
Department of Computer Science,

University of Otago

Technical Report OUCS-2017-07

Complex Arithmetic is Complex

Author:

Richard O’Keefe
Department of Computer Science, University of Otago, New Zealand

Department of Computer Science,

University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.php

Complex arithmetic is complex

Richard A. O’Keefe
Computer Science, Otāgo

October 2017

Abstract

Floating-point arithmetic is tricky. This report examines the appar-
ently simple case of basic complex arithmetic in order to illustrate this.

1 Audience

This report is intended for 3rd year Computer Science students at the University
of Otago. In COSC326 they have to complete a lab task probing their knowledge
of floating-point arithmetic and its problems. This report looks at complex
arithmetic, provided as standard in Fortran for more than 50 years, in Lisp for
about 30 years, and in C for nearly 20 years. It is not concerned with uses
of complex arithmetic, but with the question “how hard is it to get the basic
operations right”, so it is really another look at the problems of floating-point
arithmetic.

2 Introduction

Floating-point calculations can run into several problems:

overflow A result is too big to represent.

underflow A result is too small to represent.

division by zero Dividing any number by zero.

undefined Such as the square root of -1.

catastrophic cancellation Subtracting two numbers that are very close can
leave very few significant digits.

IEEE arithmetic introduces some special values: +∞, −∞, −0, and NaN. I
shall ignore NaN, assuming that undefined calculations raise an exception, and
catastrophic cancellation goes un-noticed instead of raising the IEEE “inexact”
exception. This is a possible configuration for an IEEE system. I shall also ig-
nore the difference between +0.0 and -0.0, concentrating on overflow, underflow,
and division by zero.

1

3 Two representations

Complex numbers are commonly represented in one of two ways:

• Rectangular form: z = x+ iy = (x, y)

• Polar form: z = ρeiθ

We can convert between these representations using

x = ρ cos θ

y = ρ sin θ

ρ =
√
x2 + y2

θ = atan2(y, x)

4 Comparison

For the rectangular representation, (x1, y1) = (x2, y2) iff x1 = x2 and y1 = y2.
This is precise.

The polar representation is trickier. (ρ1, θ1) = (ρ2, θ2) iff ρ1 = ρ2 = 0 or
ρ1 = ρ2 > 0 and θ1 = θ2. The way (0, θ1) = (0, θ2) even when θ1 6= θ2 is
structurally analogous to the way +0.0 = −0.0 in IEEE arithmetic.

We can define two versions of approximate equality, based on but not iden-
tical to the ternary predicates Donald Knuth described in section 4.2.2 of The
Art of Computer Programming, Volume 2: Seminumerical Algorithms.

u ∼ v (ε) if and only if |v − u| ≤ εmax(|v|, |u|)
u ≈ v (ε) if and only if |v − u| ≤ εmin(|v|, |u|)

These definitions work uniformly for real numbers, complex numbers, and
quaternions. However, we need to worry about overflow and so on. My current
implementation is

approximates: other tolerance: ε
|a b c d m u v w|
a← self re.
b← self im.
c← other re.
d← other im.
m← (|a| ∨ |b|) ∨ (|c| ∨ |d|).
(m between:

√
2µ and: (

√
0 · 5Ω))

ifTrue: [
m = 0 ifTrue: [↑true]]

ifFalse: [
a← a/m.
b← b/m.
c← c/m.
d← d/m].

2

u←
√

(a2 + b2).

v ←
√

(c2 + d2).

w ←
√

((a− c)2 + (b− d)2).
↑ (u ∨ v)× ε ≥ w

where Ω is the largest finite float and µ is the smallest postive normalised float.
That avoids overflow, underflow, and division by zero.

If we used a different norm for complex numbers, this could be much simpler.
Define |(x, y)|1 to be |x| ∨ |y|. Then

approximates: other tolerance: ε
|a b c d m w|
a← self re.
b← self im.
c← other re.
d← other im.
m← (|a| ∨ |b|) ∨ (|c| ∨ |d|).
w ← (|a− c| ∨ |b− d|).
↑ m× ε ≥ w

This avoids overflow, division by zero, and underflow. It deserves further
investigation.

We are at liberty to define a total order on complex numbers. However, it
is provably impossible to define a total order for the complex numbers which is
compatible with the laws of an ordered field1.

The obvious total order is (x1, y1) < (x2, y2) iff x1 < x2 or x1 = x2 and
y1 < y2. This is lexicographic order on the rectangular representation. It is
consistent with equality, but not, as noted above, consistent with the laws of an
ordered field.

GNU Smalltalk makes Complex a subclass of Number, which means that it
has to define <. The definition it uses is (ρ1, θ1) < (ρ2, θ2) iff ρ1 < ρ2. This is
not consistent with equality, because it leads to 1 ≈ −1.

The best approach is to ensure that < cannot be used with complex numbers
at all.

5 Simple operations

• conjugate: z̄ = (x,−y) = ρe−iθ

• negation: −z = (−x,−y) = ρei(θ+π)

• absolute value: |z| = ρ

In rectangular form, conjugate and negation are just sign manipulation,
which is exact. Conjugate is also exact in polar form, but negation involves one
rounding. Absolute value is exact in polar form.

1https://proofwiki.org/wiki/Complex Numbers cannot be Totally Ordered

3

In rectangular form, the absolute value requires the hypot() function in
C. Abraham Ziv proved a sharp bound on the accuracy attainable in IEEE
arithmetic2 of 1.222 units in the last place using a straightforward algorithm,
and the reported worst case error in the glibc hypot function3 is 1 unit in the
last place using a different algorithm.

Computing
√
x2 + y2 directly involves the risk of the computation overflow-

ing or underflowing when the result is actually representable. The reason the
hypot() function exists is to avoid this. Ziv pointed out that the division used in
the usual algorithm can be replaced by scaling (using C’s frexp() and ldexp(),
for example)4

6 Addition and subtraction

Addition and subtraction in rectangular form are easy:

(a, b)± (c, d) = (a± c, b± d)

The error in each coördinate is at most 1 unit in the last place, for an overall
error of

√
2 units in the last place. An overflow will occur if and only if the

result cannot be represented.
In polar form, it is sufficiently tricky that people normally convert to rect-

angular form and back again instead. Given z1 = ρ1e
iθ1 and z2 = ρ2e

iθ2 , we
have z3 = z1 + z2 = ρ3e

iθ3 , where

x3 = ρ1 cos θ1 + ρ2 cos θ2

y3 = ρ1 sin θ1 + ρ2 sin θ2

ρ3 = hypot(x3, y3)

θ3 = atan2(y3, x3)

At first sight, this appears to require two sine evaluations and two cosine evalu-
ations. However, some libraries, including Solaris, Linux, and Cygwin, include
a sincos() function that computes the sine and cosine together in significantly
less time than computing them separately. So we can implement this as

sincos(theta1, &s1, &c1);

sincos(theta2, &s2, &c2);

x3 = c1*r1 + c2*r2;

y3 = s1*r1 + s2*r2;

r3 = hypot(x3, y3);

theta3 = atan2(y3, x3);

2http://www.ams.org/journals/mcom/1999-68-227/S0025-5718-99-01103-5/

S0025-5718-99-01103-5.pdf
3http://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.

html
4Although a call to ldexp is much slower than a division

4

which could incur up to 4 units in the last places of error in x3 and y3.
Here is one “direct” formula for addition:

z = z1 + z2

= ρeiφ

ρ =
√
ρ21 + ρ22 + 2ρ1ρ2cos(φ2 − φ1)

φ = φ1 + atan2(ρ2 sin(φ2 − φ1), ρ 1 + ρ2 cos(φ2 − φ1)

This needs only one call to a sincos() function. Avoiding overflow and
underflow in computing ρ is not much harder than implementing hypot(), but
you are not going to match the accuracy of the rectangular form.

7 Multiplication and division

Multiplication and division in polar form are easy:

ρeiθ × σeiφ = (ρ× σ)ei(θ+φ)

ρeiθ ÷ σeiφ = (ρ÷ σ)ei(θ−φ)

If the angles are represented as binary fixed-point fractions, the angle addition
and subtraction can be exact. (Some C libraries have sinpi(), cospi(), and so
on, and this family of trig functions is in the ISO 18661 extensions for C. That
makes working with angles as multiples of pi convenient.) The multiplication
and division are just one operation, with a worst case error of 1 unit in the last
place, overflowing or underflowing only when the result cannot be represented.

This time it is rectangular form which poses problems.

(x1, y1)× (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)

(x1, y1)÷ (x2, y2) =

(
x1x2 + y1y2
x22 + y22

,
y1x2 − x1y2
x22 + y22

)
Taking multiplication first, we are essentially computing two-dimensional

dot products. Computing ab ± cd takes two multiplications and an addition
or subtraction, each of which may contribute rounding. Brent, Percival, and
Zimmerman proved that fl(z×w) = (zw)(1 + δ) where |delta ≤

√
5 units in the

last place, which is worse than real multiplication, but not so very much worse.
Accuracy is not the problem.

The multiplications may overflow, even when the result does not. For ex-
ample, let (x1, y1) = (x2, y2) = (

√
Ω + α, β) where Ω is the largest finite

floating-point number, and α and β are chosen such that β >
√
α2 + 2α

√
Ω.

For example, take α = 1.0 × 10150 and β = 1.5 × 10152. Then (x1, y1)2 =
(Ω−4.3166×10303, 4.0226×10306), which is representable, but a straightfoward
implementation will start by computing (α+

√
Ω)2, which overflows.

5

There is an operation in C and in hardware on some machines that allows
dot products to be calculated with fewer roundings. The fused-multiply-add
operation, fma(x, y, z), computes xy + z with a single rounding, and overflows
only when the result is not representable as a finite number. We can use this to
compute the square of (x, y) as

(|x| > |y| ? fma(x, x,−y2) : fma(y,−y, x2), 2xy)

which is slightly better, but not better enough.
The implementation of complex multiplication in one Unix library says “This

implementation can raise spurious underflow, overflow, invalid operation, and
inexact exceptions. C99 allows this.” And this is in one of the “primitive”
operations of a numeric type. The Fortran 08 draft of 2010-06-07 has nothing
to say about the accuracy of complex arithmtic. What is at issue here is that we
can do better than the direct implementation, but it costs longer. The UNIX
library mentioned above implements multiplication like this:

x← a× c− b× d
y ← a× d+ b× c
if (x = x or y = y) return (x, y)
fiddle with NaN and Inf

The seldom-used bulky code make inlining this function unattractive, so the
C compiler for the Unix system in question has a command line option saying
to ignore IEEE quibbles about infinities and NaNs, allowing the compiler to
generate simple fast in-line code. The measured speedup for computing the dot
product of long complex vectors is 6.4 times. Using clang on another machine
with another version of Unix, the measured speedup was 3.6 times. Either way.
this is a huge price to pay for getting the non-finite corner cases right. It seems
absurd to be so picky about non-finite cases when the core algorithm is allowed
to return spurious non-finite results.

This does set a standard for “safer” multiplication. It might be acceptable
if it isn’t too much slower.

There is another algorithm5 which does fewer multiplications:

a← x2 × (x1 + y1)
b← x1 × (y2 − x2)
c← y1 × (x2 + y2)
return (a− c, a+ b)

This is no less susceptible to overflow, underflow, and cancellation than the
usual algorithm, and may be less accurate. What’s more, it will be slower on
a modern machine, and unlike fused multiply-add, there is no x(y + z)-with-a-
single-roundoff operation.

One open-source Smalltalk uses Ungar’s algorithm6.

5https://en.wikipedia.org/wiki/Multiplication algorithm, citing Volume 2 of Knuth’s Art
of Computer Programming

6loc. cit

6

a← x1 × x2.
b← y1 × y2.
c← (x1 + y1) ∗ (x2 + y2).
↑Complex real: a− b imaginary: c− a− b

Like the previous algorithm, this takes three multiplies and 5 adds-or-subtracts,
and has no obvious advantage over the direct algorithm on a modern machine.

The best I have been able to come up with is

x← a× c− b× d
y ← a× d+ b× c
if (x is finite and y is finite) return (x, y)
m← |a| ∨ |b| ∨ |c| ∨ |d|
a← a/m
b← b/m
c← c/m
d← d/m
x← (a× c− b× d)×m
y ← (a× d+ b× c)×m
return (x×m, y ×m)

which doesn’t get the IEEE details right, but in the absence of NaNs, only
bothers with scaling when the direct algorithm might have run into spurious
overflow.

Reducing the number of multiplications is interesting because if you are im-
plementing an algorithm in hardware, you can use three multiplier units instead
of four, so reducing error. This might be done for a signal processing application
using fixed point arithmetic, for example. Reducing the number of multiplica-
tions is not meant to improve the behaviour of floating-point algorithms on
general purpose computers.

7.1 Division

Michael Baudin, in a 2011 draft paper called “Error bounds of complex arith-
metic”, showed that fl(z/y) = (x/y)(1 + δ) where |δ| ≤ 6 units in the last
place using the näıve algorithm and about 9.9 units in the last place for Smith’s
algorithm, which is described next.

G. W. Stewart, “A Note on Complex Division”, ACM Transactions on Math-
ematical Software 11, 3 (Sept. 1985), pp 238–241, starts by introducing Smith’s
algorithm:

if (|x2| ≥ |y2|) {
t← y2/x2
d← x2 + t× y2
u← (x1 + t× y1)/d
v ← (y2 − t× x2)/d

} else {

7

t← x2/y2
d← y2 + t× x2
u← (y1 + t× x1)/d
v ← (x1 − t× y1)/d

}
return (u, v)

and says “If the operations are performed in the order indicated by the paren-
theses, the resulting algorithm is remarkably robust in the presence of exponent
exceptions, provided underflows are denomralized” (as they are in IEEE arith-
metic). “. . . when the algotithm works, it returns a computed value z̃ satisfying
|z̃−z| ≤ ε|z|” where z is the exact value and “ε is of the same order of magnitude
as the rounding unit for the arithmetic in question. Moreover, the algorithm
works for virtually all problems in which the numerator, denominator, and quo-
tient are representable as normalized floating-point numbers.”

This sounds like exactly what we want. Sadly, it is not that simple. Stewart
goes on to say “However, z̃ being accurate in the sense” that |z̃−z| ≤ ε|z| “does
not insure the accuracy of its real and imaginary components” and points out
that x2/y2 or y2/x2 may underflow to zero.

Stewart chooses to exploit a rather interesting fact about floating-point num-
bers.

Let x1, x2, . . . , xn > 0 be representable numbers and suppose that
x1× x2× · · · × xn is representable. Then max{xi}×min{xi} is also
representable.

This means, for example, that xyz can be computed by sorting so that |x′| ≥
|y′| ≥ |z′| and computing (x′× z′)× y′, and this will overflow or underflow only
when overflow or underflow cannot be avoided.

Stewart’s algorithm is

p(u, v, w) =
if |u| ≥ |v| then v × (u× w) else
if |u| ≥ |w| then u× (v × w) else

w × (v × u)

flip ← |y2| ≥ |x2|
if flip then x2 ↔ y2, x1 ↔ y1
s← 1/x2
t← 1/(x2 + y2 × (y2 × s))
if |y2| ≥ |s| then y2 ↔ s
u← t× (x1 + p(y1, s, y2))
v ← t× (y1 − p(x1, s, y2))
if flip then v ← −v
return (u, v)

where x↔ y means to swap x and y.

8

This is complicated enough that I have probably mangled it in transcription.
Indeed, Stewart had to issue a corrigendum to say that three + signs in the
original version of the code should have been − signs, but forgot to say which
three.

In“A Robust Complex Division in Scilab”7, Baudin and Smith were not as
sanguine about Smith’s method as Stewart. They wrote that “Smith’s method
may fail more often than expected” and “it is easy to find particular complex
divisions where Smith’s method fails . . . the failure is complete in the sense that
none of the digits in the result are correct.” Their grounds for this claim are
“randomized numerical experiments”.

How good are their algorithms? They wrote, “We compared our method with
other algorithms and found that most algorithms which claimed . . . improved
accuracy or improved performance were in fact significantly less accurate than
expected. More precisely, our numerical experiments suggest that the rate of
failure of our improved algorithm is as low as Stewart’s, and might be 4 orders of
magnitude lower than a naive implementation and 2 orders of magnitude lower
than the other known implementations.” (My emphasis.) But they warn that
“This improved algorithm can still fail in a significant number of situations.”

The first of their algorithms can be expressed in C thus:

#define internal(a, b, c, d, e, f) { \

double const r = d/c; \

double const t = c + d*r; \

double u, v; \

if (r != 0.0) { \

u = b*r, v = a*r; \

} else { \

u = (b/c)*d, v = (a/c)*d; \

} \

e = (a + u)/t; \

f = (b - v)/t; \

}

double complex cxdiv(double complex x, double complex y) {

double const a = creal(x);

double const b = cimag(x);

double const c = creal(y);

double const d = cimag(y);

double e, f;

if (fabs(d) <= fabs(c)) {

internal(a, b, c, d, e, f);

} else {

internal(b, a, d, c, e, f);

f = -f;

}

return e + f * I;

7https://arxiv.org/abs/1210.4539

9

}

Smith’s algorithm, Stewart’s, and this one all try to avoid overflow in x22+y22
in very much the same way as the hypot() function does.

Their “robust” algorithm is considerably more complicated. They claim that
algorithm is quite accurate as well as robust.

8 Exponentiation

Raising a complex number to an integer power depends only on multiplication
and division. In polar form it is trivial:

(ρ, θ)n = (ρn, (nθ) mod 2π)

In rectangular form, we can use the usual logarithmic time algorithm:

if n < 0 then n← −n, z ← (1, 0)/z
r ← z if n is odd else (1, 0)
while (n← bn/2c) 6= 0 do

z ← z2

if n is odd then r ← r × z
return r

Measuring over the range n=-9 to n=9, using this function was 6 to 46 times
faster than the C99 cpow() function.

Raising to a real or complex power would require considering complex loga-
rithms and exponentials, making this a good place to stop.

10

