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Reflections on “The Importance of Being Formal”

Hans van Ditmarsch*f

In (Makarychev and Makarychev, 2001) the following problem was discussed:

From a pack of seven known (and all different) cards, two players
each draw three cards and the third player gets the remaining card.
How can the players with three cards openly inform each other about
all their cards, without the third player learning from any of their
cards who holds it?

The authors solve the problem, analyze what they call a ‘bad solution’, and give
a procedural requirement for (‘good’) solutions. From a background including
formal specification of information states involving card deals (van Ditmarsch,
2000) I had encountered the same cards problem (van Ditmarsch, 2001). I pro-
pose a perspective that is more in accordance with epistemic logic (Fagin et al.,
1995). Central to this are the notions of ‘update’ and ‘common knowledge’.
These notions have precise interpretations in relational structures representing
information states. I also give other solutions to the problem, and some gener-
alizations.

Requirements for a solution of the cards problem

The players are called A, B and C (referred to as ‘she’, ‘he’; and ‘it’, respec-
tively), the cards are named 0,1,2,3,4,5,6. A postcondition for a solution of
the cards problem is that A knows B’s cards (a), B knows A’s cards (b), and
C doesn’t know any of A’s or B’s cards (c). Assume w.lo.g. that A holds
{0,1,2}, B holds {3,4,5} and C holds 6. For that card deal, the ‘bad solution’
in (Makarychev and Makarychev, 2001) is:

A says “If you don’t have 0, then I have {0,1,2}” and B says “If
you don’t have 3, then I have {3,4,5}”. (@)

Now imagine that there is a fourth person D present who can look into every
player’s cards, an ‘insider’ so to speak, and that A’s and B’s announcements
had actually both been made by that insider:

D says “If B doesn’t have 0, then A has {0,1,2}” and D says “If A
doesn’t have 3, then B has {3,4,5}”. (i)
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We then reach an information state where a, b, and ¢ all hold. This suggests a
solution of the problem. However, not this insider but the players themselves
made these announcements, and this is informative. As the Makarychevs cor-
rectly state, player A can only truthfully make her announcement if she actually
holds cards {0,1,2}. And C knows that! In other words, we may assume i to
have been:

A says “I know that if you don’t have 0, then I have {0,1,2}” and
B says “I know that if you don’t have 3, then I have {3,4,5}”. (ii7)

By ‘an agent knows something’ we mean ‘an agent knows something to be true’.
In fact, after i4i the players have common knowledge of the deal of cards! Now iii
is a more likely interpretation of ¢ than i is, but to make their (valid) point the
Makarychevs need ii. That confuses issues somewhat. The following example
doesn’t have this confusion, and from here on we diverge from their approach:

A says “I have {0,1,2} or I don’t have any of these cards.” and B
says “I have {3,4,5} or I don’t have any of these cards.”. (iv)

Even when we assume that players only say what they know (to be true), we
reach an information state where ¢ holds. But although ¢ holds, A doesn’t know
that ¢ holds (A doesn’t know that C' doesn’t know any of A’s and B’s cards).
Also, even though a holds, C' doesn’t know that a holds (C doesn’t know that A
knows B’s cards): if in the resulting state A says “I know B’s cards” this will
be that informative, that once more the card deal becomes common knowledge.

Why is iv also not a solution? Once more, the message is more informative
than it appears to be: not only do players only say what they know, but players
A and B will also avoid saying something that may result in C learning some
of their cards. In other words: we may use that the announcements are part
of the execution of a protocol to solve the cards problem. A truly interesting
scenario unfolds:

After iv player C thinks: “Suppose that A does not have card 0.
Then A doesn’t know whether I have 0. If I had 0, I would have
learnt from A’s announcement that A doesn’t have the cards 1 and 2.
Therefore A will not make the announcement. But A just made the
announcement! Therefore A has card 0. And, incidentally, therefore
also cards 1 and 2.7

In other words: C learns A’s cards from the assumption that A only makes
announcements from which C' does not learn A’s cards. Worse than that: C
can only learn A’s cards from that assumption.

There is no real contradiction involved. A similar scenario occurs in the
puzzle known as the ‘wisemen’; ‘hats’ or ‘muddy children’ problem: from the
announcement that no child knows whether it is muddy, some children may
learn that they are muddy. See (Fagin et al., 1995). As in 4, we can be more
explicit than fv:



A says “I know that I have {0,1,2} or I don’t have any of these
cards, and that after saying this C' does not know any of my cards.”
and B says “I know that I have {3,4,5} or I don’t have any of these
cards, and that after saying this C' does not know any of my cards.”

(v)

The first ‘this’ in v only refers to “I know that I have {0,1,2} or I don’t have
any of these cards.” and not to “I know that I have {0,1,2} or I don’t have any
of these cards, and that after saying this C' does not know any of my cards.”
Similarly for the second ‘this’, in B’s part of v.

Where does this end? We only have to go a little bit further along this road.
If we execute a protocol to solve the cards problem and a player, say player
A, says “p”, we may assume that she actually means “I know that ¢ and that
after saying ¢ it is common knowledge that C' doesn’t know any of my of B’s
cards.” It turns out to be the case, and we have just seen that this is not trivial,
that after that entire statement it remains common knowledge that ¢ holds (‘C
doesn’t know any of my of B’s cards’). A sequence of such announcements is
a solution of the cards problem, if a and b are common knowledge after that.
Something is commonly known, if and only if it is true and everybody knows
that it is commonly known (it is the least fixed point of this operation). So
common knowledge of some proposition ¢ implies that everybody knows that
1), i.e., in the cards problem, A knows that 1) and B knows that ¢ and C knows
that ¢, but it also implies that everybody knows that everybody knows that 1,
etc.

One more thing: in information states for card games something is common
knowledge if it holds in ‘all deals that are still consistent with the information
given so far’. Checking that, is the general method to validate concrete solutions.

Epistemic logic for multiagent systems

The notions of state, knowledge, common knowledge, and announcement, can
be represented by and interpreted on relational structures. We illustrate that
by means of a simple example.

There are three cards, red (r), white (w), and blue (b), and three players,
1, 2 and 3. Each player gets one card. There are six such deals. Write rwb for
the deal where player 1 holds red, 2 holds white, and 3 holds blue, etc., and
suppose rwb is the actual deal of cards. Two deals are the same for a player if he
holds the same card in both deals, e.g. rwb =; rbw. This equivalence relation
induces a partition on the set of six deals. E.g., the partition for player 1 is
{{rwb, rbw}, {wbr, wrb}, {bwr, brw}}.

Facts about card ownership and knowledge of players about the cards and
about each other, are represented by a relational structure that one may call a
modal state (a.k.a. a pointed Kripke model or a pointed possible worlds model).
Given a set N of agents and a set P of atoms, a modal state ({S,R,V),s) —
among logicians, this structured notation is preferred over a quadruple — consists
of a domain S of abstract objects called factual states (or ‘states of the world’,



or ‘worlds’, or simply ‘states’), a function R : N — P(S x S) that assigns a
binary relation R(n) to each agent n, a function V : P — P(S) that assigns a
unary relation (or valuation) V(p) to every fact p, and one special object s € S
called the point. If all the relations are equivalences =,,, and from now on they
always are, we call the structure an information state.

In the example, the domain is the set {rwb, rbw,wbr,wrb, bwr,brw} of six
deals, the point is the actual deal rwb, the binary relations are the three equiva-
lence relations as distinguished above, and the (nine) unary relations correspond
to subsets of the domain where facts hold, e.g. the fact ‘1 holds red’ is interpreted
as the subset {rwb,rbw}. This information state (Hexa,rwbd) is visualized on
the left in Figure 1. The point is underlined. Deals connected by a labelled link
are the same for that player.

rwb— 1 —rbw rwb— 1 — rbw
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\ \ / [(by = 72) A (by — wy)] \
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\/ \/ \
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Figure 1: Examples of updates in the information state (Heza, rwb)

We continue with defining the interpretation of propositions (statements).
A fact p (such as ‘player 2 holds the white card’) holds in an information state,
iff its point is in the subset V (p) for that fact. Propositional logical connectives
(=, A, V, — for, respectively, ‘not’, ‘and’, ‘or’, and ‘implies’) take their standard
interpretation. Proposition K,,¢ — ‘agent n knows that ¢’ —holds in information
state ((S,=,V),s), iff for all s’ in S such that s’ =, s, ¢ holds in ({S,=,V),s').
Instead of ‘agent n does not know that not ¢’ we also say ‘agent n can imagine
that ¢’. The transitive closure of the union of all equivalence relations is also
an equivalence relation: =x := (,cny =n)*. Two objects are equivalent in
that sense if there is a finite chain of links (possibly empty) between them,
whatever the labels. Proposition C'p — ‘the agents commonly know ¢’ — holds in
({S,=,V),s), iff for all s' in S such that s' =y s, p holds in ({(S,=,V),s'). Both
knowledge and common knowledge can be similarly defined for binary relations



that are not equivalences, and the notion of common knowledge also extends to
subgroups of the set N of agents. Finally, [¢]p stands for ¢ holds after update
with v. We also say, slightly abusing the language, that the update in this case
is [¢]. The relational interpretation of such updates is somewhat different from
that of the other constructs, because we now have to refer to other information
states. Proposition [1)]¢ holds in information state (M, s), iff whenever ¢ holds
in (M, s), ¢ holds in the (I hope obvious) restriction of (M, s) to those states s’
such that 1 holds in (M, s"). Announcements as in card problems are updates
in this sense, because they are public and truthful, in other words, because they
are spoken and everybody can hear them, and no lies are told.

We recommend the reader to check the following computations visually in
Figure 1.

An atomic proposition or fact ¢, describes that card c is held by player p.
In information state (Hezxa,rwb) it holds that r;, because player 1 has the red
card in rwb. It holds that Kir; — 1 knows that he holds red —, because there
is a 1-link between rwb and (only) rbw, and r; holds in both (Heza,rwb) and
(Heza,rbw). Tt holds that =K;——Ks—w; — 1 can imagine that 2 can imagine
that 1 holds white (even though 1 actually holds red) —, because rwb—1—rbw
and rbw—2—wbr and in wbr 1 holds white. It holds that Ci23(K;i7r1 V Kiwy V
K>5bq) — it is commonly known to all three players that player 1 knows his own
card — because all deals of the information state are linked to rwb by some path,
and because one of the three disjuncts holds for any deal: player 1 always knows
his own card.

Now suppose that in information state (Hexa,rwb) an insider says: “If
1 has blue then 2 has red”. This is update [by — r2]. This formula holds
in all information states (Hezxa,s) except (Hexa,bwr). Therefore update of
(Heza,bwr) with by — r5 results in the restriction of (Heza, bwr) to five deals.
See Figure 1. If, instead, player 1 had said to player 2: “If I have blue then you
havered”, the update is [K1(by — r2)] instead. Now both deal bwr and brw must
be removed: Ki(by — 72) doesn’t hold in (Heza, brw), because bruw—I1—bwr
and by — 7y doesn’t hold in (Hezxa, bwr). In the spirit of example #ii: player 1
can only know that ‘If I have blue then you have red’ is true, if she doesn’t hold
blue herself.

Update [(by — r2)A(bs — wy)] results in an information state that illustrates
why common knowledge is required for a solution of the cards problem: in
the resulting information state (see Figure 1), 1 knows 2’s card (a), 2 knows
1’s card (b), and 3 doesn’t know 1’s or 2’s card (¢). The last holds, because
rwb—3—wrb: 3 cannot distinguish betweens deals where 1 and 2 hold different
cards. Also 3 doesn’t know that 1 knows 2’s card. Now the last is the same
as saying that 3 can imagine that 1 doesn’t know 2’s card. And that holds
because of rwb—3—wrb—1—wbr: 3 can imagine that the deal is wrb, and if it
had been wrb 1 doesn’t know 2’s card, because 1 cannot distinguish wrb from
wbr where 2 holds a different card. In other words, even though 1 knows 2’s
card, this is not common knowledge. In this information state, single update
[(by = r2) A(by — wy)] gives the same result as the sequence [by — r3][be — wy]
of two updates, see Figure 1.



If a player p says ¢ in the cards game, this corresponds to the update [Kpp A
[Kpp]Cc], where ¢ is the description in this logic of ‘C' doesn’t know any of A’s
or B’s cards’. We have observed that [K,pA[K,p¢]Cc]Cc always holds (example
iv provided an information state where [Kpp A [Kpp]c]-c holds). A solution of
the cards problem consists of a (finite) sequence 7 of such updates, such that
afterwards C'(a A b A ¢) holds (Cc holds anyway). This may also be expressed
as the validity of a ‘correctness statement’ ¢ — [r]C(a A b A ¢), where 1 is a
description in epistemic logic of the initial information state. In an information
state for card games, a proposition C'y holds iff ¢ holds for all deals in its
domain (iff for all d € S, ¢ holds in ((S,=,V),d)). This is the precision of ‘all
deals that are still consistent with the information given so far’.

We finish with a historical note. We have seen that statements about knowl-
edge can be formalized in an epistemic logic, a ‘logic of knowledge’. Epistemic
logic is a modal logic. Modal logic is as ancient as Aristotle. Relational seman-
tics for modal logic originates with (Kripke, 1959). Epistemic logic is traced to
(Hintikka, 1962), and its extension with common knowledge to (Lewis, 1969)
and later (Aumann, 1976), with various seminal contributions of different au-
thors from (Fagin et al., 1995). Dynamic epistemic logic, i.e. extensions with
updates and other dynamic features, is of more recent date: (Plaza, 1989; Ger-
brandy, 1999; Baltag, 2002; van Ditmarsch, 2000). Note however that dynamic
issues have an entirely separate history, see (van Benthem, 1996; Harel et al.,
2000).

Solutions and generalizations

Again, we assume w.l.o.g. that A holds {0, 1,2}, B holds {3,4,5} and C holds
6. All solutions obviously satisfy the required constraints, we will not go into
that any further.

NUM  Call the solution in (Makarychev and Makarychev, 2001) (‘each of
the players A and B declares the sum modulo 7 of her/his three cards’) NUM.
There are various other solutions.

NUMb  Alternatively, only A declares the sum modulo 7 of his three cards,
and B merely announces C’s card: “C' has card 6”.

The formulation of the problem in (Makarychev and Makarychev, 2001) is
actually biased towards the NUM and NUMb solutions. If it is merely stated that
all cards are different, say have names d, e, f, g, h, 4, j, more symbolic solutions
come to the fore. For simplicity, we keep their current names. For all solutions,
B may either repeat A’s protocol (or any other protocol!), or simply announce
C’s card, so we need not mention B’s part any further. The protocols underlying
the following solutions are left implicit.

NUM12  This is a variant of NUM. Player A openly renames all cards
1,2,---,7 so that his cards add up to 12. So she says: “I rename 0 to 3,
and 1 remains 1, and ..., and the sum of my cards is now 12.” As there are five
different ways to add three of 1,2,---,7 up to 12 (and only for sum 12), this is
also a solution.



CNF  This is a nondeterministic protocol. CNF stands for ‘conjunctive
normal form’. This is its logical form. One of its twelve different executions has
A-part:

A says: “I have one of the cards 0,1,2, and one of 0,3,4, and one
0of0,5,6, and one of 1,3,6, and one of 1,4,5, and one of 2,4,6, and
one of 2,3,5.”

Here, ‘one’ means ‘at least one’. After A’s announcement B can deduce A’s
cards: “Because I have 3 and 4 and because A must have one of 0, 3,4, A has 0.
Because I have 4 and 5 and A has one of 1,4,5, A has 1. Because I have 3 and 5
and A has one of 2,3,5, A has 2. So A’s hand is 0,1,2.” Player 3 cannot derive
any card of player 1 (or 2), because the solution is symmetrical in all cards.

DNF This is also a nondeterministic protocol. DNF stands for for ‘disjunc-
tive normal form’. One of its twelve different executions is:

A says: “I hold one of the following seven hands: {0,1,2}, {0,3,4},
{07576}’ {1737 5}7 {17476}7 {27 37 6}’ {2747 5}.”

The reader may determine for him /herself why this is also a good solution. To
each execution of DNF corresponds a logically equivalent execution of CNF. The
two shown are not equivalent.

In the NUM-like solutions, the use of numbers is not essential: A might have
simply declared that he has one of five hands, instead of, in DNF, one of seven.
So with DNF, less information is exchanged. Are there less informative solutions
than DNF?

Players A and B can also communicate their hands under the given condi-
tions if A holds four, B holds two, and C holds one card, and if A holds four,
B holds seven, and C' holds two cards. And they cannot if A and B hold two,
and C holds one card. That is much harder to prove. What are the general
criteria, for any number of players and cards, under which hands can be openly
communicated in a finite number of communications? It is decidable: there is a
crude algorithm, using model checking for finite multiagent information states.
If it can be done, can it always be done in two communications? I don’t know
yet. More general results on making implicit knowledge explicit, suggest so.
And what is the least informative way? I don’t know either. All this seems
relevant to cryptology.

Finally, back to (Makarychev and Makarychev, 2001). I initially contacted
the authors because I thought I had found a counterexample to their requirement
(1) for protocols. However, it was pointed out to me by Alexander Shen that in
(1), instead of ‘there should exist another configuration [that gives every card
to a different player]’, the correct translation from the Russian original should
have been ‘there should exist another configuration where C holds the same card
[that gives every other card to a different player]’ (see (Makarychev, 2001)). Ah,
well.
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