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Keeping secrets with public communication

Hans van Ditmarsch
�

Abstract

Given some deal of cards, it is possible to communicate your hand to

another player without yet another player learning any of your cards. Ev-

ery solution to this problem consists of a sequence of safe communications,

an interesting new form of update. Certain unsafe communications turn

out to be unsuccessful updates. Each communication can be about a set

of alternative card deals only, and even about a set of alternatives to your

own hand only. We solve a speci�c cards problem and summarily discuss

some combinatorial issues that are not of logical interest. Generalizations

appear to be relevant to cryptology.

1 Introduction

Consider the following problem:

From a pack of seven known cards two players each draw three cards

and a third player gets the remaining card. How can the players with

three cards openly (publicly) inform each other about their cards,

without the third player learning from any of their cards who holds

it?

This seven cards problem was originally presented at the Moscow Mathematics
Olympiad in 2000. A solution and a procedural requirement for it are presented
in [MM01], and various solutions are found in [vD01a, vD02].

Note that we assume faultless communication: we do not study transmission
protocols, but communication protocols, as used in cryptology and coding the-
ory. Also, besides being public, all announcements are assumed to be truthful.

In the next section we introduce a logic to describe such problems and relevant
structures to interpret it in. In section 3 we describe in the de�ned logic the
formal requirements for a solution. In section 4 we present various solutions
for this speci�c seven cards problem. In section 5 we summarily present some
generalizations, which are all of combinatorial interest and outside the scope of
this contribution.

�Computer Science, University of Otago, New Zealand, hans@cs.otago.ac.nz
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2 Logic and structure

A card deal d is a function from cards Q to players N . In a state where no
communications have been made, we may assume that it is commonly known
that all cards are di�erent, how many cards each player holds, and that players
only can see their own cards. Two deals are the same for an agent if he holds
the same cards in both, which induces an equivalence relation on deals. The
size ]d of a deal of cards d lists for each player (in bold) how many cards he
holds.

Example 1 (The seven cards problem) In the seven cards problem, call the

players Anne (or a), Bill (or b) and Crow (or c). Anne and Bill are the players

holding three cards. Name the cards 0; 1; 2; 3; 4; 5; 6. Assume that the actual card

deal is: Anne holds 0; 1; 2, Bill holds 3; 4; 5, and Crow holds 6.

We informally write 012j345j6 for that deal d, its size is 3j3j1, for player a

deals 012j345j6 and 012j346j5 are the same, and d�1(a) = f0; 1; 2g.

Given a set of agents and a set of atoms, an epistemic update language L
with common knowledge [vBDvE+02, vD00] has basic constructs p;:'; (' ^
 );Kn';C'; [ ]', where [ ] stands for truthful public update with  .1 We
interpret the language on equivalence (S5) modelsM = hW;�; V i whereW is a
domain of (factual / world) states, � is a function from agents n to equivalence
relations �n on W , and V , the valuation, is a function from atoms p to subsets
Vp of W . The combination of a model with a factual state is an information

state (M;w). The interpretation of an update is de�ned as

M;w j= [ ]' i� M;w j=  implies (M ; w) j= '

where M is the restriction of M , including access �, to those states where  
holds, i.e.:

D(M ) = fv 2 D(M) j M; v j=  g

The interpretation of other constructs is standard [FHMV95]. Slightly abusing
the language, when ' is the update formula, we call ['] the update. Some
simple properties and concepts for update logic are (for { elementary { proofs
of Proposition 1 and 2, see the appendix):

Proposition 1 (Combining two updates) For all formulas in the language,

[' ^ ['] ]� is equivalent to ['][ ]�.

De�nition 1 (Unsuccessful update) Given an information state (M;w), an
unsuccessful update is a formula ' such that M;w j= [']:'.

The best-known example of an unsuccessful update is `nobody knows whether
(s)he is muddy' in the Muddy Children problem, in the last round [FHMV95].
The term is introduced in [Ger99] and used in [vD00]. Updates with common
knowledge are always successful:

1One may allow sequences of and nondeterministic choice between updates as well, de�ned

by abbreviation as, respectively, [' ;  ]� :$ ['][ ]� and [' [  ]� :$ [']� ^ [ ]�.
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Proposition 2 (Common knowledge updates are successful) For all for-

mulas in the language, [C']C' is valid.

For card deals, the agents are the players, and atoms qn describe that player n
holds card q. The information of the players in a given card deal d is represented
by an information state (I]d; d) (in the precise sense that any other information
state representing the same information is bisimilar to it), where the domain
of I]d consists of all deals of the same size as d, where the equivalences �n are
induced by n holding the same cards in di�erent deals, and where the valuation
Vd0 of atoms in a factual state corresponds to the deal d0 of the same size as d,
that it represents. The (atomic) description Æd of a deal d is the conjunction of
atoms or their negations according to Vd, and the description Æ

n

d
of the hand of n,

is the conjunction of the atoms involving agent n. For details, see [vDvdHK02].

Example 2 (I]012j345j6; 012j345j6) is the initial information state for the seven

cards problem. The atomic description of that deal is Æ012j345j6 := 0a ^ 1a ^
2a ^ :3a ^ ::: ^ :0b ^ :::, and the hand of player a is described by Æa

012j345j6
:=

0a^1a^2a^:3a^:4a^:5a^:6a. For Æ
a

012j345j6
we also write 012a, etc. Some

typical formulas satis�ed in the initial information state (I]012j345j6; 012j345j6)
are: Ka0a (Anne knows that she holds card 0), Kb:Ka3b (Bill knows that Anne
doesn't know that he holds card 3), and C

W
i6=j 6=k2f0;���;6gKaijka (It is common

knowledge that Anne knows her own hand of cards).

We are now ready to do battle with the seven cards problem.

3 Safe communications

The constraints that (at least) have to be satis�ed are: Anne knows Bill's cards
(aknowsbs), Bill knows Anne's cards (bknowsas), and Crow doesn't know any of
Anne's or Bill's cards (:cknowsany).

De�nition 2 (Necessary requirements) Let d : Q ! N be a card deal in-

volving at least three players, a; b 2 N , and O := N n fa; bg (for Others).
Necessary requirements for an exchange of secrets are:

aknowsbs
W
]d0=]dKaÆ

b

d0

bknowsas
W
]d0=]dKbÆ

a

d0

cknowsany
W
q2Qnd�1(O)

W
c2O

(Kcqa _Kcqb)

Further, post := aknowsbs ^ bknowsas ^ cknowsany. These requirements are
necessary, but not suÆcient. We illustrate their weakness by means of some
examples, that also uncover other phenomena.

First consider the sequence:

Anne says: \I don't have 6" and Bill says: \Neither have I." (i)
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After the �rst announcement cknowsany holds, and after both announcements
post holds. This is not a good solution, because the underlying protocol that
Anne apparently executes might as well have resulted in Anne saying that she
doesn't have 4, after which Crow knows that, so cknowsany holds. We will come
back to this later.

The bad solution in [MM01] is:

Anne says \If you don't have 0, then I have f0; 1; 2g" and Bill says

\If you don't have 3, then I have f3; 4; 5g". (ii)

Indeed, update of the current information state (I3j3j1; 012j345j6) with [:0b !
012a] and subsequently with [:3a ! 345b] results in an information state
where Crow cannot distinguish the actual deal of cards 012j345j6 from the deal
345j012j6 (and various other deals), so that :cknowsany holds; aknowsbs and
bknowsas also hold. Is this a fair treatment of the information? The announce-
ments have been processed as if they have been made by an insider, a virtual
player who can look in everybody's cards, or di�erently said, a player whose
accessibility on the information state is the identity relation.

One should of course use that Anne knows what she says, which makes

her announcement more informative than that of an insider. As it is common
knowledge that Anne initially doesn't know any of Bill's cards, she can only
truthfully announce \If you don't have 0, then I have f0; 1; 2g", if she actually
holds f0; 1; 2g. In other words: update [Ka(:0b ! 012a)] can only be executed
in a state where 012a holds, therefore after that update c knows all of a's cards,
so de�nitely cknowsany is true. A further update [Kb(:3a ! 345b)] results in a
state where it is common knowledge that 012j345j6 is the deal of cards.

It is obvious that players' announcements should be based on their knowl-
edge. It is less obvious why the following is also a bad solution:

Anne says \I have f0; 1; 2g, or I haven't got any of these cards" and

Bill says \I have f3; 4; 5g, or I haven't got any of these cards". (iii)

After an update of (I3j3j1; 012j345j6) with �rst [Ka(012a _ (:0a ^ :1a ^ :2a))]
(=: [Ka�rst]) and then [Kb(345b _ (:3b ^ :4b ^ :5b))], it still holds that both
012j345j6 and 345j012j6 are the same for Crow, so :cknowsany holds. Further,
unlike in (i), Anne's announcement seems `safe' in (iii) in the sense that no other
execution of the underlying protocol would have resulted in Crow learning any
of her cards. However, Crow doesn't know that, and, surprisingly, Crow may
use that to derive further knowledge: it may reason from the assumption that
Anne wouldn't dare making an unsafe communication. To be precise: Anne
knows that after her announcement Crow doesn't know any of her cards, so we
do not just update with [Ka�rst] but with [Ka�rst ^ [Ka�rst]:cknowsany]. And
in all deals d0 that are the same for Crow as 012j345j6 after update [Ka�rst],
announcement of �rst could have been informative for Crow, so :cknowsany
doesn't hold in d0 in that information state, so Ka�rst ^ [Ka�rst]:cknowsany
doesn't hold in (I3j3j1; d

0), so updating with that we end up with the singleton
information state that consists of 012j345j6 only, where Crow knows all of Anne's
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cards! We now have:

I3j3j1; 012j345j6 j= [Ka�rst ^ [Ka�rst]:cknowsany]cknowsany

This is an interesting new type of unsuccessful update. It is apparently not
safe enough that Anne only makes announcements where Crow doesn't get to
know any of her cards: Crow may use exactly that to derive Anne's cards. It
illustrates as well that post is not a suÆciently strong postcondition to require for
a solution of the cards problem. We should instead require common knowledge
of it: Cpost. And on top of that, common knowledge of Crow's ignorance
must be an invariant under the execution of any communication of a protocol.
Otherwise, (i) would be a solution of the problem, as Cpost holds after it, but
after the �rst of its two announcements :cknowsany holds but C:cknowsany
doesn't hold.

We summarize our results:

De�nition 3 (Communicative updates)

['] announcement of ' (by an outsider)

[Kn'] communication of ' (by player n)
[Kn' ^ [Kn']C:cknowsany] safe communication of ' (by player n)

By proposition 1, a safe communication [Kn'^[Kn']C:cknowsany] is equivalent
to the sequence of two updates [Kn'][C:cknowsany]. Also, after any sequence
of safe communications C:cknowsany holds. This is because

M;w j= [Kn' ^ [Kn']C:cknowsany]C:cknowsany

is equivalent to

M;w j= [Kn'][C:cknowsany]C:cknowsany

which follows from

MKn'
; w j= [C:cknowsany]C:cknowsany

which is an instance of proposition 2.
Merely requiring that aknowsbs and bknowsas hold after a sequence of an-

nouncements may be dangerous, for the same reason as for :cknowsany: if this is
not commonly known, one of a or b making this information public may change
the information state into one where some others have learnt one of a's or b's

cards.
If in (iii) the announcements are interpreted as communications but not as

safe communications, in the resulting information state aknowsbs and bknowsas

both hold but are not commonly known: if Anne makes aknowsbs public (update
[aknowsbs]), then Crow can derive the entire deal of cards! In order to reach a
`stable solution', where no player can learn from other players announcing their
knowledge of the requirements, we have to require that common knowledge of
aknowsbs and bknowsas is reached:
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De�nition 4 (Exchange of secrets) Given deal d of cards (for at least three

players), an exchange of secrets between two players a and b is a �nite sequence

[�] of safe communications [�1]; � � � ; [�n] by a and/or b such that I]d; d j= Cpost.

An even di�erent perspective appears: Given that the information state (I]d; d)
has a characteristic formula Æd ^Ckgames, where kgames is a description of the
model I]d in multiagent epistemic logic without update operators [vDvdHK02],
an exchange of secrets � corresponds to the validity of the epistemic correctness

statement:
(Æd ^ Ckgames)! [�]Cpost

The suÆcient requirements may correspond to a procedural requirement that
is given in [MM01]. The authors have provided me with a partial translation of
their original work, in Russian [Mak01]. The in�nitary 
avour of what they de-
�ne as a `protocol' possibly corresponds to the �xed-point character of common
knowledge.

3.1 Normal form of safe communications

So a safe communication of ' is an update [Kn' ^ [Kn']C:cknowsany]. What
can we say about ' itself? As we haven't put any restrictions on ', anything
appears to go: `I have one of the cards d, e, and f ', `My hand is one of f0; 1; 2g
and f0; 3; 4g and ...', `The deal of cards is either 012j345j6 or 345j012j6', `I
don't know the cards of player b yet', `If I have card 2, then you have card 4',
etc. For the information states we consider, such announcements can be greatly
standardized:

Proposition 3 (Alternative deals) In any information state resulting from

updates in the initial information state for a deal of cards, every announcement

is equivalent to one about alternative deals.

Proof. Let ' be an announcement in the initial information state (I]d; d).
As all states d0 in (I]d; d) represent di�erent card deals, it holds that (I]d; d) j=
' $

W
d02(I]d)'

Æd0 (where, as before, D((I]d)') = fd 2 I]d j I]d; d j= 'g). In
other words, ' has the same informational content as the announcement \my
deal is one of the set (I]d)'". By (natural) induction, we can extend any number
of such announcements with another one. a

Proposition 4 (Alternative hands) In any information state resulting from

updates in the initial information state for a deal of cards, every communication

is equivalent to an announcement about alternative hands for that player.

Proposition 4 and its proof, that is omitted, are by Ben Handley. The
essential part of the (adaptation of the) proof is the following. Because players
only say what they know (to be true), every announcement by some player is
interpreted as a game action in the sense of [vD01b]. I.e., its denotation is a
set of deals that is a union of �n equivalence classes for that player n, for the
current information state.

We continue with the presentation of solutions for the seven cards problem.
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4 Solutions for the seven cards problem

Given that we now know the constraints, what are the solutions (exchanges of
secrets)? We know four. The part for Anne varies, for Bill it always suÆces to
announce Crow's card, or alternatively to copy the protocol (any protocol) of
Anne. We leave out the details:

� MOD

Anne announces the sum of her cards modulo 7 (in this case: `3').

� SUM

Anne renames the cards 1; 2; 3; 4; 5; 6; 7 such that the sum of her hand is
12.

� DNF

Anne says: \My hand is one of 012, 034, 056, 135, 146, 236, 245."

� CNF

Anne says: \I hold a card from all of: 012, 034, 056, 135, 146, 236, 245".

In SUM, Anne is doing this openly. It will be common knowledge that the sum
of Anne's cards is 12. For deal 012j345j6 she could (e.g.) have said: \rename 0
to 3 and 1 to 7 and keep the rest as it is". In CNF, read `at least one card' for
`a card'.

For details of MOD, see [MM01, vD02]. The relation between MOD and
SUM is obvious. However, SUM only works for sum 12, whereas MOD works
for any sum modulo 7, not just sum 5. From proposition 4 follows that CNF
must be just as informative in the given information state as some alternative
announcement about alternative hands: DNF is that alternative. In this par-
ticular case DNF and CNF are even logically equivalent. DNF (CNF) is just
one of twelve executions of a nondeterministic protocol. The seven triples can
be seen as corresponding to all seven lines of a projective geometric plane for
seven points, as long as one line corresponds to the actual hand. The symmetry
apparent in DNF is an automorphism property of that plane. MOD can not be
extended to DNF (i.e. there are not two appropriate triples), and DNF cannot
be weakened by adding any single other hand of Anne (such as 345, to give an
example that may puzzle the reader). Each such addition will result in Crow

deriving the entire deal of cards.

5 Combinatorics and generalizations

Given an arbitrary deal of cards, can two players communicate their hands with-
out the remaining players getting to know any of their cards, or not? Although
there are some remaining issues of logical interest, this is a largely combinato-
rial problem (apparently related to `block design' [GGL96]) that can be studied
entirely independently from the declarative logical constraints. Those mainly
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served the purpose of analyzing puzzling (because of the unsuccessful updates
involved) non-solutions.

Sizes of deals for which there is an exchange of secrets (between the two
players with the largest number of cards) include 4j2j1 and 4j7j2. If there is
a solution for size xjyjz, then there is one for size xjyjz-1. In the second case,
the �rst player introduces a virtual extra card for the third player.

A general treatment is relevant for cryptology. E.g. in public key cryptog-
raphy, others cannot discover the secrets that are exchanged, because it is too
diÆcult to solve a large prime factorization. Here, other players cannot discover
the secrets that are exchanged, because it is impossible.

A further generalization is the following. Given a distributed (interpreted)
system [FHMV95], can two agents communicate their local state to each other
without the remaining agents getting to know those local states? Note that the
postcondition is slightly weaker than for the cards problem: we may now learn
some of the cards of the communicating players, but not all of them. E.g., in
012j345j6, Anne announcing that she has card 0 is a safe communication. But
what should she or Bill say next?

We conclude with some tentative results and conjectures:

Proposition 5 (Decision procedure for an exchange of secrets) Given a

deal of cards and two players, it can be determined whether there is an exchange

of secrets.

Proof. Let d 2 NC be a deal of cards, let a; b 2 N . The following crude
algorithm computes whether there exists an exchange of secrets (between a and
b); all exchanges of secrets, if there are any, are found this way:

Start with the current set of relevant deals equal to all deals of that size:
D := D(I]d). For both player a and player b, for every subset D0 � D containing

d that is a union of �a equivalence classes (or, respectively, �b equivalence
classes), check whether I]d�D

0; d j= C:cknowsany. If not, discard that subset.
If so, check whether I]d�D

0; d j= C(aknowsbs ^ bknowsas). If so, we have found
an exchange of secrets. If not, set D := D0 and repeat the procedure. a

Conjecture 6 (Completion) If an exchange of secrets exists, every sequence

of safe communications can be extended to an exchange of secrets.

Conjecture 7 (One round solution) If an exchange of secrets exists, there

is one consisting of only two safe communications (namely one by each of the

involved players).

There is some suggestive evidence that conjecture 7 might hold: if any update is
allowed, and secrecy is no issue, n agents can pool their distributed knowledge
in a maximum of n communications. In the case of card deals this may be done
by each but the last player saying what their cards are (which makes n � 1
communications).

These combinatorial issues are still under investigation. Work in progress
by and with Ben Handley is foreseen to be completed at some later stage.
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Appendix: Proofs

Proof of Proposition 1: For all formulas in the language, ['^ ['] ]� is equiv-
alent to ['][ ]�.

Proof. Let M;w be arbitrary. Then:

M;w j= [' ^ ['] ]�
,
M;w j= ' and M;w j= ['] implies M'^['] ; w j= �

,
M;w j= ' and M'; w j=  implies M'^['] ; w j= �

, as M'^['] = (M') ; see below
M;w j= ' and M'; w j=  implies (M') ; w j= �

,
M;w j= ' implies M'; w j= [ ]�
,
M;w j= ['][ ]�

We have that M'^['] = (M') , since:

D(M'^['] )
=
fv j M; v j= ' ^ ['] g
=
fv j M; v j= ' and (M; v j= ' implies M'; v j=  )g
= v 2 D(M') presupposes that M; v j= '

fv j M'; v j=  g
=
D((M') )

a

Proof of Proposition 2: For all formulas in the language, [C']C' is valid.

Proof. De�ne �N := (
S
n2N

�n)
�, and Mw

�N
as the �N -generated sub-

model of M with point w (i.e. with D(Mw

�N
) := fv 2 D(M) j v �N wg).

Obviously, for all formulas and states, M;w j=  i� Mv

�N
; w j=  .

Let M;w be arbitrary, and supposeM;w j= C'. Let v �N w. Then M; v j=
C' (using the validity of C'! CC'), and therefore D(Mw

�N
) � D(MC'). Also

M; v j= ', so Mv

�N
; v j= ', and also MC'; v j= '. As v 2 MC', it follows that

MC'; w j= C'. We have now shown that M;w j= C' implies MC'; w j= C',
in other words: M;w j= [C']C'. As M and w were arbitrary, it follows that
j= [C']C'. a
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