
Department of Computer Science,
University of Otago

Technical Report OUCS-2002-06

Sorting with a forklift

Authors: M.H. Albert and M.D. Atkinson

 Department of Computer Science, University of Otago

Status: Published in the Electronic Journal of Combinatorics

http://www.combinatorics.org/Volume_9/v9i2toc.html
Article R9.

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/trseries/

Sorting with a Forklift

M. H. Albert M. D. Atkinson

September 10, 2002

Abstract

A fork stack is a generalised stack which allows pushes and pops of

several items at a time. We consider the problem of determining which

input streams can be sorted using a single forkstack, or dually, which

permutations of a fixed input stream can be produced using a single fork-

stack. An algorithm is given to solve the sorting problem and the minimal

unsortable sequences are found. The results are extended to fork stacks

where there are bounds on how many items can be pushed and popped at

one time. In this context we also establish how to enumerate the collection

of sortable sequences.

1 Introduction

There is a close historical connection between the investigation of permutation
classes closed under pattern containment, and the study of what sequences can
be generated (or sorted) using a particular data structure (see for example [2],
[8], [9], [11]). Indeed it could be argued that the parents of the study of these
permutation classes are the Erdös-Szekeres theorem and Knuth’s result that
the permutations sortable with a single stack are precisely those which do not
contain 231 as a pattern.

One of the purposes of a data structure is to accept input data, store it in some
form, and then release it in response to certain requests. In most structures
these functions may be interleaved with one another. If we observe only the
order that data is input to a data structure, and then the order in which it
is released, the operation of the data structure will simply be perceived as
generating a permutation of the data. So it is natural to associate with a data
structure the collection of such permutations which it can realize. Furthermore,
most natural data structures have a hereditary property. That is, if they can
achieve a certain permutation of a large collection of data, then they can achieve
the restriction of that permutation to any subset of the data. Subject to this
property, the permutations associated to a data structure will be a class of
permutations closed under pattern containment.

1

The investigation of classes connected to data structures in this way is greatly
facilitated by keeping this connection in mind. Generally speaking, thinking
about how the data are assigned to storage, manipulated within storage, and
released from storage, will allow a clearer understanding of the corresponding
class of permutations. In this paper, we carry out this program with respect
to a new data structure, the forkstack, a stack in which it is possible to add or
remove multiple data items with a single operation.

The stack is an ubiquitous data structure, used in many algorithms, typically
where last in, first out, behaviour is required or desirable. In some contexts
however, the standard stack structure with its limited push and pop operations
can seem overly restrictive. Consider, for example, the situation where there
are two stacks, each containing a sorted sequence of data values with smallest
elements on top. It is desired that these sequences be merged into a single sorted
sequence. If this merge is to take place into a new array, or into a queue, then
the traditional stack is perfectly suited for the task. However, for reasons of
parsimony or elegance, one might wish to accomplish this merge in place. In a
standard stack, this is difficult. However, if we could pop (and push) sequences
of elements from the top of each stack, then it becomes simplicity itself. One
simply pops from the stack with smaller head the maximal sequence which
ends with an element smaller than the head of the other stack, and pushes
this sequence onto the other stack. This process is repeated until one of the
stacks is empty. Note that if the stacks are implemented as linked lists, then
this entire process is simply a matter of repeated pointer assignments. Also, by
keeping track of the location of the original larger head the whole process can
be accomplished by a single pass through the stacks.

Since the operations of a forkstack are more flexible than those of an ordinary
stack it will be prudent to provide an algorithm for carrying out the process of
sorting an input permutation, as well as an abstract characterisation of obstruc-
tions to sortability. We will also, in some cases, be able to explicitly determine
algebraic relations satisfied by the generating functions that enumerate the num-
ber of sortable sequences of each length using push and pop operations which
are bounded in size. We will describe a method which, in principle, allows all
such enumeration problems to be resolved.

The name, forkstack, that we have given this data structure is derived from the
following analogy which we find sufficiently powerful that it forms the founda-
tions of our understanding of the structure. Begin with a stack of boxes, called
the input, labelled 1 through n in some order. A powerful forklift can remove
any segment of boxes from the top of the stack, and move it to the top of an-
other stack, the working stack. From there another forklift can move the boxes
to a final output stack. Physical limitations prevent boxes being moved from
the working stack to the input, or from the output to the working stack. The
desired outcome is that the output should be ordered with box number 1 on
top, then 2, then 3, . . . , with box n at the bottom. An example of a sorting
procedure in progress is shown in Figure 1. In this analogy, the working stack

2

corresponds to our forkstack data structure, and the operations performed on
it by the truck to its operations.

3

2

4

1

6

Input stack Output stackWorking stack

5

To complete the sort, move the pair 41 to the working stack,
move 5 to the working stack and then to output, move 4 to
output, and move the triple 123 to output.

Figure 1: A snapshot of sorting

The process of sorting 236415 is documented below. Note that, at the stage
shown in Figure 1 it is essential that 41 be moved as a pair – moving either 4
alone, or the triple 415 would result (eventually) in 1 lying on top of 4 or 5 in
the working stack, and thereby prevent sorting.

Input Working Output
236415

6415 23
415 623
415 23 6 (See Figure 1)

5 4123 6
54123 6
4123 56
123 456

123456 Finished

Some permutations, such as 35142 cannot be sorted. Here, we may move 3 to
the working stack, and then 5 to the output, but now whether we move 1 alone,
14, or 142, we wind up with 1 lying on top of 3 or 4 in the working stack, and
cannot complete the sorting procedure. We will see below that if we can avoid
creating this type of obstruction in the working stack, then sorting is possible.

2 Definitions and formalities

In the subsequent sections we will tend to continue to use the terminology of
the introduction speaking of the input stack, forklifts, etc. However, it will be
convenient to introduce a certain amount of basic notation in order to facilitate
discussion. As we will always take the initial input to be a permutation of 1

3

through n for some n, the contents of each stack at any time can and will be
represented by sequences of natural numbers (not containing repetitions). Our
ultimate objective is always to reach a state where the contents of the output
stack are the permutation

1 2 · · · (n − 1) n

and we will refer to this outcome as success.

In the basic situation where both forklifts are of unlimited capacity, we use F
to denote the collection of all permutations for which success is possible. If the
input to working stack forklift is limited to moving s boxes in a single move,
and the working to output one to moving t, then we denote the corresponding
class F(s, t). Here s and t are either natural numbers, or ∞.

Given a permutation π as input, a sequence of operations is allowed, if it does
not result in an output state which provides clear evidence that sorting is not
being carried out. That is, a sequence of operations is allowed if at the end of
the sequence the output stack contains some tail of 12 · · ·n.

In discussing the algorithms for sorting it will be helpful to pretend that it is
possible to move boxes directly from the input stack to the output stack – and
such an operation, as well as the more normal type of output is called direct
output. So a direct output move consists either of output from the working
stack, or moving a part of the input stack to the working stack (in a single lift),
and then moving exactly that set of boxes to the output stack, again in a single
lift.

When we consider enumeration results for forkstacks, it will often be convenient
to think in terms of which permutations of an original input of 12 · · ·n can be
produced, rather than which sequences can be sorted. In that case it will be
convenient to be speak of operation sequences. In the operation of a forkstack
we use σ[k] to denote the operation of pushing k elements onto the stack, and
τ [l] to denote the operation of popping l elements from it. If a parameter k or
l is omitted, it is taken to equal 1.

3 The sorting algorithms

How should a fork stack actually carry out its task of sorting a permutation
when this is possible? It turns out that there is a straightforward algorithm to
accomplish this operation. Broadly speaking, we may use a simple modification
of a greedy algorithm:

• perform any output as soon as possible,

• otherwise move the maximum decreasing sequence from the head of the
input onto the working stack.

4

In order to justify this claim (with some technical changes to the second option)
we require a slightly more abstract characterisation of unsortability.

Definition 1 For positive integers a and b, a << b means a < b − 1. In a
series of fork stack moves, we say that the dreaded 13 occurs if at some point
the working stack contains adjacent elements ab with a << b.

Proposition 2 A permutation π is unsortable if and only if every allowable
sequence of fork stack operations that empties the input produces, at some point,
the dreaded 13.

Proof: Suppose that we cannot avoid producing a 13. Then we cannot sort
π for there is no way to insert the missing elements into the gap between the
elements a << b witnessing the 13. On the other hand, if there is some allowable
sequence of operations that empties the input stack and avoids producing a 13,
then on completing them, the contents of the working stack will be a decreasing
sequence, except possibly for some blocks of consecutive increasing elements.
Such a stack is easily moved to the output in its sorted order.

We refer to a sequence of the type emphasised above, as a near-decreasing se-
quence. Suppose that no immediate output is possible and consider the maximal
near-decreasing sequence, α, at the top of the input stack. If the symbols occur-
ring in α do not form an interval, then any move other than taking the whole
sequence α and transferring it to the top of the working stack will, immediately
or eventually, cause the dreaded 13. It will cause an immediate 13 if we move
more symbols than occur in α, for the transition between the final element of α
and the next element of the input is an increase of more than 1. If, on the other
hand, we break α at some intermediate point or points, then eventually either
the same 13 as above will be formed, or some symbol of α from below a gap in
its values will be placed directly on top of some symbol from above that gap,
thus creating a 13. If the symbols occurring in α do form a consecutive interval,
then, as above, they must still all be moved to the working stack before any
element of the remainder of the sequence is. However, we can arrange to place
them on the working stack in order, with largest deepest. This is preferable to
any other arrangement on the working stack, for it makes the top element of the
working stack as small as possible, minimising the possibility of later creating a
dreaded 13.

Doing direct output as soon as it becomes available can never interfere with
sorting. For if we have a successful sequence of sorting moves which we modify
by doing some direct output earlier, we can simply continue to carry out the
successful sequence, ignoring any effect on symbols which have already been
moved to output – and we will still succeed. So we may assume that any
sorting algorithm does in fact perform direct output whenever it can. Then the
observations of the preceding paragraph imply that when direct output is not
available, the maximal near-decreasing sequence at the top of the input stack
must be moved. If this sequence contains gaps, there is no choice in how to

5

move it, and we have argued that if it does not, then moving it so that it forms
an increasing sequence on the working stack is at least as effective as any other
choice. This establishes that Algorithm 1 will correctly sort any input stack, if
it is sortable at all.

Algorithm 1 Sorting with a powerful fork-lift

repeat

Perform as many direct output moves as possible.
Move the maximal near-decreasing sequence from the top of the input stack
to the working stack, as a block if it contains gaps, so that it becomes
increasing if it does not.

until input stack is empty
if working stack is empty then

Success!
else

Failure.
end if

How does Algorithm 1 need to be modified in the case where either or both
of the forklifts moving from input to working stack, or from working stack to
output, are of limited power? The first issue is how to modify Proposition
2. The 13 configuration is bad regardless of the power of our forklifts, but if
our output lift is limited to moving t boxes we must add the condition that
the working stack should not contain an increasing sequence of length longer
than t. Now modifying the algorithm is straightforward. In the case where the
maximal near-decreasing sequence contains gaps it must be moved as a block to
avoid 13’s. So, if this block is larger than the capacity of our working forklift,
we fail. In the non-gap case, we would normally attempt to make the sequence
increasing. Of course this would be foolish if it overwhelmed the capacity of our
output lift (and it could be impossible depending on the capacity of our input
lift). The only other choice that does not create a 13 is to make it decreasing,
so this should be attempted if the first choice is unavailable. Failure may later
occur because we create a block that is too long to move in the working stack,
or a 13 there, but if not, then the algorithm will succeed.

4 Finite basis results

We now begin our combinatorial investigation of the collections of permuta-
tions sortable by various types of forklifts. The problem which we address in
this section is how to identify the sortable or unsortable permutations without
reference to Algorithm 1. In the following section we will consider the prob-
lem of enumerating these classes. For identification purposes we concentrate on
producing a list of minimal unsortable permutations.

6

Definition 3 Given permutations σ and π, we say that σ is involved in π, and
write σ � π if some subsequence of π, of the same length as σ, consists of
elements whose relative order agrees with those of the corresponding elements
of σ. A collection of permutations closed downwards under � is called a closed
class.

It is easy to see that each of the collections F(s, t) of sortable permutations for a
particular combination of forklifts is a closed class. This is because we may sort
any subsequence of a sortable sequence by simply ignoring any moves that do
not affect members of the subsequence. This policy cannot increase the load on
a forklift in any single move, so it still sorts the remaining elements. It follows,
that if we take U(s, t) to be the set of �-minimal unsortable permutations then:

π is (s, t)-unsortable ⇐⇒ σ � π for some σ ∈ U(s, t).

In particular, U(s, t) can be thought of as a description of F(s, t) and we shall
refer to it as the basis of F(s, t). For example, the case s = t = 1 corresponds
to sorting with a single stack, and it is established in [8] that

U(1, 1) = {213}

This differs superficially from the cited result, owing to our convention the
output should be produced with largest deepest, so it should be the largest
input item which is popped first.

Theorem 4 For any 1 ≤ s, t ≤ ∞ the set U(s, t) is finite.

Proof: As in the case of the sorting algorithm, we will first consider the case
s = t = ∞, and then modify the result to allow for the possibility of one or both
forklifts being of limited power.

In order to show that U(∞,∞) is finite, it is sufficient to establish that any
unsortable permutation π has an unsortable subsequence σ whose length is less
than some fixed upper bound. For in that case, the length of each element of
U(∞,∞) is less than that upper bound, and of course there are only finitely
many such permutations. So, let an unsortable permutation π be given. As π
is unsortable, Algorithm 1 fails to sort it, and so according to Proposition 2, it
must at some point produce a 13 in the working stack. We consider the state
of the system when the first move from input to storage which would create
a 13 is about to be made. The basic idea is that all of the elements which
contribute to the failure of the algorithm at this point have a reason for being
in the position that they are in. The collection of these elements, together with
the ones which give them their reasons form the obstruction, σ, to sortability
whose size is bounded. We warn the reader that the actual execution of this
idea is of very limited interest, and if she is convinced of its basic soundness it
would probably be better to skip it.

7

Let the block from the input stack whose movement creates the first 13 be B
with top element b, the contents of the working stack just prior to this move
be S with top element s, the remaining contents of the input stack be I with
top element i, and the contents of the output stack be O with top element o
(if any). The 13 which the move creates is some pair xs where x is the bottom
element of B.

As the algorithm specified making a block move from input, no direct output
can have been possible. In particular, since s could not be output directly, the
largest remaining element n1 smaller than o must be different from s (if o does
not exist, this element is simply the largest element overall). This element must
be in I , since were it in S then we would either have a 13 already, contrary
to hypothesis, or would be able to output the block including it and s, while
were it in B, direct output from B would be possible. Note that an indirect
consequence of this part of the argument is that I is non-empty.

Since the block B was broken off the input between x and i, there must be an
element n2 with x < n2 < i. This element might belong to B, I , or S.

Since the stack is non-empty, the preceding move onto the stack moved a block
whose top was s (or a block whose top was subsequently output after some direct
output from the input stack – but such elements are irrelevant). There are two
possible ways in which this block can have been broken off the input. Either it
ended just above the top of block B, or it ended just above some element which
has subsequently been output. In the first case, s lies above some element n3

(which was part of its block), so that for some element n4 we have n3 < n4 < b.
The element n4 might be in S, B, or I . In the second case, s lay above the
element o in the original input.

Finally, it might be necessary to ensure that the block B is not a block of consec-
utive elements (so that it is moved with x at the bottom, when rearrangement
would avoid the 13). This would be witnessed by the existence of an element
n5 with x < n5 < b and n5 in S or I .

Now consider an attempt to sort the subpermutation of the original permutation
whose elements are:

{b, x, s, o, i, n1, n2, n3, n4, n5}.
The elements nj (and in some cases, indirectly the other elements) ensure that
the xs pair will be produced in the working stack, and thus prevent sorting from
taking place.

Next consider the class F(∞, t) for some t < ∞. As the operation of the input
forklift is unrestricted, the only new obstructions which might arise would occur
when we had in the stack a sequence of t+1 or more elements which were forced
to be in increasing order (read top to bottom), since these would have to be
moved as a block but couldn’t be because of the output restriction. As we are
considering only new obstructions, we may take the t+1 largest of those elements
to form a consecutive block a through a + t. In the unlimited successful sorting
of this sequence they are placed on the stack in increasing order, the stack must

8

contain only smaller elements when they are added. No direct output affecting
a + t can occur while they are being added, so there must be a larger element
lying below them all in the input. If no direct output is to take place while they
are being added, then it is only necessary that they not be in an order which
would allow them to be placed on the stack in decreasing order – that is, in any
decreasing sequence of increasing blocks except

a(a + 1) · · · (a + t) and (a + t) · · · (a + 1)a.

In the former case, no interposing direct output can interfere with placing them
in the stack in decreasing order, so they are not forced to be in increasing order
on the stack, unless there is some subsequent b < a which must be placed in
the stack before they are removed. If so, this will also lengthen the block to be
removed by 1 element, and so we can shorten the block by one element. In the
latter case, this caveat also applies, but also any interposing element which is to
be output directly, would force the block into ascending order. So the elements a
through a+ t, the element b, or an interposing element, if required, and a larger
element preventing direct output, are sufficient to ensure that a through a + t
must be put on the stack in increasing order, and therefore provide any potential
new obstructions to sortability. For example, one such new obstruction in the
case t = 2 is:

3 2 5 1 4.

By running the sorting algorithm backwards we see that in general:

F(s, t) = F(t, s)−1.

As the basis of the collection of inverses of elements of a class is simply the
collection of inverses of its basis, we can conclude that the classes F(s,∞) are
also finitely based for any s. But then the arguments of the preceding paragraph
apply also to the class F(s, t), and so all these classes are finitely based.

Using the proof of the result above makes the computation of the sets U(s, t)
relatively straightforward. The set U(∞,∞) consists of the permutation 35142,
together with 45 permutations of length six, and 6 of length seven. The sets
U(1, t) are of particular interest in connection with the next section and they
are:

U(1,∞) = {2314, 3124, 3142}
U(1, t) = {2314, 3124, 3142, (t+ 1) t (t − 1) · · · 2 1 (t + 2)} (t ≥ 2)

U(1, 1) = {213}.

5 Enumeration of F(1, t)

In the case where s = 1, that is, the push operation onto the stack is restricted to
moving a single element, there are no possible choices in the sorting procedure.

9

Pops from the storage stack must be made whenever they are available, and
pushes made otherwise. This makes the enumeration of these classes relatively
straightforward, at least compared to the classes where more general pushes are
available, which we defer to the next section.

The basic plan is to search for structural requirements on sortable permutations
which are sufficient to develop algebraic relationships that the generating func-
tion for the class must satisfy. We will find the ordinary generating function of
each class in this collection. As in the case of finding bases for the class, it turns
out that the simplest instance to handle is the case t = ∞, and the remaining
instances can be derived from it by restriction in a fairly obvious way. The gen-
erating function for this class will be denoted f∞, and we use x as the variable
symbol.

Suppose then that we have some permutation π ∈ F(1,∞). Choose u to be the
maximum integer such that the elements 1 through u occur in π in decreasing
order (thus, if 2 follows 1, u = 1). So

π = σu u σu−1 (u − 1) · · ·σ2 2 σ1 1 σ0

for some sequences σ0 through σu, where u + 1 does not occur in σu.

Consider now the sorting procedure. The elements of σu are processed, and
then we come to u. Now by the choice of u, u + 1 has not yet been processed,
so we may not output u (except in the trivial case where all the σi are empty).
So u must be moved to the working stack. However, if it is non-empty at this
time, that move would create a 13. So the working stack must be empty, and
σu must have been a sortable permutation of a final subinterval of the values
occurring in π. Now proceed to the stage where u − 1 is about to be moved.
Again, either u + 1 has turned up by now, and the working stack is empty, or
it contains only the value u. In either case σu−1 is a sortable permutation of
a final subinterval of the remaining values. This argument persists inductively.
So in the end we see that u + 1 occurs in the first non-empty σj , and that the
general requirements for sortability are that σi be sortable for each i, and that
each σi be supported by an interval, with σ0 < σ1 < · · · < σu.

In other words, having determined u, we are free only to decide the sizes of the
individual σi, and then their structure within the class, but having chosen their
sizes, the elements that they contain are fixed. To carry out the enumeration,
we distinguish two cases according to whether or not σ0 is empty. If it is, then
π = π′1 where π′ is an arbitrary sortable permutation. Permutations of this
type are enumerated by xf∞. If σ0 is not empty, then the generating function
for the collection of permutations π of this type (with u fixed) is

(xf∞)u(f∞ − 1).

We can sum this over the possible values of u, and include the trivial case of an

10

empty permutation to obtain the equation:

f∞ = 1 + xf∞ + (f∞ − 1)

∞
∑

u=1

xufu
∞

or, after summing the geometric series:

f∞ = 1 +
xf2

∞
− x2f2

∞

1 − xf∞
.

We can then solve the resulting quadratic to get:

f∞ =
1 + x −

√
1 − 6x + 5x2

4x − 2x2
=

2

1 + x +
√

1 − 6x + 5x2
.

The sequence that this generating function defines:

1, 1 , 2, 6, 21, 79, 311, 1265, 5275 . . .

is number A033321 in [10], and the references provided for it there connect it
with other interesting enumeration problems.

The only change that needs to be made to find the generating function ft for
F(1, t) is to change the upper limit of summation in the relationship above from
∞ to t, since the maximum increasing sequence that we can deal with on the
working stack is of length t. Of course f1 is the generating function for the
Catalan numbers. In general, however, this gives an algebraic equation satisfied
by ft with coefficients that are polynomials in x. The form of this equation is
slightly simpler for the related function gt = xft namely

gt+1
t + (1 − x)(gt

t + gt−1
t + · · · + g2

t) − g + x = 0.

which can be simplified still further through multiplication by g − 1 yielding

0 = gt+2
t − xgt+1

t + (x − 2)g2
t + (x + 1)gt − x

= x(−gt+1
t + g2

t + gt − 1) + (gt+2
t − 2g2

t + gt).

This allows efficient exact enumeration of these classes using standard generating
function techniques. It also allows asymptotic expansions of the form:

cn =
r−n

n3/2

(

∑

k=0

ek

nk

)

to be computed to any desired degree of accuracy using the methods developed
in [5].

The behaviour of the radius of convergence r (whose reciprocal gives the expo-
nential part of the growth rate for the coefficients cn), as t increases from 1 to
∞ is particularly interesting. It begins at 1/4, since t = 1 gives us the Catalan

11

numbers and then decreases to 1/5 at t = ∞. However, the rate of convergence
to 1/5 is geometric, with the difference decreasing by roughly a factor of 3 at
each step. The first six values are:

.2500, .2114, .2033, .2010, .2003, .2001

We can justify these results formally by noting that the radius of convergence
in each case is the smallest positive root of the discriminant of the polynomial
which gt satisfies (this follows easily from results in [5]). Finding this root is
simplified by considering the second form of the equation for gt, namely (after
change of name for convenience):

x(−at+1 + a2 + a − 1) + (at+2 − 2a2 + a) = 0.

We seek a minimum positive value x0 of x for which the resulting polynomial
in a has a double root. In order for this to be true, that root will also be a root
of the derivative with respect to a of this equation, that is of

x(−(t + 1)at + 2a + 1) + ((t + 2)at+1 − 4a + 1) = 0.

Eliminating x between these two equations gives:

at+1(at+1 − ta2 + (t − 3)a + 2) − 3a2 + 4a− 1 = 0.

This equation has a root near a = 1/3 which corresponds to the smallest root
x that we seek. If we write that root in the form a = 1/3 + et, then the final
three terms will be of order 2et, while the value of the first expression will be
of order (1/3)t+1. In other words, the value of et decreases geometrically to 0
as t → ∞. Then substituting this value of a and solving for x shows that the
difference x − 1/5 is also geometrically decreasing.

6 Enumeration for F(s, t) (s, t > 1)

In carrying out the enumeration of F(1, t) we concentrated on the structure of
the sortable permutations. One reason for doing this was that, even in this
simple context, the series of operations required to sort a permutation is not
uniquely defined. For example 21 can be sorted either by a sequence of alter-
nating pops and pushes, or by two single pushes, followed by a pop of the whole
storage stack. When both s and t are larger than 1, this ambiguity in the op-
eration sequence is compounded in a very complex fashion, and as we shall see,
makes it difficult to carry out explicit enumeration. In fact, the only class of this
sort for which we will provide an explicit enumeration result is when s = t = 2.

In this section we will consider instead of the class of sortable permutations,
the class of permutations which we can generate, i.e. produce by some sequence
of operations from initial sorted input. As this class consists simply of the
inverses of the sortable permutations, there is no essential difference involved

12

in considering it instead. We shall be concentrating on operation sequences,
and the relationship, ∼, of equivalence between them defined as producing the
same output from initially sorted input. The goal of the argument then is to
produce a representative for each equivalence class of operation sequences. We
will show that it is possible to define a deterministic push-down automaton that
recognizes precisely one operation sequence from each equivalence class.

Since, in particular, the language accepted by such an automaton is an un-
ambiguous context free language, the results of section 2 in [3] imply that the
multivariate generating function for a representative class of operation sequences
satisfies an algebraic equation. By replacing the (variables corresponding to) a
push of i items by xi, and any pop operations by 1, each term which represents
a permutation of length n is replaced by xn and so we obtain the generating
function for permutations which we can generate. Thus we may conclude that
the generating functions for these classes of permutations are algebraic.

At present, the only class for which we have carried out the details of this
construction explicitly is when s = t = 2. We conclude the section with a
summary of the results for that case.

The structure of the argument is as follows:

• First, we introduce a simple form of reduction for operation sequences,
which allows us to consider only operation sequences which are in reduced
form.

• Second we argue that if two reduced operation sequences represent the
same permutation, then they must have the same “profile” (as defined
below).

• Finally we argue that even when two reduced operations sequences have
the same profile, they can only represent the same permutation in certain
special circumstances, circumstances so restrictive that, when the opera-
tion sizes are bounded we can find a suitable automaton.

It will be noted that as usual we deal primarily with the case s = t = ∞,
introducing the operation bounds only at the last moment, in each phase of the
argument.

In the operation of a forkstack let σ[a] denote the operation of pushing a ele-
ments onto the stack, and τ [b] the operation of popping b elements from it. If
the parameter a or b is omitted, it is taken to equal 1. A well formed operation
sequence is then a word in the symbols σ[a] and τ [b] with a and b running over
the positive integers, which has the property that for any initial segment, the
sum of the push sizes is at least as great as the sum of the pop sizes, and over
the whole sequence those sums are equal. The size of an operation sequence is
the sum of all its push (or pop) sizes, that is, it is the size of the input sequence
which it rearranges. Two operation sequences are equivalent if they have the
same size, n, and produce the same permutation when acting on input 12 · · ·n.

13

We associate with each operation sequence a series of vertices in the upper
quadrant of the plane. If the sequence is

α1α2 · · ·αm

then the associated vertices are v0 through vm, where v0 = (0, 0) and for i ≥ 1:

vi =

{

vi−1 + (ai, ai) if αi = σ[ai],
vi−1 + (ai,−ai) if αi = τ [ai].

We also associate with this sequence the path formed by the union of the closed
line segments [vi−1, vi] for 1 ≤ i ≤ m. This path, which we call the profile
of the operation sequence, is of course a Dyck path and, in the restricted case
where only single pops and pushes occur, the fact that distinct paths represent
inequivalent operation sequences is one of the methods for connecting stack-
sortable permutations to the Catalan sequence. Much of the difficulty in dealing
with more general operation sequences arises because the relation of equivalence
is not directly connected either to paths, or to their vertices. In figure 2 we
illustrate a lattice path for producing the sequence 512463. Notice that because
the output occurs onto a stack, the first element popped from the working stack
actually becomes the last element of the output permutation.

Figure 2: A lattice path for producing 512463

Suppose that within an operation sequence we have a consecutive pair of ele-
ments σ[a]τ [b] with either a > 1, or b > 1. If a ≥ b we may replace this pair by
the sequence σbτ bσ[a − b], and thus produce an equivalent sequence. If a < b
we may replace it with with τ [b − a]σaτa. By performing a sequence of such
reductions we can produce an equivalent operation sequences in which the only
peaks in the profile are represented as pairs στ . At that point, no further trans-
formations of this type are available. We will call an operation sequence with
this property, reduced. We have seen that every operation sequence is equiva-
lent to at least one reduced one (“at least” is necessary here since for example
σ[3]τ [3] is equivalent to both of σ[2]σττ [2] and σ3τ3).

14

Consider the form of a permutation produced through the operation of a fork-
stack according to a reduced operation sequence,

α = α1α2 · · ·αm.

At each peak, a sequence of pushes, culminating in the push of a single item,
is followed by a sequence of pops, beginning with the pop of a single item. Of
course this item, call it p, was the same as the one pushed by the final push –
we say that p is produced by this particular στ pair. As all the elements larger
than p are still in the input at the time that it is popped we see that, in the final
permutation π produced by the sequence, p will be larger than all the elements
that follow it. Such an element will be called a local maximum of π read right
to left. All other pops which directly follow this particular peak (i.e. which take
place before any more pushes) will produce elements in π which were already in
the stack before p was added, that is, elements smaller than p. This argument
establishes:

Lemma 5 Let α be a reduced operation sequence which produces a permutation
π. The elements of π which are produced by the στ pairs forming the peaks of
the profile of α are the local maxima of π read right to left.

The main reason for proving this lemma is to make use of it in showing that the
profile of a reduced operation sequence is an invariant of its equivalence class.
That is:

Theorem 6 Any two equivalent reduced operation sequences have the same pro-
file.

Proof: Suppose that α, as above, is a reduced sequence producing the per-
mutation π. By the preceding lemma, we can identify the elements of π which
arise from peaks in α. Any two peaks are separated in the profile by a descent
followed by a rise. The total length of the descent is the number of elements
popped between the peaks, and so is equal to the size of the gap between the
two corresponding elements of π. The size of the rise is equal to the difference
in the values of the local maxima. As these quantities depend only on π and
not on α, the profile of α is determined by π.

Next we will show that some of the segments making up the profile of a reduced
sequence α must also occur in any reduced sequence β equivalent to α. Unimag-
inatively, we refer to these as fixed operations. In order to characterise the fixed
operations we need to introduce the notion of corresponding operations within
an operation sequence. These are most easily understood in terms of the fork-
stack operation. Namely, we define the support of each push operation to be the
set of elements that it places on the stack (which is, of course, an interval), and
of each pop operation to be the set of elements which it removes from the stack
(not necessarily an interval). A push and a pop operation form a corresponding

15

pair if their supports have non-empty intersection. Graphically, a push and a
pop operation form a corresponding pair if there is a horizontal line segment
joining some interior point of the segment of the profile corresponding to each
of the operations which intersects the profile only at its endpoints (a connected
piece of a contour line at a non-integer height).

Proposition 7 If the subsequence of pops corresponding to a particular push,
in an operation sequence is not a subword of the operation sequence, then that
push is a fixed operation.

Proof: Let α be an operation sequence, and λ an element of α representing
a push that satisfies the conditions of the proposition. Certainly the size, a, of
λ is at least two. Suppose that λ pushes elements x + 1 through x + a onto
the stack. Up to and including the first pop, ν, corresponding to λ, the output
will consist of some elements smaller than x + 1 (output before the push λ was
made), a non-empty interval [x + a + 1, b], and an interval [x + 1, x + u], for
some u < a (u will be the length of the overlap between the segment of the
profile associated with ν, and that associated with λ). Among the subset of
these elements which are larger than x, the first element output (corresponding
to a peak) will be larger than x + a.

Suppose that x had not been output before the push λ was made. Then before
x + a or x are output, some other element c > b representing any one of the
peaks separating the pops corresponding to λ will be output. So, from the
permutation alone we can determine that x + 1 was added to the stack above
both x and x+a (but not x+a+1). That is, the push of the interval [x+1, x+a]
is fixed, as claimed.

On the other hand, if x had already been output when the push λ was made,
then it is separated from x+1 in the output by an element larger than x+a, and
using the remainder of the argument in the previous paragraph we can again
deduce that x + 1 was added to the stack above both x and x + a (but not
x + a + 1), and hence that the push λ is fixed.

Next we can find some fixed pops:

Proposition 8 If a push in an operation sequence is fixed then each of the pops
that correspond to it is also fixed.

Proof: Let λ be such a push, and ν such a pop. First consider the case where
ν pops only elements which were pushed by λ. Then ν partitions the support
of λ into three pieces, an initial segment I , a segment J which is the support of
ν, and a remainder K. In the output stack, all the elements of I are lower than
all the elements of J which are in turn lower than all the elements of K. Since
I , J , and K occurred in that order in the input stack (as λ was fixed), all of the
elements in I had to be popped before any elements of J , and all of them before
any elements of K. Furthermore the elements of J must have been popped

16

as a block since they occur in order in the output stack. That is, ν is fixed.
Essentially the same argument applies when the segment representing ν extends
above, below, or both above and below, the ends of the segment representing
λ. Consider, for the sake of illustration, the first of these possibilities. Then
ν pops from storage a block consisting of elements pushed by operations later
than λ, and then a non-empty initial segment I of the block pushed by λ. If
the initial part of this segment were broken up in any way (or extended further)
then elements of the output which should be above I would be below it, or vice
versa. If the end of ν were pushed downwards, then elements not in I would
finish below it in output, again an inconsistency with the output permutation.

By repeating the arguments above, or more simply by noting that we could read
an operation sequence in reverse, exchanging pops and pushes we obtain:

Theorem 9 Let α be a reduced operation sequence. Any operation whose cor-
responding operations do not form a subword of α is fixed, as is any operation
corresponding to a fixed operation.

Definition 10 A rise-fall subsequence of an operation sequence is a minimal
pair of subwords, the first of which consists entirely of pushes, and the second
entirely of the corresponding pops, both of the same size. Two operation se-
quences are rise-fall related, if one is obtained from the other by replacing one
rise-fall subsequence with another (in the corresponding part of the operation
sequence) without changing the output permutation.

For example, in the operation sequence:

σ[3]aσ[2]σ[1]bτ [1]bτ [1]σ[1]cτ [1]cτ [1]τ [2]aτ [1]a

there are three rise-fall subsequences, a, b, and c (the latter two in some sense
trivial) as marked by the superscripts. Write this sequence as σ[3]βτ [2]τ [1]. It
is rise-fall related to both of:

σ[1]σ[2] β τ [1]τ [2] and,
σ[2]σ[1] β τ [3],

because
σ[3]τ [2]τ [1] ∼ σ[1]σ[2]τ [1]τ [2] ∼ σ[2]σ[1]τ [3].

Theorem 11 Equivalence for reduced operation sequences is the transitive clo-
sure of rise-fall relatedness.

Proof: Almost by definition, the only changes that can be made to a re-
duced operation sequence in order to form another such sequence modify unfixed
pushes or pops. In a reduced operation sequence α, consider any maximal sub-
word αiαi+1 · · ·αm of unfixed pushes. If the last pop corresponding to αi ended

17

strictly below αi it would either correspond also to a fixed operation, αi−1, or
in the event that αi−1 were a pop, its corresponding operations would not form
a subword of α. So, it would be fixed, and hence so would αi be. Thus the last
pop αn, corresponding to αi ends at the level where αi begins. Similarly, the
first pop, αj , corresponding to αm begins where αm ends. Either the subword
from αj through αn consists of exactly the pops corresponding to elements αi

through αm, or there are some interposed valleys and peaks. In the latter case,
by the same argument as above, the bottoms of these valleys must occur at
junction points between the elements αi through αm, and these junction points
are determined by the positions of the various elements pushed by αi through
αm relative to the local maxima of the output permutation read right to left. In
other words, αiαi+1 · · ·αm breaks apart into a sequence of the rise parts of rise-
fall subsequences. The elements on which these rises operate are determined by
the profile, and so the only scope for modification in producing an equivalent
sequence is in changing some or all of these rise-fall subsequences through rise-
fall equivalences. These changes operate independently of one another, and so
we simply obtain the transitive closure of rise-fall relatedness.

It remains to characterize rise-fall relatedness, that is to determine which se-
quences of the form:

σ[a1]σ[a2] · · ·σ[ak]τ [bl]τ [bl−1] · · · τ [b1]

represent the same permutations.

By the condition on minimality:

a1 + a2 + · · · + ai = b1 + b2 + · · · + bj

if and only if i = k and j = l.

Let m = a1 + a2 + · · · + ak, and let:

si = a1 + a2 + · · · + ai

tj = b1 + b2 + · · · + bj .

In order to analyse which other sequences this might be rise-fall related to we
return to the analogy of reordering a stack of boxes using two forklifts. When
considering rise-fall sequences the operations consist of a series of moves from
the input stack to a storage stack, followed by another series of moves from the
storage stack to the final output. So we represent the original input sequence
1 2 · · · m as a column of numbers, with 1 at the top. We mark this column
(between elements) on the left hand side after the first si elements for each
i < k, and on the right hand side after the first tj elements for each j < l. If we
think of the markings as slips of paper, say red paper for the left marks, and blue
ones for the right marks, then they can be used to instruct the forklift operators
how to carry out the rise-fall sequence. The pushes are done by breaking the
input stack at each red slip. Then the pops are carried out by breaking the

18

storage stack at the blue slips. The minimality criterion is precisely that there
is no pair of boxes having both a red and a blue slip between them.

Obviously the blocks of the input between the marks are left intact, but some
rearrangement of those blocks is carried out. If we could argue that the blocks
originally consecutive in order were not consecutive and in the same order in
the output, and that we could determine the markings from the rearrangements
of the blocks alone, then it would follow that two distinct sequences represent
different permutations. Of course we cannot prove this, for we have already
seen that equivalence is a non-trivial relation on rise-fall sequences. However,
we shall show that all such sequences which belong to non-singleton equivalence
classes belong to two well-defined types: k = l = 2, and k = 1 or l = 1.

To do this, replace each block by a single element. There are now n = k + l− 1
elements, k − 1 markings on the left, and l − 1 on the right. We represent the
marks as a sequence of L’s and R’s, representing the side on which each mark
occurs, reading from the top of the input stack downwards. We will argue that,
provided n > 3 and there are marks on both sides prior to the last one, then we
can determine from the output permutation alone the type (L or R) of the final
mark, and the permutation which arises from deleting it and the last element.

Suppose first that the final mark is on the right. The last push move will then
be some sequence from j through n. This will be followed by singleton pops,
leaving the tail of the output permutation as (n − 1)(n − 2) · · · j. Assuming
that this suffices to identify the position of the final mark, we can also identify
the form of the permutation obtained by deleting n and the final mark. It is
obtained by deleting n − 1 from the output permutation and changing n to
n − 1. Note also in this case that n never immediately follows n − 1 in the
output. Now suppose that the final mark were on the left. This time, the
top of the storage stack, after all the pushes have been made, begins with n
followed either by a descending sequence beginning with n − 1 (corresponding
to other single pushes), or by a block from j through n − 1 for some j. In the
first case, the entire descending block plus one more element is removed by the
first pop, leaving an output tail of the form n(n − 1)(n − 2) · · · (n − k)r where
r < n − k − 1. Here note that the tail definitely differs from the right-marked
case. In the other situation we begin with a doubleton pop leaving a tail of
nj, again different from the right-marked case. In either case simply deleting
n from the final permutation leaves the permutation that results from deleting
it from the input also. So, these cases can be identified from the form of the
output permutation.

If n > 3 and all the marks save the last are on the same side, then we can tell
if the final mark is on the opposite side and also which side the original marks
were on. For note that the permutation marked by LL · · ·LR is n (n − 2) (n −
3) · · · 2 1 (n− 1), that marked by RR · · ·RL is (n− 1) (n− 2) (n− 3) · · · 2 1 n. If
the final mark on the same side, then it is still not possible to determine the
marking as both LL · · ·L and RR · · ·R produce n (n − 1) (n − 2) · · · 2 1.

19

We see that our goal of identifying the final mark, and the permutation arising
when the final element is deleted is achievable if n > 3 and if marks occur on
both sides. The only ambiguities that might seem to arise in the entire mark
sequence then are either in the first two positions, or in a block of left marks at
the top which might be changed to right marks. However, it is easily checked
that the latter case results in a different output permutation provided that there
are marks on both sides in the whole permutation. Furthermore, the only case
where the output permutation contains consecutive elements i and i + 1 in that
order occurs when n = 3, where we can produce 312 through a LR marking, and
231 through a RL one. Adding an additional mark on either side in either case
breaks the consecutive pair, and we have seen above, that no later consecutive
pairs can be formed.

What ambiguity does that leave us at the original level of elements rather than
blocks? If no pair of blocks which were originally consecutive in the input
are consecutive in that order in the output sequence then they are uniquely
identified. So, if there are at least three marks and they occur on both sides, then
the final permutation determines the marking (that is, the operation sequence)
completely. If the blocks are descending, then all the marks go on one side, but
we are free to choose which, and this gives two operation sequences producing
a single permutation. These two sequences are represented in general by:

σ[c1]σ[c2] · · ·σ[ck]τ [m] and σ[m]τ [c1]τ [c2] · · · τ [ck]

for any sequence c1, c2, . . . , ck of sum m. In subsequent arguments we will
always assume that the first of these sequences is chosen as the representative
of its equivalence class, in situations where both are available (either one might
overwhelm the capacity of one of our forklifts). This assumption is purely a
matter of convenience.

If there are only two marks, one on either side, then fixing one, we are free to
move the other arbitrarily (or to remove it if we wish). That gives for each
pair (j, m) with 1 ≤ j < m, a family of m equivalent operation sequences all
producing the permutation

(j + 1) (j + 2) · · ·m 1 2 · · · j.

These sequences are:

σ[1]σ[m − 1]τ [j − 1]τ [m − j + 1]
σ[2]σ[m − 2]τ [j − 2]τ [m − j + 2]

...
σ[j]σ[m − j]τ [m]

σ[j + 1]σ[m − j − 1]τ [m − 1]τ [1]
σ[j + 2]σ[m − j − 2]τ [m − 2]τ [2]

...
σ[m]τ [j]τ [m − j].

20

Finally, there is the case where there are no marks, arising from an original
pair σ[m]τ [m]. This of course represents the identity permutation, but that
permutation can also be constructed in many other ways by allowing left and
right marks, all at the same levels. We will always assume that the chosen
representative for this equivalence class is σmτm.

In the case where there are no limits on the sizes of the push and pop operations,
each other non-trivial equivalence class of rise-fall sequences contains exactly one
element which involves a series of pushes followed by a single pop.

We intend to show that it is possible to construct a deterministic push down
automata which recognizes only fully reduced sequences, and exactly one such
from each equivalence class of operation sequences when the size of a push is
bounded by s and that of a pop by t. Once again, the construction will be more
transparent if we first ignore the restriction on the sizes (though of course this
requires us to allow infinitely many states), and then to show that introducing
those restrictions trims the automaton down to a manageable, that is finite,
size.

Theorem 12 Let 1 ≤ s, t < ∞ be given. There exists a deterministic push
down automata whose accepted language consists only of fully reduced operation
sequences for the bounded forkstack where pushes up to size s and pops up to
size t are allowed, and which contains exactly one such sequence from each
equivalence class.

Proof: We begin by constructing a rudimentary automaton to recognize any
reduced operation sequence without bounds on the sizes of push or pop opera-
tions. This automaton simply has a stack holding two types of symbols, which
we will call red plates and white plates, together with a register which records
whether the preceding operation was a push or a pop. In the initial state the
stack is empty. Each push operation σ[j], beginning from a state where the top
plate is red (or the empty stack), simply puts j − 1 white plates, and one red
plate onto the stack, and records the last operation as a push. A pop operation
τ [l] basically pops the top l elements from the stack. However, it can fail in two
ways: if the stack contains fewer than l plates making the pop impossible, and
also if the preceding operation was a push, and l > 1 or l = 1 and after the pop
the top plate of the stack is not red. The accepting states are any state with
an empty stack. It is clear that this automaton recognizes precisely the reduced
operation sequences.

In order to recognize only a single element from each equivalence class we aug-
ment the automaton with green and amber plates, a dictionary, and a notepad.
The dictionary contains a chosen representative of each equivalence class of rise-
fall sequences. Metaphorically, the purpose of the notepad is to allow us to keep
a record when we are making pops which might possibly be part of a rise-fall
sequence. If we discover this to be false, we stop making notes, and return to
a blank page. If we determine that such a sequence has in fact occurred, we

21

check it against the dictionary to see whether it is the chosen representative of
its particular equivalence class. The purpose of the new coloured plates are to
provide markers where rise-fall sequences are broken up by intervening opera-
tions. When a push operation follows a pop, before adding plates to the stack
the top plate is replaced with a green plate if it was white, and an amber one
if it was red. Green plates definitely break up any potential rise-fall sequences
and so will cause recording on the notepad to cease. Amber plates behave as
green plates if they occur internally within a potential rise-fall sequence, but as
red ones if they form either end of such a sequence.

Formally then, we begin recording on the notepad each time that a pop sequence
begins with a red or amber plate on top of the stack. If at any point during
a recording sequence we pop a green or amber plate, we discard the current
contents of the notepad, and do not begin recording again until we reach a state
where the top of the stack is red or amber. On the notepad we record the size
of the pop made, and the size(s) of the pushes that it matches. If, after making
the pop, the top of the stack is again red or amber, we check to see whether we
have matched exactly one push (in which case we fail if the pop we just made
was of more than one element), two pushes a and b or some sequence of k ≥ 3
pushes. If there were two pushes we determine whether

σ[a]σ[b]τ [a + b]

is the chosen representative of that equivalence class. If so, we discard the notes,
and begin a fresh set. If not, we fail. If we matched at least three pushes, then
we simply continue with a fresh set of notes.

If, on the other hand, after the pop the top is white we check to see whether
we have already consumed at least two pushes. If so, we discard the notes and
wait until the next time the top of the stack is red or amber before beginning to
record again. If not, but the next element is a push, we again discard the notes.
If the next element is a pop, we do it, and then check whether the two pops
we have made have consumed exactly one or two pushes. If so, we check this
sequence against the dictionary to see whether it is the chosen representative,
and continue if it is, discarding these notes as usual, failing otherwise. If our
two pops have not yet used up a single push, we continue with pops (discarding
notes if there are any intervening pushes as usual) until we have either overrun,
or precisely matched a single push. In the latter case we fail, since our chosen
representative of that type consisted of a series of pushes followed by a single
pop.

Having made all these modifications it is now clear that our machine recognizes
exactly the reduced sequences all of whose rise-fall subsequences are the chosen
representatives of their equivalence classes, and only these.

Now consider the case where the size of a push is limited to s and that of a pop
to t. A minor modification is required in the situation where a series of pops
matches a single push. In the limited power situation we now fail only if each of
the pops could have been handled as a push and the whole sequence of elements

22

could have been handled with a single pop. Otherwise, we discard notes and
continue fresh.

The only situation in which we need to record sequences of more than four
moves on the notepad is when a series of pops are being matched to a single
push. This can lead to failure only if the total size of the pops is at most t (the
pop limit) and so the length of such a sequence is certainly bounded by t + 1
(we need to record the push as well). In any case, the notepad, and hence the
automaton, has only finitely many states. Of course the alphabet is finite as
well, consisting of s symbols for pushes, and t for pops. The resulting automaton
still recognizes precisely a single representative of each equivalence class of fully
reduced operation sequences in the reduced machine, exactly as we required.

Corollary 13 For any natural numbers s and t, the class of permutations which
can be generated by a forkstack whose pushes are limited to size at most s, and
whose pops are limited to size at most t has an algebraic generating function.
By reversal, this is also true of the class of permutations sortable by such a
machine.

For the case where s = t = 2 we have carried out the construction of the deter-
ministic push down automaton, analysed the resulting unambiguous context free
grammar, and applied the methods of [3]1 in order to determine the generating
function f of this class. The algebraic equation that f satisfies is:

x4f4 − (x4 + 2x3 − x2)f3 + (x3 + 2x2 − 3x)f2 − (x2 − 2x − 1)f − 1 = 0.

The radius of convergence of f is the least positive root of:

3x8 + 8x7 + 52x6 + 136x5 + 282x4 − 264x3 + 228x2 − 8x − 5 = 0

and has value approximately 0.18476. Note that this is already smaller than the
radius of convergence in the case s = 1, t = ∞ which was 0.2. This corresponds
to a larger exponential rate of growth in the class size. In other words, it is
better to have two forklifts each of which can move two boxes, than one which
can move only one, regardless of how powerful the other one is!

In fact, we can extend Theorem 12 to the case where one or the other (but not
both) of s or t is infinite. Consider the latter case. We don’t have a problem
with our notepad since we never need to worry about pops of size larger than
s, or sequences of more than s pops belonging to an equivalent pair. We do
have a problem with the alphabet as we seem to need an infinite number of pop
symbols. However, we deal with this by introducing a new symbol γ, whose
operational interpretation is as a single pop of the stack, but which we require
to occur in blocks of length at least s + 1 (a condition which is easy to enforce

1We reassure any properly sceptical reader that each part of this computation, as well as the

final generating function, was checked in at least two ways to be correct for all permutations

in the class and their corresponding operation sequences up to length 12.

23

while retaining finitely many states). When γ-pops are occurring, no recording
takes place because these can never be part of a rise-fall sequence. So, that
leaves only:

Question 1 Does the class of permutations generated by an unlimited fork stack
have an algebraic generating function?

References

[1] M. D. Atkinson: Restricted permutations, Discrete Math. 195 (1999), 27–
38.

[2] M. D. Atkinson: Generalised stack permutations, Combinatorics, Proba-
bility and Computing 7 (1998), 239-246.

[3] N. Chomsky and M. P. Schützenberger: The Algebraic Theory of Context-
Free Languages, in: Computer programming and formal systems ed. P.
Braffort, D. Hirschberg, North Holland, Amsterdam, 1963, 118-161.

[4] P. Flajolet and A. M. Odlyzko: Singularity analysis of generating functions.
SIAM Jour. Disc. Math. 2 (1990), 216-240.

[5] P. Flajolet and R. Sedgwick: The Average Case Analysis of Algorithms,
Complex Asymptotics and Generating Functions. INRIA Research Report
2026, 1993.

[6] I. P. Goulden, D. M. Jackson: Combinatorial Enumeration, John Wiley
and Sons, New York, 1983.

[7] J. E. Hopcroft, J. D Ullman: Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading, Mass. (1979).

[8] D. E. Knuth: Fundamental Algorithms, The Art of Computer Programming
Vol. 1 (First Edition), Addison-Wesley, Reading, Mass. (1967).

[9] V. R. Pratt: Computing permutations with double-ended queues, parallel
stacks and parallel queues, Proc. ACM Symp. Theory of Computing 5
(1973), 268–277.

[10] N. J. A. Sloane: The Online Encyclopedia of Integer Sequences,
http://www.research.att.com/~njas/sequences/, 2002.

[11] R. E. Tarjan: Sorting using networks of queues and stacks, Journal of the
ACM 19 (1972), 341–346.

[12] H. S. Wilf: generatingfunctionology, Academic Press, New York, 1993.

24

