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ABSTRACT
The development of agent communication languages casts a
spotlight on epistemic logic and the enrichment of epistemic
languages by additional operators, e.g. deontic operators or
operators representing speech acts. In this paper we focus
on two limitations of classical epistemic logic. The standard
possible worlds semantics allows one to model either the
knowledge or the beliefs of an agent, but it is not so easy
to model both in a manner compatible with the intuition
that knowledge shares the same `dimension' as belief. Fur-
thermore, the distinction between knowledge and belief is
intimately tied up with defeasibility and non-monotonicity,
which in turn (via total preorders) is connected with epis-
temic entrenchment. We therefore introduce a generalisa-
tion of the possible worlds semantics which not only accom-
modates knowledge and belief simultaneously but admits a
hierarchy of belief operators re
ecting di�erent levels of en-
trenchment.

General Terms
Epistemic logic, knowledge, belief

Keywords
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1. INTRODUCTION
The explosion of activity following the publications [26,

6] has demonstrated the usefulness of epistemic logic as a
core language for the development of more specialised agent
communication languages. Current emphasis is on the incor-
poration of suitable explications of concepts, such as `trust'.
It would seem, however, to be an error to focus so narrowly
on ways to enrich the core language that attempts to im-
prove the core language cease. In particular, there is as yet
no standard way to represent both an agent's knowledge and
the agent's less emphatic beliefs.
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Under the standard possible worlds semantics, an inter-
pretation is a triple (S;R; V ) in which S is a set of possible
worlds, R � S�S is an accessibility relation, and V is some
function determining which atomic propositions are satis�ed
relative to which possible worlds.
This semantics supports a corresponding modal operator

K in the language: for every proposition �, K� is satis�ed
relative to s 2 S if and only if � is satis�ed relative to s0 for
all s0 2 S such that (s; s0) 2 R. Depending on the restric-
tions imposed on R, K may represent either `knowledge' or
`belief'. In order to support both a knowledge operator K
and a belief operator, say B, it would be necessary to add a
second accessibility relation. The two operators would thus
be independent, contrary to the intuition that knowledge
lies on the same spectrum as more tentative beliefs.
If we are to accommodate both knowledge and belief, then

it is natural to think of the beliefs as defeasible, and to seek
to support such beliefs by semantic structures such as the
orderings on S discussed in [15, 16, 21]. In the following
sections we describe a way to model an agent whose beliefs
may di�er in the tentativeness or conviction with which they
are believed. Knowledge will arise as a special case. The
distinction between knowledge and more tentative forms of
belief reduces to a di�erence between de�nite and inde�nite
information.

2. INFORMATION
Let S be the set of all valuations of some propositional

language. The notion of information associated with Shan-
non's work in communication theory su�ers from the failure
to take into account the meaning of messages, as pointed
out in [1]. The theory of semantic information corrects this
fault by taking the semantic content of a proposition � to be
determined by the worlds \excluded" by �, i.e. relative to
which � is not satis�ed [2, 12]. Indeed, the division of the set
S of worlds into complementary subsets C of worlds that are
\included" and C0 of worlds that are \excluded" is logically
fundamental, for if S is in�nite there are subsets C such that
for no proposition � is C the set of all worlds at which �
is satis�ed. An agent may have de�nite information, in the
form of a division of S into C and C0, which the agent may
or may not be capable of expressing as a proposition. For
simplicity we shall assume S to be �nite, so that for every
subset C0 of \excluded" worlds there is some proposition �
such that � excludes C0, i.e. such that � is satis�ed at s if
and only if s 62 C0.
Intuitively, agents may derive information from sensors

(or even from other agents) which is de�nite. One thinks
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Figure 1: A representation of a default rule in the
light-fan system as an ordering on worlds. The sta-
tus of each component is either on (speci�ed by a 1
in the component's position) or o� (speci�ed by a 0
in the component's position). Thus, world 10 is the
state of the system where the light is on and the fan
is o�.

of the impact of a toe against a rock as imparting de�-
nite information about the existence of an obstacle. How-
ever, agents may also acquire inde�nite information (default
rules). Whereas de�nite information may be represented se-
mantically by a division of S into a complementary pair of
subsets C and C0, default rules may conveniently be repre-
sented by order relations on S [7, 25, 15, 16]. The order
relations on S that represent default rules may be taken to
be either total preorders (as in the belief revision literature,
e.g. [13, 9, 3]) or strict modular partial orders (e.g. [16, 22]).
The essential feature of such orderings is that the set S is
divided into layers. Intuitively, the bottom layer consists of
the worlds that are most typical or preferred, and higher
layers are increasingly less typical or less preferred.
For example, assume an agent inhabits the light-fan sys-

tem. This system has two components: a light and a fan.
Both components may be on or o�. Now, a possible default
rule may be that both the light and the fan are usually on,
and very seldom are both components o�. Such a default
rule could be expressed as an ordering of the four possible
worlds of the system into 3 layers. The bottom layer would
hold the world where both components are on. The middle
layer would hold the two worlds where only one component
is on. The top layer would hold the world where neither
component is on (see Figure 1).
Given the semantic representations of de�nite and of in-

de�nite information, how are these to be reconciled? One
possibility is to use a templated ordering of S. By a tem-
plated ordering of S we understand the following. Suppose
S has n members. A template for S is any chain with ex-
actly n+ 1 members, say T = f0; 1; : : : ; ng under the usual
ordering �. A templated ordering of S is an association of
levels in the template with members of S, for example as
accomplished by a function f : S ! T . All worlds in S

are assigned to some level, but there will be levels having
no worlds. De�nite information is represented by a tem-
plated ordering assigning the excluded worlds (those in C0)
to level n, and the remainder to level 0. Inde�nite informa-
tion is represented by a templated ordering assigning worlds
to levels 0; 1; : : : ; n� 1 only.
The reconciliation of de�nite and inde�nite information is

achieved by lexicographic re�nement in the following sense.

De�nition 1. Let fd : S ! T be the templated ordering
representing an agent's de�nite information and let fi : S ! T

represent the inde�nite information. Let fd+i be given by

fd+i(s) =

�
fd(s) if s 2 C0

fi(s) otherwise:

Thus fd+i places the excluded worlds in level n, and pushes
tentatively towards exclusion those worlds that, according
to the default rule, are less preferred. One may think of
fd+i as `partitioning' S into n + 1 sets of worlds, some of
which are empty, and linearly ordering these n+ 1 sets.

3. GENERALISING POSSIBLE WORLDS SE-
MANTICS

The method of representing de�nite knowledge by parti-
tioning the set S into two sets, C and C0, is directly equiv-
alent to the standard possible worlds framework that uses a
binary accessibility relation. Given an accessibility relation,
and given s 2 S, let C = fs0 : (s; s0) 2 Rg, where C is the
set of possible candidates for being the actual world s and
the complement C0 is the set of excluded worlds. Given,
relative to each s 2 S, a partition of S into two sets C and
C0, an accessibility relation R may be regained simply by
reversing the above process.
Now consider extending the process via templated order-

ings. The e�ect is to separate S into a whole range of lev-
els, allowing representation of default rules such as that dis-
played in Figure 1.
Suppose given, at each s 2 S, a templated ordering f of S

into n+1 sets of states, some of which may be empty. Intu-
itively the top level f�1(n) represents the set C0 of excluded
worlds while the union of the other levels is C, arranged
into sets of worlds of di�erent typicality or likelihood. Let
us label these sets from bottom to top as fP0; P1; : : : ; Png,
where P0 = f�1(0) denotes the set of most likely worlds and
Pn = f�1(n) denotes C0 (see Figure 2).
Corresponding to each level Pt (where 0 � t � n), we

may introduce a defeasible belief operator Ot whose seman-
tic underpinning is expressed by the requirement that, for
any proposition �, Ot� is satis�ed relative to world s if and
only if � is satis�ed at all worlds s0 such that, in the tem-
plated ordering at s, s0 2 Pu for some u with u � t. So
Ot� holds at s if � holds at all worlds of all levels at or be-
low Pt in the ordering associated with s. Intuitively, On�1

represents the knowledge operator, while O0 represents the
most tentatively held form of belief, as made precise in the
discussion of epistemic entrenchment in Section 5 below.
We typically denote the level Pi in the ordering at world

s as P s
i . This extension from a dichotomous partition of

S to a templated ordering of S slightly alters the notion
of interpretation. We call the resulting generalisation the
system Not Only Knowing, or NOK.

De�nition 2. A NOK interpretation of a modal lan-
guage with defeasible belief operators O0; : : : ;On is a triple
(S; F; V ) such that S = fsi : i � ng is the set of all val-
uations of the underlying non-modal language, V is any
function expressing the natural relationship between atomic
propositions and the valuations that satisfy them, and F :
S ! TS is a function associating with each s 2 S a tem-
plated ordering of S.
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Figure 2: A templated ordering of a set of worlds
S = fs1; s2; : : : ; sng. All worlds in S are in one of the
sets P0 through Pn. Under the new framework, an
agent would construct an ordering like this at each
state si 2 S.

De�nition 3. Given a NOK interpretation I = (S; F; V )
and a world s 2 S, (I; s) 
  i� one of the following is the
case:

�  is an atomic proposition and the valuation V (s) sat-
is�es  

�  is a boolean combination of shorter propositions and
is satis�ed according to the usual truth functional cri-
teria

�  = Ot� and (I; s0) satis�es � for all s0 2 S such that
(F (s))(s0) � t.

The de�nitions may readily be generalised; the set of
valuations need not be �nite, and the set S of possible
worlds need not be the set of valuations (in which case V
may be taken to be a function from S to the set of valua-
tions, thereby determining which atomic propositions hold
at which worlds). If S is in�nite, the template for S is
f0; 1; : : : ; �g where � is the least successor ordinal greater
than card(S).
We saw that an accessibility relation can induce and be

recovered from an ordering function F that assigns to each
world s 2 S a dichotomous partition of S into a set C of
accessible and a set C0 of excluded worlds. More generally,
from any ordering function F which assigns to every s 2 S
a templated ordering of S, an accessibility relation may be
derived. For each state s, the top level in the ordering F (s)
represents all the states which are inaccessible from s, so we
label this set C0, then take the union of all levels below this
and label the result C.
While this is one way to retrieve the standard epistemic

framework from the richer semantics, an equivalent alterna-
tive is to ignore all defeasible operators other than On�1,
which is taken as the K operator.
The defeasible belief operators have properties compatible

with our intuitions regarding degrees of belief. In formulat-

ing these we will write � j=  to assert that in some under-
stood interpretation  is satis�ed relative to every world s
at which � is satis�ed, and we write 
 � to indicate that �
is satis�ed at every world in every NOK interpretation.
The �rst property is a consequence of the hierarchical

structure of the orderings and holds for every NOK inter-
pretation:

Property 1. 8 t; u : 0 � u � t � n; Ot� j= Ou�.

In particular, if an agent knows a sentence �, then the agent
believes � also.
Another property which holds for every NOK interpreta-

tion is the following:

Property 2. 8 t : 0 � t � n; 
 :Otfalse.

This ensures that an agent will never believe, even tenta-
tively, that which is contradictory.

4. COMPARISON WITH S5
The generalised semantics allows the formulation of coun-

terparts to the classical S5 properties in terms of which
distinctions can be made that are con
ated in the standard
possible worlds framework.
The S5 properties are:

� K : (K� ^ K(�! �)) ! K�

� T : K� ! �

� 4 : K� ! KK�

� 5 : :K� ! K:K�.

The Distribution Axiom K has a natural translation:

� K0 : (Oi� ^ Oi(�! �)) ! Oi�.

Thus, if an agent defeasibly believes � at s, and defeasibly
believes �! � to the same degree at s, then that agent will
defeasibly believe � at s also (again, to the same degree).
This property holds for any NOK ordering function F , and
thus for any NOK interpretation.
The Truth of Knowledge Axiom T has more than one

interesting counterpart. The �rst involves simply rewriting
the knowledge operator, K, as its equivalent NOK defeasible
operator, On�1, to give:

� T0 : On�1� ! �.

This property expresses the same idea as the classical T
property | if an agent knows � at world s then � is true
at world s. To impose this property on a frame F of NOK
interpretations we must ensure that, given any world s and
ordering P s at s, we have s 62 P s

n.
A much stronger constraint imposes the Truth of Knowl-

edge property over all the defeasible belief operators:

� T00 : Oi� ! �, for every i < n.

For this to hold, not only must the agent consider the
actual world accessible, but the actual world must always
be in the lowest level of the ordering. Thus at each world
s 2 S with respective ordering P s, we must have s 2 P s

0 .
Whereas T0 characterises the class of agents with infallible
sensors, T00 characterises the class of agents with infallible
default rules.
The Positive Introspection Axiom 4 also has more than

one interesting counterpart.
A faithful translation replaces all K's by On�1:



� 40 : On�1� ! On�1On�1�.

This states that an agent knows that it knows, yet makes
no claims as to whether an agent knows that it defeasibly
believes. An alternative is to have each agent knowing that
it defeasibly believes, as well as that it knows:

� 400 : Oi� ! On�1Oi�, for every i < n.

Note that 400 implies, in particular:

O0� ! On�1O0�.

A third alternative is to impose weaker forms of defeasible
introspection, for instance requiring that if an agent defea-
sibly believes a sentence � to some degree, then it defeasibly
believes (to the same degree) that it defeasibly believes �:

� 4000 : Oi� ! OiOi�.

The weakest form of introspection would seem to be char-
acterised by the following:

� 40000 : On�1� ! O0On�1�.

To convey the 
avour of the e�ect of imposing such con-
straints, we examine 400 further. What sort of frame would
possess property 400?

Theorem 1. Let F be a frame of NOK interpretations
(S; F; V ). Then F 
Oi� ! On�1Oi� i� for all s; t 2 S it is
the case that if t 62 P s

n then either

1. s 62 P t
n and P t = P s, or

2. s 2 P t
n and for all u 2 S, if u 2 P s

x and u 2 P t
y then

x � y.

Thus, if s and t are accessible from each other, they have
the same templated orderings. This is a severe constraint,
but not unexpectedly so if we think of schemaO0� ! On�1O0�
as expressing such powers of introspection that the agent,
for even its most tentatively entertained belief �, knows ab-
solutely that it believes �. We would expect a schema at the
opposite end of the spectrum, such as 40000 (On�1� ! O0On�1�),
to impose a much less severe constraint on agents. And so
it turns out. By an argument parallel to the above, it is
possible to show that 40000 requires only that s and t must
have the same sets P0 and Pn if s 2 P t

0 and t 2 P s
0 .

The second case dealt with in the theorem concerns the
possibility that world t is accessible from s but not vice-
versa, under which circumstances the ordering at world t
must not place any worlds lower than their corresponding
positions in the ordering at world s. This is to ensure that
anything believed at s is believed to at least the same degree
at t.
Analogs of the Negative Introspection Axiom 5 follow a

similar pattern, delivering amongst others:

� 500 : :Oi� ! On�1:Oi�, for every i < n.

Theorem 2. Let F be a frame of NOK interpretations
(S; F; V ). Then F 
:Oi� ! On�1:Oi� i� for all s; t 2 S

it is the case that if t 62 P s
n then either

1. s 62 P t
n and P t = P s, or
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Figure 3: An example NOK ordering function over
the set of worlds S = fs1; s2; : : : ; s8g which exhibits
the K0T0400500 properties. The worlds fs1; s2; s5; s7; s8g
all share the same NOK ordering, as do the states
fs3; s4; s6g. Note that not all levels in the orderings
contain worlds.

2. s 2 P t
n and for all u 2 S, if u 2 P s

x and u 2 P t
y then

y � x.

One combination of analogs to the S5 properties that may
be of interest is:

� K0 : (Oi� ^ Oi(�! �)) ! Oi�.

� T0 : On�1� ! �.

� 400 : Oi� ! On�1Oi�.

� 500 : :Oi� ! On�1:Oi�.

These impose the following restrictions on our orderings:

� 8s 2 S, s 62 P s
n

� 8s; t in S, if t 62 P s
n then P s = P t.

5. COMPARISONS WITH OTHER SYSTEMS
Kraus and Lehmann [14] combine the standard modal def-

initions of knowledge and belief and include in their system
two modal operators on which are imposed the properties
of S5 and KD45. Formally, their system is comparable
to what one might get from NOK by paying attention only
to On�1 and O0. But their system does not ensure that
any sensible or intuitive relationship exists between the two
concepts, as each operator has its own accessibility relation.
This makes it diÆcult to �nd any general properties relating
the two constructs.
Halpern [11] de�nes a probabilistic account of knowledge

and belief, based on the degree of certainty inherent in each
notion. While this is similar to our approach in motivation,
there is always the risk when following a numerical approach
that one speaks in a spuriously precise manner about con-
cepts or likelihoods that are far from exact. It is proposed in



that paper to instead work within a range of certainty values.
NOK can accommodate such considerations by assigning to
each world a probability or `certainty' measure, and then
ordering the worlds according to their relative measures.
Moses and Shoham [23] present a particularly interesting

system in which belief is de�ned as defeasible knowledge.
They set out with the intention to translate the phrase

\The agent believes �"

into

\The agent knows that either � is the case, or else
some speci�c (perhaps unusual) circumstances
obtain."

It turns out, however, to be necessary to make their belief
operator binary ; B�� denotes � is believed relative to the
assumption �. In other words, B�� means `the agent knows
that, assuming � holds, � holds also'. The role of � is to
exclude the unusual circumstances which might `undercut'
or `defeat' �. However, such an approach ignores the diÆ-
culties with exhaustive lists of exceptions familiar from 25
years of dealing with such problems as the quali�cation and
frame problems [4].
NOK uses orderings of worlds, rather than frame axioms,

to distinguish the normal from the exceptional. This makes
NOK a system belonging to the tradition that can be traced
back through Kraus, Lehmann and Magidor [15] to Mc-
Carthy [18, 19]. So in a way, it captures the intuitive idea
behind Moses and Shoham's system without encountering
the same diÆculties.
We can view Oi� as stating

\Assuming the state of the system is within those
levels at or below Pi, then � is true,"

and yet we need not explicitly denote what this assumption
is, as it is inherent in the belief operator we are using.
Finally, van der Hoek and Meyer [27] introduce a system

of graded modalities, K0; : : : ; Kn, where Ki� is true if and
only if � is false in at most i accessible states. The nature of
this system is similar to NOK, in that agents are equipped
with di�erent degrees of certainty operators. It would seem
possible to simulate this approach in NOK, without being
limited to it.
NOK semantics attempts to draw together semantic infor-

mation theory, epistemic logic, that tradition in nonmono-
tonic logic which we shall call preferential model semantics,
and belief revision.
Preferential model semantics has its origin in the circum-

scription of McCarthy [19], the semantics of which involves
an ordering on the interpretations of the (usually �rst-order)
language. The approach was generalised and placed in a pos-
sible worlds framework by Shoham and Kraus, Lehmann,
and Magidor [25, 24, 15, 16]. Given a set S of worlds and
a suitable ordering (accessibility relation) < on S, together
with a function V that determines which atomic proposi-
tions are satis�ed relative to which worlds, the idea is to
broaden the usual semantic consequence relation j= to a
defeasible consequence relation, j�. Suppose M(�) is the
set of worlds satisfying �, and Min(�) the subset contain-
ing only those which are minimal in respect of the ordering
<. Whereas � j=  if and only if M(�) � M( ), the
extension of j= to j� is achieved by requiring instead that
Min(�) � M( ). In the case of in�nite S, it is necessary

to ensure that every set M(�) has minimal members. If S
is taken to be the set of valuations of a �nitely generated
language, as in the preceding discussion, then every ordering
on S is automatically well-founded.
NOK di�ers from preferential model semantics in associ-

ating a (potentially di�erent) templated order with every
world s. If the templated orderings are identical, then nev-
ertheless NOK has a feature absent from preferential model
semantics, namely the distinguished top level comprising the
excluded worlds, which represents the marriage between se-
mantic information theory and nonmonotonic logic.
Belief revision [10, 8] is of special relevance to NOK be-

cause of epistemic entrenchment | the idea that some be-
liefs may be more important to an agent than others. When
forced to make a choice between two beliefs, the agent will
discard the less entrenched belief.
There is a precise correspondence between epistemic en-

trenchment orderings and faithful total preorders on the set
of states[22]. Speci�cally, every entrenchment ordering can
be obtained from a total preorder on S by a suitable power
construction.
A templated ordering assigns each world in S to one of

n + 1 di�erent levels (P0 to Pn), where n is the number
of worlds in S. To translate this into a binary relation �
on pairs of states, we may simply use the relative levels of
each of the worlds: a � b i� a 2 Pi and b 2 Pj for some
i; j 2 [0; n] with i � j. Expressing templated orderings as
total preorders on S allows the connection between NOK
and entrenchment to emerge.

Theorem 3. Let � be the total preorder associated with
world s 2 S, and v the corresponding entrenchment order-
ing. Then � v � i� Oi� j= Oi� for all i.

6. EXTENSIONS AND DIRECTIONS
Many connections require further exploration, including

all those mentioned in the previous section, as well as the
possibility of reconstructing NOK via a more conventional
semantics involving an n-ary accessibility relation (a sugges-
tion for which we thank our colleague Hans van Ditmarsch).
In the �eld of belief revision, exciting work is being done

on the merging of orderings [17, 20]. Merging is at the heart
of NOK and is likely to in
uence the obvious extension of
NOK in which there is assigned to each world s 2 S not
one but an array of templated orderings, each representing
a di�erent semantic notion (for example, risk).
A link that deserves a high priority is that with deon-

tic logic and, more generally, the notion of trust, which is
gaining importance from the development of agent commu-
nication languages and the need to enable veri�cation of
compliance [5].
Finally, the limitations of agents (such as resource-boundedness)

are never absent when defeasible reasoning is the issue, and
it will be interesting to see whether NOK lends itself to
an investigation of such concerns despite the use of possible
worlds. For example, it seems feasible to get around the log-
ical omniscience problem by altering the semantics so that
the statement Oi� is satis�ed at some world s if � is satis�ed
at some sample of the states in levels P s

i and below. Under
this setup, it is possible for Oi� and Oi(�! �) to hold for
an agent without Oi� being a necessary consequence. Ex-
actly what the nature of the sample should be, and how we
go about obtaining it, are questions that need answers.
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APPENDIX

A. PROOFS OF THEOREMS

Theorem 1. Let F be a frame of NOK interpretations
(S; F; V ). Then F 
Oi� ! On�1Oi� i� for all s; t 2 S it is

the case that if t 62 P s
n then either

1. s 62 P t
n and P t = P s, or

2. s 2 P t
n and for all u 2 S, if u 2 P s

x and u 2 P t
y then

x � y.

Proof. (() Take any NOK interpretation within F . Fur-
ther, take any world s 2 S and some sentence � such that
Oi� holds at s. We want to show On�1Oi� also holds at s.
Since s was arbitrary within S and our NOK-interpretation
was arbitrary within F , it then follows that F 
Oi� ! On�1Oi�.
Let s0 be some world not excluded by the ordering at world

s, i.e., some s0 such that s0 62 P s
n. Now, either condition (1)

or (2) above must hold.

Assume (1) holds. That is, s 62 P s0

n and P s0 = P s. Then,
since Oi� holds at s, it must also hold at s0. Hence since
s0 was an arbitrary accessible world from s, On�1Oi� must
hold at s.
Assume instead that (2) holds. That is, s 2 P s0

n and for

all u 2 S, we have if u 2 P s
x and u 2 P s0

y , then x � y.
Now consider the statement Oi� at world s0. For this to be
false, there must be some world u in level Pi or below of
the ordering at world s0 at which � does not hold. But this
world u would have to be contained in some level Px of the
ordering at world s, with i � x. If such a world existed then
Oi� would not hold at s. This is a contradiction. Hence no
such world exists and so Oi� holds at s0. Again, since s0 was
an arbitrary accessible world from s, On�1Oi� must hold at
s.
()) Take s; t 2 S and assume t 62 P s

n. Then we have
two possibilities for the accessibility of world s from world
t: accessible or inaccessible.



s accessible from t: Assume that s is accessible from
world t, i.e., s 62 P t

n. Then we wish to show that P s = P t.
Assume the contrary, that P s 6= P t. Then there is some

world u such that u 2 P s
x and u 2 P t

y , with x 6= y.
Now, if x > y then if we let � be a voucher for all worlds

in level P s
y and below, i.e., a sentence which is true in these

worlds and these worlds only. Then Oy� holds at s but
On�1Oy� does not. This is because u 2 P t

y and � does
not hold at u, so we have Oy� does not hold at t. Since
t is accessible from s, this means On�1Oy� cannot hold at
s. But this contradicts our underlying assumption. Hence
x 6> y.
Similarly, if x < y, then let � be a voucher for the worlds in

level P t
y�1 and below. Then Oy�1� holds at t, butOn�1Oy�1�

does not. This is because u 2 P s
x and � does not hold at u,

so we have Oy�1� does not hold at s. Since s is accessible
from t, this means On�1Oy�1� cannot hold at t. Again this
is a contradiction. Hence we must conclude that P s = P t,
as required.
s inaccessible from t: Assume that s is inaccessible

from world t, i.e., s 2 P t
n. Then we wish to show that for

all u 2 S, if u 2 P s
x and u 2 P t

y, then x � y.
Assume the contrary, that there exists some u 2 S such

that u 2 P s
x and u 2 P t

y , with y < x. Then let � be a voucher
for the worlds in level P s

x�1 and below. Then Ox�1� holds
at s, but On�1Ox�1� does not. This is because u 2 P t

y and
� does not hold at u, so we have Ox�1� does not hold at t.
Since t is accessible from s, this means On�1Ox�1� cannot
hold at s. This too is a contradiction, so we must conclude
that no such u exists. Hence for all u 2 S, we have if u 2 P s

x

and u 2 P t
y, then x � y.

Theorem 2. Let F be a frame of NOK interpretations
(S; F; V ). Then F 
:Oi� ! On�1:Oi� i� for all s; t 2 S
it is the case that if t 62 P s

n then either

1. s 62 P t
n and P t = P s, or

2. s 2 P t
n and for all u 2 S, if u 2 P s

x and u 2 P t
y then

y � x.

Proof. (() Take any NOK interpretation within F . Fur-
ther, take any world s 2 S and some sentence � such that
:Oi� holds at s. We want to show On�1:Oi� also holds at
s. Let s0 be some world which is accessible from s, so that
s0 62 P s

n.
Then as above, we have two possibilities for the accessi-

bility of world s from world s0: accessible or inaccessible.
s accessible from s0: Assume that s is accessible from

world s0, i.e., s 62 P s0

n . Then by condition (1) above we have

P s = P s0 . This means that since :Oi� holds at s, it must
also hold at s0. Since s0 was an arbitrary accessible world
from s, we have On�1:Oi� holding at s, as required.
s inaccessible from s0: Assume that s is inaccessible

from world s0, i.e., s 2 P s0

n . Then by condition (2) above we
have for all worlds u 2 S, if u 2 P s

x and u 2 P t
y then y � x.

Now, since :Oi� holds at s, there must be some world w
in level P s

i or below where � does not hold. Let k, j be the

integers such that w 2 P s
k and w 2 P s0

j . Then j � k from
(2). But k � i from above, so we have j � i also. Hence Oi�
can't hold at world s0 either. So :Oi� holds at s0. Again,
since s0 was an arbitrary accessible world from s, we have
On�1:Oi� holding at s, as required.

()) Let s, t be worlds in S with t 62 P s
n. Then we have

two possibilities for the accessibility of world s from world
t: accessible or inaccessible.
s accessible from t: Assume that s is accessible from

world t, i.e. s 62 P t
n. Then we wish to show that P s = P t.

Assume the contrary, that P s 6= P t. Then there is some
world u such that u 2 P s

x , u 2 P
t
y, with x 6= y.

Now, if x > y then if we let :� be a voucher for world
u, then :Oy� holds at t but On�1:Oy� does not. This is
because Oy� holds at world s, which is accessible from t,
since u 2 P s

x with x > y. So we have found a y � n and a
sentence � such that :Oy� holds at t but On�1:Oy� does
not. But this contradicts our underlying assumption. Hence
x 6> y.
Similarly, if x < y, then again let :� be a voucher for

world u, then :Ox� holds at s but On�1:Ox� does not.
This is because Ox� holds at world t, which is accessible
from s, since u 2 P t

y with x < y. So we have found a x � n
and a sentence � such that :Ox� holds at s but On�1:Ox�
does not. Again, this is a contradiction. Hence x 6< y. So
we must conclude that P s = P t, as required.
s inaccessible from t: Assume that s is inaccessible

from world t, i.e., s 2 P t
n. Then we wish to show that for

all u 2 S, if u 2 P s
x and u 2 P t

y , then y � x.
Assume the contrary, that there exists some u 2 S such

that u 2 P s
x , u 2 P t

y , with y > x. Then, as before, let :�
be a voucher for world u. Then :Ox� holds at world s but
does not hold at world t. Hence it is not true at world s
that :Ox� ! On�1:Ox�. This is a contradiction. Hence
no such u exists. Hence for all u 2 S, if u 2 P s

x and u 2 P t
y,

then y � x.

Theorem 3. Let � be the total preorder associated with
world s 2 S, and v the corresponding entrenchment order-
ing. Then � v � i� Oi� j= Oi� for all i.

Proof. ()) Assume � v �. Let A = M(:�), B =
M(:�).
Take b 2 B. Then if � v � we have some a 2 A such that

a � b. Now, pick an element b0 2 B which is minimal in B,
i.e. 8b00 2 B, b0 � b00. Now, since b0 2 B and � v �, we must
have some a0 2 A such that a0 � b0. This a0 corresponds to
a world where :� holds (since it is in A). Let t, u be the
integers corresponding to the levels of a0 and b0 in the NOK
ordering, i.e. t; u such that a0 2 Pt and b0 2 Pu. Then
because a0 � b0 we know that t � u.
Now, pick any q such that 0 � q � n. Assume Oq� holds.

Then for all levels Pw, where 0 � w � q, and for all worlds
s 2 S, if s 2 Pw then � holds at s.
Now, since :� holds at a0, � cannot. So since a0 2 Pt we

have q < t (or else there is a world in level Pq or below for
which � does not hold, and so Oq� doesn't hold either |
contradiction). Then, since t � u and q < t, we have q < u.
Since Pu corresponded to the lowest level of the ordering

which contained a world for which :� held, and q < u, we
must have all levels Pq and below holding only those worlds
where � is true. So we get � holding in all worlds s, where
s 2 Pw for some w; 0 � w � q. So Oq� holds.
Finally, since q was arbitrary, we have shown if � v � is

true then Oi� j= Oi� for all i.

(() Assume for all i � n that Oi� j= Oi�. We are required
to show that � v �, i.e. if A = M(:�) and B = M(:�),
then for every b 2 B there is some a 2 A such that a � b.



Let A = M(:�), B = M(:�). Pick an arbitrary b0 2 B.
Assume there is no a0 2 A such that a0 � b0. Let q be the
integer corresponding to the level of b0 in the NOK ordering,
i.e. q such that b0 2 Pq. Then we have for all a 2 A, if a 2 Pk
then k > q. So no element of A resides in any level below
or at level Pq in our NOK ordering. But this means that no
world exists in level Pq or below in which � is false. Hence
Oq� holds.
But we just saw that � was false in world b0, which is

in level Pq. So Oq� does not hold. Thus we have found a
q � n such that Oq� holds at s but Oq� does not. But this
contradicts our initial assumption. Thus we must conclude
that there is indeed some a0 2 A such that a0 � b0. Since b0

was an arbitrary member of B, it follows that � v �.
Thus, if Oi� j= Oi� for all i, then � v �.


