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Abstract

Most artificial neural networks suffer from the problem of catastrophic for-

getting, where previously learnt information is suddenly and completely

lost when new information is learnt. Memory in real neural systems does

not appear to suffer from this unusual behaviour. In this thesis we discuss

the problem of catastrophic forgetting in Hopfield networks, and investi-

gate various potential solutions. We extend the pseudorehearsal solution of

Robins (1995) enabling it to work in this attractor network, and compare

the results with the unlearning procedure proposed by Crick and Mitchison

(1983). We then explore a familiarity measure based on the energy profile of

the learnt patterns. By using the ratio of high energy to low energy parts of

the network we can robustly distinguish the learnt patterns from the large

number of spurious “fantasy” patterns that are common in these networks.

This energy ratio measure is then used to improve the pseudorehearsal solu-

tion so that it can store 0.3N patterns in the Hopfield network, significantly

more than previous proposed solutions to catastrophic forgetting. Finally,

we explore links between the mechanisms investigated in this thesis and the

consolidation of newly learnt material during sleep.
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Chapter 1

Introduction

One of the most impressive characteristics found in mammals is their ability to adapt

to new environments. This adaptability relies on learning and memory. The ability to

generalise learnt responses to novel situations is of significant evolutionary advantage,

allowing the animal to respond to changing environments and to extract the impor-

tant similarities between situations. Without the ability to generalise, every situation

appears to be unique and atomic, requiring a unique behavioural response. How is it

that animals are able to learn that pressing a red lever will release food regardless of

the context, and then later learn that the lever will only work after a bell is rung?

This ability to generalise about the results of actions and to select an appropriate

action given a particular situation is vital to the survival of the individual. The ability

to store the results of previous experience is called memory. The taxonomy of memory

we will use is in line with the work of Tulving (1987) in which he breaks memory into

three categories – procedural, semantic, and episodic.

Procedural memory is the most primitive of the memory types. This type of memory

describes an animal’s ability to learn to perform a task, a “procedure”, allowing the

learning of sequences of actions. Procedural memory does not require an explicit

representation of time, it only needs to store the next action to perform. For example,

the ability to hit a tennis ball is a procedural memory. The ability to hit the ball does

not depend on memory of a particular instance in which you hit a tennis ball. Instead,

the memory is stored as a sequence of actions coupled with a perceptual feedback

system that keeps the racquet on target.

Semantic memory refers to the learning of facts and concepts, the meaning behind

the structural relationships in the environment. This is the most abstract form of

memory. Such memories do not elicit action, nor are they related to any distinct
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event. However, semantic memory is very important when thinking and talking about

the world around us. These memories allow us to extract meaning from repeated

experience and to develop theories about the relationships between experiences. By

testing these theories of association we can develop the fundamental structure needed

for abstract thought.

Episodic memory is memory for specific events or episodes. This requires some

form of temporal component to locate the event in time. This is the type of memory

that is most commonly associated with the word “memory” and it provides us with

our sense of identity, allowing us to feel the passage of time and to reflect on events in

the past. This reflection on the past allows for learning to occur even after an event

has passed.

Our memories are precious to each of us, they define who we are and how we respond

to our environment. The study of memory and the mechanisms behind memory is

critical both as an introspective analysis of ourselves and as a computational problem

from a computer science perspective. By modelling biological memory we hope to

learn more about how memory works in mammals and gain insight into how to develop

software which can interact with humans in a more natural way.

This thesis is focused on episodic memory. We are interested in how memory is

stored over time and in particular how mammals avoid the problems associated with

information overload and the subsequent forgetting of old information. It is obvious

that critical information is encoded early in an animal’s life, and that certain responses

learnt in these early years need to remain robust throughout the animal’s lifetime. This

poses a dilemma regarding how to protect the relevant information from the past while

remaining flexible enough to adapt to new environments.

1.1 Thesis Scope

This thesis investigates the problem of catastrophic forgetting in content addressable

memory (see Section 1.3–1.4). The scope of this investigation is limited to episodic

memory, where each pattern is only available for the duration of a single learning

episode, and tested after each subsequent pattern is learnt. The model of content

addressable memory used is the Hopfield network with simple units in a fully connected

architecture. The evaluation of the solutions to catastrophic forgetting is based on

three parameters - the number of patterns that can be retrieved, the complexity of

the solution, and the potential as an explanation of how biological systems solve this
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problem. The exact process for memory consolidation in biological content addressable

memory is unclear. This thesis presents a possible mechanism for consolidation, which

performs better than competing theories.

1.2 Memory Mechanisms

The exact mechanism used to store long term memory in biological neural networks is

still unknown. We know that there are certain areas of the brain that are vital for the

development and storage of information. It has been shown that both the neocortex

and the hippocampus are important for episodic memory (Atkinson and Shiffrin, 1968;

Meeter, 2003). Models of short term memory (STM) and long term memory (LTM)

rely heavily on lesion studies, CAT scans, and more recently fMRI, to give us an

insight into the functioning of the mammalian brain. These methods investigate whole

brain regions, each containing millions of individual neurons,the functional units of the

brain, and hundreds of millions of synapses, the connections between the neurons. The

results from these studies show us the areas of the brain that are important, and the

structures that are involved in memory formation and recall. However, these methods

are currently still too coarse to detect the minute and subtle changes that are occurring

during memory formation.

In 1949, Donald Hebb suggested a mechanism that could alter the synaptic con-

nections between neurons, so that structure would develop in the network of neurons.

Hebb proposed that when two neurons were active at the same time, the likelihood of

the same neurons firing at the same time in the future was increased.

“When an axon of cell A is near enough to excite a cell B and repeatedly

and persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one of

the cells firing B, is increased.” Hebb (1949).

The biological basis for this process was described by Bliss and Lømo (1973). This

work expanded on the experimental results from work done in 1966 by Lømo (Lømo,

2003; Bliss, Collingridge, and Morris, 2003). The long term change in the effectiveness

of a neuron to activate another neuron is called Long Term Potentiation (LTP) (Bliss

and Lømo, 1973). LTP has been further divided into early-phase LTP (E-LTP) and

late-phase LTP (L-LTP). E-LTP seems to last less than an hour (Mayford, Abel, and

Kandel, 1995) and so is unlikely to be responsible for the lifelong changes required
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for long term memory. L-LTP however requires new protein synthesis and synap-

tic growth, and appears to last for years (Abel, Nguyen, Barad, Deuel, Kandel, and

Bourtchouladze, 1997). This research provides a link between the microscopic changes

occurring at a synaptic level and the behavioural phenomenon of memory. It is still

not entirely clear whether L-LTP is solely responsible for lifelong memory, but it is

likely that it has a significant role to play (Abraham, 2000).

The hippocampus is a focal point for the study of memory as it seems to be involved

in most aspects of information storage, maintenance and retrieval. Damage to the

hippocampus severely diminishes short term memory, and the ability to transform

short term memories into long term memories. The hippocampus has been shown

to be highly active when subjects are learning new material (Davachi, Mitchell, and

Wagner, 2003). As well as serving an important role in memory the hippocampus has

also been identified as important for navigation and learning the relationship between

events and locations. This is most obvious in the studies of rat navigation in which

rewards affect the firing patterns of cells in the hippocampus (Burgess, Reece, and

O’Kefee, 1994).

The main feature that distinguishes human memory from computer memory is our

ability to discover associations between events and to access information by analogy.

This is extremely difficult with computers as they store information as discrete and

isolated patterns of binary digits. Mammalian memories seem to be overlapping and

they share resources with other memories forming interconnected representations. This

overlapping of representation allows mammals to quickly access relationships between

similar items and to respond to them in similar ways. When faced with a deadly

carnivore it is a good idea to run away, irrespective of the exact number of teeth, the

length of the legs or the position of the sun. To find similarities between events using

a computer, it is necessary to explicitly work though all the combinations of features

to detect the overlaps. This is an extremely complex task both algorithmically and

computationally, requiring metrics to decide what is meant by similar and which of the

millions of features of an event are relevant.

1.3 Content Addressable Memory

To enable computers to efficiently find associations between stored information and

similar current events, the information needs to be stored in a way that allows compar-

ison and association. Rather than being accessed purely by the location of the memory,
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it needs to be recalled based on the content. The popularity of Googletm is partly due

to the natural way of accessing information. By providing text that is either on a

web page or linked to the page, the Googletm search returns pages that have content

related to the search string. Google Desktoptm performs an analysis of the computer’s

hard drive and stores content information in an index that can be searched quickly for

relevant words and terms. These systems allow users to use textual context to access

information, but they are extremely limited and require significant computational effort

and additional memory. What is required is a memory that can be directly accessed

by contents.

Content addressable memory provides the ability to access information from just

a partial sample of the original content. For example, when trying to remember an

event it is common to retrace your steps and present as much of the original context as

possible. Mammals appear to have the same ability to remember behaviour based on

contextual information. When developing a functional model of mammalian memory it

is important to replicate this feature. Computer models of content addressable memory

have been developing over many years (Hanlon, 1966; Hopfield, 1982; Kohonen, 1987;

Pagiamtzis and Sheikholeslami, 2006). The model of content addressable memory that

is the focus of this thesis is the Hopfield model. This model has a number of desirable

features:

• A biologically plausible connection update rule, the Hebbian learning rule.

• A simple activation function than can be analysed and provide repeatable results.

• A large body of research for comparison of results.

The majority of this thesis will deal with variants of the Hopfield network (see Sec-

tion 2.4) and analyse the performance of different learning methods applied to this

model of content addressable memory.

The term content addressable memory is also applied to hardware which allows

fast recovery of information based on partial content (Schultz and Gulak, 1996). These

systems provide order of magnitude faster access to information than conventional

digital memory. They are used in specialist areas such as telecommunications where

speed is far more important that cost or energy efficiency. Hardware implementations

are beyond the scope of this thesis. We will instead be focusing on software which

simulates the properties of biological memory.
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1.4 Flexible Representation

The brain is undergoing constant change. These changes are not just the transient

electro-chemical signals that pulse through the brain, but changes to the shape and

connectivity of neurons. There are also changes to the efficacy and speed of connections

already present. Every neuron, and possibly every synapse, is making changes to its

structure and behaviour. When the brain is damaged, it is often able to recover much of

its original functionality. Computer memory on the other hand is fixed and inflexible.

When errors occur the information in that area is usually completely lost, indeed even

a single fault can cause the entire system to fail.

There are two reasons that we might want to reconcile these fundamentally different

systems. The first is to help us more fully understand the nature of human memory,

and the second is to improve the performance of the memory systems in computers,

not to make them more accurate, but to make them more useful.

The task that we are particularly interested in is the mammalian ability to change

behaviour in response to events that occur over an extended time frame. Mammalian

brains are flexible enough to learn new responses to old situations and retain different

behaviours for similar but distinct events. For example, when a rat is placed in an

environment it can learn the location of food sources and is able to navigate to those

locations weeks later, even after being exposed to many new environments.

The main problem posed by this type of learning is how to incorporate new infor-

mation without destroying the memories that have already been stored. The animal

could try to store everything that happens to it, forget those things that were not con-

nected to survival, or just forget all the events and just remember simple relationships.

Given that remembering everything is cognitively expensive, and that mammals seem

to remember more than simple relationships, there must be a mechanism that allows

smooth integration of new information without loosing too much old information.

Computer models of neural networks, artificial neural networks (ANNs), suffer from

a peculiar problem when presented with new information that needs to be incorporated

into an already functioning memory system. The old information disappears almost

immediately when new information is learnt (McCloskey and Cohen, 1989). We will

call this catastrophic loss of memory “catastrophic forgetting” (CF). Animals do not

seem to suffer from this problem. What mechanisms are missing from our models of

memory that prevent this loss in the face of new learning? Is it possible to create

computer models that are as robust and flexible as the mammalian brain?
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We suggest that mammals have solved the problem of catastrophic forgetting by

consolidating newly learnt information in an off-line process during sleep. The role

of sleep as part of memory consolidation has been widely explored in the literature

with promising results (Pearlman, 1971; Pearlman and Becker, 1973, 1974; Pearlman,

1979; Fishbein and Gutwein, 1981; Smith and Lapp, 1991; Smith, 1993, 1995; Hennevin,

Hars, Maho, and Bloch, 1995; Hennevin, Hars, and Maho, 1995; Smith, 1996; Fishbein,

1997; Meeter and Murre, 2004; Muzur, 2005; Stickgold, 2005). Even with many decades

of research the process that protects memory is not fully understood. There is even

debate about the necessity of sleep for memory protection (Siegel, 2001; Vertes, 2004;

Siegel, 2005) and many questions have arisen regarding the nature of these memory

mechanisms. For example, what is the nature of the processing of information, and

what might be happening during sleep that allows for improvements in certain types

of memory (Stickgold, Hobson, Fosse, and Fosse, 2001)?

The approach that we will take to investigate some of these questions, is to develop

a memory system that shares some of the features of mammalian memory and then to

experiment with several different possible mechanisms for preventing the catastrophic

forgetting that is common in computational versions of these systems. The Hopfield

network model that we will investigate has two of the key features that we are interested

in. It is a content addressable memory and it suffers from catastrophic forgetting.

1.5 Thesis Structure

The background of the network used is presented in Chapter 2. Chapter 3 describes

the catastrophic forgetting problem in multilayer perceptron networks and some of

the proposed solutions. Chapter 4 moves the investigation of catastrophic forgetting

into Hopfield networks and describes previous solutions to this class of problems as

well as our pseudorehearsal procedure (Robins and McCallum, 1998, 1999). One of

the features of pseudorehearsal is the selection of the patterns/memories to rehearse.

Chapter 5 investigates ways to distinguish between real memories and spurious mem-

ories, and presents a new technique which involves the comparisons of the inputs to

individual units (Robins and McCallum, 2004). This technique is then applied to

both the pseudorehearsal process and the unlearning process (Hopfield, Feinstein, and

Palmer, 1983; van Hemmen, 1997) in Chapter 6, to establish if performance can be

improved. Finally Chapter 7 discusses future directions for this research, and the link

to sleep and dreaming.
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Chapter 2

Background

Artificial neural networks (ANNs) have proven to be extremely effective in several

problem domains. Feed forward neural networks, in which activation is passed for-

ward through the network, have been shown to be able to approximate any functional

mapping from a set of real numbers to another set of real numbers with arbitrary

precision (Hornik, Stinchcombe, and White, 1989; Stinchcombe, 1999).

Most ANN learning algorithms are based on concurrent learning, in which the entire

training set is presented and trained as a single, complete entity. Once the network

has reached a set level of performance, no further information is learnt by the network.

The system moves from training into a performance phase.

Training Inputs

Desired outputs

Actual Inputs

Training
Complete

Actual Outputs

Figure 2.1: Training a traditional network.
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In contrast, human learning is an ongoing, lifelong process. It is sequential in

that we can learn new information at any time and integrate it into what we al-

ready know. Most ANN learning algorithms are not capable of sequential learning

because of a fundamental underlying problem: when new information is learnt by a

network it significantly disrupts or even eliminates information that has been previ-

ously learnt. This problem has been identified in many forms in memory literature

– it is commonly called the “catastrophic forgetting”, “catastrophic interference”, or

“serial learning” problem (Hetherington and Seidenberg, 1989; McCloskey and Cohen,

1989; Lewandowsky, 1991; French, 1992; McRae and Hetherington, 1993; Sharkey and

Sharkey, 1995; Robins, 1995; French, 1999; Ans, Rousset, French, and Musca, 2002;

Robins and McCallum, 2004).

2.1 Memory

Digital computers store data as discrete packets of information. These are stored in

a medium designed to prevent one piece of information disrupting or interfering with

the information currently stored in other parts of the medium. This type of memory

has many desirable properties. The lack of interference means that new memories can

be stored without fear of corruption, and there is an a priori limit to the amount of

data this type of memory can store. This limit is defined by the number of individual

memory areas available and the size of the memories to store. These systems are often

very stable where a single bit of data, a 1 or a 0, will remain in the same state for

years. The lack of interference means that the data stored (memory) remains stable as

long as the medium remains stable. These properties are desirable for situations where

each individual event contains distinct information that needs to be recalled exactly.

An example of the type of system would be a banking transaction system.

There are however some situations where this sort of discrete memory does not

perform well. The real world does not provide clear separation between events or cat-

egories of objects. The discrete storage used in computers does not support building

associations between similar events or memories. For example “buying apples from the

corner store” is as similar to “buying oranges from the corner store” as to “hunting

wildebeest in Mozambique”. Indeed, it would be difficult to develop the idea of proto-

types or to generalize learning without the ability to see the similarities present in the

real world (Medin and Smith, 1984).

It is precisely the fact that having seen a lion kill a family member, we run from
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any large furry animal, that helped us survive. If we stored information so separately

that there was no way of telling when events were similar we would soon fall victim to

similar but distinct predators. Humans instinctively identify similarities and this can

make it difficult to understand why computers can not make these “obvious” connec-

tions between very similar events. Ideally computer systems would have two types of

memory – a precise system for situations like banking transactions, and an overlapping

similarity system for dealing with situations in the real world in a way that humans

can understand. There are a number of problems that need to be overcome in order

to create a memory system that is functionally similar to animals. These include:

catastrophic forgetting, where old information is forgotten suddenly; information over-

load, where the system cannot store new items and memory breaks down; and spurious

memory, where events that never happened are “recalled”.

The input to the sensory system of most animals contains far too much information

to be able to store each individual sensory event as a separate memory. The amount of

storage required to deal with just a few hours of experience would entirely overwhelm

most uncompressed discrete storage media. Consider the human visual system, with

approximately one million optic nerve cells leaving the retina (Jonas, Schmidt, Muller-

Bergh, Schldrzer-Schrehardr, and Naumann, 1992), each of which has a maximum

firing rate of about 100 Hz (Kim and Dudek, 1993). This gives a maximum data rate

of about 100,000,000 bits per second (100Mbit or about 12MB per second). In one

minute this would be 750MB, in one hour 45GB and for a 16 hour waking day 720GB

i.e., in the order of 1012 bytes.

Calculating the storage capacity of the human brain is very difficult. There is no

clear distinction between stored information and the processing of that information,

or indeed what exactly it means to store information. We can make claims about the

maximum information complexity of an animal’s brain based on the number of indi-

vidual components and their connectivity. This upper bound in complexity is likely to

be much higher than the actual capacity as it ignores redundancy, relay and amplifi-

cation, and other processing that would not increase the total amount of information

stored. Even with these caveats the capacity of the human brain is not large compared

to the sensory input. The human brain is estimated to contain 1011 neurons each with

an average of about 103 connections. Thus the maximum amount of information that

could be stored is in the order of 1014 bytes given one byte per synapse. If our entire

brain was dedicated to storing every bit of data coming from our eyes we would be

able to store about 100 days of vision. Given that there are millions of neurons for
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audition, olfaction, and somatosensory systems, this estimate is very conservative and

we would probably only be able to store a full sensory record for a few weeks.

It is obvious from these figures that much of the information coming into the brain

must be either discarded, filtered or compressed, or indeed all three of these in combi-

nation. The most obvious compression available is related to time. The fact that the

world remains similar from one instant to the next can be used to reduce the amount

of information that needs to be stored. Rather than storing each micro-second as a

separate event, systems that can identify objects in the environment and store view

dependant models (Riesenhuber and Poggio, 2002) of the objects, only need to store a

small amount of information about where the object is and if it has changed in some

way. The consistency of gaze and flow of information into the nervous system naturally

lends itself to this sort of compression.

It is extremely useful to be able to identify an object from many angles and have

some form of content addressable memory to access information about objects that

have similar features. Accessing information about objects and behaving in an en-

vironmentally appropriate way can be aided by both prototypical objects and object

classes. Prototypes emphasise the similarities between a set of objects in a class, where

object classes provide boundaries between types of objects.

To take advantage of these similarities, similar memories could be stored so that

the information that is similar is only stored once in a shared area of the medium.

Learning to identify objects in a view independent way relies on object persistence so

that different views can be bound to the same object. Without some degree of view

independent memory for objects it would be difficult to form any consistent object

based behaviours.

One of the earliest identified learning procedures for memory is reinforcement learn-

ing, as described by Pavlov (1927). His studies of classical conditioning required an-

imals to be able to identify an association between the ringing of a bell and the pre-

sentation of food. Given that the bell was manually rung the generated sounds would

be similar but not identical. Thus the animals were identifying similar rather than

identical sounds and responding in an appropriate way.

Both classical conditioning and operant conditioning demonstrate animals’ ability

to associate rewards with objects or events. Even bees can learn to associate fragrance

with food reward (Mercer, 2001). The evolutionary advantage of associating behaviour

with sensory stimuli is reflected in the memory systems that have evolved in animals.
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2.2 Single Neuron Models

To understand the nature of the mammalian memory system it is essential to look in

to its underlying structure. Just as the performance of computer memory is related to

the structure and nature of the single binary unit storage, so real neural networks have

some features which are directly related to the nature of the base units, the individual

neurons.

We can analyse the behaviour of a biological neural network at many levels of

abstraction. The most abstract is at the functional level of input → processing →
output. This abstraction can be applied, in a reductionist way, to any part of the

network from the whole network down to the propagation of signals down the axon

of the neuron. In the construction of artificial models of neural networks the building

blocks (units) of the network may represent synapses, individual neurons, a number of

neurons or a whole cerebral lobe. When discussing behaviour at this level of abstraction

we will refer to the components as units rather than neurons. For the rest of this thesis

‘units’ will refer to components with functional behaviour similar to that of individual

neurons rather than neuron clusters or entire lobes.

There are a range of unit models at the level of individual neurons, the simplest

being proposed by McCulloch and Pitts (1943) which describes units whose function

is that of traditional logical circuits. Units have only two binary inputs and a single

output. The output depends on an activation function applied to the two inputs.

The function tests the summed input against a threshold and gives a true/false, 1/0

response.

ψ = (A+B) > T (2.1)

This can be visualised as a unit with connections as shown in Figure 2.2.

-

A

B

∑

> T
ψ

Figure 2.2: McCulloch and Pitts unit.

A much more complex model for neuronal activation was proposed by Hodgkin and

Huxley (1952) describing the activation of a squid giant axon. This model is widely

used as it is regarded as an accurate model of the propagation of the action potential

of a biological neuron. The equation for the activation and propagation of signals is
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relatively complex (see Equation (2.2)).

I = Cm · ∆Vm/∆t+ INa + IK + IL (2.2)

where

INa = GNa ·m3 · h · (Vm − ENa)

IK = GK · n4 · (Vm − EK)

IL = GL · (Vm − EL)

where I is the total ionic current across the membrane of the neuron, Cm is the probabil-

ity of there being enough activation to open the channel, INa, IK , IL are the individual

currents for sodium, potassium, and the linear leakage from the cell, Vm is the total

membrane potential, Gi is the maximum conductance for a channel i, and Ei is equi-

librium voltage for each channel of sodium, potassium, and linear leakage, m3 and n4

fit the non-linear response of the channels to a change in voltage.

Recently this model has been challenged, as it does not exactly match the recorded

data from the membrane potential from neurons in the mammalian cortex (Naundorf,

Wolf, and Volgushev, 2006). A new model for cortical neuron activation is presented

by Naundorf et al. (2006) which includes sodium channels with a positive feedback

mechanism which is a better fit to the recording for the early depolarisation of the

neuronal membrane. This faster depolarisation would allow networks to respond with a

wider range of propagation speeds and response times compared to networks built with

Hodgkin-Huxley type units. It is unknown, at this stage, what effect this more accurate

model will have on network level behaviour. This demonstrates one of the problems

encountered when building models that rely heavily on a particularly complex model.

When the minute details of the model change, all of the results have to be examined

to determine if they are still valid.

The complexity of these unit models makes the analysis of the function of the net-

work much more difficult. As the units’ complexity starts to match that of real neurons

it becomes very difficult to differentiate what is functionally significant and what is id-

iosyncratic for the particular model. In this thesis we will use a relatively simplistic

unit model based on the perceptron presented by Rosenblatt (1958). Networks which

use many of these perceptron units in layers are designated as multi-layer perceptrons

(MLP) networks. In the following sections we will refer to the components of an arti-

ficial neural network as units rather than perceptrons. The following sections describe

the features of these units.
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2.2.1 Unit Input

Each unit receives input which is the sum of the weights connecting that unit with

other units.

υj =
N

∑

i=1

(ψiwij) (2.3)

where ψi is the activation of the unit i, wij is the weight of the connection from unit j

to unit i, and N is the total number of units connected to unit j.

This sum of weighted inputs ignores the interesting calculations that occur at the

synaptic level, for example shunting inhibition (Blomfield, 1974; London and Hausser,

2005; Gasparini and Magee, 2006). However, these interactions can be approximated

by inserting more non-linear units to fit more complex calculations.

2.2.2 Unit Activation

To determine the output, or activation, of a unit, the input is passed through an

activation function f(). There are many ways of applying activation functions. Two

categories are linear and non-linear activation functions. It has been shown that the

linear activation functions do not provide enough complexity to solve many real world

problems such as the exclusive–or (XOR) function (Minsky and Papert, 1969). Thus

we will focus on the non-linear activation functions.

In most real neurons the axon hillock mediates the production of an action potential.

The neuron either activates and sends an action potential, or remains quiet. This

means that the neuron has a non-linear response to input. There are neurons that

have a linear response to a stimulus, for example, the rods and cones in the retina

produce a response that is, for the majority of activation levels, linear with respect to

the number of photons stimulating the cells (Marr and Poggio, 1979). The idea of a

threshold as the non-linearity is used in many artificial models of neuronal activation.

The simplest model using a threshold T is the “greater than” logical test as described

in Equation (2.1).

For the simple threshold model presented Equation (2.1), the activation calculation

can be rewritten to refer to the time (t) at which the activation occurs (t-1 is the

activation in the previous time step). The equation is:

ψti = f
(

υt−1
i − Ti

)

(2.4)

This can be seen diagrammatically in Figure 2.3.
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Figure 2.3: Diagrammatic view of a unit receiving input from four

inputs and a bias.

The original perceptron model (Rosenblatt, 1958) used the sign function as the

activation function:

ψi = sg(υi − Ti) (2.5)

The most common non-linear activation function used in neural networks is a sig-

moid function. The sigmoid function provides a smooth monotonically increasing ac-

tivation value. Part of the popularity of the sigmoid function is that it is differen-

tiable, giving the ability to estimate how the activation function will change given

small changes to the input of the unit. Whereas the threshold function changes its

activation suddenly, the sigmoid changes smoothly and continuously. Small changes

to the weights of the network make small changes to the output of the sigmoid units

creating a smooth output surface. This surface is used by back-propagation and other

learning algorithms to systematically approach a set of weights that solve the given

problem. The surface can be visualised as being created by the small changes in the

activation value of the output unit as the weights are changed. Threshold functions

have plateaus where the output does not change for a large number of different weights,

whereas the smooth sigmoidal function provides a gradient at all points on the surface.

The error of the network can also be visualised as a surface in the space of all possible

weights, where the surface is the sum of the error of the network over the given learning

tasks. Given an error surface, a solution to a problem is where the error is zero, or

if it does not reach zero, the minimum error value on the surface. Given the smooth

surface, gradient descent will be able to find at least a local minima, if not the global

minimum.

It is possible to simulate the smooth error surface created by a sigmoidal activation

function by applying noise1 to the input of a threshold function. This creates a prob-

1Noise and the random numbers used to generate the noise are too important to leave to chance.

Therefore we have implemented the algorithm presented by Marsaglia, Zaman, and Tsang (1990) so

that our results are suitably random and yet repeatable on various machines by initialization with a
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abilistic activation for the unit. Units whose input is close to their threshold will be

active with a probability of 50%.

If the noise applied to the unit inputs is generated from a Gaussian distribution then

the probabilistic activation of the unit, which is the cumulative distribution function

Φ, becomes similar to the sigmoid activation function. This can be seen in Figure 2.4

where:

g(x) =
1

1 + e−x

Φ(x) =
1

2

(

1 + erf

(

x

σ
√

2

))

This form of smoothing using noise is applied when performing delta learning (see

Section 2.3.2), and can be applied during testing. If this form of stochastic activation

is used the network becomes much more like a Boltzmann machine (Ackley, Hinton,

and Sejnowski, 1985). For simplicity of analysis and comparison with other research,

we have not applied noise during relaxation in this thesis.

Φ(x)

g(x)

Sigmoid function versus Gaussian cumulative distribution fuction

Input υ

O
u
tp

u
t
ψ

1050−5−10

1

0.75

0.5

0.25

0

Figure 2.4: Comparison of the sigmoid function with the cumulative

distribution function for a Gaussian with σ2 = 3.0.

The threshold of each unit defines the position of the decision surface. The decision

surface lies between the input values that activate or deactivate the unit. Each unit can

known seed. The seed used for every data run is included in the output, enabling replication if required.

If the random seed is omitted from the parameter file the current time is used (see Appendix A).
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be used to define an axis, with the value on the axis being the input to the unit. The

activation function can be used to define a hyper-surface in this hyper-cube. Changing

the weights changes the input values and therefore the position of the decision surface.

We define that a unit is “close” to the decision surface if small changes to the weights

change its activation state. Noise on the input to a unit that is close to the decision

surface may result in the unit changing from active to inactive or vice versa, while

noise added to a unit that has input far from the decision surface will only cause

change infrequently.

2.2.3 Updating Connections

The strength of the input to a unit i is determined by the strength of the connections

and the number of connected units that are active. Changing the strength of the

connections alters the input to the unit, which in turn, may cause the output to change.

The function to alter the connections is called the learning algorithm.

A connection’s strength can be represented as a Boolean value, integer weights, or

more commonly as floating point numbers. Both integer and Boolean representation

limit the amount of information that can be stored in connections. This limitation can

have significant influence on the performance of some learning algorithms. Processes

that require very accurate values or gradient descent are often less effective and in some

cases will not work at all with limited information per connection.

The connections are usually initialised as either 0 or a small randomised value either

side of 0. The learning algorithm makes small positive and negative alterations to these

connections. If unit j is active and the connection between unit j and unit i (denoted

wji) increases then the input to unit i will increase by the activation value of unit j

times the increase in the connection weight wji.

In real neural networks there are many mechanisms involved in the alteration of

connections between neurons. Long Term Potentiation (LTP) describes the increase

in connection strength between neurons which is demonstrated by an increase in the

likelihood that the post-synaptic neuron will become active when the pre-synaptic

neuron sends an action potential. There is still debate about the mechanisms that

underpin LTP (Malenka and Nicoll, 1999; Palmer, Isaac, and Collingridge, 2004), but

for our purpose it is sufficient that there is a mechanism that changes the connection

strength between neurons.
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2.3 Learning Algorithms

Learning algorithms can be broken down into three categories: supervised, reinforce-

ment, and unsupervised. The distinction can be made by the amount of information

required for each system. Supervised learning requires an external agent or “teacher”

to provide the desired output. The output units in the network compare themselves

to the desired outputs and estimate the direction, and possibly the distance, between

the current state and the desired state. The sum of the distances between the current

output and the desired output is often used as the error of the network. The learning

algorithm uses this direction and distance to alter the connections to the output units,

and other units, in order to decrease the error.

Reinforcement learning only requires a single signal giving a measure of “goodness”.

A unit will update its connections to other units based on the principle of increasing

the likelihood of the events that lead to the reinforcement. This is a somewhat blind

mechanism as it has no information about which direction will improve performance.

Without a gradient on the error surface, reinforcement learning just amplifies activities

that were associated with a “good” signal and depresses associations that resulted in

negative feedback.

The last category, unsupervised algorithms, have no notion of the desired or correct

answer. The network changes its connections based on patterns in the input data.

The only goal that could be attributed to unsupervised learning is the desire to find

similarity or correlation between events in the environment. The fact that networks

are able to perform any interesting alterations to their behaviour without a predefined

goal is remarkable. Unsupervised learning can find structure in input data or reproduce

either single events, or sequences.

2.3.1 Hebbian Learning

Hebbian learning is a form of learning that was suggested by Hebb (1949). The key

feature of Hebbian learning is that associations between neurons will be enhanced after

each learning cycle. When one unit contributes to the activation of another unit, that

connection will be strengthened so that there is an increase in the potential for unit A

to activate unit B (Hebb, 1949). The biological basis for this learning algorithm was

discovered much later in the form of LTP. Hebbian learning is now used to refer to

most forms of learning which increase the correlation between the activation of units

in a network. This is most commonly seen in an unsupervised context, as it does not
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require any goal or direction to focus learning.

When we use this principle in an artificial neural network, it provides a rule for the

alteration of the connections between units. The connection strength increases when

the units at each end are simultaneously active. Active units are represented by a 1

and inactive by 0. The learning rule is

∆wij = ηψiψj (2.6)

where wij is the strength of the connection from unit j to unit i, η is the learning

constant, and ψi is the activation of a unit i in the network.

ψi

1 0

ψj 1 + 0

0 0 0

Table 2.1: Weight changes using the Hebb rule, with +1/0 activations.
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Figure 2.5: Diagram of a simple 3 unit network with one output unit,

two input units and two weighted connections.

This can be seen diagrammatically in Figure 2.5. If unit A activates at the same

time as unit C and thus contributes to its activation then the connection wAC will

increase in strength so that the next time unit A is active, C is more likely to be

active.

The extension from associating units that are firing to auto-associative content

addressable memory is relatively straightforward. An auto-associative task is where

the network has to produce an output which is identical to the input. Auto-associative

learning is important for content addressable memory as it can provide a way to learn

patterns which can later be found with a partial stimulus. The Hebbian rule suits

the task of auto-association as individual units are adjusted to become associated,

and this adjustment allows groups of units to become associated. These groups of
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associated units form the content of the remembered event. This process is described

in Section 2.4.

There is at least one major problem with the Hebb postulate as it has been used in

artificial neural networks. The learning function provides no mechanism for decreasing

the connection strength between units. The function only describes a mechanism for

strengthening the connection. Without some form of decay or inhibition, the network

would quickly saturate with activation as all the connections increase in strength. One

possible solution to this problem is to leave the association rule unchanged, but adjust

the activation values of the units. If the sign function sg() is used as the activation of

the units then negative values are introduced to the system. When a negative output

is associated with a positive input the resulting change will be negative and thus move

the connection strength toward the negative values.

Using the Hebbian learning rule from Equation (2.6) we now have an algorithm

that can make both positive and negative changes to the connections in the network.

Table 2.2 shows the result of applying Equation (2.6) to activations that are either −1

or +1.

ψi

1 −1

ψj 1 + −
−1 − +

Table 2.2: Weight changes with +1/-1 activations.

It is possible to alter the learning on networks with 0 and +1 as the activation

values so that the association rule generates the same weights as the −1,+1 space:

∆wij = (2ψi − 1)(2ψj − 1).

There are other solutions to the problem of a lack of inhibition. Simple solutions

include having a universal decay term applied once every time step, or to normalise

the input to units so that when one connection increases its strength other connections

are decreased (Chechik, Meilijson, and Ruppin, 2001), or having separate LTP and

LTD learning rules such as the CPCA (Norman and O’Reilly, 2003). Investigating the

influence of each of these changes to the learning algorithm is beyond the scope of this

thesis, as we are focusing on catastrophic forgetting rather than possible inhibition

mechanisms. For simplicity most of the following networks use -1/+1 activation, and

when using 1/0 networks we use the ∆wij = (2ψi−1)(2ψj−1) update rule to generate
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the weight matrix.

2.3.2 Delta Learning

The delta learning algorithm2 uses the simple approach of altering the connections

to a unit so that the output of the unit is more like the desired output. Because

of the requirement for a “correct” desired output, delta learning is usually used as a

supervised learning algorithm. In our case we will be using delta learning for an auto-

associative task, and so the desired output is in fact the input signal. This allows us

to use delta learning, which is usually only considered for supervised learning tasks,

while retaining the advantages of unsupervised learning and having all the information

locally available.

The simplest form of delta learning is to subtract the actual output from the desired

output and use the result as an error term. This error term is used to alter the

connections to the output unit. Rosenblatt (1958) used a delta learning rule to train

the units which he called perceptrons. The formulation is:

∆wij = η(Di − ψi)ψj (2.7)

where η is a learning constant, Di is the desired output and ψi is the activation of unit

i.

Using this learning algorithm, if the desiredDi output is 1 and the current activation

of the unit ψi is −1, then there will be a +η addition to all the connections from units

that had +1 activations. Because of the symmetry in the network, this occurs both

from unit j to i and also from unit i to j. The total change for the +1,-1 space is

therefore 2η. Given the same pattern of activation, the sum of the weighted input to

the unit will be increased by:

∆υi = 2η
m

∑

j=1

ψj (2.8)

where m is the number of units connected to unit i.

This learning algorithm has been shown to always converge in a finite time if the

desired output is linearly separable (Novikoff, 1962). This means that if a set of weights

exist that can solve the linearly separable problem this simple delta learning rule will

find a solution. This result makes delta learning a very attractive algorithm for many

2Delta learning is sometimes referred to as the “Widrow–Hoff rule” as these authors first introduced

this style of learning (Widrow and Hoff, 1960).

21



A B AND ψ e

1 1 1 0 1

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

Table 2.3: The training patterns, inputs, and outputs for an untrained

network on the AND problem. ψ is the output of the network and e

is the error.

problems. An example of a linearly separable problem is show in Table 2.3, and the

diagram of the network in Figure 2.6

However, there are limitations to delta learning, as hinted at by the condition of

linear separability. For problems such as XOR, where the outputs of the network cannot

be constructed from a linear combination of the inputs, there is no set of weights directly

connecting input to the output that can solve the problem. This limits the solution

space of the single layer delta learning system. Multilayer systems can solve arbitrary

functional mappings, with back-propagation (Rumelhart, Hinton, and Williams, 1986)

being the first algorithm that could learn these mappings.

One of the problems with delta learning on threshold functions is that it only

makes changes to the weights when there is an error in the output of the unit. Given

an activation function such as the sign or threshold function, the only error signal

values are 1, 0,−1 for threshold and 2, 0,−2 for sign. As the network is using this error

to adjust the weights it will stop adjusting them as soon as the outputs are just on the

correct side of the decision surface. Figure 2.7 shows a possible decision surface that

solves the AND problem. This solution is not particularly stable as the surface is close

to the two points at < 1, 1 > and < 0, 1 >. An alteration to the threshold T could

easily move the decision surface so that one of the training points would generate an

error. This arises because the learning stops as soon as the decision surface provides

the desired output where all four training patterns give the desired output.

This fragility can be alleviated by adding noise to the calculations in the network.

The two types of noise that we use are noise on the summed input to a unit, “input

noise”, and noise on the propagated activation of the units in a learnt pattern which in

effect changes the autoassociative learning task into a slightly heteroassociative task,

“heteroassociative noise”.

Input noise is the application of noise to the input of a unit so that it generates an

22



GFED@ABCA
0.0

UUUUU

**UUUUU

GFED@ABC ψ //

GFED@ABCB
0.0iiiii

44iiiii

Figure 2.6: Diagram of the untrained, two input, one output network

from Table 2.3.

Unit B
Unit A

A solution to the AND problem.

1

0

1

01

0

Figure 2.7: Activation surface for the AND function learnt by a per-

ceptron network. The decision surface appears as a cliff in the activa-

tion surface. The values for the weights are wA = 0.2, wB = 1 and

T = −1.1.
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error when close to the decision surface. These additional errors move the least stable

units further away from the decision surface. This noise can be either absolute or

relative. Absolute noise uses a random number generated from a Gaussian distribution

with a mean of zero and a standard deviation determined by the learning parameter ν.

For the examples in Appendix B the standard deviation σ = 0.5 (GausAbsoluteRange

= 0.5). Absolute input noise can be seen as defining a gradient from the decision

surface which units move away from. The larger the σ the more often units will have

their input disrupted and therefore generate errors resulting in learning. Relative noise

is where the width of the Gaussian (σ) is scaled to match the current mean input to the

units. This forces noise to continually be applied during the whole learning process.

As the mean input to the units increases so does the amount of noise. This forces the

network to continue to learn until the maximum number of epochs are reached as there

is no way to converge on an error free network, as the noise scales to ensure there are

always errors to correct. Relative noise also makes the inputs to the units more uniform

in magnitude. Units whose summed input is lower than the mean are more likely to

receive learning and thus increase their summed input. This can be visualised as a

force field extending from the decision surface which continually pushes the decision

surface away from the defined training points.

The result of this noise can be visualised in the simple network above trying to

learn the “AND” function. Input noise visually creates a Gaussian blur around the

training points forcing the decision surface to move away. Figure 2.8 shows the result

of training with the application of absolute Gaussian noise with a mean of 0 and a

deviation σ2 = 2 on the input to the output unit of the network learning the “AND”

function. The decision surface has moved further away from the training points. The

weights of the network have increased to compensate for the noise, and symmetry starts

to emerge as the network tries to optimise the distance from the training points.

Heteroassociative noise (νh) is where a percentage of the input units are flipped

before the error is generated. This alters the summed input to the output units, and

therefore the actual outputs used to generate errors. Units which were only just on the

correct side of the decision surface may now generate an error and have their weights

changed. This is called heteroassociative noise as for a Hopfield network it changes

the autoassociative task into a slightly heteroassociative task, as the inputs which have

been altered by noise, are no longer identical to the desired output. This input to

output mapping is aimed at forming a basin of attraction around a learnt pattern, by

forcing patterns that are close to the learnt pattern to relax to the learnt pattern. The
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Figure 2.8: Activation surface for the AND function learnt by a per-

ceptron network with Gaussian noise. The decision surface appears

as a cliff in the activation surface. The values for the weights are

wA = 3.19, wB = 3.17 and T = −4.97.

noise level is usually relatively low νh < 10%.

In Hopfield networks delta learning was proposed as a local learning rule by Diederich

and Opper (1987). This performs the standard error correction on every unit, using the

auto-associative approach in which, during training, the input is the desired output.

The procedure is:

• while the total error of the population is above a threshold repeat

• for each pattern in the base population

• initialise the network with the pattern to learn

• if using heteroassociative noise, alter the activation of νh of the

units.

• if using input noise, add Gaussian noise νi to the input of all

output units

• calculate the outputs for all units

• generate the error based on the difference between these outputs

and the original pattern

• update the weights based on the error above
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This process may take many iterations to converge on weights that make all of the

training items, called the base population, stable. The level and the type of noise also

contribute to the length of time required to converge on a solution. Noise is important

for making the learnt items more stable and creating a basin of attraction around each

pattern. The noise makes the weights both larger and more symmetric which combine

to make the learnt patterns more robust.

2.3.3 Local Learning

One of the important features of a biologically plausible learning processes is that it

has to be local. For a learning algorithm to be local it must make changes to the

connections between units based only on information that relates to the connection

or the two units which it connects. Local calculations do not require values acquired

from the whole learning population or from the entire network. Hebbian learning is the

prototypical local learning algorithm. The pseudo inverse (Hertz, Krough, and Palmer,

1991; Storkey, 1997) learning rule is an example of a non-local learning procedure.

Delta learning is a local learning algorithm as all the information to make an update

is available locally, so long as there is an input which represents the desired output. If

the goal of the network is auto-associative then the input can act as the desired output.

This allows us to explore the use of Delta learning in a local learning context.

2.4 Hopfield Networks

The model of associative memory that will form the basis of this thesis is the Hopfield

Network. The essence of this model was first presented by Pastur and Figotin (1977)

as a model of magnetic spin glass systems in physics. The model became popular as

a model of memory after Hopfield (1982) proposed it as a form of content addressable

memory. Hopfield networks have remained relevant to both the artificial intelligence

and the physics communities.

2.4.1 Hopfield Network Structure

The network is constructed as a set of N simple units, with each unit having an asso-

ciated activation value. The set of units can be represented as a vector of activations

X, which describe the current state of the network.
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Figure 2.9: Hopfield network of 6 units H6,0.

Figure 2.9 shows a network of six fully connected units with zero as the low value

for the activation function, denoted H6,0 (H6,± represents activation of < 1,−1 > ).

To represent the state of the network we can construct a vector from the top left unit

and follow around in a clockwise direction. The vector X represented by the network

above would be < 0, 1, 1, 0, 1, 0 >. The state of the network can be represented as any

one of the 26 possible patterns using this vector based approach.

We can represent the connections in the network as a weight matrix W. Each

unit’s connections are represented by a row in the matrix. The central diagonal is left

blank as we are currently prohibiting self connections. The weight matrix is either

symmetric, as in Figure 2.9, or asymmetric. For the weight matrix to be symmetric

the connection from a unit i to unit j must be the same as the connection from unit

j to i (wij = wji) for all units. Hebbian learning makes symmetric updates to the

weights in the network and thus creates a symmetric weight matrix. Symmetry in the

weight matrix has the advantage of guaranteeing relaxation to a stable state and will

be discussed in the next sections.

In addition to the units in the normal Hopfield network it is possible to add a

bias unit, a unit which is always active. For delta learning the connection to the bias

unit can be used to store the threshold for a unit. For Hebbian learning the bias

unit is usually removed from the network. In this thesis all networks will have a bias

unit included unless otherwise stated. Results from the networks have been repeated

with bias units removed, and for large networks the results are very similar in either

condition. The justification for this is that when the number of units in the network

increases, the contribution of a single bias unit becomes less significant.

The units in the network in Figure 2.9 have an activation value of 1 and an inactive

value of 0. As mentioned earlier there is also the possibility of having the inactive value

of a unit represented by −1, denoted H6,±. The different activation values alter some of

the characteristics of the network, particularly the dynamics (Horn, Levy, and Ruppin,

1998b; Davey, Adams, and Hunt, 2000), but many other characteristics are the same,
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including the total number of possible states, learning algorithms, and connectivity.

As the two types of inactive value are not isomorphic, the activation values used will

be included as a parameter influencing the results.

2.4.2 Dynamics

The Hopfield network cycles through many configurations before settling on a stable

output pattern. When a pattern of inputs is presented to the network as a vector X,

the activations of all the units are set to match those values. In the relaxation phase

the network is then allowed to calculate the actual output of each unit. This is done by

selecting a unit and performing the sum of all the incoming connections, weighted by

connection strength, and passing this value through the activation function. As each

unit is selected it either changes its activation or remains in the current state. After

many cycles where an individual unit may be updated many times the network settles

into a stable state where no matter which unit is selected it will remain in the same

activation state.

This ability to relax to a stable state is what we describe as the process of recalling

a memory. When presented with a vector of input values the network will relax into

some state. The relaxation of a Hopfield network that has been trained with Hebbian

learning, and therefore has a symmetric weight matrix, can be shown to follow the

Lyapunov, or energy, function (Hopfield, 1982; Kühn, Bös, and van Hemmen, 1991):

H = −1

2

N
∑

i=1

N
∑

j=1

wijψiψj (2.9)

where the sum H is monotonically decreasing after each update cycle. The Lyapunov

function guarantees convergence to a stable low energy state in which no unit will

change activation as any single unit change would result in a higher energy state. For

an introduction to these forms of calculations see Hertz et al. (1991). The decrease in

energy is caused by the activation function that either leaves the unit the same and

thus the energy the same, or changes the activation to match the sum of the inputs,

decreasing the energy of the network.

2.4.3 Energy Surface

Instead of focussing on the energy of the entire network, it is possible to look at the

energy of individual units. Negative energy values are low energy and thus stable,

28



whereas positive values are high energy and unstable. The greater the magnitude of

the energy of a unit (h) the further the unit is from the decision surface. For the

network to be in a stable state, every unit must have a negative energy. For the

network in Figure 2.9, if the weights are set to zero then the energy of each unit is zero

in every state and the total energy of each state is also zero.

The energy function in (2.9) can be written as the sum of the energies of each unit:

Hp =
N

∑

i=1

hpi (2.10)

where hpi is the energy of unit i in state p, which in turn is defined as:

hpi = −(υpi ψ
p
i ) for HN,± (2.11)

hpi = −1

2
(υpi ((2ψ

p
i ) − 1)) for HN,0 (2.12)

for the two different types of unit activation +1/-1 (HN,±) and +1/0 (HN,0).

These equations give negative values for units where the input (υ) is the same sign

as the unit activation (ψ), and positive values when there is a difference between the

current input and the current output.

If the pattern displayed in Figure 2.9 is converted to < −1,+1,+1,−1,+1,−1 > for

the -1/+1 space, and is learnt using Hebbian learning from the zero network3, every

unit will change its weighted connections. The energy for each unit after learning,

where the network is in the learnt state p is:

υpi =
N

∑

j=1

(ψpjwji)

hpi = −(υpi ψ
p
i )

Hp =
N

∑

i=1

(hpi ) from (2.10)

Having learnt only the original pattern p =< −1,+1,+1,−1,+1,−1 > every unit

has the same energy4 hpi = −5, and the network’s energy is Hp = (−5 × N) = −30.

If unit 1 has its value altered from −1 to +1 then the energies of each unit in the

new state p′ would be < +5,−3,−3,−3,−3,−3 > giving a total network energy of

3The zero network is network where all the connections are set to zero
4Self connections are zero and all other connections are either 1 or -1
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Hp′ = −10. This pattern is unstable as one of the units has an energy value greater

than 0.

When a network has only a single pattern learnt there is a great deal of symmetry,

as can be seen by the symmetry in the energy of the units. From the example above,

all patterns that have only one unit flipped have energy Hp′ = −10. With two units

flipped, the energies of the units in these states become < +3,+3,−1,−1,−1,−1 >,

Hp′′ = 2. With three units flipped all the units have energy hp
′′′

i = 1, Hp′′′ = 6. This

symmetry in unit energy is partly caused by the symmetry of the learning algorithm

and partly by the symmetry of the activation values.

The symmetry between −1 and +1 activation values means that if all of the units

are flipped the energy of the network is the same as the original pattern. What this

means for sampling the space of all possible 6 unit patterns is that 50% of randomly

created patterns will relax to the original pattern < −1,+1,+1,−1,+1,−1 > and the

other 50% to < +1,−1,−1,+1,−1,+1 >. Because of this symmetry we will treat

relaxation to the inverse of a pattern as equivalent to relaxation to the original learnt

pattern (Hopfield, 1982).

One method for breaking the symmetry in these networks is to add a bias unit.

The bias unit breaks symmetry as it is always in the active (+1) state. This is only

effective in small networks as the change to the basins of attraction for real and inverse

patterns are N/2 + 1 and N/2 − 1 respectively. When N is large this change becomes

insignificant.

energy

y
x

0pp′

10
5
0
-5

-10
-15
-20
-25
-30

Figure 2.10: Demonstrating the symmetry of the basin of attrac-

tion of pattern p and its inverse p′, using a 2D representation of

the energy surface of a 6 unit network Hp
6,± with pattern p =<

−1,+1,+1,−1,+1,−1 > learnt.
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There are 2N states in a binary valued Hopfield network, each with an energy value.

Learning alters the weight matrix which in turn alters the energy value of each of these

states. These states are an example of an N dimensional hypercube, where each state

is a vertex of the cube. Changing the activation value of a unit moves the state along

that axis to an adjacent vertex of the cube. Relaxation of the Hopfield network is a

path through the hypercube where each change moves to an adjacent vertex with lower

energy. Thus the energy calculation defines a hyper-surface in the cube. Figure 2.10

shows a three dimensional mapping5 of the surface generated in the network above

having learnt the pattern < −1,+1,+1,−1,+1,−1 >. The two low energy areas in

the graph correspond to the learnt pattern and its inverse.

There are a large number of learning algorithms that can form these energy surfaces.

Some of them generate a surface that guarantees relaxation to a stable state while

others may never converge. The variants include Hebbian learning, delta learning, anti–

Hebbian learning, pseudo–inverse, and many specialised variants (Amit and Brunel,

1995; Storkey, 1997; Athithan, 2002). The energy surface created by each learning

algorithm is distinct, and small changes to algorithms can cause large changes in the

energy surfaces created.

2.4.4 Capacity

The simplest definition of the capacity of a Hopfield network (M cap) is the number of

learnt patterns that are stable. This simple definition does not consider the percentage

of stable patterns in the network that are learnt patterns, nor the percentage of the

learning population that are stable, merely the total number. There are various ways

to measure the limit of the amount of information that can be stored, and different

capacities for the individual learning rules. The original estimation for the capacity

of the Hebbian learning rule was M cap = 0.14N (Amit, Gutfreund, and Sompolin-

sky, 1987a), where N is the number of units in the network. Rigorous mathematical

proofs (McEliece, Posner, Rodemich, and Venkatesh, 1987; Bovier, 1999; Löwe and

Vermet, 2005) have shown that the upper bound for perfect recall is actually closer to:

M cap =
N

γlnN
(2.13)

5This figure does not accurately represent the true shape of the basin of attraction of the patterns

as the relationships are lost when the hypercube is flattened to 2D, however it does show the symmetry

in the energy surface. The flattening from 6D to 2D is performed by dividing the 6 bit representation

into two 3 bit numbers which are placed on the x and y axes. In this mapping the energy of state

< −1,+1,−1,−1,+1,+1 > is shown at position 2,3 (010, 011).
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where γ = 2, 4, 6 depending on the exact dynamics of the storage required. These re-

sults were generated on independent identically distributed (i.i.d.) patterns generated

by Bernoulli random values of ±1. The theoretical maximum amount of informa-

tion that can be stored in the Hopfield network, independent of the learning rule, is

M cap = N patterns for networks with symmetric connections, and 2N for asymmetric

connections (Gardner, 1988). This result is for uncorrelated patterns where the prob-

ability of being active is 50%, α = P (xi = +1) = 0.50. Unless otherwise stated, the

simulations in this thesis use these types of patterns. When patterns other than these

are used, they will be noted as X0.2 when α = 0.2, indicating that 20% of the units in

the pattern X are active.

There are many different maximum capacity values that can be presented depending

on the type of pattern stored (Amit, Gutfreund, and Sompolinsky, 1987b), the learning

procedure (Storkey and Valabregue, 1999), connection symmetry (Chen and Amari,

2001), and the definition of successful storage (Löwe and Vermet, 2005). The number

of learnt patterns that are stable is only one of the possible measures of the performance

of the network. Given that we want a network to be an effective content addressable

memory system there must be a large number of content probes that relax to stored

patterns and the ratio of learnt patterns to spurious patterns must be high.

Spurious patterns are defined as the stable states in the network that are not part of

the learnt set of patterns. In the H6,± example above, with one pattern learnt, the only

stable states were the learnt pattern and its inverse. For Hebbian learning if three or

more patterns are learnt, spurious states are created. As the number of learnt patterns

increases the number of spurious patterns also increases, but at a much faster rate.

Once the network has learnt more than the maximum capacity for Hebbian learning

(0.14N), spurious states start to dominate the networks and the learnt patterns become

unstable.

2.4.5 Basins of Attraction

The basin of attraction for a stable pattern is the set of states which relax to that

pattern. The larger the cardinality of the set the greater the size of the basin of

attraction. In the H6,± network above with one learnt pattern, the two stable states

(the pattern and its inverse) have large basins of attraction. As the number of patterns

learnt by the system increases the size of the basin of attraction of each individual

pattern decreases.

The size of a basin of attraction is very important when using the Hopfield network
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as a content addressable memory. If a learnt pattern is to be recalled from a noisy

version of the pattern, the noisy probe has to be within the basin of attraction of the

learnt pattern. If the basin is too small then the only patterns that will relax to the

learnt pattern are those that start with almost identical activation values. When the

learnt patterns no longer have basins of attraction the memory system is only useful

as a familiarity test rather than a content addressable memory.

2.4.6 Update Timing

There are two categories of update timing for Hopfield networks; synchronous or asyn-

chronous. The process described in Section 2.4.2 is an asynchronous process where

each unit is selected at random and that unit is updated. The equivalent synchronous

process involves every unit updating at the same time. Synchronous updates can be cal-

culated quickly using matrix multiplication with the weight matrix W and the current

activation of the network Yt at time t:

Yt+1 = Yt · Wt (2.14)

This dot product calculation is O(N2) for each cycle. This update rule unfortunately

breaks the convergence guarantee as it can result in the network entering a “blinking”

state (van Hemmen, 1997). This is where a set of units continually change from one

state to the other and back again. This can easily be visualised in a two unit network

connected by a negative weight. Units A and B are initialised as +1 at time t = 0.

At t = 1:

ψ1
A = sg(wAB × ψ0

B)

= sg(−1 × 1)

= sg(−1)

= −1

At t = 2:

ψ2
A = sg(wAB × ψ1

B)

= sg(−1 ×−1) (B updated at time 1)

= sg(+1)

= +1
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This network “blinks” between state < 1, 1 > and < −1,−1 > as both units are

updated at the same time. If only unit A is updated the network will stabilise on

either the pattern < −1, 1 > or < 1,−1 >. These two configurations are equally stable

and performing an update on either unit will not change the activation state of the

network Y. Given these blinking states, synchronous update is not a behaviourally

neutral replacement for asynchronous update. Van Hemmen (1997) argues that you

can use these blinking states as indicators that the network has not found a stable

learnt pattern. This unfortunately means that the ability to relax to a learnt pattern

is severely reduced in the network suggested by van Hemmen.

As relaxation is one of the most common operations performed on the Hopfield

network it is important to make the implementation as time efficient as possible. Syn-

chronous updating is fast as there are onlyN2 c updates required, where c is the number

of cycles before the network relaxes or finds a blinking state. However, because this re-

laxation is not equivalent to asynchronous update, we also need a fast implementation

of the asynchronous update procedure.

When randomly selecting units to update it is common to select a stable unit, which

will not change its activation state. In its raw form the update rule is an example of

the classic “coupon problem” of collecting items when each item is selected randomly

with replacement (Durrett, 1996). Simple random selection is extremely slow for large

networks. The first simple approach to increasing the speed of relaxation is to create a

random permutation of the units and update each unit once per cycle. This is O(N2)

for each update cycle. The difference between this and synchronous updating is that

each unit is updated and its new value is used for all of the subsequent calculations in

that cycle. Permuted order selection has similar dynamics to the asynchronous update

but with a much faster relaxation time. There are however, sequences of updates which

are possible with the raw form that cannot be generated by randomly permuting the

update order, for example any sequence of updates that include any unit twice between

updates of another unit. These are common, and so although the performance is similar

it is not equivalent.

We propose a faster and operationally equivalent way to perform a fully asyn-

chronous update, by changing the way the units are selected for updating. When

randomly selecting units, only unstable units will change the state of the network. The

state changes are equivalent to the state changes caused by the simpler sequence that

only includes the units that will change. Randomly selecting from all units and then

discarding selections which do not change state is equivalent to randomly selecting
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from only the unstable units. This can reduce number of operations significantly. To

achieve this we need a list of units that are unstable, which is updated after every

unit change. Creating this list is O(N2) for the first iteration, but to maintain the list

requires only N calculations per unit update. When a unit is updated it signals all the

other units and changes the recorded sum of their current input. Thus if a unit A is

updated, then all the other units will alter their input by the change in A multiplied

by the weight of the connection to A:

υB = υB + (ψtA − ψt−1
A )wBA (2.15)

where υB is the unit input and (ψtA−ψt−1
A ) is the change in activation for unit A. Thus

each unit update is O(N). For large networks the comparison between the O(N2) for

each cycle and O(N) for each unit update makes this form of updating more than an

order of magnitude faster. For a 1000 unit network H1000,± with 20 patterns learnt,

the comparison between our approach of keeping a list of units that are unstable (List

Asynch) and the standard approach of processing a random permutation of the units

(Perm Asynch) is shown in Table 2.4. The numbers represent the averaged number

of units that were updated during relaxation. The 6000 in “Spurious – Least / Perm

Asynch” indicates that there were six cycles through the 1000 unit network, thus 6000

unit updates. By comparison only 552 units were updated for the same condition for

“List Asynch”. List Asynch requires about 10% of the processing used for Perm Asynch

when relaxing to learnt patterns and only 5% for spurious patterns (for the distinction

between spurious and learnt patterns see Section 2.4.5).

List Asynch Perm Asynch Comparison L/P

Least 693 5, 245 13.2%

Learnt Avg 808 8, 359 9.7%

Most 886 10, 856 8.2%

Least 552 6, 000 9.2%

Spurious Avg 779 14, 749 5.3%

Most 1095 32, 000 3.4%

Table 2.4: The number of unit updates during relaxation for list and

permutation asynchronous updating. Values are averaged for the 20

learnt patterns and the first 100 spurious patterns found in an H1000,±

network found using 5000 random probes.

The difference between spurious and learnt patterns indicates that the shape of the
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basin of attraction for each is different. The learnt patterns tend to have fewer unit

updates before reaching a stable state. This could indicate that the basin of attraction

for a learnt pattern is more symmetric, as for most units selected the update moves

toward the stable learnt pattern.

2.5 Performance

There are a number of different ways to measure the performance of a content address-

able memory system. The relevance of a metric needs to be weighted by the goals

of the network. Different authors use very different measurements which seem to be

chosen to best differentiate their network from other solutions (for example compare

Christos (1996) and van Hemmen (1997)).

2.5.1 Capacity

The standard measure of performance is the stability of the patterns that have been

stored, the capacity (Hopfield, 1982). If all the desired patterns are stable then the

network is considered to be working very well. When comparing two learning proce-

dures, the one that can make more patterns stable is usually considered to be the best.

However, simply measuring the number of stable states is not necessarily indicative of

an effective learning algorithm. For example, given the constraint of all learnt patterns

having exactly 50% of their units active, we can construct a network where all the

weights are negative one. Every state that has exactly 50% of its units active will be

a stable state in this network. We can show this by looking at one of these 50% active

states. Selecting an active unit at random the unit input is:

υi =
N

∑

j,j 6=i

wijψj

=

(N/2)−1
∑

j

(wij × 1) +

N/2
∑

k

(wik ×−1) where j ∈ [ψp = 1], k ∈ [ψp = −1]

= (
N

2
− 1)(−1 × 1) +

N

2
(−1 ×−1)

= −(
N

2
− 1) +

N

2

= +1

thus all active units remain active and inactive units remain inactive. The N/2 − 1

comes from the removal of self connections. There are NC(N/2) = N !/((N/2)!(N/2)!)
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which is approximately 2N
√

2/(πN) of the 2N patterns that are stable in this network.

This grows exponentially when compared to the linear growth of 0.14N . For example,

in a 100 unit network there are 1029 stable states, but these states make no distinc-

tion between learnt patterns and spurious patterns. This problem demonstrates the

inadequacy of capacity, without discrimination between types of patterns, as the only

measure of performance.

We will refer to the number of learnt patterns that are stable as the recognition

capacity. A pattern that is only just stable, may be recognised but not recalled from

similar content. The example above shows that the number of stable patterns may not

be correlated with the performance of the network as a content addressable memory.

Another measure of capacity is the number of learnt patterns that are recalled. The

recall capacity is the number of learnt patterns that are found when probing the net-

work. This is related to the basin of attraction of the stable learnt patterns. A large

basin allows the content in the “content addressing” to have a larger variation from

the original pattern.

2.5.2 Basin Size

Content addressable memory requires that a learnt pattern not only be stable, but

that it must be able to be recalled from a partial pattern. Thus the size of the basin

of attraction is an important measure of the performance of a content addressable

memory. There are several ways of testing the basin of attraction for a pattern. The

possible inputs are:

1. The exact learnt pattern.

2. A percentage permutation from learnt pattern.

3. A randomly generated pattern.

The possible results of relaxation are:

1. The exact learnt pattern.

2. A pattern within some percentage permutation of a learnt pattern.

3. A spurious pattern.

4. The prototype of a large number of similar items.

Combinations of the above input/output pairs test for different properties of the

basin of attraction. Some of the standard pairings are shown in Table 2.5.

All of these combinations measure something interesting about the Hopfield net-

work. The row of results related to inputs that are “close to learnt” can be used to
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Exact Learnt Spurious

Exact Learnt stable learnt pattern unstable learnt pattern

Close to Learnt size of learnt basin size of learnt basin

Random Probe % of pattern space number & size of spurious

Table 2.5: Different types of information that can be gathered by

combinations of different probes (rows) and the stable patterns found

(columns).

discover the size of the basin of attraction of a learnt pattern, with relaxation to the

pattern indicating that the basin includes the point probed. The use of “Exact Learnt”

can be extended to include patterns that are close to the learnt patterns. It may be

acceptable in certain situations to accept patterns that are close to a learnt pattern,

say less than 1% different, to be an example of the learnt pattern. This flexibility

can be used to compare results where the number of learnt patterns that are exactly

recalled is low, but there are many learnt patterns which have a stable pattern very

close by.

When investigating the basin size of a learnt pattern, it is possible to give an es-

timate of the average size of basins of attraction in an attractor network. Gardner

(1988) calculated the capacity and basins of attractions of patterns given i.i.d. ran-

dom patterns. This work has been extended with more accurate predictions of the

average size of basin by Koyama, Fujie, and Fujiwara (1996) and Okada (1996). These

calculations rely on the types of patterns being stored and describe theoretical limits

to capacity with an idealised learning algorithm as well as estimates for actual learn-

ing algorithms like Hebbian learning. Changes to the type of patterns stored and the

learning algorithms would require developing new estimations which may or may not

be possible. Without formal theoretical average basin sizes it is necessary to find other

ways of estimating the size of the basins of attraction.

Storkey and Valabregue (1999) use two measures for the size of basins of attraction;

the direct size, where every pattern within radius k relaxes to the central pattern; and

the indirect size, a radius within which some percentage β of the k permuted patterns

relax to the centre of the basin. A third measure is the number of random probes of

the network that relax to a particular stable pattern. This gives an indication of the

size of the basin as a percentage of the pattern space. The percentage of total pattern

space is a useful comparison between states with very large basins.

The number of calculations required to exhaustively calculate the basins of attrac-
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tion in an HN are extremely large. Each point in the 2N space of patterns requires at

least an N2 +Nm relaxation process, where m is the number of units required to up-

date during relaxation. The relaxation process is non-deterministic as it selects a unit

at random to update. Therefore for each initial pattern it would be necessary to map

every possible selection order and trace all the possible paths from the initial pattern

to a stable pattern. This sampling process could be performed for states with one or

two activation values different to a stable pattern, but, as the number of alterations

increase the number of patterns to check increases with NCk where k is the number of

alterations, equivalent to the radius of the basin that is being tested.

The radius k can also be described as the overlap6 (mf ) between the original learnt

pattern and the test pattern (mf = k/N). For a 100 unit network, a radius of k = 10

is the same as an overlap of mf = 0.9. The number of states within this radius is

approximately 1012. Testing these patterns to see if they relax to the initial stable

pattern requires a relaxation with at least 104 operations, giving a lower bound of

1016 calculations per stable pattern. This lower bound does not include the situations

where the path of the relaxation does not directly converge on a stable pattern. This

incredibly large number of calculations is impractical on current hardware7.

To estimate the size of the basin of attraction we try to find an overlap value

such that 50% of the randomly perturbed patterns will relax to the original base pat-

tern (Chengxiang, Dasgupta, and Singh, 2000). To find this overlap value suggest

the use of an iterative method which slowly decreases or increases the overlap using

simulated annealing. This process is:

• initialise the overlap to m = 0.75 (75% of units identical to the state at

the centre of the basin)

• repeat for l cycles

• initialise the network with a pattern that has an overlap of m with

the learnt pattern

• relax the network to a stable state

• if the stable state is the desired pattern decrease the overlap by

a branching factor (therefore testing a larger basin), otherwise in-

crease the overlap by the same amount, m = m± T

• use simulated annealing to decrease the branching factor

6We use overlap as it is independent of the size of the network, while radius k is dependant on N .
7On a 1Ghz processor this is 1016/109 = 107seconds, or about 4 months per state to test.
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When the network successfully relaxes to the centre of the basin the overlap is de-

creased, meaning that the estimated size of the basin of attraction is larger. To esti-

mate the point at which 50% of probes relax to the stable state, we take the average

estimated overlap m of the last 100 probes. This measure can only be a rough estimate

of the actual size of a basin of attraction, but it does provide consistent ordering of

patterns based on estimated basin size which are consistent with more time consuming

tests of basin size.

Table 2.6 shows the estimates for a 100 unit network which has used Hebbian

learning to store 0.06N or 0.13N patterns. The “Ave. Relax” numbers show that the

estimate is performing well with nearly 50% of the altered patterns successfully relaxing

to the stable learnt pattern, with standard deviation of about 4.7. The average basin

size for patterns in a network with 0.06N learnt patterns is much larger than the

average for patterns in the 0.13N network. A basin with overlap of 0.870 is 1
36

th
of

the size of a basin with an overlap of 0.850. For a more detailed analysis of relaxation

using different levels of overlap see Chengxiang et al. (2000).

Learnt Est. mf Ave. Relax St. Dev

0.06N 0.853 49.31 4.75

0.13N 0.870 49.24 4.69

Table 2.6: Basin estimate values.

Using this measure the largest possible basin of attraction has an overlap of mf =

0.5, while the smallest has an overlap of mf = 1.0(k = 0). A basin of mf = 0.5

consumes the whole space of the network as when there is less than 50% overlap with

the original pattern it will relax to the inverse of the pattern. The radius of the basin

of attraction of a pattern determines how much of the state space is consumed by the

basin. In a 100 unit network a pattern with a basin of mf = 0.85, k = 15 has 3 × 1017

patterns that relax to it, but this is only 0.00000000002% of the total state space. A

smaller basin with an overlap of mf = 0.87 has only 1
36

th of the patterns in its basin

as compared to an overlap of mf = 0.85. Table 2.7 shows an example of this basin

estimate versus the actual number of probes relaxing to particular patterns in a 100

unit network.

Figure 2.11 shows the relationship between the number of probes that relax to a

pattern and the estimated basin of attraction. The empty area in the bottom left shows

that patterns do not have both a large basin of attraction (a smaller required overlap
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Figure 2.11: Estimated basin size against the frequency at which

patterns were found with 5000 random probes in an H100,± network.

The learnt patterns mostly lie on the diagonal. (1707 learnt patterns,

22917 spurious patterns, from 10 trials learning 30 patterns using

Hebbian learning).
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Actual Estimated Actual Estimated

Patt frequency overlap mf % state space % state space

0 678 0.57986 13.66% 13.50%

1 940 0.57042 18.80% 19.08%

2 913 0.57146 18.26% 18.46%

3 915 0.57057 18.30% 19.00%

Spurious 1554 - - -

Table 2.7: Example of sampling the basins of attraction but random

sampling (Actual frequency) and by using our estimation of the basin

size (Estimated overlap), showing that the percentage of state space

predicted by the basin size (Estimated % state space) is similar to

the the value found with random proves (Actual %state space) in an

H100,± with 4 patterns learnt and using 5000 probes.

to relax to the pattern) and low sampling frequency. The learnt patterns mostly lie

near the diagonal 0.9− log(x)/10, as they have basins that are relatively uniform. The

estimation process which expands the basin until 50% of probes are not relaxing to

the pattern, works well with these uniform patterns as they are equally stable in most

dimensions. The spurious patterns, on the other hand, are spread out in the graph

as they have non–uniform basins of attraction. A non–uniform basin can still attract

a large number of probes from sections of the space which are not evenly distributed.

This can be visualised in 2D in Figure 2.12. The “expanding basin estimate” will give a

value much lower than the frequency for these non-uniform patterns. The accuracy of

this measurement also decreases as the basins get smaller (mf approaches 1) because

of the infequency of probes relaxing to these small patterns.

Figure 2.12: Visualisation in 2D of the expanding basin estimate for

a uniform learnt pattern A and a not–uniform spurious pattern B.
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2.5.3 Hamming Distance

The Hamming distance between two Boolean arrays is the number of indices at which

they differ. A learnt pattern that is stable will have a Hamming distance between the

input and output states of 0, as the pattern will not change during relaxation. If the

requirement for perfect recall of a pattern is relaxed slightly, and a pattern close to a

learnt pattern is considered a successful recovery, the distance between the new centre

of the basin of attraction and the learnt pattern that is close to it can be used as a

measure of the performance of the network. We have used this measure of performance

in this thesis, and in the published works that are part of this thesis Robins and

McCallum (1998, 1999, 2004). If the Hamming distance between a learnt pattern and

the stable pattern it relaxes to is small the assumption is that the centre of the basin

of attraction has moved a short distance. This however is not always the case. In a

network with a very large number of spurious states the distance that any probe moves

during relaxation is small. This is not because the network has moved the centre of a

learnt pattern to the new stable state, but because of the increased likelihood of finding

one of the plentiful stable spurious configurations.

The Hamming distance between an unstable learnt pattern and the stable state it

relaxes to can be used in conjunction with an estimate of the size of the stable state’s

basin of attraction. If the stable state has a large basin of attraction then it might be

possible to claim that the learnt pattern has moved and is “mostly” remembered. To

say the pattern has moved, the Hamming distance between the unstable learnt pattern

and the associated stable state should be much smaller than the basin of attraction, and

the “basin should only contain a single unstable learnt pattern”. If the basin contains

two or more learnt patterns, then the spurious state might be either a prototype for

those patterns, or have a strong correlation to them. In either case it would be difficult

to claim that an individual pattern had been successfully “remembered” if it was just

one of many unstable learnt patterns that relax to a large spurious pattern.

2.6 Conclusion

In this chapter we introduced a unit model for a neuron. These units are used to con-

struct Hopfield networks which are the focus of this thesis. We present two contrasting

learning algorithms for adjusting the weights in the network: Hebbian learning with

its strong biological basis and simple update rule; and delta learning, a powerful error

correcting procedure that guarantees convergence. Both of these procedures alter the
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weighted connections in the Hopfield network to learn some set of desired patterns. By

learning we are referring to making the patterns the content addressable memories in

a Hopfield network.

The concept of energy was introduced. Each unit calculates an energy value. Posi-

tive values indicate that the unit is unstable and will change activation in the next time

step, while negative values indicate stable units. The sum of the individual energies of

the units is the total energy of a particular pattern in the network. If every unit in the

pattern has a negative energy then that pattern is a stable state of the network. Thus,

to learn a pattern, the energy of every unit in the network must be altered until they

are all negative for that pattern.

The energy surface of a Hopfield network is defined as the total energy of the

network in each possible activation pattern. Basins of attraction in the energy surface

are like “depressions” in the surface. These low energy local minima form the basis

of the content addressability of the network. Probe patterns that are close to a learnt

pattern, within the basin of attraction, will relax to the learnt pattern and thus will have

addressed the memory by presenting most of the content. A large basin of attraction

means that more memory probes will relax to the pattern at the centre of the basin.

In terms of content addressability, less of the original content is required for a probe to

find the learnt pattern. Stable patterns without a basin of attraction do not fit with

the concept of a content addressable memory as they can only be used as a recognition

system, because any change of content results in relaxation to a different pattern.

There are many performance measures for Hopfield networks. The most often

discussed is the capacity of the network, measured by the number of desired patterns

that can be learnt as stable states in the network. With Hebbian learning the capacity

of the network is approximately 0.14N . Relying on the capacity as the only measure

of performance can be misleading, particularly when the goal is to create a content

addressable memory. Delta learning is able to make as many as 2N patterns stable,

but these patterns have almost no basin of attraction. It is also possible to make

every pattern with the same set level of activation stable. This allows NC(N/2) =

N !/((N/2)!(N/2)!) pattern to be stable. This network is not a good content addressable

memory even though it has a massive capacity. Thus, when a large capacity is achieved,

the basins of attraction of the stable patterns must also be tested. A well performing

content addressable memory system would have a large number of stable learnt patterns

with reasonable basins of attraction.
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Chapter 3

Catastrophic Forgetting in MLP

Networks

Catastrophic forgetting (CF) is the sudden and total loss of a memory system’s ability

to recognise or recover stored memories. It has been identified as a problem for multi-

layer perceptron (MLP) type architectures (McCloskey and Cohen, 1989; French, 1992;

Robins, 1995). In this chapter we briefly review possible causes and solutions in MLP

networks, including reducing representational overlap, rehearsal, and pseudorehearsal.

In the next chapter we discuss the possible causes of catastrophic forgetting for an auto-

associative task in Hopfield networks and compare possible solutions for this problem.

Catastrophic forgetting occurs in learning environments that require many items to

be learnt in succession. First a set of items are learnt until the system remembers them,

and then more items are added. This continual addition of new information is more like

the real environment in which biological neural networks have to operate, than static

tasks where all the information is present at one time. If biological networks suffered

from CF then new information would obliterate recall for all previous events, and as a

result animals would only ever have short term memory. This task of learning many

items over an extended time, where only the current information is present, highlights

the “stability/plasticity dilemma” (Grossberg, 1987). The problem is how to keep

the current behaviour stable while allowing the flexibility and plasticity necessary to

incorporate new information.

Ideally when a learning system finds a solution to a problem (in the case of an ANN

finds a set of weights that map inputs to outputs) the solution should be robust enough

to cope with learning new solutions to different problems. As the problems presented

change over time, important solutions (ones which are critical to survival) would be
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retained even when solutions have to be found to new problems. Most ANNs err on the

side of excessive plasticity. These learning systems are designed to use all the available

resources to solve the current problem as fast as possible. By utilising every available

resource they disrupt the solutions to previously presented problems. For these ANNs

if a connection is involved in the mapping from input to output for a new problem,

its weight will be adjusted. If the weights had been tuned to solve a previous set of

problems, then by wrenching them towards new values the balance that was important

for the previous learning is destroyed. Grossberg suggests the analogy of a human

trained to recognise the word “cat”, and subsequently to recognise the word “table”,

being then unable to recognise “cat”. This is what we will call catastrophic plasticity,

where unmanaged plasticity, the ability to change the weights in the network, is the

primary cause of catastrophic forgetting.

3.1 Catastrophic Plasticity

While stability/plasticity issues are very general, the term “catastrophic forgetting”

has tended to be associated with a subset of learning environments, that of struc-

turally static networks trained using supervised learning. A number of studies have

used MLP type networks (typically using back-propagation for training) to highlight

the problem of CF and explore various issues (McCloskey and Cohen, 1989; Hether-

ington and Seidenberg, 1989; Ratcliff, 1990; Lewandowsky, 1991; Murre, 1992; French,

1992, 1994, 1997; McRae and Hetherington, 1993; Lewandowsky and Li, 1994; Sharkey

and Sharkey, 1995; Robins, 1995, 1996; Frean and Robins, 1999). The standard demon-

stration of the problem uses a network that has been trained on a “base” population,

and then tests performance once a new item or group of items has been learnt. The

effect of this new learning on the old items (base population) can be illustrated by

re-testing the base population. If the performance falls off very sharply it is called

“catastrophic forgetting”. This sudden and catastrophic loss can occur with only a

single new item learnt.

Figure 3.1 shows the performance of an MLP network trained on a base population

and then tested after learning a number of new items. The primary cause for this type

of forgetting is the plasticity of the network rather than capacity of the network.

In Robins and McCallum (1999) we categorised the methods that reduce CF in MLP

type networks into three general categories; reducing overlap, rehearsal and pseudo-

rehearsal.
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Figure 3.1: Catastrophic forgetting in an MLP network caused by

plasticity (adapted from Robins (1995)).

3.2 Reducing Overlap in MLP Networks

French (1992) suggests that the extent to which catastrophic forgetting occurs is largely

a consequence of the overlap of distributed representations, and that the effect can be

reduced by reducing this overlap. Rather than plasticity this identifies correlation be-

tween patterns as the root of the problems. Correlated patterns are forced to share

representations in the network. If this overlap is removed the patterns can be learnt

without disturbing the currently stored memories. There are various approaches for

reducing overlap in the representation of patterns. The novelty rule (Kortge, 1990),

activation sharpening (French, 1992), context biasing (French, 1994), and the tech-

niques developed by Murre (1992), and McRae and Hetherington (1993) all fall within

this general framework. The goal of these methods is to decrease the overlap of the

internal representation (the hidden units used to represent the mapping from input to

output) of patterns that have been learnt. This has two benefits – it allows new items

to be learnt using units that have not been involved in storing other patterns, and it

increases the strength of the units that are involved in learning a pattern making the

network less susceptible to interference.

This increased orthogonality of hidden unit representations does not, in general,

prevent CF from occurring, although it does ameliorate its effects so that retraining of

the base population is much faster.
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The novelty rule of Kortge (1990) has been shown to prevent CF, but can only be

used with autoencoder (autoassociative) networks. Given that one of the causes of CF

in MLP networks is moving all the weights to solve the new problem, it is also possible

to ease the problem by pre-training the network on a population which is representative

of the both the base population and a selection of possible new patterns. This could be

seen as simulating prior knowledge of a task domain as explored by Sharkey and Sharkey

(1995); McRae and Hetherington (1993). In McRae and Hetheringtons simulations this

pre-training reduced the overlap of hidden unit representations in subsequent learning,

as the units had already moved their weights to cover the entire space of possible

problem to solution mappings. This unfortunately does not prevent CF as new patterns

that were not foreseen in the selection of representative patterns will still cause CF.

This solution also sacrifices some of the other advantages of MLPs such as the ability

to generalise to new parts of the pattern space.

3.3 Rehearsal and Pseudorehearsal in MLP Net-

works

A second general approach to preventing catastrophic forgetting involves “rehearsing”

the base population by incorporating some base population items in to the new learning

population. This process deals with the catastrophic plasticity, by allocating some of

the plasticity to relearning the base population items. Assuming that we learn new

items one by one in a sequence:

• with access to the entire training population

• for each new item to learn

• construct a new training population with the new item and items selected

from the base population

• train with the new population using the same learning algorithm as the base

population learning

The number of items selected from the base population can vary from no items, re-

sulting in CF, through to all the items which results in the same performance as

non-sequential learning where all items to learn are part of the base population (Mc-

Clelland, McNaughton, and O’Reilly, 1995). Significant performance improvements

can be achieved with a relatively small number of rehearsed items (Robins, 1995).
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Rehearsal requires access to the original base population so that items can be in-

corporated throughout later learning. Having access to the base population items

from some other store would make the MLP memory system redundant as there is

already an accurate recording of all the patterns. Robins (1995) introduced the idea

of a pseudoitem population that could be extracted from the network by probing its

current behaviour. By sampling the underlying function of the network the functional

mapping could be retained by careful rehearsal of the associated input-output pairs.

This does not require access to the original items, but uses items generated from the

network itself.

With these new pseudoitems the learning procedure would be:

• for each new item to be learnt

• construct a population of pseudoitems by creating random inputs and pass-

ing them forward through the network to generate their associated outputs

• construct a new training population consisting of the new item and some

items selected from the population of pseudoitems

• train with the new population using the same learning algorithm as the base

population learning

This system uses the functional behaviour of the network to protect the performance.

The use of pseudorehearsal has been shown to be effective for a number of different

populations: autoassociative and heteroassociative randomly constructed data sets by

Robins (1995), and by Ans and Rousset (1997); autoassociative learning of the Iris

data set by Robins (1996); a classification task using the Mushroom data set by French

(1997); and a structured “task domain” by Silver and Mercer (1996). Pseudorehearsal

performs well on a number of different problems with different underlying learning

algorithms.

There are limitations to the types of learning algorithms and population sets that

pseudorehearsal can improve. The Requirements are:

1. A network capable of learning both the original base population and the new

items.

2. A learning algorithm where rehearsal is an effective method for improving per-

formance.

3. A means to extracts items which represent the function of the network.

Requirement 1 results from the need to have the capacity within the network to learn

all the patterns presented. The performance of the system is limited by the capacity,
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so if the learning system is unable to learn all the patterns, pseudorehearsal will not

improve performance. Pseudorehearsal is only effective in networks where rehearsal

is effective and Requirement 2 follows from the tight relationship between rehearsal

and pseudorehearsal. Requirement 3 is the most restrictive for the pseudorehearsal

approach. Finding a mechanism that provides useful pseudoitems is the most difficult

aspect of appending pseudorehearsal to a new learning algorithm or network type. The

mechanism is different for different network structures. As pseudorehearsal preserves

the “function” of the network there needs to be a way to extract this function in order

to preserve it.

In an MLP network the function of the network can be extracted by sampling with

a random input pattern and passing that input through the network to generate an

output. This pairing of a random input and output accurately represents the function

of the network as shown in Robins (1995) and Frean and Robins (1999). How well

the generated pseudoitems represent the function is important to the preservation

of that function. Too few pseudoitems will not represent the function well and too

many will prevent the function from adapting to learn the new items. The type of

pseudoitem generated is also important. For networks where input–output mapping

is not the primary function, such as Hopfield networks, these type of pseudoitems will

not help preserve the function of the network (see Section 4.5 for details of pseudoitem

generation in Hopfield networks).

Pseudorehearsal focusses on the function of the network rather than the current

weight configuration. As there are many combinations of weights that will encode

a particular base population set, the current set of weights is not preserved. The

training of the network will alter the weights and the behaviour of the network, but if

the pseudoitems are an accurate representation of the function these changes will be

restricted to the region of the new item. This localisation of changes to the function

allows pseudorehearsal to preserve performance in MLP type networks (Robins, 1995;

Frean and Robins, 1999). Frean and Robins (1999) provides an introduction to the

formal analysis of pseudorehearsal in linear MLP networks.

In the solutions so far it is not the capacity of the network that is causing CF,

as each of the networks has satisfied Requirement 1 of pseudorehearsal preconditions

(page 49), and could store all the items if presented simultaneously. These solutions

target the other causes of CF including excessive plasticity in the connections and

overlapping representations in hidden layers. The capacity and the complexity of the

function that can be learnt by an MLP network is limited by the network architecture
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— the number of units, the number of weights, and the complexity of the activation

function. A network with one unit connecting the input layer to the output layer is

very limited in the mappings it can produce. All networks and learning algorithms

have a maximum capacity, and the behaviour near this limit can either be stable or

catastrophic.

3.4 Catastrophic Capacity

Catastrophic forgetting caused by an MLP network reaching capacity can be easily

shown in networks with very limited resources, but the problem does scale to large

networks. The most obvious example of catastrophic loss of performance caused by

reaching capacity is when there is no solution to a particular set of input–output pairs

within the limited network architecture.

The encoder network is a simple MLP network with N inputs, k hidden units, and

N output units. The input units are only connected to the hidden units and the hidden

units connect to the output units. Thus all the information must pass through the small

number of hidden units in the centre of the network. The pairs that form the learning

population are unit vectors where only one unit is active, (e.g. < 1, 0, 0, 0, 0, 0, 0, 0 >

→ < 1, 0, 0, 0, 0, 0, 0, 0 >). For a network with 8 inputs and 8 outputs there are 8 of

these pairs. For any learning system to be able to solve this mapping the number of

hidden units k must be larger than log2(N). If the number of hidden units is less than

this the network will be unable to learn the mapping as there is not enough complexity

in the structure of the network.

The thermal delta learning rule presented by Frean (1990) is an attempt to amelio-

rate this problem. The principle is that over time the learning rule changes its response

to errors. Early in the learning process all errors are treated as equally important, but

as learning proceeds the weighting for correcting small errors is increased and large

errors are reduced. The principle is that if the network is unable to solve competing

tasks it should give up on some of the problem set to focus of solving those which are

close to a solution. The affect of this is that the network will start to ignore the train-

ing items with large errors. A temperature variable is used to weight the importance

of the errors. The temperature is reduced during the learning epoch, with the cooler

temperatures focussing on small errors. By the end of the allocated epochs the network

is only making small changes to perfect the set of patterns that are possible to learn.

In a Hopfield network this allows the network to ignore patterns that are difficult
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to learnt. The thermal rule will learn a subset of the random population which may

share a number of similarities. With this selection of a group of patterns that are

easy to learn together, the maximum number of patterns that can be learnt increases.

This does not mean that there is now more information stored in the network than the

theoretical maximum.

The theoretical information capacity of a network is a measure of the amount of

information that can be stored in the network. This can be calculated independently

of the learning algorithm as it relies on the number of individually adjustable elements,

usually the weighted connections, in the network.

The amount of information in a set of patterns is related to how similar they are.

The first pattern in a population contains a lot of information as the network has not

learnt anything about the population. If the following patterns are almost identical

to this first pattern, each new pattern only adds a small amount of information to

the total information complexity of the learning population. Measures of the capacity

of a network given by the number of patterns that can be learnt, are given using

random patterns. A set of 10 randomly generated patterns contain almost twice the

amount of information of a set of 5 generated patterns. With non independent pattern

the amount of information in the first 5 pattern is likely to be much higher than in

the next 5 patterns as some of the dependencies will already have been learnt by the

network. For an in depth analysis of the information capacity of Hopfield networks see

McEliece et al. (1987); Löwe (1999); Löwe and Vermet (2005)

The most common solution to a structurally limited network is to increase the

resources available without increasing the complexity of the learning problem. For

MLP networks this can be done by increasing the number of hidden units. Finding

the right number of hidden units for a task is still considered a trial and error process

of estimating a reasonable number and evaluating the results. Unfortunately for the

Hopfield network there are no hidden units, and so the complexity of the internal

structure of the network cannot be increased without changing the network into a

generic recurrent network which is no longer directly comparable with the original

network.

The other resource limit applied to MLP networks is the number of epochs that are

allocated to solving the current problem. If the number of epochs is severely limited

then the learning algorithm may not have time to converge on a solution. The number

of epochs allocated to learning is usually limited, as it is often unknown if the current

network is guaranteed to converge on a solution for a particular problem. There are
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various approaches to estimating an appropriate number of epochs to allocate to a

particular task, some of which involve monitoring the performance of the network to

see if the error is continuing to decrease, or if the network has plateaued, or started to

diverge.

3.5 Summary

The main feature of catastrophic forgetting is the sudden and dramatic loss of per-

formance of a neural network. In MLP networks this can be caused by unmanaged

plasticity (catastrophic plasticity), or limited theoretical capacity (catastrophic capac-

ity).

The solutions to catastrophic plasticity include rehearsal, pseudorehearsal and over-

lap reduction. Rehearsal is very effective at removing CF but requires a secondary

memory store for the base population which would render the MLP irrelevant. Pseudo-

rehearsal is able to improve the performance of the MLP to almost the same level as

rehearsal without having to continually refer back to the base population. Pseudo-

rehearsal provides a mechanism that works within the resources of the MLP. In the

next chapter we will investigate the application of pseudorehearsal to an entirely dif-

ferent type of network, the Hopfield network.

Limited capacity is also a potential problem for MLP networks. This is a problem

for any system that is dealing with complex learning tasks with limited resources.

There are two main limitations, structural and time. If the network’s structure is not

capable of learning the task then no matter how long the network is given it will never

converge on a solution for the whole training set. To solve the problem of limited

capacity more resources can be added to the network, such as additional hidden units.

Other methods involve altering the learning algorithm so that over time it gives up

trying to learn items with large errors and focuses on improving items that are close

to a solution.

In the next chapter we investigate the causes of catastrophic forgetting in Hopfield

networks and evaluate several potential solutions.
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Chapter 4

Catastrophic Forgetting in Hopfield

Networks

Although usually explored using MLP networks, catastrophic forgetting (CF) can be

just as easily demonstrated in Hopfield type networks, as is the case in Robins and

McCallum (1998). However there are a greater variety of causes for catastrophic for-

getting in Hopfield networks depending on the learning algorithm and the types of

patterns that are learnt.

Figure 4.1 summarises data which illustrates CF as described in Robins and Mc-

Callum (1999, Fig 1.). The network is trained on a base population of 44 items so that

every item is stable. If the network is then trained in the same way on a single new item,

the number of unstable patterns in the base population increases dramatically. This is

illustrated in the “None” condition of Figure 4.1 (with no intervention to manage CF).

The error continues to increase rapidly as further new items are learnt, and eventually

the base population is effectively wiped out. Similar issues have been explored using

Hopfield networks by Nadal, Toulouse, Changeux, and Dehaene (1986) and Burgess,

Shapiro, and Moore (1991), and in the context of the “unlearning” mechanisms detailed

in Section 4.4.4.

When considering the causes of CF in Hopfield networks the capacity of the network

is often the first and most obvious issue. The Hebbian learning algorithm generates

CF near the capacity of the network, at which point, if more patterns are learnt, all

information both old and new is lost. We will discuss the capacity, both in terms

of the theoretical information capacity and the capacity of particular learning algo-

rithms (Gardner, 1988).
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Figure 4.1: Catastrophic forgetting in an H64,± network caused by

delta learning’s excessive plasticity. Base population of 44 items with

20 new items learnt sequentially (adapted from Robins and McCallum

(1999) Fig 1.).
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4.1 Catastrophic Capacity

Hopfield networks have a relatively low capacity compared to the MLP networks pre-

sented earlier, partly because they do not have the additional internal machinery of

hidden units. Adding units to a Hopfield network adds complexity to the problem as

all units are both inputs and outputs. Without hidden units it is not possible to just

increase the resources available to the learning algorithm by adding units. Thus the

capacity of a Hopfield network is directly proportional to the number of units in the

network.

The number of units in the network defines its information storage capacity. The

number of patterns that can be stored depends on the amount of information in the set

of patterns. Each set of patterns can contain differing amounts of information. Patterns

that have only a single unit different to a prototypical pattern, for example a single

inactive unit with the prototype of an entirely active network, contain less information

than a set of patterns where the activations have a 50% chance of being different to

some prototype. Randomly generated patterns contain a large amount of information

as estimated using either Kolmogorov complexity1 or Shannon information therory (for

in depth coverage of information therory see Cover and Thomas (1991)). Information

based on probability theory in this context can be described as how surprising an

activation of a unit is given the previous set of patterns. With only a single unit

change in each pattern from the average, there are N−2 units which remain in exactly

the same configuration as the previous pattern, and so there is little surprise and thus

little information.

For binary units the maximum amount of information is where each pattern has

50% of its units active. In this thesis all patterns are randomly generated with each

unit have a 50% chance of being active. Some patterns have a coding ratio (ratio of

active unit to inactive units) of above or below 50%. This type of pattern is used for

experiments in the rest of this thesis, unless otherwise stated.

Section 2.4.4 discussed the capacity of a Hopfield network and presented the esti-

mate of 0.14N as a rough upper bound for Hebbian learning. Above this value Hebbian

learning shows a particularly severe form of CF where rather than losing just the old

material the network can spontaneously lose all stored patterns including the new

items. This can be caused by a single large spurious attractor taking over the whole

space with a massive basin of attraction, or by the generation of thousands of small

1Given that the algorithm used to generate the pseudo-random numbers is relatively complex
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Catastrophic capacity in a Hopfield network.
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Figure 4.2: Number of learnt patterns stable in a 100 unit Hopfield

network H100,± with Hebbian learning showing CF (averaged over 100

repetitions, 50% random patterns).

attractors (stable states with a basin of attraction). When developing solutions to CF

in Hopfield networks it is important to evaluate them in networks which are far from

capacity as well as those which are close to their theoretical limits.

The catastrophic loss of pattern stability is shown in Figure 4.2 for a network of

100 units. The line shows the average over 100 repetitions with error bars extending to

one standard deviation. This network shows classic CF under the pressure of capacity.

The storage of this 100 unit network H100,± from equation 2.13 is approximately 14

patterns. Note that by the time 18 patterns have been presented the likelihood of a

learnt pattern being stable is about 50% (9 patterns are stable on average). As more

patterns are presented fewer and fewer of them remain stable in the network.

4.2 Catastrophic Correlation

Most of the capacity measures for Hopfield networks involve the analysis of uncorre-

lated random patterns (independent identically distributed random variables – i.i.d.).

Assuming that all the patterns that need to be learnt will come from these sorts of

clean distributions is unrealistic. Patterns from real data sets are likely to have corre-
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lations, and in fact it is likely that it is the correlations between events that makes it

possible to extract causal relationships. Correlations alter the analysis of capacity: 1)

the maximum theoretical capacity increases in relation to the amount of overlap and

the nature of the correlation (Gardner, 1988; Löwe, 1998; Gandolfo, Laanait, Messager,

and Ruiz, 1999; Kimoto and Okada, 2002; Bogacz and Brown, 2003), and 2) Hebbian

learning performs poorly with correlated patterns as the crosstalk term becomes very

large and the pattern which is the correlation between inputs becomes the only stable

attractor.

To understand why correlation increases the number of patterns that can be stored,

the amount of information in each pattern must be analysed. In the extreme case of

only one unit being active in each pattern it is easy to see how to store any of the

N “one unit active” patterns. To store these patterns the connections between units

are set to a negative value so that active units tend to deactivate other units, and the

unit that is active in a pattern has a positive connection from the bias unit so that if

it is active it remains active. This easy solution for storing N patterns is a result of

each pattern only having a small amount of information. Because of the symmetry in

binary activation, patterns with all but one unit active contain the same amount of

information as patterns with only a single unit active.

Amit et al. (1987b) argue that Hebbian learning can be altered to accommodate

correlated patterns where the correlation is caused by a low coding ratio (only a small

percentage of the units are active). The learning rule can be changed to:

δwij = (ψi − α)(ψj − α) (4.1)

where α is the sparseness of the coding. This concept of correlation caused by a uniform

decrease in the number of units that are active is useful only when the patterns have

a known activity level and that activity level is the only correlation between the learnt

patterns. The patterns themselves need to be uncorrelated in terms of which units are

active for this approach to work.

Correlation does not come from just a change in the coding ratio for the patterns.

One interpretation for correlated patterns is the concept of a prototype. The prototyp-

ical car will have many features in common with individual cars. A learning set that

contains groups of similar objects will have correlated patterns and the combination of

these correlations may be the prototype for the group.

Hopfield networks with Hebbian learning cannot make highly correlated pattern

stable. Instead a pattern which is the combination of the learnt patterns will become
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a stable state with a large basin of attraction. There are two types of correlation, one

caused by a low coding ratio where the patterns are still independent, and correlation

caused by patterns which share a large number of features. The difference can be most

clearly demonstrated with an example.

In this example the learning population is generated by making small perturbations

of a checkerboard pattern (Figure 4.3). These patterns have a coding ratio of about

50% but are also extremely highly correlated. This form of correlation immediately

destroys the basin of attraction of the individual patterns and the only attractor is the

correlated prototype, in this case a checkerboard pattern. To show this, consider three

patterns that are based on a checkerboard pattern with k units altered (k << N) with

alteration ratio (αa) = k/N . Having learnt three patterns there are four catagories of

units representing the different types of overlap of the perturbed checkerboard patterns.

The average number of units in each set (cardinality C), can be calcuated from the

alteration ration αa

1. The set of units altered in all three patterns.

Φ3
3 = φ1∧2∧3,

C = α3
a

2. Units altered in two of the three patterns.

Φ3
2 = φ1∧2 + φ2∧3 + φ1∧3 − φ1∧2∧3,

C = 3(α2
a × (1 − αa))

3. The set of units altered in just one pattern.

Φ3
1 = (φ1 + φ2 + φ3) − (φ1∧2 + φ2∧3 + φ1∧3 + φ1∧2∧3),

C = 3(αa × (1 − αa)
2)

4. The set of units that conform to the checker board in every learnt pattern.

Φ3
0 = N − φ1∨2∨3,

C = (1 − αa)
3

where φ1∧2∧3 is the set of units whose activation was altered in all the patterns 1, 2

and 3; φ1∧2 is the set of units altered in patterns 1 and 2; φ1 is the set of units altered

in patterns 1; and φ1∨2∨3 is the set of units altered in pattern 1, 2 or 3.

If the altered units are selected from an i.d.d. at random then Φ3
3 would have

cardinality ≈ α3
aN . Given small k, the number of units altered in more than one

pattern is very small. A unit i selected at random from the set of units in Φ3
1 will have

connections to units j in Φ3
0, each with a weight wij = 1 giving a net input to the unit

of N((1 − αa)
3). Given that the units in the other categories have at most wij = ±3

so long as αa < 0.14 for three patterns and αa < 0.22 for four patterns, the unit will
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Figure 4.3: Checker board with two possible perturbations A and B.

change state to match the checker board. The more patterns which are learnt from

the set of patterns with minor alterations to the checker board pattern, the larger the

prototype’s basin of attraction becomes.

If the units in the pattern are slowly “fatigued”, where their input is lowered by

a set amount, after several iterations individual patterns emerge from the prototype.

This is because the units that were altered in the learnt patterns are closer to threshold

than the units that are only in the checker board pattern. The major problem with

this is that the patterns generated by this process of fatiguing the units are not just

the learnt patterns, but include many spurious patterns.

4.3 Catastrophic Plasticity

Catastrophic forgetting in Hopfield networks with Hebbian learning is mainly at-

tributable to capacity and correlations. However by using delta learning both the

catastrophic correlation and catastrophic capacity problems are reduced. Delta learn-

ing deals with correlation by only making changes that improve performance, and the

capacity is increased dramatically to close to the theoretical information capacity of

the network.

However delta learning in Hopfield networks also suffers from excessive plasticity.

Delta learning is able to learn a larger number of patterns by slowly adjusting the

weights until they make the current set of patterns stable. Thus when learning new

patterns, all the weights are changed to match the new patterns. This plasticity, the

key to the power of the learning algorithm, can cause catastrophic forgetting.

As discussed in Robins and McCallum (1998) there is a great deal of similarity be-

tween the CF caused by excessive plasticity in MLP networks and in Hopfield networks

using delta learning. Figure 4.4 shows the number of base population patterns that
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Figure 4.4: Catastrophic forgetting in a Hopfield network caused by

plasticity (adapted from Robins and McCallum (1998) Figure 4).

become unstable as new patterns are learnt. It is this type of CF that is the target of

the pseudorehearsal solution presented below in Section 4.5.

4.4 Existing Solutions

Catastrophic forgetting does not have a single cause, and although the various solutions

tend to focus on a particular cause, they usually have an affect on all of the causes. For

example, the unlearning solution (see Section 4.4.4 was initially designed to solve the

problem of the limited capacity of Hopfield networks, and was later analysed to show

that it was also affecting the problem of catastrophic correlation (Christos, 1996). The

complexity in the interactions between the solutions and the various types of problems

makes it difficult to directly compare solutions. Each solution makes trade-offs between

plasticity and stability, complexity and robustness, and biological plausibility.

One method for dissecting these solutions is to organise them by the level at which

they operate. The levels that we define are:

• Synaptic Level

• Neuron Level
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• System Level

In the rest of this chapter we review the existing solutions to CF and place them

into this taxonomy, as well as presenting our own pseudorehearsal solution. The goal of

breaking the solutions into these categories is to establish a comparison matrix so that

solutions can be compared by complexity and level rather than just raw performance.

A system that requires a much more elaborate control mechanism must perform sig-

nificantly better than the simplest solution to be considered an improvement. The

performance of some system level solutions can be mainly attributed to the effect of an

associated synaptic level alteration. By analysing the level at which a solution operates

we can use a combination of performance and complexity to compare results.

4.4.1 Synapse Level

The synaptic level solutions focus on changing the way in which synaptic updates are

performed given local information. In this section we include systems that either alter

the way in which the local update rule is applied to the synapses, or use a post–

processing phase to alter the weight matrix after a pattern has been learnt.

Weight decay

Weight decay is one of the simplest post–processing operations to implement. After

each item, or set of items, are learnt every weight in the network is multiplied by a

value just less than 1. This reduces the magnitude of each weight, moving it closer

to 0. As Hebbian learning alters the weights by a fixed amount, it is easier to learn a

new pattern when the weights are small. There is also biological evidence of a decay

mechanism which reduces and even eliminates connections over time. There appears to

be two types of LTP(long term potentiation), decremental and persistent (Abraham,

2003). Hebbian learning with weight decay would be equivalent to decremental LTP.

This can be considered a form of managed forgetting, where the forgetting of previ-

ous information is included in the learning algorithm. Using weight decay it is possible

to calculate the influence on each weight that an old learnt pattern will have, directly

from the number of patterns that have been learnt since it was presented. With weight

decay of d = 0.1 after 10 additional patterns have been learnt, the contribution of

the original pattern will be 0.910 = 0.35 of that pattern’s original contribution. This

controlled forgetting allows weight decay to avoid CF.

Christos (1996) showed that weight decay is able to reduce the CF caused by over-
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Figure 4.5: Number of learnt patterns stable in a 100 unit Hopfield

network H100,± with Hebbian learning and weight decay d = 0.1 per

item (averaged over 100 repetitions, with error–bars showing standard

deviation).

loading the network, at the cost of lowering the effective capacity to 0.05N . Figure 4.5

shows our comparison between normal Hebbian learning and learning with a weight de-

cay of d = 0.1. The weights are each new pattern are altered so that (wij = wij(1−d))

(see Appendix B.1 for other parameters used for this simulation). The CF of the stan-

dard learning system can be clearly seen when the network learns more than ≈ 0.14N .

However, using weight decay the system is able to retain about 0.07N , slightly above

the estimate of 0.05N by Nadal et al. (1986). The patterns that are stable in this net-

work are the most recently stored patterns. Although stable, the basin of attraction of

the oldest stable pattern is very small. Most of the random probes of the network fall

within the basin of just the most recently learnt pattern. Figure 4.6 shows the prob-

ability with which a pattern is stable after learning multiple patterns using Hebbian

learning and weight decay of d = 0.1. This graph shows that after learning 20 patterns,

the 15th pattern that was learnt was stable in about 70% of the 100 trials. The fall off

from 100% stable for the last two or three patterns learnt to never stable is similar for

each of the three conditions shown.

As noted by Christos (1996) it may seem better to learn 0.14N patterns and then
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Figure 4.6: Probability of a learnt pattern being stable based on when

it was learnt. Probabilities are shown after 10, 20, and 30 patterns

have been learnt in an H100,± network with Hebbian learning and

weight decay of d = 0.1 per item (100 repetitions).
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wipe the network clean and learn the next set of 0.14N patterns. This “manages”

the forgetting by removing all the patterns and working with a clean network to learn

new information. This does allow new patterns to be learnt continually over time, but

at the cost of catastrophic removal of all previously learnt information every 0.14N

patterns. Christos suggests that the reason that this is not a viable solution is the lack

of a biological analogy, but there is also the problem that when averaged after each

pattern is learnt the number of patterns stored is only 0.07N .

Weight decay provides a simple and successful solution to the problem of CF. This

success however results in a network with a very low recognition capacity, and an even

smaller recall capacity. When probed, the network almost always returns only the most

recent pattern, and the older patterns fade very quickly. However weight decay will be

important in analysing the behaviour of other solutions as it provides not only a base

performance level, but also appears be the main cause for the improved performance

of other systems such as unlearning, a possibility discussed later in this chapter.

Weight capping

Willshaw, Buneman, and Longuet-Higgins (1969) showed that perceptron networks

with only three possible connection values; -1, 0, +1 were able to solve a variety of

problems. Surprisingly when a Hopfield network has the weights capped to a low value,

it ameliorates some of the problems of CF. Figure 4.7 shows the result of five different

capping values. With a learning constant of η = 1 the condition labelled “1” matches

the Willshaw model capped at 1 and -1. In an H100,± the best results are achieved with

a capping value of 3 (7 different weight values). The performance of weight capping

is only slightly below that of weight decay. As with weight decay, weight capping

can be justified from a biological perspective. The cap represents a constraint on the

maximum efficacy of a synapse between two neurons.

The similarity between weight decay and weight capping may not be obvious at first,

but when inspecting the weight changes it becomes clearer. The effect of weight decay

is to bring the weights closer to zero which allows the Hebbian learning rule to make a

large enough change to the network to make the new pattern stable. Using a very low

weight cap the weights can never move far from zero, and so the large correlations that

normally cause CF are removed. The combination of weight capping and decay does

not provide a cumulative performance improvement as the two approaches solve the

same problem in similar ways. Both of these systems perform well, and in combination

with their biological plausibility, they provide a solid lower bound to assess the more
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Figure 4.7: Number of learnt patterns stable in a 100 unit Hopfield

network H100,± with Hebbian learning and weight capping values 1–5

(100 repetitions, N.B. error bars removed for readability).

complex solutions.

Learning rule alteration

There are many alterations to the basic Hebbian learning rule to try to make it either

more biologically plausible, or more effective. Dayan and Willshaw (1991) showed that

for catastrophic correlation caused by a low coding ratio the best learning algorithm

was the one suggested by Amit et al. (1987b) (see Equation: (4.1)). A similar result

was achieved by Palm and Sommer (1996) by changing the activation values of the

units so that instead of (1,−1) or (1, 0) the output was (1,−a) where a = α/(1 − α)

(α is the coding ratio). Thus, with 50% of the units active, as is the case with most

of the examples in this thesis, the activation values are a = 0.5/(1 − 0.5) → (1,−1).

Both of these solutions solve the problem of catastrophic correlation for patterns with

low coding ratio. They do not however solve CF with still limits Hebbian learning.
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4.4.2 Neuron Level

In this section we present solutions that alter the network based on the behaviour of

each unit. Methods at this level use the inputs or outputs of a single unit as the focus

of manipulation. These approaches use information that is entirely local to the unit

and so can be processed without additional inputs from other units. This allows these

unit level approaches to remain very plausible as an explanation for the high level of

memory performance found in biological networks.

Normalisation of unit input

Chechik et al. (2001) describe a mechanism for normalising the inputs to each unit so

that the sum of all the connections is zero. The problem that Chechik et al. (2001) were

focused on was the issue of catastrophic correlation when learning patterns with low

coding ratios. The large number of inactive units tends to overwhelm any individual

active units and the patterns become difficult to learn.

The contribution of Chechik et al. (2001) was to show that a local neuron level

alteration could achieve a similar result to the learning rule change suggest by Amit

et al. (1987b)(see Equation:(4.1)) without having to pre-calculate the coding ratio.

This normalisation process equalises the weight changes so that the simple Hebbian

learning rule is still able to learn patterns which have a low coding ratio. This form

of zero sum normalisation does not alter the performance of Hebbian learning in the

α = 50% space and so CF caused by capacity is still a problem, see Figure 4.8. With

the low α patterns this zero sum normalisation returns the performance to that of the

learning rule in Equation (4.1).

We have used the idea of unit input normalisation and altered it slightly to prevent

CF caused by learning more than the normal 0.14N patterns. Instead of forcing a

zero sum on the inputs, we use the absolute value of the input weights and constrain

the total input to the unit. This is equivalent to having a limited pool of resources

to allocate to either positive or negative connections. This allows units to have more

negative or positive connections, but constrains the absolute magnitude of the input.

Figure 4.9 shows the performance of this resource normalisation process on a network

as it learns items one after another.

The process for unit resource normalisation is:

• for each item to learn

• set the network to the input pattern
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Figure 4.8: Number of learnt patterns stable in a 100 unit Hopfield

network H100,± with Hebbian learning and zero sum normalisation for

coding ratios of α = 0.1, 0.2, 0.5 (100 repetitions).

• apply Hebbian update to all of the connections in the network

• for each unit

• calculate the total absolute value of the weights connected to the unit

• if the total is greater than the resource limit, multiply the weights by

the ((resource limit)/sum) so that the resources used remains at or

below the resource limit

This normalisation process is able to alleviate forgetting caused by catastrophic

capacity, but the performance is again close to the 0.07N performance of weight decay

and weight capping. Part of the reason for the similarity is that weights cannot continue

to grow unconstrained. Although individual weights can grow much larger than in the

weight decay or weight capping situation, the size of the weights is limited by the

normalisation process. If the patterns have relatively low correlation the normalisation

process will work in a similar way to weight decay, as weights will be lowered by about

the same amount and in a similar way to weight decay. This normalisation process was

tested with various resource limits with the best performance in the 100 unit network

at around 2N . This value may alter slightly with larger networks (2.5N was better in
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Figure 4.9: Number of learnt patterns stable in a 100 unit Hopfield

network H100,± with Hebbian learning and unit resource normalisation

of 1.5N–3N (100 repetitions, N.B. error bars removed for readability).

a 500 unit network) but the importance of this result is that the performance of the

network is similar to the 0.07N in line with weight capping and decay.

Although the normalisation process performs at a similar level to weight decay,

the alteration means that the normalisation process no longer solves the catastrophic

correlation problem associated with sparsely coded patterns (patterns with a low coding

ratio). Figure 4.10 shows the performance of resource normalisation (2N) with varying

levels of sparsely coded patterns. Note that with 0.1 (10%) the network is unable to

learn even three patterns.

The combination of the two types of normalisation, zero sum and resource limiting,

solves both problems as shown in Figure 4.11. The figure also shows the resource

normalisation alone “RN” cannot learn more that two patterns with this low coding

ratio. The reason for this is the Hebbian learning cannot normally learn more that two

of these highly correlated patterns. Resource normalisation only affects the weights

when they become large, and so does not prevent catastrophic correlation. The network

is able to perform at about the 0.07N level. Thus, although the algorithm does not

perform significantly better than either of the two synaptic level solutions, it provides

another point of comparison and is now able to work with various coding ratios.
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Figure 4.10: Number of learnt patterns stable in a 100 unit Hop-

field network H100,± with Hebbian learning on patterns with various

coding ratios 0.1 – 0.5 (100 repetitions, N.B. error bars removed for

readability).
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Figure 4.11: Number of learnt patterns stable in a 100 unit Hopfield

network H100,± with Hebbian learning on patterns with a coding ratio

of 0.1. The conditions are: zero sum normalisation “ZS”, resource

normalisation “RN” (normalisation value of 2N only visible in the

transition from two to three patterns learnt), or both unit resource

normalisation and zero sum normalisation “Both” (100 repetitions).
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We have also shown that regulation of the weights can occur at either the unit level,

as above, or over the entire network. Regulation over the whole network is similar to

the above process except that the resource limiting is applied to the total of all of the

weighted connections in the entire network, and applied to all weights in one step:

• for each item to learn

• set the network to the input pattern

• apply Hebbian update to all of the connections in the network

• calculate the total absolute value of all weights in the network

• if the total is greater than the resource limit, multiply all the weights by

the (resource limit/sum) so that the resources used remains at or below the

resource limit

This normalisation forces the weights in the network to compete for resources, reallo-

cating resources to the new patterns. Each time a new pattern is learnt, the weighted

connections associated with that pattern are updated and if the network requires more

resources for that, it takes it from all the weights equally. This decreases the influence

of old patterns on the current weight configuration allowing new patterns to continue

to be learnt over time. Figure 4.12 shows the performance of normalisation applied to

the total absolute value of the weights within the network.

The results are remarkably similar to the normalisation process applied to each

individual unit. Thus, this process is not significantly better than the more local unit

by unit normalisation, and indeed the performance of the best resource limit of 2N is

similar to the very simple process of weight decay.

Neuronal regulation

Horn, Levy, and Ruppin (1998a) developed a system to regulate the connections to

units in terms of the unit’s activation in the learnt patterns. Like the normalisation

process above, this system is designed to improve the performance with sparsely coded

patterns. The principle is to change the weights that contribute the most strongly to

a set upper bound, and to set the weights below a threshold to zero. This simplifies

the possible values of weighted connections, and removes small amounts of noise. In

our simulations this process improved performance on sparsely coded networks but not

significantly more than other methods. The main justification for using this model

is the biological plausibility of the modelling and the improvement in the basins of

attraction of the learnt patterns.
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Figure 4.12: Number of learnt patterns stable in a 100 unit Hopfield

network H100,± with Hebbian learning and weight normalisation of

the network from 1N–2.5N (100 repetitions, N.B. error bars removed

for readability).
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4.4.3 System Level

The solutions to the problems of CF presented so far have been focused on small

parts of the network. These solutions provide a baseline for the performance of more

elaborate solutions. The two system level solutions which we investigate are unlearn-

ing (Crick and Mitchison, 1983; Hopfield et al., 1983; van Hemmen, 1997; Christos,

1996) and Pseudorehearsal (Robins and McCallum, 1998, 1999; French, 1999; Ans,

Rousset, French, and Musca, 2004).

4.4.4 Unlearning

The unlearning solution for CF was presented by Hopfield et al. (1983) within a year of

his presentation of the network architecture. This solution to CF sparked interest in the

general memory community including Crick and Mitchison (1983). One of the features

of Hopfield networks that was identified early on was that the state space becomes

dominated by spurious patterns, and occasionally a single large spurious pattern. The

overwhelming almost cancerous nature of these spurious patterns leads to the idea that

by removing them the network may be able to recover some of its original performance.

Hopfield et al. (1983) first described unlearning as applied to a static learning problem.

The performance of the network did indeed improve greatly when the large spurious

patterns were removed.

Hopfield et al. (1983) explained the action of unlearning in terms of its effect on the

energy surface of the network. When a pattern is learnt it creates a well, or basin of

attraction, in the energy surface. When two basins are close to one another the overlap

forms a new, larger basin of attraction between the original patterns. The information

about which patterns were stored is still buried in the network, but it is now masked

by the large spurious basin. To recover the original patterns, this large basin must

be reduced to the point where the stored patterns become stable and have their own

basins.

The procedure for unlearning is:

• learn patterns as normal with Hebbian learning

• for a set number of runs

• probe the network by setting the state of the network to a random config-

uration and letting it relax to the nearest stable state

• apply Hebbian learning with a small negative constant −η. For each con-

nection δwij = −ηψiψj
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• test the network on the original population

This process is able to recover patterns which had become unstable in the network,

and it also increases the basin of attraction of stable learnt patterns, so long as they

were not the patterns that were found by random probing.

Crick and Mitchison (1983) suggested that the random probing and unlearning

process might be connected to the random pulses that cascade through the brain during

R.E.M. sleep. This suggestion raised a great deal of interest in this model not only as

a model of associative memory, but also as a model that might explain the mystery

of dreams. The model presented suggested that during the day items were learnt,

and then at night the spurious patterns were found by random probing, equated with

dreams, and then removed, allowing the real memories to be available the next day.

This was a very appealing model as it explained why dreams can seem so illogical and

made up of strange combinations of daily events.

The model presented by Hopfield was effective in the static case where a set of

patterns was learnt and then the unlearning was applied. But as was pointed out

when discussing pseudorehearsal in MLP networks, the world does not present all the

information to be learnt in a single coherent package. Learning occurs over time. The

unlearning account was extended to cover sequential learning by Wimbauer, Klemmer,

and van Hemmen (1994), Christos (1996), and van Hemmen (1997).

When applying the unlearning process to a network there are many parameters to

consider. Two of the most important are the number of unlearning cycles to apply, and

when to apply them. If the amount of unlearning performed in a cycle is too great,

the network will decrease the connection weights until it no longer has any stored

information. The original proposal of unlearning in the static model of Hopfield et al.

(1983) was to apply unlearning at the end of the learning cycle. We are interested in the

performance of the network after many learning/unlearning cycles with new patterns

presented in each learning cycle. The two possibilities for applying unlearning are to

apply unlearning after each new item is learnt (Christos, 1996), or as a restorative

process after a block of patterns have been learnt, where each block is considered one

learning cycle. (van Hemmen, 1997).

4.4.5 Unlearning After Each Pattern

Christos (1996) proposed an unlearning system for the sequential learning problem in

which the unlearning is applied after each learnt pattern. The process is:
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• learn a small base population of items

• perform unlearning of (U base population) items, each of which require

• probing the network with a random pattern and relaxing to find a stable

state

• performing unlearning on the pattern by applying Hebbian learning with a

learning constant of −η

• for each new pattern to learn

• learn the new item using Hebbian learning

• perform unlearning of U new probes with unlearning constant −η

where U is the number of probes to unlearn after each learnt pattern is presented. The

number of unlearning probes is larger after the base population is learnt so that there

is still the same number of unlearning items per learnt pattern. U and −η are usually

altered together so that the amount of unlearning per pattern is close to the amount

of learning performed. With the learning constant η = 1 and U = 50, the unlearning

constant is set to −η = −0.01.

This process is able to alleviate the problems of CF when the network is presented

with more than 0.14N patterns, as can be seen by comparing the results from our

replications in Table 4.1 and Table 4.2. After learning, the network is probed with

2000 random inputs, each of which are relaxed to a stable state. This measure tests

the size of the basins of attractions of the learnt patterns as a percentage of the network

state space. The percentage of the space that relaxes to a particular learnt pattern

(columns) versus an non–learnt/spurious state (the bottom row) gives a measure of the

recall capacity, the performance of the network as a memory recall system. Without

unlearning, the basins of attraction of the learnt patterns decrease quickly as more and

more patterns are added. After about 0.2N patterns, the network will almost always

relax to spurious states. With unlearning, the percentage of learnt patterns recalled is

much higher, and the percentage of spurious states found correspondingly lower. The

values 0∗ indicate learnt states that are stable when probed with exact duplicates of

the original pattern, but were not found by the probing process. This is useful as it

shows that within 2000 probes most of the stable patterns have been found.

Figure 4.13 shows the number of patterns that are stable over time, both before and

after unlearning is applied. The separation is caused by the unlearning process restor-

ing some of the patterns that had become unstable. Figure 4.14 shows the direct com-

parison between Christos’ unlearning and weight decay. Unlearning performs slightly
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(A)

Total number of stored patterns

Pattern 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 28.10 20.50 17.25 11.05 5.35 4.15 5.80 2.85

2 29.05 18.45 11.45 9.90 7.20 4.90 2.30 1.75 1.85 0.80 0.45 0∗ 0.20 0.05 0∗ 0∗

3 25.60 18.85 15.45 11.35 8.00 5.60 8.65 6.45 5.40 3.45

4 18.45 12.85 9.05 7.30 6.30 5.50 3.40 2.80 1.85 1.15 0.80 1.20 0.45 0.95 0.15

5 14.45 12.80 10.60 8.25 7.80 5.00 4.50 2.80 1.85 0.55

6 8.10 7.75 4.30 2.70 2.20 2.00 1.85 0.85 0.35 0.30 0.50 0.45 0.55 0.05 0.05 0∗

7 7.25 4.10 2.80 1.70 0.90 0.60 0.25 0.10 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

8 9.95 6.05 4.25 3.90 3.30 1.20 1.30 0.55 0.70 0.20 0.20 0.05 0.10 0.05

9 8.45 6.45 3.95 2.85 2.05 1.60 0.60 0.90 0.25 0.75

10 1.95 1.00 0.65 0.35 0.05

11 5.80 3.90 2.50 1.75 0.65 0.60 0.15 0.10 0.10

12 1.30 0.05

13

14 1.55 0.60 0∗ 0.15 0.05 0∗ 0∗

15

16 0.25 0.30 0.10 0.15 0∗

17 0.25 0∗ 0∗

18 0∗ 0∗ 0∗

19 0∗ 0∗

20

21

22

Spurious 17.25 23.75 28.55 37.75 46.55 52.45 49.95 64.00 67.90 76.65 89.35 91.90 95.90 96.80 97.35 98.05 99.65 99.75 99.80 100

Table 4.1: Percentage retrieval for individual patterns in a H100,± network having learnt patterns until it

is overloaded, with no unlearning. 2000 probes used to generate percentages with 0∗ indicating patterns

that were stable but were not found during sampling.
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(B)

Total number of stored patterns

Pattern 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 40.70 13.20 4.25 2.80 1.20 0.95 0.15 0.15 0∗ 0.05

2 28.85 9.95 3.15 0.75 0.45 0.15 0∗

3 24.60 9.75 3.80 1.75 1.15 0.40 0.15

4 52.75 28.70 13.90 8.90 8.35 4.95 3.00 2.95 1.60 1.40 0.95 0.75 0.20 0.15 0.05 0.10 0.10

5 48.70 12.70 7.40 6.55 1.60 0.50 0.15 0.05 0∗ 0∗

6 58.40 22.35 4.40 1.05 1.35 1.65 0.45 0.10 0.10 0.05

7 42.90 27.40 14.25 8.05 8.20 1.65 2.25 1.05

8 34.30 12.15 8.65 4.90 1.40 1.65 0.70 0.10 0∗ 0∗ 0∗

9 60.15 18.50 7.00 2.45 0.80 0.50 0.35 0.10 0.10 0∗ 0∗ 0∗

10 38.45 11.45 4.40 2.90 2.00 1.35 0.75 0.35 0∗ 0∗ 0∗ 0.05

11 42.00 10.10 8.15 3.25 2.55 1.50 1.10 1.15 0.75 0.05 0.05 0.05

12 4.65 6.35 2.80 0.40 1.85 0.55 0∗ 0∗ 0.30 0.15 0.05

13 33.75 11.30 10.00 5.90 3.70 1.10 1.00 0.45 0.50

14 24.85 8.90 3.75 3.85 2.25 1.75 0.50 0.20 0.25

15 19.20 4.85 0.15 0∗ 0.05

16 25.85 6.30 3.65 1.95 1.20 0.60

17 32.65 11.90 5.45 3.20 3.60 1.70

18 18.40 10.25 4.65 2.25 1.15

19 28.45 13.50 5.05 2.45

20 25.70 9.00 0.80

21 19.95 7.05

22 16.75

Spurious 5.85 14.35 11.40 9.70 15.65 17.50 5.55 21.35 21.70 73.20 42.65 52.50 56.35 55.25 51.10 65.15 48.60 49.60 58.05 69.05

Table 4.2: Percentage retrieval for individual patterns in a H100,± network having learnt patterns until

it is overloaded, with unlearning applied after each new item (unlearning 50 probes with an unlearning

constant of −η = −0.1). 2000 probes used to generate percentages with 0∗ patterns that were stable but

were not found during sampling.
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Figure 4.13: Number of learnt patterns stable in a 100 unit Hopfield

network H100,±, with Christos unlearning applied in bursts of 50 pat-

terns with unlearning constant −η = −0.01. ‘Before’ represents the

number stable before unlearning occurs (100 repetitions).

better than weight decay initially, but the performance decreases as more patterns are

added. Christos (1996) identifies that this form of unlearning is not significantly better

than weight decay, but does not elaborate on the long term performance.

This form of unlearning has a similar effect on the weights as weight decay. With

randomly distributed patterns, large weights are more likely to form part of a stable

pattern than small weights. Thus, over many runs, the large weights receive a higher

proportion of unlearning. This effectively decays the large weights until they are only

participating at a similar level to all the other weights in the network.

A second effect which occurs in the serial learning environment is that the most

recent learnt pattern has a large basin of attraction, which draws in most of the probes,

and therefore, most of the unlearning. Christos pointed out that most of the unlearning

effort goes into weakening the pattern that has just been learnt.

The trick with unlearning is to find the right amount of unlearning so that the

spurious stable states are removed without destroying the learnt patterns. Too little

and the weights grow over time, and the performance deteriorates until the network

cannot store any patterns. Too much and all the learnt patterns are removed. Even

when a balance is found, the long term (more than 50 patterns) performance of this
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Figure 4.14: Number of learnt patterns stable in a 100 unit Hopfield

network H100,± with Christos unlearning applied in bursts of 50 pat-

terns with unlearning constant −η = −0.01, compared with weight

decay of 0.1 (100 repetitions).

form of unlearning is worse than simply applying weight decay.

4.4.6 Unlearning After Overloading

One of the problems with unlearning after each new pattern is that most of the un-

learning is being directed at the most recent pattern. This problem is avoided when

the network is overloaded with patterns, as the learnt patterns are no longer able to

be found by random sampling as none of them are stable. Thus, applying unlearning

after the network has been overloaded with many more patterns than the capacity

of the network (learnt patterns m >> 0.14N) results in only spurious patterns being

unlearnt. Van Hemmen(1997) proposed a system where 0.4N patterns are learnt and

then unlearning is applied:

• break the learning population into groups of q patterns

• for each block of patterns

• learn the q items with Hebbian learning. Where q > 0.14N (e.g. q = 0.4N)

• perform unlearning of U patterns at −η so that U = q/− η. (q = 40,−η =

0.01, U = 4000)
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Figure 4.15: Van Hemmen unlearning showing the performance after

40, 120, 200, 280, and 360 patterns have been learnt in blocks of 40

patterns learnt, followed by unlearning of 500 probes at −η=-0.02

(100 repetitions).

This system was inspired by the sleep–wake cycle where learning occurs during the day

and then a post–processing phase appears to occur during sleep.

The results of our simulation of this system are presented in Figure 4.15. The

y axis is the distance a pattern travels before it finds a stable state. Van Hemmen

uses this measure as he is not interested in developing a system where random probes

result in learnt patterns, but in a system where probes that are very close to a learnt

pattern relax to the pattern. This is a recognition rather than a recall system. The

measure used is the Hamming distance (H) between the initialised learnt pattern and

the state of the network after relaxation. If the distance is 0, then the learnt pattern

is stable. Van Hemmen uses overlap mf rather than Hamming distance, but they are

equivalent as overlap mf= 1− (H/N). In Figure 4.15 the last 0.4N patterns are stable

while the previous 0.4N patterns, learnt in the previous “wake–dreaming” cycle, have

a Hamming distance of H ≈ 0.4N = 40 (overlap of mf = 0.6).

Van Hemmen makes the argument that the higher the overlap the “better” a pattern

has been remembered. As the number of patterns presented (n) increases he states that:

“... as n proceeds, not only the most recently stored ∆q patterns but the
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one but last bundle is remembered better and better.”

This claim of improved performance based on a decrease in the distance between the

nearest stable pattern and a learnt pattern does not follow. The distance travelled by

the network as it relaxes is determined by the density of spurious stable states, not by

how well remembered the pattern is.

To claim improved performance there must be something about the shorter distance

that could be used to make a statement about the learnt patterns. The decreased

distance is not so small that it can be used as a recognition test, as the numbers

presented are an average and individual patterns vary greatly in the distances they

travel.

The basins of attraction of the stable states generated using this form of unlearn-

ing are relatively small. Van Hemmen states that during the random probing of the

network, the stable states (the attractors) found will almost always be spurious states.

Table 4.3 shows some of the basin sizes for learnt patterns in an H100± with van Hem-

men unlearning applied. The minimum, mean and maximum are given for the patterns

between 160–199 after the fifth cycle of learning 0.4N patterns and unlearning 500 pat-

terns with unlearning −η = −0.002. Our simulations confirm that the learnt patterns

are almost never found through random sampling of the network. Out of 1,000,000

random probes only 132 (< 0.02%) relaxed to learnt patterns.

Est. mf

minimum 0.852

mean 0.869

maximum 0.883

Table 4.3: Learnt patterns 160–199 in a 100 unit network H100± with

van Hemmen unlearning.

Van Hemmen also provides an estimate of the amount of unlearning to apply in

each unlearning (dream) cycle based on the amount of correlation in the patterns that

have been learnt. If too much unlearning is applied then the whole system collapses.

Too little and the performance degrades quickly after performing only a few cycles

of learning and unlearning. To find the right level of unlearning the amount of cor-

relation between the patterns needs to be known. Unlearning removes the spurious

states generated by correlation, so the amount to remove is critically dependent on the
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correlation. Van Hemmen’s measure of pattern correlations is:

Cpq =
1

N

N
∑

i=1

ψpi ψ
q
i (4.2)

where p and q are patterns in the learning set and ψpi is the activation of unit i in

pattern p. Van Hemmen uses an estimate of the correlation based on activation level

assuming that the only correlation comes from the large number of inactive units. This

does not actually solve the generalised problem of correlation for patterns that have

correlations caused in other ways, for example the checker–board pattern in Section 4.2.

When unknown amounts of correlation are present in the learning population it is not

possible to use this estimate.

Unfortunately to calculate the actual amount of correlation Cpq involves every unit

in all of the learnt patterns. This enormous amount of pre–processing is difficult to

reconcile with van Hemmen’s desire to create a biologically plausible model of memory.

It also presents a problem in that the whole population of patterns has to be present so

that the correlation between the patterns can be evaluated, making the presentation of

the patterns in blocks of 0.4N redundant as all the patterns are available at one time.

Another problem with this process is that it forces the system to store many more

patterns than the normal capacity of a Hebbian based Hopfield network. This massive

overloading of the network means that for the majority of the time the network is

running it is unable to be used as an auto-associative network. There are no useful

stable patterns until after unlearning. This would be the human equivalent of being

able to remember the previous days events for a few minutes in the morning and then,

having added a few more items, being unable to remember anything until the next

morning.

The overload and unlearn process removes the large spurious patterns, but during

the process an enormous number of spurious patterns with very small basins of at-

traction are generated. The energy surface caused by unlearning is densely pitted with

many stable spurious patterns, and on this surface there are a few learnt patterns which

also have very small basins of attraction, but are still stable. This very pitted surface

explains the short distance that a previously learnt, but unstable pattern, travels when

relaxed. The network quickly finds a nearby spurious pattern that is stable as there

are so many small stable spurious patterns on the surface.

In summary, the overload and unlearn process works moderately well as a recog-

nition system for the patterns that have been learnt in the most recent block. As

van Hemmen states, the learnt patterns are almost never found during probing of the
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network so this system is very limited as a content addressable memory. The basin

estimates in Table 4.3 show that for a pattern to be recovered, nearly 90% of the pat-

tern has to be intact in the probe. Given all the constraints on this learning system,

and the parameter relating to the global correlation between patterns, it is difficult to

see how this could be effectively used to preserve the Hopfield network as a content

addressible memory.

4.4.7 Delta Learning

Delta learning in Hopfield networks does not suffer from catastrophic forgetting in

the same way as unmodified Hebbian learning. Figure 4.16 shows the performance

of delta learning against Hebbian learning with weight decay. The performance of

delta learning is slightly better than that of weight decay, and there is not the total

loss of functionality that results from unmodified Hebbian learning. In the network

that generated the data for Figure 4.16, new patterns were learnt one at a time for a

maximum of 5000 epochs or until the error was less than 0.001. The network required,

on average, only 711 (stddev = 34.94) epochs to learn each new pattern (100 items for

100 repetitions, giving 10,000 data points for this average). The maximum time taken

was only 1489 epochs, so at no stage did the learning stop because of the epoch limit.

The patterns were learnt with absolute Gaussian noise2 (νi) of 0.5 applied to each unit

in each epoch of learning. This noise helps to make the learnt patterns more robust

and to create a basin of attraction around the new pattern.

Adding weight decay to delta learning does not improve performance. Weight decay

increases the speed at which older patterns are forgotten, and so although it does very

slightly decrease the number of epochs required to learn new patterns it is not beneficial

to the overall capacity of the network.

As discussed in Section 2.3.2 delta learning in MLP networks introduces its own

type of catastrophic forgetting – catastrophic plasticity, caused by excessive change of

the weights to accommodate a new pattern. This also occurs in Hopfield networks.

The forgetting of the base population is seen in Hebbian learning with weight decay,

but the forgetting is gradual and continuous rather than catastrophic. The difference

between the two is partly due to the low capacity of Hebbian learning. With delta

learning, the number of patterns that can be stored in the network is much larger than

with Hebbian learning, so when new patterns are learnt there is more to lose. The

2Gaussian noise as described in Section 2.3.
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Figure 4.16: Number of learnt patterns stable in a 100 unit Hop-

field network H100,± with delta learning versus Hebbian learning with

weight decay d = 0.1 per item (100 repetitions).

ongoing performance of delta learning and Hebbian learning in Figure 4.16 is similar.

However, delta learning has a much higher possible capacity than Hebbian learning, and

it is when patterns are learnt in blocks that both the higher capacity and catastrophic

plasticity become evident.

Figure 4.17 shows CF caused by the plasticity of the delta rule. The gradient of

the forgetting caused by learning new patterns is related to the number of patterns in

the base population. The larger the number of patterns learnt, the more fragile the

learning. This is a result of the balancing that delta learning does to make multiple

patterns stable. Delta learning is able to make 0.9N patterns stable, but after just

ten more patterns are added its performance is down to only 0.05N patterns. This

massive loss of stored information is the CF that we will try to prevent when using

this algorithm.

It is possible to combine delta learning with weight decay, weight capping, and

neural regulation. Both weight decay and weight capping degrade the performance of

delta learning. Weight decay just degrades previously learnt patterns faster, and weight

capping forces delta learning to spread its changes across more weights and thus degrade

previous patterns. Neural regulation also decreases the weights independently of delta
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Figure 4.17: The number of patterns stable in a 100 unit Hopfield net-

work H100,± with delta learning of a base population of 30 (0.3N), 60

(0.6N), and 90 (0.9N) patterns followed by learning of new patterns

(100 repetitions).
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learning. This decrease of weights again degrades the stability of previously learnt

patterns. Unlike Hebbian learning, delta learning does not need an explicit process to

remove old patterns, as it will continue to learn until the new pattern overrides the

previous weights. These systems that control the forgetting of old patterns, do not

improve the capacity of delta learning.

4.5 Rehearsal and Pseudorehearsal in Hopfield Net-

works

The maximum capacity of the Hopfield network using delta learning and randomly

generated patterns is N for symmetrically connected networks and 2N for asymmetri-

cally connected networks (Gardner, 1987; Gardner, Stroud, and Wallace, 1989). When

learning patterns iteratively, delta learning quickly falls to a level much lower than

this maximum capacity. Two approaches that proved to be very effective at improving

the capacity of MLP networks were rehearsal and pseudorehearsal. In this section we

investigate the use of these rehearsal mechanisms in Hopfield networks.

4.5.1 Full Rehearsal

The upper bound for rehearsal in the Hopfield network is 100% of the patterns pre-

sented are learnt until the network approaches the capacity of N or 2N . To test the

effectiveness of rehearsal for delta learning in the iterative case we include the entire

learnt population with every block of new patterns. Figure 4.18 shows the performance

of full rehearsal in an H100± network with asymetric connections, having learnt random

patterns with a coding ratio of 50%. Delta learning was given 4000 epochs per block of

5 new patterns to relearn the old population and incorporate the new group of patterns.

To achieve this level of stablility the network is trained without noise. The maximum

capacity refers only to the stability of a pattern, not the basins of attraction. As the

network learns more patterns the number of epochs required increases. This steady

increase skyrockets when the network nears capacity. In Figure 4.18 the right hand

axis shows the number of epochs used on a log scale. At about 160 (1.6N) patterns the

number of epochs shoots up to the maximum of 4000 epochs, and the network starts

to suffer from the problem of catastrophic capacity.

Making patterns barely stable is not the main goal of a content addressable memory.

The patterns learnt without noise have almost no basin of attraction, and any alteration
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Figure 4.18: Full rehearsal of the entire learning population with

blocks of 5 new patterns at a time. H100,± network with learning

constant η = 0.1 with no noise. Epochs have a maximum of 4000 and

an error criterion δl = 0.001 (10 repetitions).
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Figure 4.19: Full rehearsal of the entire learning population with

blocks of 5 new patterns at a time. H100,± network with 4000 epoch

limit, learning constant η = 0.1 and heteroassociative noise νh = 5%

(10 Repetitions).

to the stored pattern would result in relaxation to a spurious pattern. By learning

with noise, for example heteroassociative noise (νh = 5%), the patterns are forced to

have a basin of attraction. Unfortunately by adding noise the capacity is decreased

because the network is no longer just trying to make patterns stable, but trying to form

basins of attraction around those stable patterns. With noise included in training the

number of epochs used increases and often reaches the epoch limit before the errors

have disappeared. There are therefore two possible reasons for the network failing to

learn the patterns; 1) the absolute capacity of the network is too low (a solution does

not exist), or 2) the network has not been given enough time to find the solution.

Figure 4.19 also includes the average size of the basins of attraction of the learnt

patterns. This has overlap mf = 0.5 at the top of the graph as this is the largest

possible basin of attraction for stable patterns. The basin size continues to decrease

(an increase in the amount of overlap required to be inside the basin of attraction) as

more patterns are learnt. As the network reaches capacity the basins of attraction of

the learnt patterns have almost disappeared.

One of the problems presented by iterative learning of a large population is that
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patterns presented early get a much larger amount of learning and already have large

stable basins of attraction before new patterns are added. This makes the task of

balancing the weights harder as the network already has large weights which may need

to be lowered to allow for the new patterns. Thus the type of noise is critical to

how successful the continual learning process is. Relative Gaussian input noise forces

the units to continually make weight adjustments every epoch. This continual error

correction means that none of the patterns reach the criterion and stop learning. As

every pattern is continually learning the patterns presented early have a head start

over new patterns and begin to dominate as they receive the same number of updates

during learning as the new patterns.

The network experiences CF as it reaches the limit of its resources. The network is

unable to converge on a solution in the 4000 epoch and this leaves all the patterns in

an unstable state. This is a bit like trying to catch two balls with one hand, a system

designed to converge on a single solution will miss both balls as it moves back and

forth around the centre of them. This is a clear example of CF caused by catastrophic

capacity.

Unlike “full rehearsal” in an MLP network, where the amount of information pre-

sented was not close to capacity, Hopfield networks quickly reach capacity even for

delta learning, and without some management of the forgetting process catastrophi-

cally forget the information that has been learnt, as well as being unable to learn new

information. One way to restore performance would be to limit the rehearsal to just

the last 0.5N patterns. This will provide a network which quickly forgets patterns

as they drop out of the rehearsal set. This also implies that there is another storage

medium that is able to store all of the patterns so that they can be rehearsed by the

Hopfield network. If that were the case then the Hopfield network would be redundant.

Full rehearsal is impractical and suffers from catastrophic capacity, but the pseudo-

rehearsal method that works in MLP networks can be adjusted to work with Hopfield

networks, as we were able to show in Robins and McCallum (1998).

4.5.2 Pseudorehearsal in Hopfield Networks

The goal of pseudorehearsal is to protect the functionality of the network while new

patterns are learnt. Section 3.3 demonstrated that pseudorehearsal can be used to

prevent loss of information in an MLP network. The algorithm preserves the input-

output mapping of the MLP network because the pseudoitems accurately capture its

important behaviour, and the rehearsal of these items preserves that behaviour.
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As described in Section 3.3, there are three Requirements for pseudorehearsal to

be effective: 1) enough capacity to successfully learn; 2) rehearsal is effective; and

3) representative pseudoitems. Hebbian learning fails both 1 and 2. The capacity of

unmodified Hebbian learning is very low, and there is not much room for improvement

between capacity with simple weight decay 0.05N and the maximum capacity of 0.14N .

Hebbian learning also does not benefit from rehearsal. When a population of patterns

are learnt a second time, the performance is identical with the only change being

that all the connection strengths are doubled. Hebbian learning does not take into

consideration the current state of the network, so does not slowly converge on a solution

but must find it in one pass or not at all.

In order to test pseudorehearsal in Hopfield networks we need an algorithm that

satisfies these three Requirements. Delta learning is the simplest candidate and retains

many of the benefits of Hebbian learning. Using the input as the desired output

results in all the information required for updating weights still being available locally.

As shown above delta learning with full rehearsal is able to alleviate CF. Thus delta

learning satisfies Requirements 1 and 2 allowing us to focus on the type of pseudoitems

required to extract the behaviour of the Hopfield network.

A näıve implementation of pseudorehearsal in a Hopfield network is to sample the

input–output mapping using the same random sampling technique as an MLP network

(i.e. “feed forward” for just one cycle). This generates a population of input–output

pairs as the pseudoitem population. When these items are used during pseudorehearsal

they actually degrade the performance of the network faster than doing nothing at all.

The reason for this poor performance is that the mapping from the current state of

the network to the next state of the network does not reflect the important behaviour

of relaxing to attractors. Hopfield networks rely on the existence of attractors in a

state space, which are found by an iterative relaxation procedure. Using input–output

pairs preserves the slope of the energy function at a point on the energy surface. The

preservation of this slope does not preserve the desired behaviour of the network, which

is related to the attractors at the bottom of the slope rather than the transition caused

by the slope.

The intent of pseudorehearsal is to preserve the behaviour of the network, so for an

associative memory system this requires the preservation of the attractors. The items

to rehearse must reflect this functionality. Random probing of the network generates

many stable states, some learnt and some spurious. By using these stable states (which

include both learnt and spurious patterns) as the pseudoitems, pseudorehearsal may
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be able to preserve the function of the network. This process is now slightly different

to pseudorehearsal in an MLP as many of the rehearsed items are learnt items rather

than just items similar to the base population.

The algorithm for pseudorehearsal in a Hopfield network is:

1. learn a small part of the base population of patterns in the standard way

2. generate a pseudopopulation by

(a) generating a random pattern to probe the network

(b) relaxing the pattern to a stable state

(c) storing the stable state for use in the pseudoitem population

3. generate a new training population by interlacing the new patterns to learn with

the pseudopopulation

4. train using this population until some error criterion has been reached

5. repeat from step 2 for each set of new patterns

There are many parameters that can be tuned when using this algorithm. Almost

every step has one or more parameters associated with it, some of these are listed

in Table 4.4. In our simulations all of these parameters and more can be adjusted.

Appendix A discusses each of the parameters and Appendix B.2 gives an example of

the parameters used for simple pseudorehearsal. There are too many possible combi-

nations to exhaustively test them all, so the values must be estimated from testing the

performance of the system in various configurations. Some settings are chosen by their

psychological plausibility, some for ease of calculation, and others by trial and error.

The default values for a pseudorehearsal run in an H100,± are:

Coding ratio α = 0.5

Base population BP = 5

Learning constant η = 0.1

Epochs Ep = 500

Error criterion δl = 0.001

Noise during training νh = 5%

Relaxation cycles r = 4N

Pseudorehearsal probes Pp = 2000

Pseudorehearsal items Pi = 300

Given the above parameters any and all stable patterns found by probing will be

rehearsed. This will therefore protect both learnt and spurious patterns.
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Step Parameters

generate a learning population type of patterns

coding ratio

number of patterns

1. learn a small part of the base pop-

ulation of patterns in the standard

way

learning constant ηinitial learning error δl

type of noise during training

level of noise during training νh, νi

2. generate a pseudopopulation by number of probes to find pseudoitems Pp

(a) generate a random pattern to

probe the network

probability of activation Snp
orthogonality

noise during relaxation

(b) relax the pattern to a stable

state

record distance travelled

maximum cycles r

(c) store the stable patterns for use

in the pseudopopulation

which patterns to store

number to store Pi

remove duplicates

remove learnt items

3. generate a new training population

by interlacing the new patterns with

the pseudopopulation

interlacing schedule

rotation of pseudoitems

4. train using this population un-

til some error criterion has been

reached

error on all patterns or just new patterns,

error value

noise on new patterns

noise on all patterns

noise ratio for pseudoitems

learning ratio for pseudoitems

5. repeat from step 2 for each set of

new patterns

Table 4.4: Some of the parameters that influence the behaviour of

pseudorehearsal.
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Figure 4.20: Eight example patterns from the population of 64 alpha-

numeric patterns.

4.5.3 Pseudorehearsal of Stable Patterns

In our 1998 paper (Robins and McCallum, 1998) we used an H64,± network and stored

artificially generated alpha-numeric character set. The characters are represented in

an 8 × 8 grid, examples of which can been seen in Figure 4.20. This set consists of

64 items which allows us to store up to 1N patterns. Populations are trained over

500 epochs (presentations of the whole population) using delta learning. In the 1998

paper we used the thermal perceptron algorithm described in Section 3.4. We have

simplified the learning algorithm to standard delta, to decrease the complexity of the

interactions. New patterns are learnt with heteroassociative noise of νh = 5%.

To test pseudorehearsal, a base population of 44 randomly selected patterns is learnt

using delta learning. Then 20 more patterns are learnt (the rest of the population) one

at a time with heteroassociative noise applied to each new pattern. This is the same as

the delta learning test described in Section 4.4.7. Figure 4.21 shows the performance of

the network with no rehearsal on both the current total learnt population3 “None” and

the base population “None BP” with no rehearsal. This graph is different to the figures

presented in Robins and McCallum (1998) as those graphs present the errors rather

than the success, and in that paper we were only interested in the base population.

Figure 4.21 also shows the results for pseudorehearsal “Pr256” of the first 256

patterns found by random probing of the network. The pseudopopulation is generated

after each new pattern is added, in line with the process used in Robins and McCallum

(1998, Figure 7). This graph shows that the pseudorehearsal is able to protect against

the massive and sudden loss of information that originally occurred after the first

new patterns are learnt. Pseudorehearsal is also able to protect many more patterns

than standard delta learning. By the time the 64th pattern is learnt the number of

3The combination of both the base population and the new items learnt. After 10 items learnt this

combined population is 54 patterns.
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Figure 4.21: The number of stable patterns, both base population and

whole population, in an H64,± with delta learning of a base population

of 44 (0.69N), with 20 new patterns learnt in succession. “None” is

simple delta learning, and “Pr256” is pseudorehearsal of 256 random

probes of the network generated after each new item is learnt. The

“BP” conditions show the number of base population items that are

stable for each type of learning (100 repetitions).

base population items “Pr256 BP” that are stable has dropped to about 5 patterns.

There are about 15 of the intervening 20 patterns stable, which combined with the 5

base population items gives the 20 patterns stable for the “Pr256” condition after 64

patterns have been learnt.

A population of pseudoitems generated by random probing will naturally contain

duplicates of the learnt patterns, as these are the main attractors in the pattern space.

With 256 random pseudoitems about 50% of the stable learnt patterns are found and

included in the pseudoitem population. If we assume that there is no access to the

base population for rehearsal, then there is no need and no principled way, of removing

these patterns. However, with all the learnt patterns removed the “PR256*” condition

in Figure 4.22 shows that pseudorehearsal does not depend on duplicating the learnt

items for its effectiveness. This form of pseudorehearsal is only using spurious pattern

information to protect the stability of the learnt patterns. This counter intuitive result
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Figure 4.22: The number of patterns stable in an H64,± with delta

learning of a base population of 44 (0.69N), with 20 new patterns

learnt in succession (100 repetitions). “PR256*” is pseudorehearsal of

256 random probes of the network with any learnt patterns explicitly

removed from the pseudoitem population.

is discussed later in Section 4.5.4.

To directly compare pseudorehearsal to the other solutions to CF we must test

them in the same environment. In the H100,± network with random patterns the

results are also clearly improved. Figure 4.23 shows the comparative performance of

pseudorehearsal, unmodified delta learning, Hebbian learning with weight decay, and

Christos unlearning. Once the initial phase of learning has passed pseudorehearsal is

clearly better than any of the other methods presented. In the initial phase unlearning

is performing very well, but this performance degrades over time as the correlations

between patterns builds and the unlearning is unable to correct for the correlation.

Pseudorehearsal has an interesting peak at about 13 patterns learnt. The number

of patterns that are stable grows until this point, and then there is a dip where fewer

patterns are stable, before the number starts to increase again at about 16 patterns.

The reason for this decline is that after 0.14N patterns the learnt patterns start to

become unstable simultaneously, and drop out of the rehearsal population. The number

of stable learnt patterns decreases in much the same way as delta learning, but rather
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Figure 4.23: The number of patterns stable in an H100,± with pseudo-

rehearsal of 300 patterns “Pr256”, simple delta learning “Delta”, Heb-

bian learning with weight decay “WD” d = 0.1, and Christos unlearn-

ing “Ul” (U = 50,−η = 0.1) (100 repetitions, N.B. error bars removed

for readability).

than staying at the lower level the rehearsal starts to stabilise the new patterns that are

being learnt. The number of stable patterns slowly increases as some of the old patterns

become unstable making way for new patterns. The balance between retaining old

patterns and learning new patterns is now part of the parameters of the pseudorehearsal

algorithm.

There are many parameters that can be adjusted to manipulate the performance of

pseudorehearsal. The first of these is the number of pseudoitems that are used during

rehearsal. Figure 4.24 shows the results for pseudorehearsal with a varying number of

rehearsal items.

4.5.4 Rehearsing Spurious Items

The rehearsal of spurious patterns to preserve learnt one seems counter intuitive. This

intuition is based on the assumption that spurious patterns are just random noise in the

network. This is not actually the case. The spurious patterns are combinations (often
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Figure 4.24: The number of patterns stable with varying numbers of

pseudoitems in the rehearsal population for an H100,± ( 512, 200, 100

have 20 Repetitions 0 and 256 have 100 repetitions, N.B. error bars

removed for readability).
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linear) of stored patterns. The noise is caused by the correlations in the learnt patterns

and competition for the state space. Many of the spurious states can be thought of

as something like “ripples” caused by the learnt patterns. It would seem that the

particular form of ripple caused in the energy surface by a learning stable attractors,

may when rehearsed form a reciprocate ripple that preserves a learnt pattern. The fact

that some spurious patterns are linear combinations of learnt patterns is best shown

by an example.

For this example we are using an H16,± with the three patterns in Table 4.5 learnt

using Hebbian learning and a learning constant of η = 1. Having learnt these patterns

there are already a number of stable spurious patterns. To understand the relationship

between the spurious patterns and the learnt patterns it is useful to reorder the units

so that correlations become more obvious. This can be done as there is no topological

significance to the viewing order. If we reorder the units to view them by their activity

in each pattern we can see that they are grouped into 2p categories, in this case 8

groups as there are three patterns p = 3. Each unit within a group will have the same

weighted connections to all other units. Table 4.6 shows the reordering of the patterns.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pat A + + − − + − + + − − − − + + + −
Pat B − − + − + − + + + − + − − + − +

Pat C + − + + + − + − − + + − + − − −

Table 4.5: Three patterns to be learnt in an H16,±, randomly gener-

ated with exactly 50% of the units in the active state.

G1 G2 G3 G4 G5 G6 G7 G8

5 7 14 8 1 13 15 2 3 11 9 16 4 10 6 12

Pat A + + + + + + + + − − − − − − − −
Pat B + + + + − − − − + + + + − − − −
Pat C + + − − + + − − + + − − + + − −

Table 4.6: Patterns A,B, and C reordered by sorting on the activation

in each pattern.

The eight groups created by three patterns are: (+ ++), (+ +−), (+−+), (+−−), (−+

+), (−+−), (−−+), (−−−). After learning three patterns all units in G1 have a -3 weight

connections to units in group G8. This sets up a relationship between the units in the

two groups. When one group is active there is a strong negative input to each unit in
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the associated group. In larger networks there are more units in each group, but the

number of groups is entirely determined by the number of patterns. With only three

patterns stored in a large network the internal connections within the group will force

all units within a group to have the same activation. The number of units in each

group could vary, but with a large N and coding ratio centred around 0.5 each group

will have approximately n = 1
2pN units in it, in this case 2 units in each.

The original set with groups of active units represented by +∗ is:

(+∗,+∗,+∗,+∗,−∗,−∗,−∗,−∗)

(+∗,+∗,−∗,−∗,+∗,+∗,−∗,−∗)

(+∗,−∗,+∗,−∗,+∗,−∗,+∗,−∗)

With three patterns learnt there are always exactly four stable spurious patterns

with any network this size or larger. These are:

(+∗,+∗,+∗,−∗,+∗,−∗,−∗,−∗)

(+∗,+∗,−∗,+∗,−∗,+∗,−∗,−∗)

(+∗,−∗,+∗,+∗,−∗,−∗,+∗,−∗)

(−∗,+∗,+∗,+∗,−∗,−∗,−∗,+∗)

A network with 10000 units will have four spurious patterns that are structurally

identical to those above, just with more units in each group. Every simulation run with

Hebbian learning confirmed this result. If the first three of these spurious patterns are

learnt in a clean network the original three patterns will be three of the four stable

spurious states in the new network. This can be seen by resorting the units based

on the first three spurious patterns. The learnt patterns are now equivalent to the

spurious patterns. This could also be seen as swapping G3 and G4. This works both

in principle and experimentally.

The symmetry in the network can been seen in the weights that connect the units

in the groups. The weight matrix for any network with three patterns learnt using

Hebbian learning is:
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G1 G2 G3 G4 G5 G6 G7 G8

G1 +3 +1 +1 -1 +1 -1 -1 -3

G2 +1 +3 -1 +1 -1 +1 -3 -1

G3 +1 -1 +3 +1 -1 -3 +1 -1

G4 -1 +1 +1 +3 -3 -1 -1 +1

G5 +1 -1 -1 -3 +3 +1 +1 -1

G6 -1 +1 -3 -1 +1 +3 -1 +1

G7 -1 -3 +1 -1 +1 -1 +3 +1

G8 -3 -1 -1 +1 -1 +1 +1 +3

Although this example is limited to networks with only three learnt patterns, it

does give an example of how rehearsing the spurious patterns found in the network

can preserve some of the information about the original patterns, and in this example

make the units stable.

When training with pseudorehearsal the pseudoitems are rehearsed without noise.

This difference is very important when rehearsing these random patterns. If the pseu-

doitems are trained with noise they become the new attractors in the network and

override both the previously learnt patterns and the new patterns. Without some way

of knowing the type of pattern that is being rehearsed, it is not beneficial to make

patterns found by random probing the new attractors in the network.

4.6 Discussion

The solutions to catastrophic forgetting in Hopfield networks can be divided into three

levels and two groups. Synaptic level solutions work at the lowest level of a neural

network. Both weight decay and weight capping are able to continue to learn new items

while gradually forgetting previously learnt patterns. However the capacity of 0.05

patterns is so low that it is not an adequate solution to catastrophic forgetting. These

very simple solutions do provide a solid lower bound for assessing the performance of

the more complex systems. Weight decay can be seen as a form of managed forgetting.

It actively lowers the contribution of the old patterns as new patterns are added. This

active forgetting cleans up the network and allows learning to continue indefinitely

without the concern that over long periods of time, small errors and crosstalk noise

will eventually cause the network to collapse, and no longer function as an content

addressable memory. However it does mean that the system will only every remember

the most recent learnt patterns. There is no preferential treatment given to significant
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memories, for example those that are needed for survival.

The neuronal and system level solutions do not perform significantly better than

simple weight decay. Neural regulation is interesting in that the two different types or

regulation solve different problems – zero mean solves correlation, and resource limiting

solves capacity. This resource management approach can also work in conjunction with

weight decay and provides redundancy for the learning system, a feature that is evident

in most real world biological systems (Izui and Pentland, 1990).

The unlearning approach on the other hand seems to work in almost the same way

as weight decay in networks with i.d.d. patterns. With correlated patterns unlearning

is able to remove some of the correlation. Unfortunately, the amount of unlearning is

dependent on the amount of correlation, which is impossible to know a priori except in

the limited case where the correlation is only caused by a low coding ratio. Unlearning

received a lot of attention when it was first proposed, as it gave a possible explanation

for one of human beings most fascinating behaviours, dreaming. The performance of

unlearning in a situation where new patterns are presented continually over time does

not support the early enthusiasm for the system. Performing unlearning immediately

after a new item is learnt, improves performance initially, but over time the noise and

correlations between patterns destroy performance. Van Hemmen’s overload and un-

learn approach seems to work for larger numbers of patterns, but has several problems.

Firstly, the memory system no longer works as a content addressable memory as the

basins of attraction of the learnt patterns become minuscule. Secondly, the network

is only ever functional after a large block of patterns has been presented and then

unlearnt, and gives no results at any other time.

The second group of solutions move away from Hebbian learning and instead use

an error correcting delta learning approach. Delta learning does not suffer from catas-

trophic correlation found with Hebbian learning. As new patterns are learnt they

overwrite the changes made by old patterns, and those patterns are gradually forgot-

ten. Thus the delta learning algorithm has an inbuilt forgetting system. It can also

be combined with weight decay, weight capping, or normalisation to ensure that the

weights in the network do not begin to diverge, leading to a sudden loss of performance

after very large numbers of patterns are learnt.

The most successful of the approaches presented is pseudorehearsal. It is able to

retain almost twice as many patterns as unmodified delta learning, or Hebbian learning

with weight decay. Surprisingly it is still effective when the learnt patterns are removed

from the pseudorehearsal population. The fact that relearning spurious patterns is able
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to protect the original base population seems counter–intuitive, but can be shown to be

theoretically possible with small numbers of patterns, and is backed by experimental

data. Pseudorehearsal was effective in both a network with a large base population and

correlated patterns, and a network with random patterns and a small base population.

The robustness of the results for Hopfield networks, combined with the effectiveness

in MLP networks, indicate that the pseudorehearsal may be effective in many other

neural network structures.

The promising results from pseudorehearsal warrant further investigation. Pseudo-

rehearsal is not performing as well as full rehearsal and so, perhaps there are ways to

improve the approach. One of the major limitations for the pseudorehearsal approach

is the inability to differentiate the learnt patterns from the spurious patterns. In the

next chapter we investigate various approaches to differentiating the learnt patterns

from spurious patterns, including our proposal of an energy ratio measure. In Chapter

6 we show how this knowledge can be used to improve the solutions to catastrophic

forgetting. It also includes a summary of the experiments conducted and how they re-

late to each other. Discussion of the links to sleep and dreaming in biological systems

is covered in Chapter 7.
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Chapter 5

Discriminating between Learnt and

Spurious Patterns

One of the unwelcome features of Hopfield networks is the large number of stable

spurious patterns. In a moderately loaded network there are thousands of spurious

patterns for every stable learnt pattern. Random probes of the network will always

relax to a stable pattern, but there is no indication as to whether the pattern was learnt

or not. The ability to determine the stable pattern’s type would allow the network to

return not only the stable pattern found, but also an estimate of whether the pattern

had been learnt.

The pseudorehearsal algorithm presented in Chapter 4 rehearses all the patterns

that are found by probing. With the ability to distinguish learnt patterns from spurious

patterns, rehearsal could be focused on preserving just the learnt patterns. For this

discrimination to be feasible the network should not have access to the real learnt

patterns, but instead must calculate the familiarity of a pattern from information

available within the network. This chapter will explore various methods for determining

familiarity in Hopfield networks, and Chapter 6 will investigate how this knowledge can

be applied to improving the solutions to catastrophic forgetting.

5.1 Defining Familiarity

The task of discriminating between learnt (familiar) and spurious (novel) patterns is

called “recognition”, familiarity detection, novelty detection, or pattern discrimination.

Familiarity detector networks are designed to give an indication as to whether a pattern

has previously been presented to the network (For a recent review of this area see
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Markou and Singh (2003)). The general process is to present a pattern to the network

and have a single output node, where the activation of the output node indicates the

familiarity of the pattern. In the human brain this function seems to be centred in the

perirhinal cortex (Bogacz, 2001) which is located immediately prior to the hippocampus

in the processing stream from sensation to action.

The phenomenon of déjà vu has lead to a great deal of research in the area of

familiarity discrimination for memory systems. Humans only occasionally experience

the sensation of being familiar with something that they have never seen before. FMRI

and lesion studies indicate that the perirhinal cortex (Brown and Xiang, 1998; Squire,

Stark, and Clark, 2004) in the human brain participates in detecting familiar objects

and faces. The existence of an obvious neurological response to familiar items suggests

that it is at least possible to perform this type of discrimination in biological systems.

Any form of binary detection has four possible combinations of presentation and

identification. These are true positives, true negatives, false positives and false nega-

tives. In the popular language of memory false positives are called “déjà vu”, and false

negatives “forgetting”. To analyse the performance of a detector these four values are

converted into four ratios, Positive Predictive Value (PPV), Negative Predictive Value

(NPV), True Positive Rate (TPR) and True Negative Rate (TNR) 1. Table 5.1 shows

the relationship between these measures. The importance of a particular ratio depends

on the particular task. For example, in the field of medicine it is very important to

decrease the number of false negatives, where a potentially fatal illness is falsely ruled

out by a diagnostic test. In this situation a low false negative rate is the primary

concern. When comparing different situations it is important to decide the weighting

of these ratios.

For the pattern based memory stored in Hopfield networks, the PPV measures the

probability that a pattern identified as learnt (familiar) is actually part of the learnt

pattern set. PPV is computed by dividing the number of accurately remembered

patterns by the sum of all positive responses (TP/TP+FP). This is the rate at which

patterns identified as learnt are actually learnt patterns, i.e. the percentage of memory

that is not déjà vu. NPV is the ratio of true negatives to all negative responses, i.e.

actual novel patterns in relation to all patterns classified as novel. The TPR measures

the probability that a pattern will be recognized as learnt given that it has actually

been presented earlier, and a high TNR indicates that if a pattern is novel, it will

successfully be identified as such.

1TPR and TNR are also referred to as the Sensitivity and Specificity of the detector.
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Familiar True Positive False Positive Positive Predictive Value

(TP) (FP) (PPV) = TP/(TP+FP)

Novel False Negative True Negative Negative Predictive Value

(FN) (TN) (NPV) = TN/(TN+FN)

True Positive Ratio True Negative Ratio

(TPR) = TP/(TP+FN) (TNR) = TN /(TN+FP)

Table 5.1: Relationship between the various performance measures of

a detector system.

A high PPV of over 99% is considered to be a very good result. In a Hopfield

network this would mean that out of 100 probes of the network which were classified as

learnt, only one of these would be spurious. The way in which the probes are generated

influences how reliable this ratio is. If the 100 probes are generated as copies of learnt

patterns, then they are not really a random selection of input but a set selected for a

particular attribute. This is selection bias, and it limits the claims that can be made

based on the predictive values.

We will use PPV and NPV in terms of our particular problem domain of distinguish-

ing stable spurious patterns from the stable learnt patterns in a Hopfield network. We

review a number of the suggested mechanisms for distinguishing learnt from spurious

patterns, and discuss their performance on this particularly difficult task.

5.2 Familiarity in Hopfield Networks

In Hopfield networks there are two types of familiarity discrimination, distinguishing

learnt patterns from any other pattern, and stable learnt patterns from other stable

patterns (spurious patterns). As we are interested in the network as a content address-

able memory in this thesis, we are interested in the second type of discrimination. In

a Hopfield network only a very small percentage of all the possible patterns are stable.

Unfortunately as the network learns the majority of these stable patterns are spurious

rather than learnt patterns. Thus the task is to distinguish a small number of positive

examples from a very large number of negative possibilities.
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5.2.1 Pattern Energy

One of the first methods used to detect spurious patterns in Hopfield networks was to

measure the energy2 of the network given an input pattern. Equation (5.1) shows the

energy value Hp of a pattern p

Hp = −
N

∑

j=1

(υpjψ
p
j ) (5.1)

This measure follows directly from the requirement that stable patterns have low en-

ergy. Both Hebbian learning and delta learning lower the energy of learnt patterns in

an attempt to make them stable. Hebbian learning lowers the energy of each unit in

the network by −(N − 1), and thus the total energy by −(N − 1)N . The Lyapunov

function (see Section 2.4.2) of monotonically decreasing energy requires that all stable

states have low energy. For random patterns that have not been allowed to relax, the

energy is close to zero as there are equal numbers of units with negative and positive

energy.

It is possible to distinguish learnt patterns from spurious patterns using the total

energy, as shown by Bogacz, Brown, and Giraud-Carrier (2001) and Crook, Marsland,

Hayes, and Nehmzow (2002). Figure 5.1 shows that the learnt patterns have energy

that is clearly lower than the spurious patterns. The graphs in this chapter mostly

come from randomly selected single runs of the network. This was done to show the

individual variation within an example rather than averages, which can be misleading.

Later graphs which are averaged, indicate the number of repetitions used. In Figure 5.1

with a small number of patterns stored, the noise created by crosstalk in the patterns

has not significantly degraded the total energy of the learnt patterns. The difference

between the total energy of learnt and spurious patterns allows the use of a threshold

value (labelled “Novelty Value” in the figure) as a simple novelty check. As there are

no learnt patterns above this threshold, and no spurious patterns below it, all of the

performance measures are perfect. PPV = 100%, NPV = 100%, Sensitivity = 100%

and Selectivity = 100%.

Unfortunately this method fails when more patterns are learnt. Figure 5.2 shows

the total energy of the stable patterns in a network with 14 patterns stored (0.14N).

The total energy of most of the spurious patterns is now lower3 than the learnt patterns.

2See Section 2.4.3 for a discussion of the energy of the network.
3Low energy indicates a stable state, and so large negative numbers are less than small negative

numbers, indicating a pattern is more stable
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Figure 5.1: The energy of stable learnt and spurious patterns in an

H100,± Hopfield network, trained with Hebbian learning. Five pat-

terns have been stored and all are stable. Novelty value of −92.

There are 93 spurious patterns found with 2000 probes (Randomly

selected single run).
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Figure 5.2: The energy of learnt and spurious patterns in an H100,±

Hopfield network, trained with Hebbian learning. Fourteen patterns

have been learnt but only twelve remain stable. “*Learnt” are learnt

patterns that are unstable. There are 70 spurious patterns found with

2000 probes (Randomly selected single run).

There is no way to place a threshold that clearly distinguishes stable learnt patterns

from stable spurious patterns. In this situation it is not possible to select a threshold

that maintains both a high PPV and NPV. These low energy spurious states render

this measure ineffective for moderate to heavily loaded networks.

Bogacz (2001) claims that the pattern energy can still have a good PPV if you

consider the space of all possible patterns, not just stable patterns. This statement is

not in keeping with the standard definition of PPV. For the PPV to be valid, it must

be calculated between samples using the same selection basis. The samples must come

from either the whole pattern space or consistently from a selected group of patterns.

When selecting patterns to check from the 2N dimensional space, the positive and

negative examples of patterns must be found using the same selection mechanism. The

chance of randomly selecting one of the learnt patterns without relaxation is L : 2N

(for an H64 with P = 5 patterns stored this is 5 : 18 446 744 073 709 551 616). This

means that when probing the space the learnt patterns are extremely unlikely to be

encountered, giving a PPV of ≈ 0. As this measure also misclassifies any stable pattern
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as a learnt pattern the real PPV is extremely low.

However, Bogacz does use the total energy to distinguish learnt patterns from ran-

domly selected, un–relaxed patterns. He compares the total energy for learnt patterns,

which may or may not be stable, against a threshold. Learnt patterns have a lower

energy than almost all randomly selected un–relaxed patterns, and so can be classified

as familiar. There are millions of spurious patterns that would be misclassified, but as

a ratio of all the possible patterns the spurious patterns that are misclassified is quite

low. The patterns that this simple energy measure misclassifies are exactly those which

are stable spurious patterns. The positive predictive value is high when comparing be-

tween the learnt subgroup and all possible patterns, but low when the sample space is

restricted to just stable patterns. Thus the total energy does not help with the current

task of distinguishing stable learnt patterns from stable spurious patterns.

5.2.2 Relaxation Time

Hopfield (1982) proposed that the rate at which units change during relaxation could

be used to identify spurious states. The underlying assumption was that the basins of

attraction of learnt patterns are more fully formed than spurious patterns, and that

a network that relaxes to a spurious state will do so down a long wandering path,

while patterns that relax to a learnt pattern will do so quickly from within the basin

of attraction.

Following this suggestion Chengxiang et al. (2000) proposed a measure based on

the length of the relaxation cycle required to reach a stable pattern. As the spurious

patterns generally have smaller basins of attraction than learnt patterns, (see Sec-

tion 5.2.3) the network state tends to “wander around” for longer before settling in

one of the spurious states. This is true for a space that is sparsely populated with

stable states, most of which are stored patterns.

As the network becomes heavily loaded and spurious patterns become common, the

ability to distinguish based on the length of the path breaks down. The basin sizes for

the learnt patterns decrease in size and the length of time taken for a probe to find

these smaller basins becomes indistinguishable from the length of the paths to find

spurious patterns.

In our simulations, the length of the path from the initial random pattern to the final

stable state is not correlated with either spurious or learnt patterns. Figure 5.3 shows

the average path length for random probes relaxing to spurious and learnt patterns

during the serial learning task.
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Figure 5.3: The relaxation time for stable learnt and spurious patterns

in an H100,± Hopfield network, trained with Hebbian learning. Five

patterns with all stable (top) and fourteen patterns where only twelve

were found during relaxation (bottom). First 100 spurious patterns

found with 2000 probes (Randomly selected single run).
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When a Hopfield network is overloaded, one of the mechanisms to restore the sta-

bility of the learnt patterns is to apply unlearning. The relaxation time to patterns

changes after the application of unlearning. Horas and Bea (2002) show that it is

possible to distinguish between learnt patterns and spurious patterns after unlearning.

The network they are working with has asymmetric connections and stores patterns in

cycles rather than just stable states. The system is only demonstrated for the static

case where all patterns are learnt in one phase and unlearning is then applied before

testing. For this implementation, the learnt patterns relax faster than the spurious

patterns. This form of testing does not use random probing, but initialisation to a

pattern that is close to the learnt patterns. Horas and Bea do not discuss whether

this decrease may be caused by an increase in the number of spurious patterns close to

learnt patterns, but they do use a fairly broad definition of successful retrieval, using

an overlap mf = 0.9. Thus, if 90% of the units are the same as a learnt pattern,

then the current stable pattern is considered to be an accurate recovery of the original

pattern. Our results for the distance traveled during relaxation do not provide a clear

distinction between the types of stable patterns. This may be due to the differences in

the way the patterns are stored, or that Horas and Bea (2002) use limit cycles rather

than static stable states. A limit cycle occurs when the network cycles between a small

set of states. Although there is no single stable pattern, the cycle repeats indefinitely

and so can be considered stable.

O’Reilly, Norman, and McClelland (1998) use the distance that a probe moves as

an estimate of whether the probe was a learnt pattern or a “lure”, a probe that has

some real world similarity to the learnt items. The specific measure used is the number

of units that alter their activation state between presentation and relaxation. If a

learnt pattern is still stable then none of the units will alter state during relaxation.

O’Reilly et al. use patterns with a low coding ratio, which results in the pattern with

no units active becoming a large spurious attractor. Almost all of the lure states will

relax to the inactive pattern. This is yet another example where different samples

are used when comparing results. The “lures” are not stable spurious patterns, but

instead patterns generated by the researchers. The distinction between learnt patterns

and most other unstable patterns can be found by simply measuring the energy of

the pattern. Although this approach works well for lightly loaded networks, when the

task is to differentiate known learnt patterns from artificially generated patterns, it is

not sufficient for the current task as we require the differentiation of stable spurious

patterns from stable learnt patterns. These are again exactly the patterns that this
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discrimination method misclassifies.

5.2.3 Basin of Attraction Size

One of the most complex and involved measures of a stable pattern in a Hopfield

network is the size of its basin of attraction. As discussed in Section 2.4.5, a basin of

attraction is difficult, if not impossible, to calculate analytically from the weight matrix

of the network. Without an analytical basis the only methods left involve sampling

the network or using an estimate. By sampling the network with thousands of probes

a percentage of pattern space that relaxes to each pattern can be found. The estimate

of basin size used in this thesis, as described in Section 2.5.2, gives reasonable results

while the basin is of reasonable size and relatively uniform.

The principle behind using the basin of attraction size as a differentiator is that

learnt patterns should have larger basins of attraction than the spurious patterns.

This is obviously true of lightly loaded networks without correlated patterns, where

the learnt patterns are the large, stable attractors. Figure 5.4 shows the size of the

basins of attraction (as found by sampling, and given by estimate) for learnt patterns

and spurious patterns in an H100,± network with Hebbian learning. In the lightly loaded

network the basin size is an effective metric, but once the network is heavily loaded the

basin of attraction size misclassifies many of the patterns. Although basin of attraction

size is important as a measure of performance, it is not a good differentiator.

This measure cannot be used with some of the learning systems described in Chap-

ter 4, such as the unlearning suggested by van Hemmen (1997), as the learnt patterns

have virtually no basins of attraction.

5.2.4 Activation Saturation

For a pattern to be stable the input to each unit must be positively correlated with its

output. A unit that has a high positive input and a positive output could be considered

to have saturated its activation, as its output would still be positive with a lower, but

still positive, input. The same is true for an inactive unit with a large negative input.

The saturation is analogous to how far a unit is from the decision surface (described

in Section 2.3.2). We can visualise the saturation profile of the units by sorting them

on the summed input. The top graph in Figure 5.5 compares the saturation profile

of the five learnt patterns versus the first ten spurious patterns found in an H100,±

network with Hebbian learning. The key observation is the difference in the way in
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Figure 5.4: Basin size of stable patterns in an H100,±, both sampled

and estimated. Hebbian learning of five patterns learnt (top) and

fourteen patterns learnt (bottom) where only thirteen were stable.

Spurious patterns are the first 100 patterns found with 2000 probes

(Randomly selected single run).
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which the profiles cross the zero axis. The stable patterns have a sharp transition,

while spurious patterns have a smoother slope. It is this observation that suggests it

might be possible to use the activation saturation as a means to differentiate the learnt

and spurious patterns.

To turn the visual step into a metric for comparison we need to create a single num-

ber that represents the significance of the step. The step is the transition from negative

activation to positive activation, and so the logical choice is to take the minimum pos-

itive input and subtract the minimum negative input. This gives a clear distinction

in lightly loaded networks, like most other metrics, but unfortunately the distinction

degrades as the number of learnt patterns increases. The bottom graph in Figure 5.5

shows the stable learnt patterns in an H100± network with 14 learnt patterns versus the

first 10 spurious patterns found. The saturation transition from negative to positive

of some of the patterns has become similar to the spurious patterns. Figure 5.6 shows

the transition as the “Step Size” for both the learnt patterns and the spurious patterns

in an H100± network. In the lightly loaded network the distinction is clear, however,

as the network becomes heavily loaded the distinction becomes less clear.

The performance of this measure with delta learning is better than with Hebbian

learning, both with only a few patterns learnt and as the number increases. This

measure works well with delta learning if noise has been applied to the learning. The

two types of noise that we have investigated as additions to delta learning are input

noise and heteroassociative noise. These are described in Section 2.3.2.

Both of these types of noise force the units away from the decision surface creating

the sharp transition seen in Figure 5.7. Spurious patterns do not have any pressure on

units close to the decision surface and so the transition is much smoother.

The saturation profile of a pattern is able to differentiate patterns very effectively

when the network is lightly loaded. However, as the number of stored patterns in-

creases, the least stable units in the learnt patterns move closer and closer to the

decision surface. The step size requires that the least stable active unit and the least

stable inactive unit are far from the decision surface. As can be seen in Figure 5.7

there is a second visible distinction between the spurious and learnt pattern. The very

low input and high input units in spurious patterns are much further from the decision

surface that the equivalent units in the learnt patterns.

Units which are active with a high positive input have very low energy. Likewise

units that are inactive with a large negative input also have very low energy. If we

change from viewing the units by the total input, and instead order the units by their
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Figure 5.5: The saturation profile for the five learnt patterns (top)

and the seven stable patterns out of fourteen learnt patterns (bottom)

with Hebbian learning in an H100,± network. The spurious patterns

for both are the first ten spurious patterns found with 2000 probes.

The unit numbers on the x–axis refer to the rank order, based on

input value of the units in the individually sorted patterns.
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input (step size) for learnt and spurious patterns, with 5 patterns

learnt (top) and 14 patterns learnt (bottom).
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and the first five spurious patterns in an H100,± network with delta
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Heteroassociative noise (νh = 5%)(bottom).
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energy, the very low energy units are grouped together. This changes the y–axis of

subsequent graphs from “input” to “energy” of the units. When viewing the energy of

units, the position on the y–axis is equivalent to the distance from the decision surface,

with negative energy indicating units with more stability. We will call this type of

graph an “energy profile”.

5.3 Energy Profile

The energy profile of a pattern is the profile created from the energy of each unit sorted

by the magnitude of the energy. Figure 5.8 shows the energy profile of four patterns

after each of four Hebbian learning iterations. The total energy of the pattern is the

sum of the individual units. For a pattern to be stable, all of the units have to have a

negative energy4. The energy profile of an unstable pattern has units on the positive

side of the y–axis.

Learning a pattern can be visualised as lowering each unit’s energy until every unit

in the pattern has a negative energy. For Hebbian learning with a learning constant

η=0.5 the alteration changes the energy of each unit by −(N − 1) (remember that the

connections between unit i and j are updated both by unit i and j, so the addition to

each connection is 0.5 × 2). This can be seen in Figure 5.8 as the profiles move from

being centred on zero to −(N − 1). After two patterns are learnt, “Pat 1” and “Pat

2” have identical energy profiles. This is always the case with Hebbian learning. As

additional patterns are learnt, the crosstalk between patterns causes the slope of the

energy profile to increase. This gives us an insight into the problem of catastrophic

overloading and correlation when using Hebbian learning. If the highest energy unit

has an energy greater than N before applying Hebbian learning to the pattern, the

network will not learn the new pattern, as that unit’s energy will not fall below 0 (the

requirement for stability). It is at this point that catastrophic forgetting becomes a

significant problem for Hebbian learning.

The act of creating a stable pattern results in an energy profile that is very different

to the profiles of spurious patterns which arise from the crosstalk and correlations of the

4In our 2004 paper (Robins and McCallum, 2004) we used positive correlations between input

and output for individual unit values and negative energy for patterns. For individual units the

positive correlation between the input and the output is equivalent to the negative of the energy. For

consistency we now only refer to energy with reference to the contribution it makes to the stability

of the pattern. Thus, individual units that are stable are now referred to as having negative energy,

rather than positive correlation between input and output.
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Figure 5.8: The energy profile of four patterns in an H100,± Hopfield

network as the patterns are learnt in succession.

learnt patterns. In Hebbian learning the learnt patterns are moved uniformly leaving

the slope the same while decreasing the total energy.

While the network is lightly loaded the energy profile of the spurious patterns is

very different to the profile of the learnt patterns. Figure 5.9 shows the profiles of learnt

and spurious patterns after four patterns have been learnt with Hebbian learning. Note

that both the position and slope of the learnt patterns is different to the position and

slope of the spurious patterns. The total energy is lower for the learnt patterns5 and

they have a flatter profile than the spurious patterns. The most significant indicator

of the difference in slope is at the beginning and end of the profile. The lowest energy

units in a learnt pattern are higher than the spurious patterns and the highest energy

(least stable) units are lower.

Although the total energy can no longer be used to differentiate patterns in a

heavily loaded network, there is still a large difference in the profiles of the stable

5This is consistent with the ability to use total energy to differentiate patterns in a lightly loaded

network.
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Figure 5.9: Energy profile of the first five learnt patterns and the first

five spurious patterns found with probing. Hebbian learning applied

to five patterns in an H100,± network.

learnt patterns and spurious patterns. Figure 5.10 shows the profiles of the stable

patterns with fourteen patterns learnt. There are now spurious patterns with total

energies lower than the most stable of the learnt patterns, but the slopes of the profiles

are still different.

Changing the learning procedure changes the energy profiles of the learnt patterns.

For example, the inclusion of weight decay decreases the magnitude of the energy

of every unit before each new pattern is learnt. This moves the units in the energy

profile closer to 0. As long as the energy of an individual unit is not greater than

N , Hebbian learning’s adjustment of −N − 1 will be large enough to learn the new

pattern. Figure 5.11 shows the energy profile of the last five patterns learnt using

Hebbian learning with weight decay of d = 0.1. This graph shows the profiles of

patterns after the presentation of 50 patterns6. The most recently learnt pattern has

the lowest energy as it has not experienced any weight decay. The older learnt patterns

have units that are closer to 0, and patterns older than the immediate 0.06N are lost

as the crosstalk from learning new patterns moves some of the units to the positive side

of 0 on the y–axis (decision surface). Once any unit has positive energy in a pattern,

650 patterns are used to ensure that the network has passed the initial learning phase where the

number of stable patterns peaks and then drops back to a sustainable level.
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Figure 5.10: Energy profile of the first five learnt patterns and the first

five spurious patterns found with probing. Hebbian learning applied

to fourteen patterns in an H100,± network.

that pattern becomes unstable.

The profiles of patterns that have been learnt with delta learning also have this

distinctive shallow slope. Figure 5.12 shows the learning of 4 patterns after various

numbers of epochs. After just a single epoch, about 50% of units have recieved a

learning update of η= 0.1. As the weights are updated in both directions (as this is a

100 unit network), the energy of the updated units averages about -20. After a second

epoch, a further 25% of the units have been updated. At the top end of the graph

a few units have recieved a second learning update as the Gaussian noise will very

occasionally force already learnt units to update. By the 50th epoch the energy profile

has flattened out significantly. All patterns become stable between approximately 5

and 10 epochs, but delta learning continues to alter the connections that are affected

by noise. Units that already have a large input are far less likely to be affected by

noise, and as a result the learnt patterns have a flatter energy profile.

Spurious patterns created during delta learning tend to have some units which are

very close to the decision surface and some which are very far away. This observation

can be explained by the spurious patterns having some units which are the correla-

tions between learnt patterns, while other units are the uncorrelated activation across

multiple learnt patterns.

122



46
47
48
49
50

Energy profiles with weight decay

Unit

E
n
er

gy

1009080706050403020100
20

0

−20

−40

−60

−80

−100

−120

−140

Figure 5.11: Energy profile of the last five patterns learnt in an H100,±

using Hebbian learning and weight decay of d = 0.1 after 50 patterns

have been learnt.

In the next section we present the energy ratio measure, which compares the most

stable and least stable units. This value can be used to differentiate patterns without

having to perform extensive global calculation or massive probing of the network.

5.3.1 Energy Ratio

The energy ratio is a measure we presented in Robins and McCallum (2004), and is

based on the energy profile of a stable pattern. It is similar to the saturation step

metric above, but it takes into consideration both the low and the high end of the

profile. It calculates a combination of the slope and magnitude of the energy profile.

We define a pattern’s energy ratio to be:

R =

∑k
i=1 hi

∑N
j=N−k hj

(5.2)

where the units have been sorted by their energy, k is the number of units contributing

to the measure, and hi is the energy of unit i. The flatter the energy profile of a

pattern, the closer the energy ratio measure is to 1.0.

Figure 5.13 shows the energy profile and energy ratio of a learnt patterns and the

first spurious pattern found when probing the network. The k units contributing to
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Figure 5.12: The energy profile of four learnt patterns in an H100,±

network as the patterns are learnt using delta learning η=0.1 with

input noise νi=0.5. The “Spur” is the first spurious pattern found

by random probing. The epochs are listed in columns with energy

profiles shown for 1, 2, 3, 4, 5, 10, 20, and 50 epochs.
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Figure 5.13: Energy profile and energy ratio for a learnt pattern and a

spurious pattern in an H100± with five patterns learnt using Hebbian

learning. Energy ratio with k = 10.

the ratio are shown with points. The ratio for the spurious pattern is less than one

third of the learnt pattern.

This metric can be seen as an estimate of the combination of standard deviation

and mean, similar to the coefficient of variance, but done without calculating the sum

of squares or averaging over the whole network. The energy ratio can be seen as:

R ≈ µ− (2σ)

µ+ (2σ)
(5.3)

where µ is the mean energy for the network in the current configuration, σ is the

standard deviation, and R is the ratio measure defined above. The standard deviation

measures how uniform the energies are, while the mean is equivalent to the total energy

of a pattern. Once a pattern is stable, lowering the energy of the pattern lowers the

mean and therefore increases the ratio, as (a/b) < (a+ c/b+ c) where c is the increase,

a is the sum of the least stable units and b is the sum of the most stable units. Delta

learning also increases the ratio as it primarily makes changes to units which are part

of a ((a + c)/b < a/b). When there are a large number of unstable units in a pattern

the energy ratio of the pattern becomes negative. This is caused by the unstable units

having a positive energy and the stable units having negative energy, resulting in a
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negative value for the division a/b. Unstable patterns usually have a negative ratio,

while most stable spurious patterns have ratios that are near zero. It is possible for

an unstable pattern to have a positive ratio, if the sum of the energy of the unstable

units in a is less than the stable units in a. The ratio will be low but not necessarily

negative. This effect can be seen in Figure 5.14 where some of the learnt patterns are

unstable, but still have a positive ratio. These patterns only have one or two units

unstable out of the k=10 units used to calculate a.

5.3.2 Hebbian Learning and Energy Ratio

Hebbian learning uniformly lowers the energy of the units in the learnt patterns. This

does not change the standard deviation of the energy profile, but does change the

mean and total energy. Thus the learnt patterns have a standard deviation similar to

a randomly selected pattern before relaxation, which is different to a stable spurious

pattern. Learnt patterns also have a low mean energy and, when combined with the

low standard deviation, this gives a high energy ratio.

As the number of learnt patterns presented increases, the network overloads and the

learnt patterns become unstable. However, the ratio measure still performs reasonably

well with only a few patterns being misclassified. Figure 5.14 shows the energy ratios

for learnt and spurious patterns after learning either five patterns (top) or fourteen

patterns (bottom). The energy ratio of the learnt patterns in a lightly loaded network

are much higher than the energy ratio of the spurious patterns. In the heavily loaded

network with 0.14N patterns learnt, five of the patterns have become unstable, while

the rest retain a comparatively high energy ratio. In this example there is also a

spurious pattern that has an energy ratio similar to the learnt patterns. Ideally the

threshold for a lightly loaded network would be higher than for the heavily loaded

network. A threshold of 0.4 would classify all the patterns correctly in the lightly

loaded network while a threshold of 0.2 would classify all the learnt patterns correctly

and misclassify only one spurious pattern when the network is heavily loaded.

The quality of a differentiator needs to be assessed using the analytical tools de-

scribed in Table 5.1. The top graph in Figure 5.15 shows the PPV, NPV, TPR, and

TNR for the simple energy ratio threshold of 0.2. The positive predictive value (how

likely a pattern is to be a learnt pattern if the ratio measure defines it as learnt) drops

to just over 50% with four patterns learnt. This is because a threshold of 0.2 is much

lower than the ratios of the learnt patterns, and about half of the spurious patterns

(TNR of 40%) make it above this value so are classified as learnt patterns. The TPR
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Figure 5.14: The energy ratio of all the learnt patterns and up to the

first 100 spurious patterns in an H100,± network after five patterns

(top) and fourteen patterns (bottom). “Learnt*” are the unstable

learnt patterns. This data is from the same simulation as the data in

Figure 5.10.
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represents the percentage of learnt patterns that are actually being classified as learnt

patterns. This falls off quite rapidly as the network becomes increasingly overloaded.

Using other values for the energy ratio threshold changes the four analytical metrics

above. The second graph in Figure 5.15 shows the results with a threshold of 0.25.

Note that both the PPV and TNR are higher, as would be expected by making the

threshold higher, while the TPR falls off faster given the more restrictive requirement

of having a ratio above 0.25.

The energy ratio measure works well with Hebbian learning. If the number of pat-

terns that have been learnt is known, the threshold can be set to maximally distinguish

between learnt and spurious patterns. However, Hebbian learning is not the algorithm

best suited to the energy ratio measure. Delta learning with its explicit alteration

of units that are close to decision surface, creates patterns with much cleaner energy

ratios.

5.3.3 Delta Learning and Energy Ratio

Delta learning only lowers the energy of units that generate an error (a delta). By

only altering these units, delta learning generates very flat energy profiles which have

low standard deviation. However, without noise the patterns are only just stable and

so the energy ratio is still quite low. Figure 5.16 shows the energy profile of patterns

that have been learnt without any form of noise applied. Note that a number of the

units are very close to the decision surface (0 on the y–axis). Perhaps the most striking

feature is the step in the middle of the energy profiles. This is a result of the units on

the right of the step receiving an update from delta learning, while units on the left

are stable merely from the cross talk of the other patterns.

There are two types of noise that we have applied to the delta learning process.

These are described in Section 2.3.2. The two different noise types have different effects

on the energy profiles and the energy ratio, but both still create learnt patterns with

high ratios and spurious patterns with low ratios.

Figure 5.17 shows the energy profile of the stable learnt patterns after 50 patterns

have been learnt in succession, using delta learning with a learning constant of η = 0.1

and input noise applied with an sigma of νi = N . Only the most recently learnt

patterns are still stable but they still have the characteristic shallow slope of learnt

patterns. The energy ratio for the learnt patterns is very different to the spurious

patterns as shown in Figure 5.18. With 30 patterns learnt, only the most recently

learnt patterns are stable. Any threshold between 0.14 and 0.18 would correctly assess
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Figure 5.15: The positive predictive value (PPV), negative predictive

value (NPV), true negative rate (TNR), and true positive rate (TPR)

for an energy threshold of 0.2 (top) and 0.25 (bottom) in an H100,±

with Hebbian learning from one pattern learnt to 25 patterns (100

repetitions). Vertical lines represent the points used for graphs in

Figure 5.14.
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Figure 5.16: Energy profile of five patterns learnt with delta learning

with a learning constant of 0.1 and no noise.

every stable pattern in this particular instance.

Changing the energy ratio threshold to the best possible value for each run would

improve the results, but is unrealistic. Ideally we would be able to use a set value

that works without knowing how many patterns have been learnt. Figure 5.19 shows

the quality measures for energy ratio thresholds of 0.2 and 0.25. Both of these values

perform reasonably well once a few patterns have been learnt. They also demonstrate

the trade–off between misclassifying the learnt patterns with a high threshold and

allowing too many spurious patterns into the learnt classification with a lower threshold.

The PPV is about 98 − 99% with a threshold of 0.2 and nearly 100% with the more

restrictive 0.25. The TPR, the percentage of stable learnt patterns that are correctly

identified, is around 84% with 0.2 and drops to about 70% for 0.25.

Heteroassociative noise is not directly focused on changing units which are close to

the decision surface. Instead it alters the activation of some of the units in the network

after the desired pattern has been set. Therefore it is actively building the basin of

attraction of a pattern by forcing patterns close to the learnt pattern to relax to this

desired pattern. Figure 5.20 shows the equivalent set of energy profiles as Figure 5.17,

but with heteroassociative noise applied. In this example, 5% of the units in the learnt

patterns had their output changed in each epoch. Only a few of the patterns are stable,
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spurious patterns with input noise and delta learning. Noise level

with absolute range of sigma = N , learning constant η = 0.1 on the

unit inputs, error criterion 0.001.
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Figure 5.18: The energy ratio of the stable learnt patterns and up to

the first 100 spurious patterns in an H100,± Hopfield network after 30

patterns have been learnt with delta learning (η = 0.1 , input noise

νi = N , 2000 probes).

but again they exhibit the shallow slope and a relatively high ratio.

Heteroassociative noise increases the size of the basin of attraction and in doing

so also improves the energy ratio measure. Figure 5.21 shows the energy ratio for the

stable learnt and spurious patterns after 30 patterns have been learnt. Figure 5.22

shows the quality measures for energy ratio thresholds of 0.2 and 0.25. The energy

ratio measure is still performing well with this type of learning.

The energy ratio measure works well with both Hebbian learning and delta learning

with two different types of noise. A threshold value of 0.2 performs well if the percentage

of learnt patterns identified is important, while a threshold of 0.25 can be used when

it is important to avoid misclassifying the spurious patterns.

5.4 Discussion

There have been many attempts to improve the quality of the results generated by

Hopfield networks. Given that spurious patterns seem to be endemic to the Hopfield

type networks, much of the effort has gone into either decreasing the number of spurious
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Figure 5.19: The PPV, NPV , TNR and TPR for an energy threshold

of 0.2 (top) and 0.25 (bottom) in an H100,± with delta learning (η=0.1)

and input noise of 0.5 (100 repetitions). The vertical line represents

the point used for Figure 5.18.
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learning constant η = 0.1, error criterion 0.001, and epoch limit = 500.
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patterns have been learnt with delta learning (η = 0.1, heteroassocia-

tive noise νh = 5%, 2000 probes).
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Figure 5.22: The PPV, NPV , TNR and TPR for an energy threshold

of 0.2 (top) and 0.25 (bottom) in an H100,± with delta learning (η=0.1)

and heteroassociative noise νh = 5% (100 repetitions).
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patterns or differentiating the learnt patterns from the spurious patterns. Most of the

measures perform well when the network is lightly loaded, but begin to fail as the

network becomes heavily loaded.

When the task is simply to differentiate a learnt pattern from an unstable randomly

generated pattern, there are a number of useful metrics, including total energy and

number of units altering state. In this case the learnt pattern does not even need to be

stable, it must merely have enough of an imprint of the changes made during learning

to differentiate it from the majority of random patterns. Bogacz (2001) uses the total

energy of unstable learnt patterns to generate a familiarity discrimination model of the

perirhinal cortex.

The task that we are interested in is the classification of the stable patterns. The

two best metrics appear to be the saturation step size and the metric we propose,

energy ratio. The saturation step size is similar to the energy ratio but it only uses the

units that are close to the activation threshold. This is equivalent to the high energy

area of the energy profile of a stable pattern. In randomly distributed patterns, the

units involved in the step calculation are included in the energy ratio measure (they are

the numerator (a) of the ratio a/b). The energy ratio also incorporates the difference

between the extremely low energy units in learnt versus spurious patterns. Spurious

patterns have some units which have very low energy. This helps to classify spurious

patterns which the step misclassifies.

The energy ratio measure gives us the ability to adjust the responsiveness of the

system between forgetfulness and fantasy. A high threshold will label more of the learnt

patterns as spurious, and thus will be forgetful, but will very rarely misclassify spurious

patterns as learnt patterns, and so avoids the fantasy of déjà vu. A low threshold

will identify the learnt patterns but will also misclassify a larger number of spurious

patterns. The results above for 0.2 and 0.25 give an indication that somewhere around

these values is a reasonable threshold for creating a differentiator with high positive

predictive value.

The energy ratio measure is a very useful metric for assessing whether a pattern is

a learnt pattern. It works with both Hebbian learning and delta learning with various

types of noise. This metric can be added to the response of a Hopfield network and it

will improve the quality of the response by including an estimation of how likely the

pattern is to be a spurious or learnt pattern.

In Chapter 6 we will use the energy ratio to augment the system level solutions of

unlearning and pseudorehearsal presented in Chapter 4. The intention of the unlearning
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procedure was to remove the spurious patterns leaving the learnt patterns, as the only

stable patterns in the network. The energy ratio measure gives us a way of ensuring

that this is the case. Pseudorehearsal is trying to reinforce the learnt patterns, but

in doing so it also reinforces stable spurious patterns. The energy ratio measure can

be used to selectively reinforce only those patterns that appear to be learnt patterns.

The effectiveness of the energy ratio measure will be shown by an improvement in the

performance of the Hopfield network, both in terms of the number of patterns and the

size of their basins of attraction.
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Chapter 6

Pattern Knowledge used with

Unlearning and Pseudorehearsal

The results from Chapter 5 show that we can distinguish learnt patterns from the

spurious patterns. In this chapter we discuss how this information might be used to

improve the performance of the two system level solutions to catastrophic forgetting.

6.1 Perfect Unlearning

In the early papers on unlearning it was suggested that if unlearning could be restricted

to just the spurious patterns then it might be possible to improve its performance

(Hopfield et al., 1983; van Hemmen, 1997).

Before testing the energy ratio measure as a way of restricting the unlearning to

spurious patterns, we implemented a form of perfect unlearning with perfect informa-

tion about the patterns. This is done by referring to the original learning set. Although

this information would not be available to a real memory system, it forms an upper

bound on performance for any pattern discrimination system, such as the energy ratio

measure. By using perfect information about the types of patterns, we can analyse the

assertion that identification of the nature of a pattern will assist unlearning.

6.1.1 Algorithm

The procedure for unlearning only the spurious patterns is similar to the Christos

unlearning procedure presented in Section 4.4.5 with the addition of a selection phase.

This selection phase labels spurious and learnt patterns and removes the learnt patterns

from the unlearning set, thus protecting them from direct unlearning. The removed
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learnt patterns are replaced by spurious patterns generated with additional probes.

The new procedure with the filter as indicated (→) is:

• learn a small base population1 of items

• perform unlearning of (U×base population) items, each of which require

• probing the network with a random pattern and relaxing to find a stable

state

•→ if the stable state is one of the learnt patterns continuing to probe until you

find a pattern that is not a learnt pattern

• performing unlearning on the pattern by applying Hebbian learning with a

learning constant of −η

• for each new pattern to learn

• learn the new item using Hebbian learning

• perform unlearning of (U) items, each of which require

• probing the network with a random pattern and relaxing to find a

stable state

•→ if the stable state is one of the learnt patterns continuing to probe

until you find a pattern that is not a learnt pattern

• performing unlearning on the pattern by applying Hebbian learning

with a learning constant of −η

With the removal of the learnt patterns from the unlearning set, all the “power”

can be focused on removing the unwanted spurious patterns. In theory, this should

improve the performance of the learning system.

6.1.2 Results of Perfect Unlearning

Having implemented the above procedure we were initially surprised to discover that

this “enhancement” did not improve the performance of unlearning at all. It certainly

changes which patterns are remembered, but as shown in Figure 6.1 unlearning only

the spurious patterns “Ul Spurious” causes the performance to collapse over time in a

similar way to the original unlearning “Ul All”. Unlearning only the spurious patterns

delays the decline in performance for a while, but both types of unlearning are well

below weight decay after 60 patterns. Although simple weight decay does not have as

1The base population is needed, as with only a few patterns learnt there are very few or no spurious

patterns found by probing - and therefore nothing to unlearn.
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Figure 6.1: Unlearning of all patterns “Ul All”, and unlearning of

just the spurious patterns “Ul Spurious”. Hebbian learning in H5
100,±

network with five patterns learnt followed by new patterns presented

one at a time. Both unlearning conditions have an unlearning popu-

lation of 50 patterns with unlearning constant of −η = −0.01, while

the weight decay condition is set at d = 0.1 (100 repetitions, N.B.

error bars removed for readability).

high a peak, its consistency over long periods indicates that it is still better than the

unlearning systems for longer training runs.

The unlearning procedure suggested by van Hemmen (1997) is not altered at all

by the inclusion of learnt pattern filtering. As the learnt patterns have virtually no

basin of attraction, they are almost never included in the unlearning population. Out

of 1,000,000 unlearning probes only 132 relaxed to learnt patterns. The exclusion

of this small number of patterns had no perceivable influence on the performance of

unlearning.

6.1.3 Assessment of Performance

The performance of unlearning was not greatly improved by the inclusion of perfect

pattern identification. Part of the reason for this is that unlearning after each new
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pattern, like weight decay, needs to decrease the influence of the learnt patterns as

well as the spurious patterns. The most recently learnt pattern has the largest basin

of attraction, and so receives the most unlearning. This pattern’s large basin is slowly

reduced by unlearning, until other patterns become stable. As a side effect the weights

in the network are reduced. With perfect unlearning we remove the opportunity to

decrease the size of the basin of attraction of the most recently learnt pattern, hence

unlearning is unable to decrease many of the weights. Without this decrease, new

patterns cannot be learnt. Thus, being able to distinguish spurious patterns from

learnt patterns, even perfectly, does not improve unlearning.

6.2 Perfect Pseudorehearsal

When rehearsing the entire learnt population with every new pattern, the network

must be able to retrieve a perfect copy of every pattern. This is obviously impractical

for any real memory system. Instead of rehearsing every pattern from the entire learnt

population, we could rehearse only the learnt patterns that are found by probing. This

changes the task from being able to retrieve all the learnt patterns, to having perfect

knowledge about a pattern.

During “Full” rehearsal the patterns are rehearsed with noise so that their basin

of attraction is protected. Pseudorehearsal does not apply noise to the pseudoitems

so that they do not generate basins and displace the learnt population. The new

population containing only those patterns found by probing will be learnt with and

without noise to find the best combination of pseudorehearsal and knowledge about

patterns.

The results of altering the pseudorehearsal algorithm will be shown in two different

networks. The first network, NetA, is a replication of the network and learning task

that we presented in Robins and McCallum (1998). This is a 64 unit Hopfield network

with 44 patterns in the base population (H44
64,±). There are 64 items in the learning

population, all of which have been generated as simplified alpha-numeric characters.

Examples of these are shown in Figure 4.20 with the full set of 64 shown in Appendix C.

These patterns are correlated and have a coding ratio of below 30%. The patterns for

the letter ’C’ and the letter ’O’ have a difference of only 2 units. These patterns are

far too correlated for the unmodified Hebbian learning algorithm to learn more than

four patterns. The 44 pattern base population is a large percentage of the theoretical

capacity of the network, and this makes it difficult for delta learning to make all 44
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learnt patterns stable and ensure that they have large basins of attraction.

The second network, NetB, is a 100 unit network with five patterns in the base

population H5
100,±. The learning patterns for this network are randomly generated with

a coding ratio of 50% (see Appendix B.4 for additional parameters). These patterns

are ideal for Hebbian learning, and contain the maximum possible complexity per

pattern of any distribution. The small base population allows pseudorehearsal to solve

catastrophic plasticity, without the problem of catastrophic capacity. The results of

pseudorehearsal will be shown for both of these networks for each of the following

figures, unless stated otherwise.

6.2.1 Perfect Pseudorehearsal with Noise

Full rehearsal uses noise on both the new item and the rehearsal population. Figure 6.2

shows the performance of full rehearsal, “Full”, compared to perfect pseudorehearsal

with noise, “PrLν”. The performance of full rehearsal is very close to 100%, confirming

that the network is capable of learning all the patterns. The restriction to rehearsing

only those patterns that were found by probing lowers the performance significantly,

but it is still performing well above simple pseudorehearsal “Pr256”.

The naming convention we will use in the following pseudorehearsal figures is: “Pr”

for pseudorehearsal, followed by either a) the number of patterns in the pseudoitem

population (e.g. “256”) with an “*” if the learnt patterns have been removed; b) “L”

indicating that only learnt patterns found by probing are included in the pseudoitem

population; or c) “ER” indicating that only patterns that have an energy ratio above

the number indicated (e.g. “0.25”) are included in the pseudoitem population. If noise

is applied to the population then “ν” is appended to the end of the name.

Perhaps the most interesting feature of Figure 6.2 is the difference between full

rehearsal and perfect pseudorehearsal “PrLν”. When only the found patterns are

rehearsed, the number of patterns that are stable is approximately 0.6N in NetA

and below 0.3N in NetB. The difference between the performance is caused by the

correlated patterns and large base population used with NetA. The performance of

NetB of 0.3N is relatively low compared to full rehearsal, and is only approximately

double the number of patterns learnt by simple pseudorehearsal. This is using perfect

knowledge of the patterns that are being rehearsed, and so will act as an upper bound

for systems that use an estimate of pattern identity.
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Figure 6.2: Stable learnt patterns in NetA H44
64,± and NetB H5

100,±.

“Full” is full rehearsal of every learnt pattern, “PrLν” is rehearsal

of just the learnt patterns that were found with 2000 probes, and

“Pr256” is simple pseudorehearsal of the first 256 patterns found with

probing (100 repetitions).
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6.2.2 Perfect Pseudorehearsal without Noise

The experiments presented in Section 4.5 do not apply noise to the pseudoitems when

they are rehearsed. This allows the protection of the learnt patterns without creating

new basins of attraction around the large number of spurious patterns that are usually

included in the pseudoitem population.

In Robins and McCallum (1998) we compared simple pseudorehearsal with pseudo-

rehearsal with the spurious patterns removed ,“Pr256*”. In Section 4.5.3 we replicated

this work, showing that pseudorehearsal is still relatively effective with all the learnt

patterns removed from the pseudoitem population. Next we compared the use of per-

fect knowledge to remove either the learnt or the spurious patterns. Figure 6.3 shows

the performance of pseudorehearsal without noise on a rehearsal population with the

two types of patterns removed. “PrL” is pseudorehearsal of only the learnt patterns,

and “Pr256*” of only spurious. Surprisingly, when we limit the rehearsal to only the

learnt patterns, the number of stable learnt patterns decreases. This happens in both

NetA and NetB.

There are two reasons for this decrease in performance. The first is that the removal

of the spurious patterns results in a very small pseudoitem population. The network

is limited to 2000 probes to find patterns for the pseudorehearsal population. When

limiting the patterns that are included in the population to just the learnt patterns,

the size of the pseudoitem population cannot grow larger than the number of stable

learnt patterns. In NetB there are only about 10-15 learnt patterns found during

probing. Thus the pseudoitem population is only about 5% of its normal size of 256

patterns. Without a large number of pseudoitems the network cannot preserve the

original behaviour, as there are too few data points to correct the changes made by

learning the new pattern.

The second reason relates to the application of noise. When learning patterns

without noise, delta learning only makes adjustments when the pattern is unstable. As

most of the learnt patterns have relatively large basins of attraction, it takes a large

number of changes before they generate errors. Thus the majority of the damage to

the pattern’s stability is done well before the pattern becomes unstable. Preserving the

learnt patterns without noise does not protect the basin of attraction of the pattern,

and although the learnt patterns remain stable for a while, they quickly lose their

basin of attraction and so are not found with random probing, and will not appear

in pseudoitem population. When a learnt pattern is no longer part of the pseudoitem

population it quickly disappears as there is no mechanism to preserve it.
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Figure 6.3: Stable learnt patterns in NetA H44
64,± and NetB H5

100,±.

“Pr256” is pseudorehearsal of 256 patterns, “PrL” is pseudorehearsal

with only the learnt patterns found with 2000 probes, and “Pr256*”

is the first 256 spurious patterns (with learnt patterns removed and

replaced) found with 2000 probes (100 repetitions, N.B. error bars

removed for readability).
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Simply adding noise to all types of pseudorehearsal does not improve the perfor-

mance of pseudorehearsal. Adding noise to the rehearsal of every pattern found during

sampling quickly degrades the performance of the network. Figure 6.4 shows the per-

formance with noise added to all pseudoitems, “Pr256ν”, and with the learnt patterns

removed, “Pr256*ν”. The performance of both is very poor, with fewer than five pat-

terns stable. Not only is the number of stable patterns low, but they are usually only

the first five patterns learnt. These learnt patterns have no basin of attraction, and

only remain stable as a result of the large spurious states that were formed as linear

combinations of these patterns when the base population was learnt. The “Pr256ν”

and “Pr256*ν” are almost identical as the learnt patterns are only found when there are

less than five or six patterns learnt. After that point they have no basin of attraction

and so are never found, making their filtering irrelevant.

The reason for the original five base population items remaining stable is linked to

the discussion of spurious patterns in Section 4.5.4. After only five patterns have been

learnt, there are only a few large spurious attractors in the network. These are the

linear combinations of the learnt patterns. These combination patterns are found in the

probing stage, and become part of the pseudoitem population for every new pattern.

As these combination patterns are not part of the learnt population they are not

removed by the learnt pattern filter. Thus they are rehearsed with every pattern and

become very stable with large basins of attraction. The five base population patterns

are now the linear combinations of these very stable spurious states. The rehearsal of

the spurious states ensures that the learnt patterns that created them remain stable,

without ever being directly rehearsed. After a moderate number of new patterns are

presented, the stable base population patterns have small basins of attraction and are

no longer found with random probing.

With access to perfect knowledge about the patterns found by probing, pseudo-

rehearsal is able to learn approximately 0.3N patterns. Unfortunately, it still requires

access to perfect external knowledge about which patterns were learnt. As shown in

Chapter 5, the energy ratio measure can distinguish learnt patterns from spurious pat-

terns with a high degree of accuracy without accessing the original patterns. We can

use this metric with pseudorehearsal to assess the type of pattern found by probing,

instead of the infeasible approach of accessing the original base population.
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Figure 6.4: Stable learnt patterns in NetA H44
64,± and NetB H5

100,±.

“Pr256” is simple pseudorehearsal of 256 patterns, “Pr256ν” is simple

pseudorehearsal with noise added to the all the pseudoitems, and

“Pr256*ν” is pseudorehearsal with perfect removal of learnt patterns

and noise added to the remaining pseudoitems (Pr256 100 repetitions,

with ν 20 repetitions).
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6.3 Energy Ratio Based Pseudorehearsal

Pseudorehearsal of learnt patterns with noise is able to store 0.3N patterns. In this

section we will use the energy ratio measure to replace perfect knowledge about the

rehearsal population. This requires the learnt patterns to have relatively high energy

ratios. To achieve this, two types of noise are applied to the network – heteroassociative

noise for the basin of attraction, and absolute input noise to move units away from

the decision surface. For the following examples we used heteroassociative noise of

νh = 5% and absolute input noise of νi = 0.5. Figure 6.5 shows the performance of

pseudorehearsal with an energy ratio threshold of 0.15 (PrER0.15) in NetA and 0.25

(PrER0.25) in NetB. In NetB the performance of pseudorehearsal with only the high

energy ratio patterns (above the threshold for recognition as a learnt pattern) in the

rehearsal population is much better than simple pseudorehearsal, and is similar to

perfect pseudorehearsal which has access to perfect knowledge about patterns.

Pseudorehearsal using only high ratio patterns performs well in NetB, but poorly

in NetA. There are two reasons for this difference in performance – 1) the large base

population in A lowers the energy ratios as the patterns compete for weights, and 2)

the correlated patterns in the alphanumeric task create a number of units that are

only just stable. The two units that are the difference between the ‘C’ and the ‘O’ are

continually pulled back and forth between being active and inactive. This results in

the units being close to the decision surface and thus the patterns have a low energy

ratio. Patterns with low energy ratios are not included in the pseudoitem population

and so become unstable.

In the 100 unit NetB learning task the energy ratio is able to distinguish learnt

patterns with high accuracy. In the 100 repetitions of learning 100 patterns with 2000

probes per new item (20,000,000 probes), not a single spurious pattern was misclassified

as a learnt pattern. The number of pseudoitems in each population averaged at 18.41.

This indicates that of the approximately 25 stable patterns, about 18 of these were

being found and rehearsed.

6.3.1 Additional Measures of Performance

The number of stable learnt patterns is not the only important measure of performance.

As discussed earlier, it is possible to have a large number of patterns stable without the

network being a good content addressable memory. The size of the basins of attraction

and the number of random probes that relax to learnt patterns is also important.

148



PrLν
PrER0.15ν

Pr256

NetA

Patterns learnt

N
u
m

b
er

st
ab

le

646056524844

50

45

40

35

30

25

20

15

10

5

0

PrLν
PrER0.25ν

Pr256

NetB

Patterns learnt

N
u
m

b
er

st
ab

le

9585756555453525155

30

25

20

15

10

5

0

Figure 6.5: Stable learnt patterns in NetA H44
64,± and NetB H5

100,±.

“Pr256” is simple pseudorehearsal, “PrLν” is perfect pseudorehearsal,

and “PrERν” is pseudorehearsal of the patterns that are above the

energy ratio threshold, 0.15 for NetA and 0.25 for NetB (η=0.1 , νi=

0.5, νh=5%) (40 Repetitions).
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For the network to be considered to be learning new patterns, a balance must be

found between remembering old patterns and learning new patterns. A system which

learns the first few patterns presented, and then ignores new patterns, is “solving” the

plasticity/stability dilemma by ignoring the need for plasticity.

With learning applied equally to the new items and the pseudoitems there is no

guarantee that any given new item will be learnt. If a pattern is found by probing, and

passes the energy ratio threshold, it will be learnt in exactly the same way as a new

pattern. Using this approach the network tends to learn only the first 0.3N patterns

presented and then stops learning new patterns. This can be seen in the probability of

patterns in different positions being stable in NetB shown in Figure 6.6. Pseudoitems

in condition “1.0” have the same learning constant and noise ratios as the new items.

After 100 patterns have been learnt, most of the stable patterns are in the first 0.3N

patterns presented, with the small addition of the most recently learnt patterns.

To ensure that new patterns are stable, we need to apply a different amount of

learning to the new pattern as compared to the rehearsed patterns. To differentiate

the new pattern from the previously learnt patterns we decrease the learning constant

η and noise constant ν for the rehearsed pseudoitems. Figure 6.6 shows the marked

difference in the probability of patterns being stable and the basin sizes with different

learning on the pseudoitems. Pseudoitems in the “0.5” condition have their learning

parameters halved – learning constant η = 0.05, heteroassociative noise νh = 2.5%, and

absolute input noise νi = 0.25. With this differentiation, the stable patterns cluster

closer to the most recently learnt pattern. A new pattern receives more learning than

any other pattern, and so has a larger basin of attraction and survives to the next

iteration. The lower learning constant and noise allows older patterns to be forgotten,

so that new items can be learnt.

The average basin of attraction size, indicated by the overlap mf , is much larger

and more uniform for the “1.0” condition than the “0.5” condition. The pseudoitems

in the “1.0” condition receive as much rehearsal as any other pattern, and so all the

patterns converge on a similar size of basin. The overlaps mf presented are the average

for the patterns that were stable. In the 100 runs, after 100 patterns have been learnt,

the 87th pattern was only stable in one of the 100 repetitions. In the one run that it

was stable it had a basin overlap of mf= 0.772 (the furthest right point of the relatively

uniform basin overlaps in the “100 Overlap” graph). The number of data points used

to find the average can be seen by comparing the overlap graph with the probability

graph directly above it. If a pattern is stable in 5% of the repetitions, then the overlap
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is the average of those 5 stable patterns. The patterns in the range 60 to 87 are rarely

stable, but once in the pseudoitem population they become similar in basin size and

overlap to any other rehearsed pattern. The last 10 patterns (90–100) are much more

likely to be stable, not because of rehearsal, but because of their recent learning. The

probability of these patterns being stable is very similar to standard delta learning

without any form of rehearsal. These most recently learnt patterns generally do not

have a large enough basin of attraction to be found by random probing, and so are not

receiving rehearsal after they were first learnt. Without rehearsal the basin size and

the probability of being stable both decrease sharply. This explains the discontinuity

in the “1.0” condition in the “100 Overlap” graph at position 87. The development of

this discontinuity can be seen after 50 patterns at the 45th position.

Pseudorehearsal with the energy ratio measure is also effective in low coding en-

vironments. Figure 6.7 shows that pseudorehearsal with an energy ratio threshold of

0.25 is also effective in networks with low coding ratios. The performance with patterns

that are generated with 10% or 20% of their units active shows that this approach is

robust with respect to the coding ratio of the patterns.

6.4 Summary of Performance

Pseudorehearsal with the energy ratio threshold consistently stores a large number of

patterns. We can now compare this solution with the other feasible solutions presented

in this thesis. For a solution to be feasible it must have access to a learnt pattern

only while the pattern is being learnt. Figure 6.8 compares the best of each of the

feasible solutions in the 100 unit H5
100,± network. These are broken into two groups

– the Hebbian learning group of weight decay, neuronal regulation, and Christos style

unlearning; and the delta learning group of simple pseudorehearsal and pseudorehearsal

with the energy ratio threshold. Simple pseudorehearsal is already better than any of

the Hebbian learning solutions, and with the enhancement of the energy ratio measure

“PrER0.25ν” it stores almost four times as many learnt patterns as simple weight decay.

The significant gap between the solutions is the clearest indication of the success of

this combination of delta learning, pseudorehearsal and energy ratio.

The various experiments that have been conducted throughout this thesis have

been drawn together in a matrix for easier review, Table 6.1. The best of the feasible

solutions, PrER0.25ν, is in the bottom right corner of the table.
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Figure 6.6: Probability of being stable and the average size of the

basins of attraction for patterns after either 50 patterns have been

learnt or 100 patterns have been learnt for NetB. “1.0” is the same

noise on pseudoitems as new items (η = 0.1, νh = 5% and νi = 0.5)

and “0.5” has pseudoitems with half the learning and noise constants

(η = 0.05, νh = 2.5% and νi = 0.25).
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Basic algorithm Simple solutions Enhanced Solutions

(Improved by distinguishing learnt/spurious)

Assume perfect ac-

cess to prev. learnt

population

Assume no access to prev. learnt

population

Assume perfect knowl-

edge via probe

Use estimates of pattern

knowledge via probe

Hebbian

Learning

Suffers complete

CF because of

catastrophic capac-

ity & correlation.

Sect. 4.1

Rehearsal: Perfect

access does not alter

performance (merely

doubles weights).

Sect. 4.5.2.

Unlearning: Unlearning of

probed stable states is somewhat

effective. Christos, van Hem-

men. Sect. 4.4.4-6.

Pseudorehearsal: Doesn’t

apply to Hebbian (rehearsal

ineffective). Sect. 4.5.2.

Weight decay, capping &

regulation: Limited protection

of most recent items. Sect. 4.4

Unlearning: Perfect

recognition of stable

patterns from probing

is detrimental to per-

formance. Sect. 6.1.

This is contrary to the

original predictions of

Hopfield et al. (1983).

Ratio based recognition

of patterns works well,

but if perfect knowledge

is ineffective estimates

will also fail.

Delta

Learning

Suffers CF because

of catastrophic

plasticity & capac-

ity. Some retention

of most recent

items. Sect. 4.4.7

Rehearsal: Perfect

access to all pat-

terns solves CF and

allows performance

to approach theo-

retical max of 1N .

Sect. 4.5.1.

Pseudorehearsal: Relearning

of probed stable patterns is

somewhat effective. Sect. 4.5.

Unlearning: Does not apply to

delta learning.

Weight decay, capping & reg-

ulation: just degrades perfor-

mance. 4.4.7

Pseudorehearsal:

Perfect recognition of

patterns allows protec-

tion from CF. Twice

performance of simple

Pr, 1/3rd performance

of full rehearsal. Es-

tablishes upper bound.

Sect. 6.2.

Pseudorehearsal: Ra-

tio based recognition

twice the performance

of simple Pr. Perfor-

mance similar to perfect

recognition in some con-

ditions. Best practical

solution! Sect. 6.3.

Table 6.1: Matrix of experimental conditions
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Figure 6.7: Pseudorehearsal applied to learning patterns with low

coding ratios. “PrER0.25ν - 0.2” has 20% of the units active and

“PrER0.25ν - 0.1” has 10%. H5
100,± with energy ratio threshold of

0.25, learning ratio of 0.5, 2000 probes to find high energy ratio pat-

terns (0.5 has 100 repetitions, while 0.1 and 0.2 have 20 repetitions).

6.5 Conclusion

One of the early claims made about unlearning is that it removes the spurious “fan-

tasy” states from the network. Crick and Mitchison (1986) even suggested the catch

phase “we dream to reduce fantasy and obsession”. If the unlearning process is aimed

at removing the spurious “fantasy” states, then by explicitly filtering all the learnt

patterns from the unlearning population there should be an improvement in the per-

formance of the system, which there is not. The unlearning of learnt items is covered

by the “obsession” part of the phrase. Unlearning needs to decrease the strength of

the most recently learnt pattern to allow new patterns to be learnt. The experimental

results support this need to remove “obsession”. Unlearning must remove the large

basins of attraction regardless of their origin, and therefore is not able to benefit from

additional knowledge about the types of patterns being unlearnt.

Pseudorehearsal, however, can be improved by knowledge about the types of pat-

terns that are being rehearsed. Full rehearsal prevents catastrophic forgetting caused
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Figure 6.8: Comparison of the best practical solutions to catastrophic

forgetting. Conditions with (D) are based on delta learning and (H)

on Hebbian learning. The conditions are “PrER0.25ν (D)” pseudo-

rehearsal with the energy ratio threshold of 0.25 with noise ratio of 0.5,

“Pr256 (D)” simple pseudorehearsal of 256 patterns, “NR (H)” neu-

ronal regulation at 2N , “Weight decay (H)” weight decay of d = 0.1,

and “Unlearning (H)” unlearning of 50 patterns at −η=0.01 (100

repetitions).
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by excessive plasticity, but requires access to all the learnt patterns. Limiting the re-

hearsal to only the patterns that can be found by probing, results in the capacity of the

network being much lower, approximately 0.3N . This is still much higher than simple

delta learning, and is about double the number stored with standard pseudorehearsal.

Remarkably, we can replace perfect knowledge with the energy ratio measure and for

certain conditions retain almost the same level of performance. The main conditions

are that the base population be less than 0.3N and that the patterns be relatively

independent.

The improvement of storage to 0.3N is significantly better than the maximum

capacity of any of the Hebbian learning based solutions. It is also higher than the

maximum theoretical capacity of Hebbian learning in the static case of approximately

0.14N . The inclusion of the energy ratio measure allows the system to provide a

level of confidence about the origin of a stable pattern, and a threshold for familiarity.

Increasing the memory capacity and the quality of the information returned from the

network makes the combination of pseudorehearsal and energy ratio a very attractive

solution to the problem of catastrophic forgetting. This solution does not require a

second copy of the learnt population, nor does it need to process all the patterns before

learning them. It is robust with respect to different numbers of patterns, network size,

coding ratios, and noise levels.

The significant improvement in performance provided by energy ratio pseudorehearsal,

and its robustness, make this process a strong candidate for a computational explana-

tion of how catastrophic forgetting may be solved by biological systems.
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Chapter 7

Discussion

One of the motivations for this research is to propose a computational metaphor for

what might be happening to memory in the sleeping brain. In this chapter we in-

vestigate if a link can be made between memory processing during sleep and pseudo-

rehearsal. We then go on to discuss the possible future of this research.

7.1 Memory Consolidation and Sleep

The classic model for memory consolidation is that the hippocampus serves as a short

term memory that binds various sensory components of an event into an episode. These

components are processed and identified by the neocortex but are bound together by

the hippocampus. Over time this binding is transferred to the neocortex, and it is

able to re-activate the whole memory from a subset of the original sensory input, thus

consolidating short term episodic memory into long term memory (Alvarez and Squire,

1994; McClelland et al., 1995).

Meeter and Murre (2004) summarise several different interpretations of the psycho-

logical data, including the work of Nadel, Samsonovich, Ryan, and Moscovitch (2000).

Nadel et al. propose that the hippocampus is always required to recover episodic mem-

ory regardless of the age of the memory. Their proposal is that the retrograde amnesia

associated with hippocampal damage (as seen in the Ribot curve), is actually conflat-

ing two different effects on different memory types, episodic and semantic. Episodic

memory is lost, while semantic memory has been successfully retained in the neocortex.

This relies on differences in the testing stimulus for very distant memory.

While the disagreement is ongoing, we will use the classic model of consolidation

as our preferred model for this thesis, as both pseudorehearsal (Robins and McCallum,
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1998) and unlearning (Crick and Mitchison, 1983) have been linked to the classic model

of consolidation of memory, and in particular to the role of sleep.

7.1.1 The Consolidation of Learning During Sleep

There are several stages of sleep, each of which is physiologically and neurologically

distinct. The most obvious distinction is REM (rapid eye movement) and NREM (non

REM) sleep. While engaged in REM sleep the brain is being heavily stimulated by

input from the brain stem, with waves of activation passing up through the visual areas

and into the cortex. These seemingly random pulses cause the eyes to shudder or move

rapidly, hence the name rapid eye movement. This stage of sleep has also been called

“paradoxical sleep” as the activity of the brain on an EEG appears to be similar to fully

awake behaviour. NREM sleep is very different to both REM and wakeful activity, and

has been broken down into four stages, with Stages 3 and 4 being the deepest. Stage 3

and 4 sleep are also called slow wave sleep (SWS) as there are slow waves of activation

visible on an EEG.

The link between sleep and memory consolidation is still a contentious issue. There

are those who deny any link exists. Vertes argues that:

“In sum, there is no compelling evidence to support a relationship be-

tween sleep and memory consolidation.”(Vertes, 2004)

The basis for his argument is that REM deprived individuals do not show significant

memory deficits, and that sleep is an amnesiac state and so seems unlikely to be related

to memory. On the other side of the debate Stickgold states:

“The past 10 years have shown an explosive growth in our knowl-

edge of the relationship between sleep and memory, providing consistent

and strong support for the existence of sleep-dependent memory consolida-

tion.”(Stickgold, 2005)

This conflict over the interpretation of the biological and psychological data can

only be resolved by additional animal and human studies. Computational models,

such as the one presented in this thesis, can only provide a limited amount of support

for psychological theories. The support they lend is to demonstrate that a particular

process is possible and provide direction for future investigation. This support is limited

because there are usually a large number of simplifications and assumptions required

to implement the model in a computer.
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Studies of the link between memory consolidation and sleep initially focused on

REM sleep (Greenberg, 1981), but recent research suggests that the stage of sleep nec-

essary for memory consolidation, may depend on the type of memory being processed.

Procedural memory, both visual and motor, appear to be linked to NREM sleep. Pos-

itive correlations between the quantity of NREM sleep and post sleep improvements

in performance have been shown by Smith and MacNeill (1994) and Walker, Liston,

Hobson, and Stickgold (2002) for motor skills, and Maquet, Schwartz, Passingham,

and Frith (2003) and Huber, Ghilardi, Massimini, and Tononi (2004) for visual tasks.

The activity of the brain during sleep has also been used to support the theory

of consolidation of previously learnt material. Brain imaging shows that temporal

patterns of activation that occurred during training, reoccurred in subsequent REM

sleep periods (Pennartz, Uylings, Barnes, and McNaughton, 2002; Maquet, Laureys,

Peigneux, Fuchs, Petiau, Phillips, Aerts, Del Fiore, Degueldre, Meulemans, Luxen,

Franck, Van Der Linden, Smith, and Cleeremans, 2000). This matching of temporal

sequence did not occur in animals that had not received training. Reactivation of task

specific areas of the brain have also been shown in SWS, and the amount of reactivation

is positively correlated with next-day improvement (Peigneux, Laureys, Fuchs, Collette,

Perrin, Reggers, Phillips, Degueldre, Del Fiore, Aerts, Luxen, and Maquet, 2004).

Walker and Stickgold (2006) summarises recent research at three levels: molecular

level, where there is an up-regulation of memory specific genes during sleep; electro-

physiological level, with robust results for correlations between neural activity during

sleep and improved performance; and the most complex level of behavioural research.

The behavioural evidence shows that some types of learning are dependent on sleep,

and some are independent of this state. However they conclude that:

“It is now clear that sleep mediates learning and memory processing, but the

way in which it does so remains largely unknown.”(Walker and Stickgold,

2006)

7.1.2 Sleep and Pseudorehearsal

If we accept the hypothesis that sleep is important for memory processing, there is still

the question of why there is a separate stage of memory processing, and why this occurs

during sleep. Most of the psychological work in this area focuses on defining the effect

of sleep, and the lack thereof, on memory, rather than the mechanism by which sleep

consolidates memory. Robins (1996) proposed that catastrophic forgetting may have
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been the reason for an offline memory processing system, and that pseudorehearsal may

be functionally similar to cognitive activity during sleep. This proposal was based on

an MLP network using back prorogation learning. In this thesis, and work generated

as part of the thesis (Robins and McCallum, 1998, 1999, 2004) we have shown that the

pseudorehearsal approach works with a biologically plausible Hopfield network.

There are several features of the neurological research that link well with rehearsal,

and indeed pseudorehearsal, as an explanation of sleep processing. The replaying of

patterns of activation that were active during the learning of a task (Pennartz et al.,

2002; Peigneux et al., 2004) fits very well with the requirement for the replaying of

a new pattern to integrate into long term memory. The waves of random activation

flowing from the brain stem could be used to sample the current behaviour of the

network, generating the pseudoitem population.

7.2 Related Work

The concept of pseudorehearsal, as presented by Robins (1996), and the Hopfield vari-

ant which was developed as part of this PhD (Robins and McCallum, 1998), have

already been extended by various authors.

French (1997) and Ans and Rousset (1997) were inspired by the concept of pseudo-

rehearsal to develop a “reverberating” dual network model of the hippocampus and

neocortex. In this model the pseudoitems are used to transfer patterns from one part

of the network to a secondary storage area. This model used pseudoitems generated

by the same feedforward approach describe in Robins (1996). Ans et al. (2002) extend

the memory task to temporal sequences rather than static patterns that are used in

this thesis. The pseudoitems used to protect these temporal sequences are similar to

those in Robins and McCallum (1998). One of the surprising results from this ap-

proach is that static pseudoitems preserve the temporal relationships required to recall

the original temporal sequences. The forgetting curves demonstrated for this dual re-

verberating simple recurrent network are very similar to those in humans (Ans et al.,

2004).

One of the major issues when using pseudorehearsal with Hebbian learning is “run-

away” rehearsal (Meeter, 2003), where one pattern receives all the reinforcement and

becomes the only stable pattern in the network. In some of our earlier work (Robins

and McCallum, 1998) the pseudopopulation remained the same across all of the new

patterns. This led to the dual problems of favouring items that had been learnt as part

160



of the base population, and required a store for the pseudoitems that remained static

over many learning cycles. The experiments in this thesis, like those in Meeter (2003),

generate a pseudopopulation after each new pattern is learnt. This allows new items

to become part of the rehearsal population, and so behaves more like real memory.

Meeter (2003) demonstrates that the problem of runaway consolidation also exists

in the “Trace-Link” model proposed by Murre (1996), and suggests three possible

solutions: the weights can be suppressed during consolidation; the weights can be

capped (as discussed in Section 4.4.1); or unlearning can be used in conjunction with

rehearsal. These methods improved performance marginally. As a process for selecting

which patterns to rehearse, the energy ratio measure proposed in Chapter 5 may also

work in the TraceLink model. Given that the problem to overcome is the runaway

effect, selectively reinforcing patterns which had an energy ratio within a band of

perhaps 0.25–0.4 may provide consolidation for unstable learnt patterns without the

associated problem of strengthening already strong patterns.

Walker and Russo (2004) extend the original pseudorehearsal with a process of gen-

erating noise during rehearsal that creates a form of unlearning. This dual rehearsal

process is equated with the two main distinct phases of sleep, REM and SWS. The

conclusion of this work is that pseudorehearsal is indeed a good candidate for consoli-

dation, and when using Hebbian learning, the addition of noise to the rehearsal process,

allows rehearsal of patterns other than the dominant pattern. These results are for a

network using Hebbian learning, and so a direct comparison of capacity is difficult.

The brain is organised in to a remarkably hierarchical structure, which can be

analysed at many different levels. The content addressable memory in this thesis is

homogeneous, but could serve as part of a larger heterogeneous system. Káli and Dayan

(2004) have modelled the interaction between the hippocampus and the neocortex

using a replay of memory system similar to pseudorehearsal. In this implementation

the replay of memories from the hippocampus helps to form semantic memories in the

neocortex, while individual episodes are retained in the hippocampus. Káli and Dayan

are interested in the slow learning of semantic information rather than the core content

addressable memory. As a simplification they use an idealised attractor which returns

a perfect copy of a learnt pattern when presented with a slightly corrupted version

(overlap mf = 0.95). The content addressable memory presented in this thesis could

be used as a substitute for the idealised sub–system.
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7.3 Future Work

As part of the research for this thesis we have contributed the Hopfield autoassociative

variant for pseudorehearsal, a model of familiarity discrimination for stable patterns,

and shown that by filtering the rehearsal population using the energy ratio measure we

can achieve much higher memory capacity that any of the other proposed solutions for

the serial learning task. Pseudorehearsal is already being extended by various authors

as shown above. The energy ratio measure could also be extremely useful in Hopfield

network research.

7.3.1 Energy Ratio

The energy profile and the energy ratio measure that we have used to improve pseudo-

rehearsal could be incorporated into many applications of Hopfield networks. The

ability to determine the type of pattern that has been found by random probing allows

the system to differentiate between fantasy and reality.

The energy ratio can be used to improve the core feature of a content addressable

memory system, by improving the information returned by the system. The measure

allows us to use the standard Hopfield network model, with its guarantee of finding a

stable pattern, and augment it with the ability to give a “yes, I remember X”, or a “no,

that does not seem familiar” response. Without the ability to differentiate the spurious

memories, a negative result for a probe of X result in the response “yes, I remember Y”,

which may or may not have actually been part of the learning population. Additional

research is required to assess how useful this measure will be for the large variety of

Hopfield like models being used in many research environments.

7.3.2 Biological Analogue of the Energy Ratio Measure

The energy ratio measure is a very effective computational solution to the problem of

familiarity. There is still the open question of how a biological equivalent could be

calculated. We propose two possible mechanisms: differential firing rates, and extra-

cellular neurotransmitter. Using the first mechanism, the energy ratio measure could

be equated to calculating the difference in the firing rates of cell assemblies, as a high

input results in a high firing rate. If an assembly of active neurons have relatively

uniform firing rates then this would be equivalent to a high energy ratio (suggesting

that this state is familiar / learnt), whereas a wide range of firing rates would be equiv-

alent to a low ratio (suggesting that the state is novel / spurious). The extracellular
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neurotransmitter technique uses the neurotransmitter that is released when a neuron

fires. Excess neurotransmitter would indicate saturation. It is possible that synapses

close by could respond to these fluctuations in the amount of free neurotransmitter,

and use this to calculate a ratio between neurons which are saturated and those that

are only just over their decision threshold.

Given the implication of the perirhinal cortex in familiarity detection, perhaps

a calculation similar to the energy ratio measure is occurring in these neurons. If

the neurons are predicting familiarity using the energy ratio measure, then we would

expect that heavy external stimulation of a small subset of hippocampal cells would be

linked with feelings of unfamiliarity and uncertainty. Laboratory experiments using this

technique may be able to support the current computational model, or they may require

the development of other mechanisms to perform the task of determining familiarity.

7.4 Conclusion

This thesis has explored a wide range of issues relating to the capacity and stability

of learning in Hopfield networks. Pseudorehearsal is clearly the best of the proposed

solutions to the pervasive problem of catastrophic forgetting. We have shown that the

pseudorehearsal mechanism can be enhanced by using an estimate of the familiarity of

randomly retrieved memories, the energy ratio measure. Using this enhanced pseudo-

rehearsal it is possible to store a relatively large amount of information in a Hopfield

network using purely local information.

As highly interconnected, dynamical, content addressable memory systems, Hop-

field networks are a plausible computational approximation of the properties of memory

mechanisms in the mammalian brain. If it is indeed the case that during the course of

its evolution the brain has met and solved the problem of catastrophic forgetting (per-

haps, as argued here, via consolidation of newly learned information during sleep), then

pseudorehearsal is a plausible candidate for a computational model of this mechanism.

Hence, after a thorough investigation of the problem of catastrophic forgetting, the

pseudorehearsal solution stands out as robust and efficient in practical terms, and as

a biologically plausible model of an important aspect of human learning and memory.
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Appendix A

Parameters

This appendix contains the actual parameter names used for each simulation using

the Hopfield Network program (as per Appendix D, the major piece of code generated

during this thesis).

Parameters Default / Values Description

N 100 The number of units in the network

activationType Threshold, Sigmoid The activation function to use

ON 1 The value of the active response from the

threshold function

OFF -1 The inactive value, −1 in HN±
, 0 in HN,0

maxCycles 4*N The number of cycles of relaxation before quit-

ting

relaxation Asynchronous,

Synchronous

Type of relaxation to use. Synchronous up-

dates every unit every step

bias True, False Inclusion of the bias unit

randomSeed 1182452015 The seed used for the random number gener-

ator

learnTiming Online, Batch When to perform weight updates, online after

each error or batch at the end of an epoch

symmetricWeights True, False Force weights to be symmetric after each

learning iteration

weightCappingType NoCap, HardCap,

SoftCap

Weight capping can be hard – fixed total that

cannot be exceeded, or soft – were changes are

logarithmic above the cap

weightCappingValue 5 The cap value for weight capping

weightDecay off, on Applying weight decay after each new learning

weightDecayValue 0.1 Amount of weight decay – 0.1 is 10% where

weight = weight*(1-val)
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weightNormType Nonormalisation,

NormaliseNet,

NormaliseUnit,

NormUnit ZM,

NormUnit Both

Normalisation on a per unit or whole network

basis, with either normalisation to a zero sum

or resource limiting so that the sum of the

absolute value of the input weights is limited

to a set value

weightNormValue 2 ∗ N The resource limit value for above

calcHammingDist on Calculate the closest learnt pattern to the pat-

tern found by relaxation

noiseRelaxation False Apply noise to units as they relax - this moves

the Hopfield network toward a Boltzman ma-

chine

GausNoiseType Absolute, Relative The type of noise to apply during relaxation

stableTimeRelax 100 With noise applied, the length of time a pat-

tern has to remain stable before we consider

the network to have relaxed to a particular

pattern

GausRelRange 0.1 The relative noise for relaxation

GausAbsRange 0.1 ∗ N The relative range for noise

sampleProbOn 0.5 The coding ratio for probing the network

gnuplotGraphs off Change outputs for gnuplot graph package

debugLevel 0 Debugging level for printing information

calcInitChanges no Calculate the number of units that change in

the first step of relaxation

Learning parameters

learningType Hebbian, Strict-

Delta, PseudoDelta

The learning type to use

numTrials 100 Number of repetitions of the current trial

learningConst 0.1 Learning constant for delta learning

momentum 0 Momentum for delta learning

errorCriteria 0.001 The criterion used to stop learning when there

is low error

errorTail 0.9 A decay term used to allow the error to be

zero for a few epochs waiting for noise to gen-

erate a error. Current error = (previous error

* errorTail) + epoch error

errorCalcType DeltaError, Sigmoi-

dError

The type of error signal to use. Delta error

generates a -1, 0 or +1, whereas sigmoid error

generates an error based on the unit input.

Delta error was used in all of the tests in this

thesis
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allEpochLearning False Ignore the error and learn for all the specified

epochs

maxLearntPatts 1 ∗ N Number of patterns to learn

pattsFromFile no Load the patterns to learn from an external

file. If “no” then randomly generate patterns

pattFilename letters.txt Filename to load external patterns

generateProbOn 0.5 If we are not reading from a file use this prob-

ability for a unit being on in the generated

patterns

genExactAct False This forces the patterns to have exactly 50%

coding ratio

hebbianCycles 1 The number of times that a pattern is pre-

sented to the network

ProbBaseLearning False This is using Hebbian learning of (Si - a)(Sj -

a) rather than (Si)(Sj)

trainingEpochs 500 The number of training epochs for new pat-

terns

initTrainingEpochs 2000 Number of epochs used to learn the base pop-

ulation

numCheck 2000 Number of probes used to calculate the per-

centage of all the patterns that relax to each

attractor

maxSpuriousPatts 500 The maximum number of spurious patterns to

store for display and comparison

Repetition Parameters

initialNumberPatts 5 The size of the base population

step 1 The size of the block of new items to learn -

usually 1

numLearntPatts 1*maxLearntPatts The number of learnt patterns for this partic-

ular run

noiseOnInput yes Apply νi to the input of each unit

GausNoiseTypeIn Absolute, Relative The type of noise to apply to the input to units

GausRelativeRange 0.1 The range for relative noise νi

GausAbsoluteRange 0.5 The range for absolute noise νh

noiseHetroAssociative yes Apply noise to the output of the units be-

tween setting the desired pattern and setting

the initial pattern. Generates a heteroassocia-

tive learning task

hetroNoiseLevel 0.05 Percent of patterns to alter the activation

state of 5%
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Pseudorehearsal parameters

maxPseudoPatts 256 The number of pseudoitems in the rehearsal

population

maxSampPseudoPatts 2000 The total number of attempts to find enough

pseudoitems for the rehearsal population

unitsInRatio 0.1 The percentage of the units in the network to

include in the energy ratio measure

EnergyRatioCutoff 0.25 The threshold for the energy ratio measure

used in “PrER0.25”

useMinLearntvsCutoff False A method to lower the energy ratio threshold

as patterns are learnt. The threshold is set to

either the lowest learnt pattern or the specified

cutoff whichever is higher. This is effective,

but knowing the lowest learnt patterns energy

ratio defeats the purpose of determining which

are the learnt patterns

uniquePseudoPatts True When generating a pseudoitem population en-

sures that the patterns only occur once each

delLearntPseudoPatts False Actively remove all the learnt patterns from

the pseudoitem population

includePseudoInError True Add the error on the pseudoitem population

to the normal error

pseudoRehearsalReal Flase This uses perfect knowledge to remove spu-

rious patterns

noiseOnPseudoPatts True Use noise on the psuedoitems with the ratios

below. Simple pseudorehearsal has this set to

False

noiseRatioPseudoPatts 0.5 Noise ratio for pseudoitem patterns

LCRatioPseudoPatts 0.5 Learning constant ratio for pseudoitem pat-

terns

Unlearning Parameters

maxUnlearningPatts 50 Maximum number of patterns that can be un-

learnt

maxProbesUnLPatts 1000 Maximum number of probes used to find un-

learning patterns. Mainly useful when remov-

ing either learnt patterns or spurious patterns

unlearningCutoffHigh 1 This is used to only unlearnt certain units in

the network, unlearn if unit input is >= to

this value
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unlearningCutoffLow 1 As above but <=. With both set to 1 this is

normal unlearning

unlearningCycleSize 50 The number of probes to use for unlearning –

Christos uses 50

unlearningConst 0.01 −η is the amount of unlearning to apply to

each stable pattern

unlearningType unlearningStd Various unlearning approaches were tried,

none of which proved to be better than stan-

dard unlearning

unlearningSuperHeated False Unlearning applied only to units with high ac-

tivation values

uniqueUnlearningPatts False Check that a pattern has not already been un-

learnt in this cycle of unlearning

Display parameters

reorderUnitsinPatts no Sort the units so they display with the units

that are active in the most patterns first

calcSpuriousBasins no Calculate the basin of attraction size mf for

the spurious patterns

calcLearntBasins yes Calculate the basin of attraction size mf for

the learnt patterns

saveStabProfPattern 0,1 Save the stability profile for this list of pat-

terns, pattern 0 and pattern 1

dispTestedPatts off The learnt patterns that were tested

dispLrntPattUnits off Activation of every unit in every learnt pattern

dispLrntPattInput off Total input to every unit in every learnt pat-

tern

dispLrntPattNetInput off Net input to every unit in every learnt pattern

dispLrntPattSummary on The summary of the performance of learnt

patterns in every learnt pattern

dispSpurPattUnits off As above but for spurious

dispSpurPattInput off As above but for spurious

dispSpurPattNetInput off As above but for spurious

dispSpurPattSummary off As above but for spurious

dispSpurPatts off

dispSpurPattDetails off

dispPrPattUnits off As above but for pseudoitems

dispPrPattInput off As above but for pseudoitems

dispPrPattNetInput off As above but for pseudoitems

dispPrPattSummary on As above but for pseudoitems
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Appendix B

Simulation Runs

This appendix contains parameters for individual runs as referenced within the body

of the thesis.

B.1 Hebbian Learning with Weight Decay

The same parameter set was run in two conditions, the first with the “weightDecay”

parameter in the first column set to “off”, and second with the parameter set to “on”:

Parameter Value Parameter Value

N 100 numTrials 100

activationType Threshold learningConst 1

ON 1 maxLearntPatts 0.5 ∗ N

OFF -1 patternsFromFile no

maxCycles 4 ∗ N trainingEpochs 1

relaxation Asynchronous learningType Hebbian

bias FALSE numCheck 0

learnTiming Online maxSpuriousPatts 10

weightCappingType NoCap initialNumberPatts 3

weightDecay on step 1

weightDecayValue 0.1 numLearntPatts 1*maxLearntPatts

weightNormType NoNormalisation hebbianCycles 1

calcHammingDist on reorderUnitsinPatts False

noiseRelaxation no calcSpuriousBasins False

sampleProbOn 0.5 calcLearntBasins False

randomSeed 11

182



B.2 Simple Pseudorehearsal

Pseudorehearsal with a small base population of five patterns and 256 randomly gen-

erated pseudoitems:

Parameter Value Parameter Value

N 100 numTrials 100

activationType Threshold learningConst 0.1

ON 1 maxLearntPatts 2*N

OFF -1 patternsFromFile no

maxCycles 4 ∗ N trainingEpochs 500

relaxation Asynchronous learningType PseudoDelta

bias FALSE numCheck 1000

learnTiming Online maxSpuriousPatts 100

weightCappingType NoCap initialNumberPatts 5

weightDecay off step 1

weightNormType NoNormalisation numLearntPatts 1*maxLearntPatts

calcHammingDist on reorderUnitsinPatts False

noiseRelaxation no calcSpuriousBasins False

sampleProbOn 0.5 calcLearntBasins True

randomSeed 1182665743

noiseOnInput yes maxPseudoPatts 256

GausNoiseTypeIn Absolute maxSampPseudoPatts 2000

GausAbsoluteRange 0.5 EnergyRatioCutoff 0.0

noiseHetroAssociative no uniquePseudoPatts True

noiseOnPseudoPatts False delLearntPseudoPatts False

includePseudoInError False

pseudoRehearsalReal False

noiseOnPseudoPatts False
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B.3 Robins and McCallum (1998) Pseudorehearsal

The results from Robins and McCallum (1998) were replicated with variants of the

following parameter file:

Parameter Value Parameter Value

N 64 numTrials 100

activationType Threshold learningConst 0.1

ON 1 maxLearntPatts 64

OFF -1 patternsFromFile yes

maxCycles 4 ∗ N pattFilename letters.txt

relaxation Asynchronous trainingEpochs 500

bias FALSE learningType PseudoDelta

learnTiming Online numCheck 1000

weightCappingType NoCap maxSpuriousPatts 100

weightDecay off initialNumberPatts 44

weightNormType NoNormalisation step 1

calcHammingDist on numLearntPatts 1*maxLearntPatts

noiseRelaxation no reorderUnitsinPatts False

sampleProbOn 0.5 calcSpuriousBasins False

randomSeed 42 calcLearntBasins True

noiseOnInput yes maxPseudoPatts 256

GausNoiseTypeIn Absolute maxSampPseudoPatts 2000

GausAbsoluteRange 0.5 EnergyRatioCutoff 0.0

noiseHetroAssociative yes uniquePseudoPatts True

hetroNoiseLevel 0.05 delLearntPseudoPatts False

noiseOnPseudoPatts False includePseudoInError True

pseudoRehearsalReal False
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B.4 Enhanced Pseudorehearsal

The basic parameter file for pseudorehearsal with the addition of the energy ratio

threshold:

Parameter Value Parameter Value

N 100 numTrials 100

activationType Threshold learningConst 0.1

ON 1 maxLearntPatts 1*N

OFF -1 patternsFromFile yes

maxCycles 4 ∗ N pattFilename letters.txt

relaxation Asynchronous trainingEpochs 500

bias FALSE learningType PseudoDelta

learnTiming Online numCheck 1000

weightCappingType NoCap maxSpuriousPatts 100

weightDecay off initialNumberPatts 44

weightNormType NoNormalisation step 1

calcHammingDist on numLearntPatts 1*maxLearntPatts

noiseRelaxation no reorderUnitsinPatts False

sampleProbOn 0.5 calcSpuriousBasins False

randomSeed 1182686337 calcLearntBasins True

noiseOnInput yes maxPseudoPatts 256

GausNoiseTypeIn Absolute maxSampPseudoPatts 2000

GausAbsoluteRange 0.5 EnergyRatioCutoff 0.25

noiseHetroAssociative yes uniquePseudoPatts True

hetroNoiseLevel 0.05 delLearntPseudoPatts False

noiseOnPseudoPatts True includePseudoInError True

noiseRatioPseudoPatts 0.5 pseudoRehearsalReal False

LCRatioPseudoPatts 0.5
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Appendix C

Alphanumeric Data Set

The following are 64 artificially constructed patterns that resemble alphanumeric char-

acters. There are a number of patterns in this set which are highly correlated - the

average activation level is approximately 30%.
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Appendix D

Source Code and Data

The DVD attached contains:
Thesis Code All the source code for this thesis

Data The data gathered during the thesis

Latex Thesis The full latex source for this document, including all gnuplot

scripts, spreadsheets and summary data
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