and fractional degrees are
exact. Money and Quantity objects are exact if the underlying numbers are exact.
QuadraticSurds are exact. DualNumbers, Complex numbers, and Quaternions are
exact if their component are, similarly Points.

The sum of a compatible collection of exact items is exact; it is only when
we divide by the number of items that inexactness is forced. We could of course
divide by n instead of nasF loat, but since the standard deviation requires square
roots, it seemed good to make the mean like the standard deviation.

20

The important thing about exact addition is that it is order-independent
(associative). This is not true of floating-point addition.

((1 to: 1000) detectSum: [:each | 1/each])/1000
⇒ 53362913282294785045591045624042980409652472280384

26009710134924845626888949710175750609790198503569
14090887315504680983784421721178850094643023443265
66022502100278425632852081405544941210442510142672
77029477471270891796396777961045322469242686646888
82815820719848971051107968732493191555293970175089
31564519976085734473014183284011724412280649074307
70373668317005580029365923508858936023528585280816
0759574737836655413175508131522517 / 7128865274665
09305316638415571427292066835886188589304045200199
11543240875811114994764441519138715869117178170195
75256512980264067621009251465871004305131072686268
14320019660997486274593718834370501543445252373974
52989631456749821282369562328237940110688092623177
08861979540791247754558049326475737829923352751796
73524804246363805113703433121478174685087845348567
80218880753732499219956720569320290993908916874876
72697950931603520000000

(as above) asFloatD
⇒ 0.0074854708605503d0
((1 to: 1000) detectSum: [:each | 1.0e0/each])/1000
⇒ 0.00748548e0
((1000 to: 1 by: -1) detectSum: [:each |1.0e0/each])/1000
⇒ 0.00748547e0

from which we see that for this problem, adding from small to big gave a more
accurate answer than adding from big to small. This is well known, and while
it’s not the optimal strategy in every case, it is a good one.

William Kahan, to whom we owe IEEE 754 arithmetic, came up with a way
of doing sums more accurately. Kahan’s compensated summation algorithm is

compensatedSum: aBlock
|r e t y|
r ← e ← 0
self do: [:each |
t ← r.
y ← (aBlock value: each) + e.
r ← y + t.
e ← (t - r) + y].
↑r

The reference here is

• Further remarks on reducing truncation errors, W. Kahan, 1965, CACM
vol. 8, no. 1

21

Using #compensatedSum:, the answer is 0.00748547e0 whether we sum up or
down. In double precision we get 0.0074854708605503d0 summing up or down.
This is indeed more accurate than the#detectSum: method.

In effect, this method doubles the working precision within the loop, taking
four floating-point add/subtract operations instead of one. We see from the
table above that the “compensated” algorithms take 2 to 4 times as long as the
simple ones, depending on the costs of adding the observations. We also see
that the differences between systems are comparable to the differences between
algorithms, so that this is a price we might be willing to pay if we know little
about the numeric properties of the data.

Compensated summation can obviously be applied to the calculation of lin-
ear variances and circular means as well.

12 On-line vs off-line
All of the algorithms presented above work through all the data before report-
ing a summary, in the manner of an off-line algorithm. Computing the vari-
ance and/or standard deviation requires two passes over the data. Computing
trimmed or Winsorised means or standard deviation even requires sorting the
data. (More precisely, that requires the top and bottom k elements of the data
to be found, for some k. That can be done by taking 2k elements, sorting them,
then running two heaps and pushing the remaining elements through the heaps
at O((n−2k).(1+lg k)) work, for a grand total of O(n. lg k) instead of O(n. lg n).
That can be done with O(2k) workspace.)

Another approach, following Simula 67, is to have a Summary class into
which we can push elements, that we can ask for the current mean and so on at
any time. Java 1.8 includes a DoubleSummaryStatistics class; astc’s Summary
is older and more capable.

Algorithms for incrementally and stably updating the mean and higher mo-
ments can be found in

• Algorithm AS 52: Calculation of power sums of deviations about the mean,
C. C. Spicer, Applied Statistics, 21, 1972, pp 226–227.

The algorithm for updating the mean found therein can be found in

• Updating Mean and Variance Estimates: An Improved Method, D. H.
D. West (University of Dublin), Communications of the ACM, 22.9, Septem-
ber 1979, pp 532–535.

If n is the number of observations seen so far, and m is the current estimate of
the mean, the response to a new observation x is

n ← n+ 1
m ← (x−m)/n+m

This is widely used. For example, IBM SPSS 20 Algorithms states that the
DESCRIPTIVES command uses Spicer’s provisional means algorithm.

22

There is a problem with this technique. Floating-point arithmetic being
what it is, you can easily find a strictly ascending sequence of numbers where
the final value of m is arbitrarily far from the true value. Here is an example in
C:

int main(void) {
float m = 2.0f;
float x;
for (int n = 2; n < 0xFFFFFFF; n++) {

x = 2.0f + (n-1)*FLT_EPSILON;
m = (x - m) / n + m;

}
printf("m = %g mean = %g x = %g\n", m, (1+x)/2, x);
return 0;

}

The output is

m = 2 mean = 18 x = 34

The author has never seen this defect mentioned before and would be de-
lighted to use a better method but does not know of one.

Objects that you can push data into have a name in C++ are called output
iterators. Smalltalk has an analogue, (output) streams. Here’s part of astc’s
class hierarchy:

Object abstractSubclass: #Stream
comment: “covers input and output streams”
methods:
close
“close stream and release resources”

critical: aBlock
“lock receiver, perform aBlock, unlock receiver.
Use if a stream is shared by threads, rare.”

species
“what would #contents be”

Stream abstractSubclass: #BasicOutputStream ⊕
comment: “general output”
methods:
flush
“force buffered output if any to destination”

nextPut: anObject
“accept/process one item”
self subclassResponsibility.

next: count put: anObject
1 to: count do: [:i | self nextPut: anObject].

nextPutAll: aCollection

23

aCollection do: [:each | self nextPut: each].

BasicOutputStream abstractSubclass: #OutputStream
comment: “character output streams”

astc now has four interfaces for computing means, not counting “robust”
versions.

works on linear means circular means
Enumerable mean.st circmean.st
BasicOutputStream summary.st circsum.st

So now we have two ways to compute the mean of an array of numbers:

mean := theArray mean.

mean := (Summary new) nextPutAll: theArray; mean.

Which is faster? Which is more accurate?
Since Summary is intended to provide a range of statistics, not just the mean,

it clearly does more work. For the purposes of benchmarking, a stripped down
version of Summary was created. The Summary and SummaryNoZero entries
in the table above benchmark a Number-only method and a method that works
on Duration, Money, and so on as well, just like the distinction between Basic
and NoZero. Using the provisional means algorithm is indeed a lot slower.

A test array was used to probe the accuracy of the various techniques. To
make the problem hard, it is a large array of increasing single-precision floats,
a situation where simple summing does not do well.3

fs := (1 to: 999999) collect: [:k | k asFloatE ln].

value error technique
12.815517 N/A computed in 128-bit IEEE arithmetic
12.8917 +0.076183 basic algorithm
12.81552 +0.000003 Kahan’s compensated sum
12.75901 -0.056507 provisional means

As expected, Kahan’s compensated sum algorithm worked well. The provi-
sional means algorithm was closer to the true value than the basic algorithm.
The same pattern was observed with double precision numbers.

When we consider exact numbers, the provisional means algorithm runs into
a problem. Let’s just take 2,3,4 as our data.

m0 = 0.
m1 = (2-0)/1 + 0 = 2.
m2 = (3-2)/2 + 2 = (3/2) + 2 = (5/2).
m3 == (4-(5/2))/3 + (5/2) = (3/2)/3 + (5/2) = (1/2)+(5/2) = 3.

3Its mean is of course ln(999999!)/999999. You probably don’t want to read about how to
compute factorials efficiently and which Smalltalks don’t.

24

It gets the exact answer, at the price of doing a lot of rational arithmetic along
the way, whereas the basic algorithm just adds up integers until the very last
step. To avoid this, the benchmark results above kept n as a floating-point
number.

One possibility would be a hybrid algorithm using provisional means for
inexact numbers and sums for exact numbers. At this point Smalltalk really
starts to suffer from not having a Haskell-level type system.

My recommendation is to use whichever gets the job done, but to remain
aware of the issues. Computing means is not as simple as it looks.

25

