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Epistemic actions and minimal models

Gerard R. Renardel de Lavalette*
Hans van Ditmarscht

1 Introduction

This paper is about the dynamics of epistemic models, i.e. multimodal S5
models. We investigate the effect of certain epistemic actions on such mod-
els, with special interest for minimality of the resulting models and the
stream of information between groups of agents. Our choice of models and
actions is inspired by epistemic states and moves that occur in knowledge
games like Cluedo. We focus on intrinsic models M = (W, R, V), where
worlds w,v € W are structured objects, carrying enough information to
define (w,v) € R and V,, in terms of w and v.

Our main result is the reduction of epistemic models, resulting from
epistemic actions, to minimal models (with respect to bisimulation). This
proceeds in three steps: the first step corresponds with abstraction from the
order of actions, the second step with downward transfer between groups of
agents, and the third step with upward knowledge transfer between groups
of agents.

1.1 Motivation

The models and actions considered in this paper are inspired by knowledge
games. These are games where the players do not have full knowledge of the
state of the game (e.g. the distribution of cards), and strive to gain specific
information about the game state. A good example is Cluedo, where cards
are distributed among the players, while three cards remain face down on
the table; the players have to determine the identity of the cards on the
table by asking and answering questions about the cards they hold. Other
examples of knowledge games are Mastermind (find out the combination of
colored pawns chosen by your opponent) and Happy Families (try to collect
ensembles of four cards). We refer to [4] for an overview of epistemic logic
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and applications, and to [11, 12] for more information on Cluedo and other
knowledge games. Some preliminary remarks concerning the subject matter
of this paper appeared in [9].

Our initial motivation was the investigation of game states in Cluedo.
This shifted to a more general interest in the dynamics of epistemic states,
and we see this paper as a report on observations and experiments in an epis-
temic setting involving the construction devised by Baltag (see [2, 1]). The
focus on intrinsic and minimal models reflects a preoccupation with concise
and informative representations of epistemic models. Related model repre-
sentations are studied in e.g. [5] (internal semantics), [7, 6] (non-wellfounded
semantics) and [8] (modal structures). Minimal models are often taken for
granted; however, executing actions interferes with this, because relevant
distinctions may become superfluous after an action. We illustrate this with
an example.

Example 1 Consider two agents a and b that do not know the truth about
an atom p. First, b suspects a to have learnt the truth about p (i.e., a learns
p or a learns —p or nothing happens, and this is all commonly known).
Then, a and b are told that p. For the last action, agent b has to update
both the information state where a already knew p and the information state
where a didn’t know p yet. This results in two indistinguishable states of
information, hence a non-minimal model. We give details in Figure 1 and
Ezample 2.

2 Models and actions

As usual (see e.g. [3]), a Kripke model for a multimodal logic with agents
a € A and atomic propositions p € P (A and P nonempty) is a structure
M = (W,R,V), where W # 0 is the collection of worlds, R = {R, C
W x W | a € A} is a collection of accessibility relations on W, and V =
{Vw : P — {0,1} | w € W} is a collection of valuations in the worlds
w € W. We call M an epistemic model (or S5 model) whenever the R, are
equivalence relations. All models considered are finite.
Our modal language is

pu=p|-e|eAe|Dup|DOpe
where p € P, a € A, ) # B C A. The intended meaning of O%¢ is: group

B has common knowledge that ¢ holds.
The interpretation is defined by

M, w ‘:p = (pr: 1)

M,wE - = Mwlry

MuwEeANY = MwEe& M,wE1

M,wEOw = YveW((w,v) € Ry = M,v =)
M,wEDOpp = Vo€ W(w,v) € (Usep Ra)* = v = o)
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We observe in passing that a propositional formula (i.e. a formula with-
out modal operators) ¢ is fully characterised by the collection

Ty =aet {s € (P = {0,1}) | s |= o} (1)

of valuations that make ¢ true. This will be used later.

A model M = (W,R,V) is called intrinsic if the worlds w,w’ € W
are structured objects that contain the information to define (w,w’) € R,
and Vp in terms of them. Typically in this paper, worlds have the form
w = (s, Fy), where s is the valuation V,, of w, and (v, w) € R, is defined in
terms of F,, and F),. In this case we say that W represents M.

As usual, a bisimulation between two models M = (W, R,V) and M' =
(W',R', V") is a nonempty relation B C W x W' satisfying, for all w,w’
with wBw':

Vp € P(Vyp =V,.,p)
Va € AVv € W(wR,v = F' € W!(vBv' & w'RLv"))
Va € AVv' € W (w'Rlv' = Jv € W(vBv' & wR,v))

A model M is minimal if it is minimal modulo bisimulation, i.e. the only
bisimulation between M and itself is the identity relation!. Finally we men-
tion the fact that, in the class of finite models, minimal models are exactly
the models where every world w has a characteristic formula ¢,,:

M minimal iff for all w,w’ € W(M,w' = ¢, & w ='). (2)

2.1 Actions

In [1], Alexandru Baltag presents a construction to model the effect of an
action, which we sketch here, restricting ourselves to epistemic actions which
leave the propositional valuation of a world unchanged. An action structure
is a triple N = (X, Q, pre) with X # 0 a collection of action alternatives,
Q = {Qa. | a € A} a collection of accessibility relations on X, and pre
maps action alternatives £ € X on their precondition. The idea is that the
pointed action structure (N, z) represents the action z, but the agents do
not know the exact nature of z: for a € A, the y € X with (z,y) € Q, are
epistemic alternatives for z. pre(z) is a precondition: action alternative z
can only take place in worlds in which pre(z) is true. We shall assume that
pre(z) is consistent, i.e. pre(z) # L. Observe that, in the case of epistemic
actions, a propositional precondition is at the same time a postcondition
(since valuations are left unchanged).

!Minimality is a purely structural notion here and not a notion relative to a formula
or theory that is modeled, as in approaches to belief revision.



These intuitions are formalised in the definition of the model MY =
(W', R', V'), the effect of applying action N in M:

w' —def {(w,x) EWxX ‘ Maw |: pFE(.’E)}
R, =def {((w,z),(w,z") € W X W'| (w,w') € Ry & (z,2) € Qu}
V<Iw,w> =det Vuw

This construction works for all models, but we apply it here only on S5
models and S5 actions (where the @), are equivalence relations). It is not
hard to verify that, in that case, the resulting model is S5, too. For a related
S5-preserving construction, see [11].

We work out example 1: see Figure 1.

ik T |
|

s—ab—t X T\b X {p} = b I|> X {p} = b =
{p} —b—{-»} l—b——t l

Figure 1: The effect of two actions. Worlds are labeled by valuations s,t with
sp = 1,tp = 0; action alternatives by preconditions. The accessibility relations are
equivalence relations and not completely drawn.

2.2 Propositional and simple actions

Propositional actions are actions where all preconditions are propositional,
i.e. contain no modal operators. The order of applying propositional actions
is not relevant, in the following sense:

if N1, Ny are propositional, then (MM )2 and (M™2)M are iso-
morphic, i.e. are bisimilar via a bijective bisimulation.

This follows from the fact that, for propositional ¢
MY (w,z) ¢ & Mw [ ¢;

as a consequence, the collection W’ of worlds of (M™N1)N? satisfies
W' = {{{w,z1),22) | M,w |= pre, (1) A prey(z2)}

and this is isomorphic with the collection of worlds of (M™2)Nt  via the
mapping ((w,z1),z2) — ((w,z3),z1). It is not hard to see that this order-
independence only holds for propositional actions, not for epistemic actions
in general, let alone for arbitrary actions that may change the propositional
valuation in worlds.



Going one step further, we observe that both (M1 )2 and (M™2)M are
isomorphic to MN1*N2 where the composition N1 x Ny = (X, Q, pre) of Ny
and N, is defined by

X =X x Xy
Qa = {((z1,22), (Y1,92)) | (x1,11) € Q105 (T2,y2) € Q2,a}
pre((z1,72)) = pre;(z1) A preg(z2)

This generalises directly to finite sequences of propositional actions. As a
consequence, a finite sequence of propositional action is equivalent to a single
propositional action.

Simple actions are epistemic propositional actions where a subgroup
B C A of agents commonly knows which action alternative has taken place;
it is publicly known (i.e. the group A of all agents commonly knows) that
some alternative has taken place. More formally: an action N = (X, Q, pre)
is simple iff

1. pre(z) is propositional for all z € X;

2. for each a € A, @, is either maximal (i.e. the universal relation X x X)
or minimal (i.e. the identity on X);

3. the inside group, i.e. the set of agents a with minimal @, is nonempty.
Some examples of simple actions (in the context of Cluedo):

e Agent a looks into her (hitherto closed) cards; after this, she (and only
she) will know which cards she has, and it will be public knowledge
for all agents that she knows. The inside group is {a}.

e Agent a asks agent b: ‘do you have card k7’ and b replies ‘no’; now it
is public knowledge that b does not have k. The inside group is A.

e Agent a asks agent b: ‘do you have card k or card [?" and b shows
a one of these cards (k, say) while the other agents do not see which
one. Now a and b commonly know that b has k, i.e. D’Ea’b}(b has k),
and moreover DE(D’{‘a’b}(b has k) V D’{‘a,b}(b has 1)). The inside group
is {a, b}.

Every simple action N has a semantical characterisation (B,Y) where B is
the inside group, and ¥ = Xx =gef {Tpre(s) | £ € X} is the collection of sets
of valuations corresponding with the (propositional) preconditions of z € X
(see (refvalset) for the definition of Ty,).

Observe that the combination of two or more simple actions with identi-
cal inside group is again simple. But this is no longer the case with different
inside groups. In the sequel, we shall work out more sophisticated semantical
characterisations for combinations of simple actions.



We conclude this section by observing that many but not all actions
in Cluedo are simple. A counterexample: player a ends her turn without
successfully claiming the identity of the cards on the table (and winning the
game) (see [11]). This informs the other players that a does not know the
identity of these cards. Similar actions — learning that some player does not
know some proposition from the fact that she does not act in a particular
sitution — occur in the Muddy Children game (see [4]).

3 Making minimal models

We are going to perform an experiment with simple actions. The starting
point is some fixed model My = (W), Ry, Vp) where the agents have minimal
knowledge, i.e. Ry, = Wy x W, for all @ € A. (Mj models the initial state
of a knowledge game, e.g. Cluedo: the cards are dealt face down, all players
know that nobody knows how the cards are distributed.) We assume that
My is minimal, so different worlds w € Wy have different valuations V.
This implies that My is fully characterized by Vy. The valuations in Vj
represent the game states that are possible, e.g., in the case of Cluedo, the
possible distributions of the cards.

Notational convention. From now on, we shall write S for Vj, and we
let s,t range over S.

Let us first see what happens when we apply the simple action N, char-
acterised by (B, %), to My. We assume that 7' C S for all T € %, i.e. every
alternative T = Tpre(y) of N falls within S. Now My = (W', R, V') with
(modulo isomorphism)

W' = {{(s,T)|s€eTex}
R, = {({s,T),(s,T")) eW' xW'|a€e B=>T=T'}
Visry = 8

So a world (s,T') consists of a ‘present state’ s with propositional infor-
mation, and the alternative 7' = Tpre(;) that inside group B has learned.
By adding B to the worlds in W', we obtain the intrinsic representation
{(s,B,T)| s €T ex}of M.

3.1 A sequence of simple actions

After these preliminaries the experiment starts: we take a number of simple
actions Ni,..., N, represented by (Bi,%1),...,(Bn,2n), and apply them
to M().



Definition 1 (simple model) M; = (W1, R1, Vi), the result of applying
(B1,%1),-..,(Bn,Xy) to My, is defined by

Wl = {<5’Ba 1'> | s € ﬂign T;,VZ S n(T'z € EZ)}
Riq = {((s,B,T),(s",B,T)) |Vi<n(a € Bi=T; =T))}

V17(S7B7D - S
Here B, T abbreviate B1,...,B, and T1,...,T,.

Observe that M; is intrinsic. We may paraphrase the epistemic content of
world w = (s,B,T) as follows: the present state’ is s, and for 1 = 1 to n,
group B; has common knowledge that the present state is some element of
T;.

Example 2 We go on with example 1 as formalised in Figure 1. The com-
position of the two actions is represented by

(({a}, {{s} {t}; {s, £3}), ({a, b}, {{s}}))

The two worlds in the resulting model are (s, ({a},{a,b}), ({s,t},{s})) and
(s, ({a},{a,b}),({s},{s})). Note that p is satisfied in both worlds, hence the
model is bisimilar with the singleton model where p holds.

3.2 Abstracting from the order of actions

With M; we have an intrinsic representation My for My, but it is in general
not minimal. The most obvious shortcoming is that the representation de-
pends on the order of actions, while we have seen that the order of simple
actions is irrelevant. Another point is: what to do with the situation that,
for different 4, j, B; = B;? Then B; has learned that the present state is
both in T; and in T}, i.e. in T; N'T;. This suggests to combine, for any group
B, all T; with B; = B and to take their intersection. An orderly way to do
this is with functions

F:p™(4) = p*(S)

where F(B) is the intersection of all T; with B; = B; if no such i < n exists,
we take the default value S for F(B). The idea is that F' represents an
alternative of the composite action N = Ny x ... X N,,, where, for B C A,
the agents in B have common knowledge that the present state is in F'(B).
We require that F' is consistent, i.e.

NF # 0, where NF =gef ﬂ F(B)
BCA

The collection of all alternatives F' in composite action IV is represented by
D=3y :p"(A) = pT(pt(9)), defined by

(I)(B) = H{Ei | 1 <n,B; = B}



where M is defined by
Y1 M X9 =gef {Tl NTy | T, € El,Tz c ZQ,Tl NTy 7é @}

and M{3q,...,8,} =21 MN...NE,. If, in the definition of ®(B), there is no
i with B; = B, we take the default value {S} for M0.

So @ is an order-free representation of the sequence of actions N. We
define

Fed®=34VBCA(FBe€®B) & NF#0

and we shall identify ® with the collection {F | F ¢ ®} of alternatives.
Before defining the new representation of M; based on ®, we introduce
some notation. We define =g, ‘equality from B and upward’, by

F =G =4 VC2OBFC=GC

and write =, for =(,3. Later on, it will be convenient to combine two
alternatives F, G into a third (F' < B > G),defined by

(FaB>G)C =FC iBCC
=GC ifB¢C

We write (F < a > Q) for (F < {a} > G). We observe that, obviously,
(F<BD>G)=pF.

Definition 2 (order independent model) My = My(®) = (Wa, R, Vo)
is defined by

W =gef {(s,F)|VBC Ase€ FB e 9B}
Raa —def {(<SaF>a <t1 G)) | F =, G}
Vos,p) =def S

So a cannot distinguish between the alternatives F' and G iff, in all actions

involving an inside group B containing a, F' and G yield the same informa-
tion FA = GA. We have

Proposition 1 My and M are bisimilar, via the bisimulation

(s, B, T) — (s, AB.N{T; | i < n,B; = B})
Proof. Straightforward. O

However, M, is in general not minimal. The reason is that the values of
F' are too large: F'B may contain states s,t which can be distinguished by
group B, and this is not in line with the intuition behind the representation
involving F'. In the next subsection, we will have a closer look at the stream
of information between groups, and reduce FB via FB C FB to FB CFB.
We shall show that the representation M, based on F is indeed minimal.



Example 3 Agents a and b do not know the truth about p. First b suspects
a of learning whether p, then (unlike example 1) a learns whether p. As in
example 2, we represent the two valuations of p by s and t. The following
action sequence is executed:

((a}l, {{s}: {t}: {s, 1} 1), ({a}t, {{s}, {t}}))
The model resulting from this is M1 = (W1, R1, V1) with

Wi = {(s,({e}, {s,1}), ({a}, {s})), (s, ({a}, {s}), ({a}, {s})),
{t, ({a}; {s,t}), ({a}, {t})), (¢, ({a}, {t}), ({a}, {t}))}

and with Ry, the identity and R,y the universal relation.

The transition to Mo results in the minimal model s—b—t. The domain
Wy of that model is {(s, F),(t,G)} with F({a}) = {s}, G({a}) = {t}, and
F(B) = G(B) ={s,t} for B # {a}.

3.3 Information moving downward

The first observation is: if group B learns that the present state is in F'B,
then this is also learned by all subgroups C' C B. So there is information
streaming downward, from B to its subgroups. To reflect this, we define the
downward closure F of F by

FC =4 ()| FB
BDC

Observe that F is monotonic: if C C B then FC C FB, i.e. C' (considering
less alternatives possible than B) knows more that B.

Definition 3 (downward model) M3 = M3(®) = (W3, R3, V3) is defined
by

| Fed,s
|

nF
,(t,G) | F =

ENF}
F =G}

Proposition 2 My and M3 are bisimilar, via the bisimilarity (s,F) —
(s, F).

Proof. Straightforward. O

Example 4 The downward model representation of the model of Examples
1 and 2 has a singleton domain, containing the world (s, F) with F({a}) =
F({a}) = F({a,b}) = {s}. The knowledge acquired by group {a,b} in the
second action has now moved downward to the individual agents a,b. The
model is now minimal.



3.4 Information moving upward

Now comes the hardest part. It is tempting to conjecture that Mz is an
minimal model, i.e. different worlds are really different and represent differ-
ent epistemic alternatives, but that is not the case. We illustrate this with
an example.

Example 5 There are three agents a,b,c and two atoms p and q. Agents
a, b, c are in a dark room, a,b wear glasses and c is blindfolded. The glasses
are black or transparent. Atom p represents that a wears transparent glasses,
atom q represents that b wears transparent glasses. Now the light is turned
on, so a and b see which type of glasses they wear themselves, and only agents
with transparent glasses can see what the other wears. This can be modeled
by two simple actions. First a learns one of {pAq}, {pA—q},{-pAq, pA—q},
shortened by {1},{2},{3,4}. Then b learns {1},{3},{2,4}. The result of
applying these actions is a model with four worlds. Now c suspects that
someone else tells a,b that both wear transparent glasses, i.e. that a,b learn
{1} - both transparent — or {1,2,3,4} - nothing happens. The resulting
model has five worlds (writing a for {a}, etc.):

(1,(a,{1}), (b,{1}), ({a, b}, {1}))

(1,( ), (6:{1}), ({a,b},{1,2,3,4}))
w2 = 22’ Ea’{2})a()b> {2’4} ’({a’b}’{1’2a374})>

3

(4, ( )

wy —=

g
I

)
 (a,{3,4}), (b,{3}), ({a, b}, {1,2,3,4}))
bl a’ {3’4} 7(b7 {2’4})’({0”1)}’ {1127374})>

All worlds are indistinguishable for c. The order independent and the down-
ward representation are isomorphic to this model, which is not minimal: wy
and wy are bisimilar.

Let us analyse the subtle process of information streaming upward, from
individual agents to groups. Consider s,¢ € F{a,b}; then {a,b}, as a group,
has not learned anything to distinguish s from ¢, for s, € F' B for all groups
B containing ¢ and b. However, it is possible that the group {a,b} can
distinguish s and ¢. This may sound surprising, but consider the situation
that it is publicly known that both a and b have, as individual agents, learned
something to distinguish s and ¢: then group {a,b} has indeed common
knowledge to distinguish s and t.

The other way round: group {a,b} cannot distinguish between s,t €
F{a,b} only if there are s; = s,89,...,8, = t € F{a,b} such that it is
possible that a cannot distinguish between s; and ss, b not between sg and
s3, a not between sz and sy4, ..., and b not between s, 1 and s,. In order
to formalise the idea it is possible that certain agents cannot distinguish
between ..., we define @ : pt(A) — p(S?) by

BB =4t U{(Fa)? | a € B,F ¢ ®}

10



Now (s,t) € ®B comes down to: it is possible that (i.e. there is some
alternative F' ¢ @ such that) some a € B cannot distinguish between s and
t. With help of ® we define F', the final reduction of F"

ﬁB —def {t | ds e nNF (Sat) € (&)B n (FB)Z)*}

In short notation: FB = (NF)(®B N (FB)?)*. So FB contains only those
states that are reachable within FB from some state in NF via Ga-steps,
with G e ® and a € B.

Before we define the final model M, and show that it is minimal and
bisimilar with M3, we present some properties of F. One directly observes

Fis monotonic, FB C FB, Fao=Faand F =F :%: F.
Moreover, the relation (®BN(FB)?)* in the definition of F is an equivalence
relation, with F'B as one of its equivalence classes. A direct consequence of
this is

FB=GB=FB=GB or FBNGB =1
Finally we claim
Proposition 3 If H = (F <a> G), then

ﬁ:{a}UBéﬁﬁ:aﬁI:Bé

Proof. Assume F ={a}UB G. We have F =, H, and this implies F=,H.
To obtain H =5 C:', we shall show

I;TQBé and CNJQBF

forthen H=H Cp G=G =G Cp H = H. Now let B’ D B, then
HB'
{H monotonic, H C H}
H({a} UB)NHB'
= {definition of H}
F({a}UB)NHB'
= {F :{a}UB_G}
G({a}UB)NHB'
C (G CGy
G({a}UB)YNHB'
C {definition of H}
GH{a}UB)YNN{HC |C D> B',a ¢ C}
= {definition of H }
GH{a}UB)YNN{GC |C 2 B',a g C}
= {definition of G}
GB'

N

11



so H CgG. G Cp His proved likewise. |

Definition 4 (upward model) My = My(®) = (Wa, R4, Vi) is defined by

Wi  =qr {(s,F)|Fe®secnF}
R4,a —def {(('SaF)a <t7 G)) | F=, G}
v

a,(s,Fr) Tdef 5

The characteristic property of M4, when compared with the previous models,
is that the transitive closure Ry p = (Uguecp Ra,0)* has a straightforward
definition, similar to Ry 4:

Rip={((s,F),(t,()) | F =5 G} (3)

The inclusion C is straightforward, and also holds (in appropriate formula-
tion) for My and M3. For D, Proposition 3 is required.

Proposition 4 M3 and My are bisimilar, via (s, F) — (s, F)

Proof. It suffices to show
(s, F)Ra(t,G) = (s, F)Ru(t, G)
(s, F)Ry(t,G) = 3H(G = H & t € NH & (s, F)R,(t, H))

Let (s, F)Rq(t, @), s0 F =, G. So Fa = Fa = Ga = Ga, hence FBNGB #
0 for all B > a, and with F =, G we not get F =, G and conclude
<35ﬁ)Ra<ta é)

Now the second part. Let (s, F)R,(t,G), so F =, G; define H =4
(F <ar> @), then F = H=G by Proposition 3, so it suffices to show that
teNH. Now t € Ga =NGNGa =NGNFa CNH, where Ga = Fa follows
from F =4 G. O

Proposition 5 My is minimal.

Proof. By (2), it suffices to give, for every (s,ﬁ’) € Wy, a characterising

formula & (5, with

My, (t,G) = &s=t&F=G

F)
Put

Sy =it O ATV B A O58)
B s'cFB sS'cFB

12



Now, using (3), we have (t,G) = R fy &8 =1 & VB(FB=U{NG' | G =p

G'}) so it suffices to show
GB=U{nG' | G =5 G'}.

The D part is easy, so we concentrate on the C part. Let ¢ € GB ; we want
G' witht € G’ and G =g G'. Now let H satisfy t € NH; such an H always
exists. Put G’ =4¢t (G < B> H) then t e NHNGB C NHNGB C NG
Now we observeézgﬁandteéﬂG’, soC:’:B G O

4 Concluding remarks

We obtained a minimal and intrinsic representation of models that are the
effect of sequences of simple actions. We found this representation via an
analysis of the implicit information streams between groups of agents. More-
over, we found characterising formulae for the worlds in our representation.
It will be interesting to compare them with the characteristic modal formulae
found by Van Benthem (see [10]).

Our minimization techniques may contribute to faster model checking of
epistemic formulas in the resulting minimal models. Straightforward appli-
cation of Baltag’s construction leads to exponential growth in the number
of worlds, so it may pay off to apply minimization techniques. We have
not compared the costs of minimizing with the conceivable gains in speed of
model checking.

The type of actions considered here (sequences of simple actions) is
rather restricted: we excluded exchange of epistemic information, and dy-
namic effects on the propositional state of a world (a natural example in
game terms: exchange of cards). It will be interesting to investigate the
effect of these and other non-propositional actions, where the order of the
actions plays a role.
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