Department of Computer Science,
University of Otago

UNIVERSITY

OTAGO

M/
LA

Te Whare Wananga o Otago

Technical Report OUCS-2002-09

Concurrent dynamic epistemic logic for MAS

Authors:
H.P. van Ditmarsch,
Department of Computer Science, University of Otago
W. van der Hoek,
Department of Computer Science, University of Liverpool
B.P. Kooi,
Computing Science, University of Groningen

Status: Submitted to AAMAS 2003

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/trseries/

Concurrent dynamic epistemic logic for MAS

H.P. van Ditmarsch
Computer Science
University of Otago

Dunedin, New Zealand

hans @cs.otago.ac.nz

ABSTRACT

When giving an analysis of knowledge in multiagent sys-
tems, one needs a framework in which higher-order infor-
mation and its dynamics can both be represented. A re-
cent tradition starting in original work by Plaza treats all
of knowledge, higher-order knowledge, and its dynamics on
the same foot. Our work is in that tradition. It also fits in
approaches that not only dynamize the epistemics, but also
epistemize the dynamics: the actions that (groups of) agents
perform are epistemic actions. Different agents may have
different information about which action is taking place,
including higher-order information. We demonstrate that
such information changes require subtle descriptions. The
contribution of our paper is that it provides a complete ax-
iomatization for an action language of van Ditmarsch, where
an action is interpreted as a relation between states and sets
of states. The applicability of the framework is found in ev-
ery context where multiagent strategic decision making is at
stake, and already demonstrated in game-like scenarios such
as Cluedo and card games.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

Keywords

agent communication, concurrency, actions, dynamic logic,
epistemic logic

1. INTRODUCTION

Since Hintikka’s [14] epistemic logic, the logic of knowl-
edge, has been a subject of research in philosophy [15], com-
puter science [9], artificial intelligence [17] and game the-
ory [3]. The latter three application areas made it more
and more apparent that in multiagent systems higher-order
information, knowledge about other agents’ knowledge, is
crucial.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS 2003, Melbourne, Australia

Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

W. van der Hoek
Computer Science
University of Liverpool
Liverpool, United Kingdom

wiebe@csc.liv.ac.uk

B.P. Kooi
Computing Science
University of Groningen
Groningen, the Netherlands

barteld@cs.rug.nl

The famous paper [1] by Alchourrén et al. put the change
of information, or belief revision, as a topic on the philosoph-
ical and logical agenda: it was followed by a large stream
of publications and much research in: belief revision, fine-
tuning the notion of epistemic entrenchement [18], revising
(finite) belief bases [6], differences between belief revision
and belief updates [16], and the problem of iterated belief
change [8]. However, in all these approaches the dynamics
is studied at a level above the informational level, making it
impossible to reason about change of agents’ knowledge and
ignorance within the framework, let alone about the change
of other agents’ information.

Our work takes these the observations on higher-order
knowledge and change of information as a starting point:
when giving an analysis of knowledge in multiagent systems,
one needs a framework in which higher-order information
and its dynamics can be represented.

Although the notion of a run in an interpreted system as
described in [9] makes it in principle possible to reason about
the dynamics of an agent’s knowledge, the interpretation
of a run is typically that of a standard program. Further,
the pioneering work of Moore [17] also studies the relation
between actions and knowledge: there the emphasis is on
epistemic preconditions that are needed to perform certain
actions in the world, such as knowing a key-combination in
order to open a safe.

From the point of view of expressivity, one can say that
the work on interpreted systems enables one to reason about
the (change of) knowledge over time, and by adding actions
to the language, one can also reason about the change of
knowledge brought about by performing certain plans. This
enables one to express properties like perfect recall and no
learning. Recently, based on work by Alur et al [2], van
der Hoek and Wooldridge [25] added a social or coalitional
aspect to an epistemic framework, giving them the possibility
to express that for instance a group can establish that some
knowledge is eventually obtained, or that two agents can
enforce that they exchange a secret, without a third agent
getting to know this.

Our work fits in approaches that not only dynamize the
epistemics, but also epistemize the dynamics: the actions
that (groups of) agents perform are epistemic actions. Dif-
ferent agents may have different information about which
action is taking place, including higher-order information.
This rather recent tradition treats all of knowledge, higher-
order knowledge, and its dynamics on the same foot. Follow-
ing an original contribution by Plaza in 1989 [22], a stream
of publications appeared around the year 2000 [11, 10, 4, 26,

24, 5, 29, 28, 23].

The following, possibly simplest example in the setting of
MAS (two agents, one atom) tries to demonstrate that the
notions of higher-order information and epistemic actions
are indeed important and may be subtle.

Anne and Bert are in a bar, sitting at a table.
A messenger comes in and delivers a letter to
Anne. The letter contains either an invitation
for a night out in Amsterdam, or an obligation to
give a lecture instead. Anne and Bert commonly
know that these are the only alternatives.

This situation can be modelled as follows: There is one
atom p, describing ‘the letter contains an invitation for a
night out in Amsterdam’; so that —p stands for the lecture
obligation. There are two agents 1 (Anne) and 2 (Bert).
Whatever happens in each of the following action scenarios,
is publicly known (to Anne and Bert). Also, assume that in
fact p is true.

ACTION SCENARIO 1. Anne reads the letter aloud. (tell)

ACTION SCENARIO 2. Bert is seeing that Anne reads the
letter. (read)

ACTION SCENARIO 3. Bert orders a drink at the bar so
that Anne may have read the letter. (mayread)

ACTION SCENARIO 4. Bert orders a drink at the bar while
Anne goes to the bathroom. Both may have read the letter.
(bothmayread)

After execution of the first scenario it is common knowl-
edge that p: in the resulting state Ci2p (i.e. Cyy 23p) holds.
This is not the case in the second scenario, but still, some
common knowledge is obtained there: Ci2(KipV Ki-p): it
is commonly known that Anne knows the contents of the
letter, irrespective of it being p or —p. Does this higher-
order information change in Scenario 3?7 Yes, in this case
Bert does not even know if Anne knows p or knows —p:
-K>(KipV Ki-p). In Scenario 4 something similar hap-
pens, that may best be described by saying that the agents
concurrently learn that the other may have learnt p or —p.
Now both agents may have learnt p, after which p is gen-
erally known — Ei2p —, but they are in that case unaware
of each other’s knowledge — =C'12p —, and that is commonly
known.

Van Ditmarsch has described such actions as knowledge
actions (with corresponding dynamic modal operators) in
a multiagent dynamic epistemic language [26, 29]. Knowl-
edge actions are interpreted as a relation between states.
The contribution of our paper is that it provides a com-
plete axiomatization for the extension of this language with
concurrency as found in [27, 28]. This builds on work on
concurrency in dynamic logic (PDL) [21, 13, 12] and is par-
tially related to game theoretical semantics for (extensions
of) PDL [19, 20].

The applicability of the framework is found in every con-
text where multiagent strategic decision making is at stake,
and already demonstrated in game-like scenarios such as
Cluedo and card games [26].

Section 2 introduces the language and its semantics. Sec-
tion 3 defines the axioms and derivation rules, its syntactic

p—1,2——p /1/177 .P
9—

bothmayread b | P |
I

2 | 2
| /p—l—l——\p

_1
pE—1,2——p

mayread

tell

p—2—-p

=

Figure 1: Actions for two agents and one atom. The
top left figure represents (Arc,u). Points of models are
underlined. Assume transitivity of access. For mayread
and bothmayread only one of more executions is shown.

prerequisites such as syntactic equivalence of actions, and
shows the soundness of this proof system. Section 4 shows
the completeness of this proof system. Section 5 gives some
applications of the language in specifying MAS dynamics,
and is followed by the conclusions (Section 6). Almost all
proofs have been omitted.

2. LANGUAGE AND SEMANTICS

Structures Given a finite set of agents N and a set
of atoms P, a (Kripke) model M = (W, R,V consists of a
domain W of worlds or factual states, for each agent n € N
a binary accessibility relation R, on W, and a waluation
V : P — P(W), or in other words: for each atom p € P,
a subset V, of W. Given a model, the operator gr returns
the set of agents: gr((W,R,V)) = N; this is called the
group of the model. The group of a set of models is the
union of the groups of these models. In an epistemic model
(commonly known as an S5 model) all accessibility relations
are equivalence relations. We then write ~,, for the equiv-
alence relation for agent n. If w ~, w' we say that w is
the same as w' for m, or that w s equivalent to w' for n.
Write ~p for (U,cp ~n)". Write S5y (P) for the class of
epistemic models for agents NV and atoms P, write S5¢c n (P)
for Ugcn S58(P). We drop the ‘P’ if it is clear from the
context.

For a given model M, D(M) returns its domain. Instead
of w € D(M) we also write w € M. Given a model M
and a world w € M, (M,w) is called a modal state, w the
point of that state, and M the model underlying that state.
Also, if M is clear from the context, write w for (M, w).
Similarly, we visually point to a world in a figure by under-
lining it. If s = (M, w) and w € D(M) we also write w € s.
All notions for models are assumed to be similarly defined
for modal states. Write eS5x (P) for the class of epistemic
states (‘pointed’ - ‘e’ - models) for agents N and atoms P.

EXAMPLE 5. The background setting for ‘Lecture or Am-
sterdam’ can be represented by an epistemic state. Arc is the
model ({u,v},~,V) such that both ~1 and ~2 are the uni-
versal relation on {u,v}, and V, = {u}. The state (Arc,u)
corresponds to p being actually the case. After Anne has

read the letter, a state is reached that is like (Arc,u) but
with ~1 = {(u,u), (v,v)} instead. See Figure 1.

Syntax To a standard multiagent epistemic language
with common knowledge for a set IV of agents and a set P of
atoms [17, 9], we add dynamic modal operators for programs
that are called knowledge actions and that describe actions.

act

The language L, the knowledge actions £%', and the group
gr are defined by simultaneous induction:

DEFINITION 6 (FORMULAS AND ACTIONS).
The formulas Ly (P) are defined by

pu=p|ap | (pAp)| Knp | Cee | [a]y

where p € P, n € N, B C N, a € LS(P), and ¢ €
Lgr(a)(P). The actions L¥(P) are defined by

To| LBl (ala)](a;)| (@Va)|(ana)
’theT'egOEEN(P),BQN,[BE[,%I(P), and/B’ € ;ﬁ«t(a)(P)}
and where the group gr(a) of an action o € L3(P) is de-
fined as: gr(?yp) := 0, gr(Lpa) := B, and gr(aed') :=
gr(a)Ngr(d/) fore=1,0U, ;.

Other propositional connectives and modal operators are
defined by standard abbreviations, in particular Epp :=
/\n cB K, p. Outermost parentheses of formulas and actions
are deleted whenever convenient. As we may generally as-
sume an arbitrary P, write Ln instead of Lx (P), and L5
instead of L¥'(P). Instead of, e.g., C(a,} We always write
Cupe- For an arbitrary epistemic (‘box’) operator K, write
K for its dual (‘diamond’). The dual of [a] is Cav.

The program constructor Lp is called learning. Action 7¢
is a test, (o ; ') is sequential evecution, (o U ') is nonde-
terministic choice, (! @) is called local choice, and (aNa’)
is concurrent exzecution. The construct Lg?¢p is pronounced
as ‘B learn that ¢’, the construct o ! o' is pronounced as
‘from o and o', choose the first’. We will see that the inter-
pretation of local choice depends on the context of learning
that binds it (as in Lg(a ! o): everybody in B but not in
a, o, is unaware of the choice, that is therefore ‘local’).

Th group gr was already used for the agents ‘occurring’
in epistemic states and models. It serves a similar function
on actions, whence the overloading. We need it, because
in expressions [a]p, epistemic operators in ¢ must occur in
epistemic states resulting from executing a (or they would
have no meaning).

A nondeterministic action can have more than one execution
in a given epistemic state. The only way to get such an
action is to use U (nondeterministic choice) operators in its
description. If we use ! operators instead, typically, only
some but not all of the agents are aware of the choices made.
Constructs U and ! are related by the type of an action:
The type t of an action is defined as t(a) := «[!/U] (replace
all !’s by U’s). Instead of a ! o' we generally write !a U
t(a') or t(a')U la. This expresses more clearly that given
choice between « and o, the agents involved in those actions
choose «, whereas that choice remains invisible to the agents
that learn about these alternatives but are not involved.

EXAMPLE 7. The description in L35 ({p}) of the actions

in the introduction are:

tell Lis?pU Li27-p
read L12(L1?p U Ll?—lp)
mayread Li2(Li?pU L1 7—-pU 7T)
bothmayread Li2((L17p N L27p) U (L17=p N L27-p)
ULl?p UL ?—lp U LQ?p U Lz?ﬁpU ?T)

For example, the description of read (Anne reads the letter)
reads as follows: ‘Anne and Bert learn that either Anne
learns that she is invited for a night out in Amsterdam or
that Anne learns that she has to give a lecture instead.’ In
the last two actions, instead of ?T (for ‘nothing happens’)
we may as well write TpUT—p.

EXAMPLE 8. The action read where Bert is seeing that
Anne reads the letter is different from the action where Bert
is seeing that Anne reads the letter and Anne is actually in-
vited for a night out. The last is described as Li2(L17p !
L17-p): of the two alternatives L17p and L17—p the first is
chosen, but agent 2 is unaware of that choice. A different
way of writing that action is L12(!L1?pUL17=p). The action
read is its type. Somewhat similarly, the action bothmayread
has four different exzecutions if p is true and another four if p
is false: there are eight ‘concrete’ actions (state transform-
ers) of that type.

Semantics The semantics of Ly (on epistemic mod-
els) is defined as usual [17], plus an additional clause for
the meaning of dynamic operators. The interpretation of a
dynamic operator is a relation between an epistemic state
and a set of epistemic states. The composition (Ro R') of
two relations R, R' : W — P(W) (such as [-]) is defined as
follows: let v € W,V C W, then: (Ro R')(v,V) & IV’ :
R(v,Vyand Yo' € V' : V" CV : R'(v',V") and V =
Uper {V" | R'(v',V")}. We write vR for {V | R(v,V)}.
Further, RUR' := {(v,V) | 3V, V" : R(v,V'),R'(v,V"),
and V =V'UV"}

In the semantics, we need a notion of equivalence between
sets of epistemic states. We lift equivalence of worlds in a
state to equivalence of states and to equivalence of sets of
states. Sets of states will occur as worlds in definition 11 of
action interpretation, and equivalence of such worlds for an
agent will be defined as equivalence of those sets.

DEFINITION 9 (EQUIVALENCE OF SETS OF STATES).
Let M,M' € S5y, v,w € M, and w' € M'. Let 8,5 C
oS5cn. Let n € N. Then:

(M, w) ~, (M,v)
(M,U)) ~n Mlaw,)

iff wep v

ciff veM: (M) o (M, w)
and (M, w) ~y (M,v)

ciff [Vs€S:negr(s)=3s €S :
s~ps Jand[Vs €S :
negr(s)=>3Is€eS:s~y s |

S~y S

In the second clause of the definition, < stands for ‘is
bisimilar to’ [7]. Bisimilarity is a notion of sameness between
states that implies equivalence of their logical descriptions
(theories), though not vice versa. The implicit symmetric
closure in the third clause of the definition is needed to keep
~, an equivalence relation.

We now continue with the semantics. The interpretation of
formulas and actions is defined simultaneously.

DEFINITION 10 (INTERPRETATION OF FORMULAS).
Let s = (M,w) € oS5x and ¢ € L, where M = (W, ~,V).
We define M,w = ¢ by inductive cases.

Muwkp iff weV(p)

Muwk—p iff Muwlg

MwEeAY iff MwkEye and MywEY

M,wkEKnyp iff V' :w ~, w= Mw @

M,wECpp :iff Vo' :w' ~pw=Muw' =

M,wEalpg :iff VS CeShcn : (M,w)[a]S =
I eS:s'Eo

DEFINITION 11 (INTERPRETATION OF ACTIONS).
Let « € L5'. The interpretation [a] of a in an arbitary
epistemic state s = (M,w) € e85y, where M = (W, ~, V),
is defined by inductive cases:
[Pel = {(s,5) | S ={((W,,0,V|W,),w)} }
[Lea] = {(5,S)]3S": s[a]S" and
S={(W' ~ V), 8} }
[o] = [o]o[]

[aud] = [o]U[]
[a!a] = [o]
[and] = [o]U[d]

In the clause for ‘test’, W, = {v € D(M) | M,v = ¢}.
In the clause for ‘learning’: W' := {(M',v') | Jv € M :
(M, v)[t()](M',v")}; for an arbitrary agent n, ~) = ~,,
seen as equivalence between sets of epistemic states; and
for an arbitrary atom p: S" € V, iff [for all (W', ~"
’VH>7wH) — S” E S”, w” E VI':/]'

The notion {«) is dual to [«] and is defined as s | (a)y
iff [3S C oS5cn : s[a]S and Vs € S : s |E ¢] This
may be intuitively more appealing: from the given state s,
we can reach a set of of states S where ¢ holds everywhere
(‘concurrently’). Our treatment of the dynamic operators is
similar to that in dynamic logic [21, 12].

A test results in an epistemic state without access for any
agent. This is appropriate: how knowledge changes is only
expressed in ‘learning’, so before we encounter a learn oper-
ator we cannot say anything at all about the knowledge of
the agents in the state resulting from action execution: no
access. One might as well say that, while compositionally in-
terpreting an action, the computation of agents’ knowledge
is deferred until L operators are encountered.

Learning Lp« is defined in terms of ¢(a), and this is how
local choice constructions a ! o’ get their meaning from be-
ing bound by a learning operator. To execute an action Lpa
in a state s, we do not just have to execute the actual ac-
tion « in the actual state s, but also any other action of the
same type t(a) as « in any other state s’ with the same un-
derlying model as s. The results are the worlds in the state
that results from executing Lgcd’ in s. Such worlds (that are
sets of states) cannot be distinguished from each other by
an agent n € B if it could not distinguish their origins and
it could not distinguish the actions resulting in those sets
of states either. An appealing way to define the equivalence
between worlds in the clause for ‘learning’ is to say that,
for state transformers 3, 3" of type a (and by further lifting
the notion of equivalence of sets of states to equivalence of
relations — such as induced by action interpretation):

(M, 0)[B] ~n (M, 0")[B] iff v~ and [B] ~n [5]

The semantics may appear complex, because worlds in the
model resulting from learning are actually sets of epistemic

Ly7p Li?—p

Em— Lus(Ly?pU Ly?-p) =

Figure 2: Details of the interpretation of action read in
(Arc,u) (see Figure 1). All access is visualized: access for
1 is a straight arrow, access for 2 is a dotted arrow. We
have abstracted from the point of Arc, the left two and
middle actions are actually executed in (Arc,u) and the
right two in (Arc,v). Linked boxes are identical.

states. It is therefore important to realize that this is merely
a compler naming device for worlds, but that the semantics
is simple where it matters: the accessibility between worlds
(simple: use ~,), and the value of atoms (simple: keep
current value).

If the interpretation of « in s is not empty, we say that « is
ezecutable in s. For all actions except concurrent knowledge
actions it is more intuitive to think of their interpretation
as a relation between states than as a relation between a
state and a set of states: if s[a]{s'}, we like to think of s
as the result of executing « in s. The notational abbrevia-
tion s[a]s’ < s[a]{s'} allows us to keep using this helpful
intuition. Further, if the interpretation is functional as well,
write s[a] for the unique s’ such that s[a]s’. If this is the
case for arbitrary s, we call a a state transformer. Note that
tests are state transformers.

EXAMPLE 12. The interpretation of read = Li2(L1i7p U
Li?-p) on (Arc,u) (see Ezample 5) is defined in terms of
the interpretation of L17pUL17-p on (Arc,u) and (Arc,v).
To interpret L17p U L17-p on (Arc,u) we may either inter-
pret Li7p or Li7—p. Only the first can be executed. The
interpretation of L17p on (Arc,u) is defined in terms of the
interpretation of Tp on any state (Arc,x) where ?p can be ez-
ecuted, i.e. where p holds, that is on (Arc,u); (Arc,u)[?p]
is the singleton state consisting of world u without access.
This epistemic state is therefore the single world in the do-
main of (Arc,u)[L1?7p]. That world has reflexive access for
1, because

(Are, w)[?p] ~1 (Are,w)[?p]

Etc. In the next and final stage of the interpretation, note
that (as worlds)

(Arc,u)[L17p] ~2 (Arc,u)[L17-p]
because agent 2 does not occur in those states, but that
(Arc, u)[L1?p] #1 (Are, u)[Li?—p]

because (Arc,u)[L17p] is not bisimilar to (Arc,w)[L17-p].
Further details have been omitted. See Figure 2, and Figure
1 for the other example actions.

Various algebraic action properties hold, such as associa-
tivity of U and of N. The two main theorems of interest for
the semantics are (for proofs see [29]):

THEOREM 13 (BISIM. IMPLIES MODAL EQUIVALENCE).
Let o € Ln. Let 5,8 be epistemic states. If s <+ s', then

sEpes Eo

THEOREM 14
Let o € L5 and 5,8’ € eS5y. For each S € eSHcn there is
a S € e85cn and a bijection f : S — S’ such that: If s & s’
and s[a]S, then s'[a]S" and for all s € S: 8" & f(s").

A corollary of theorem 14 is the following:

COROLLARY 15. Let 5,5 € oS5y and let « € LY be a
state transformer that is ezecutable in s. If s < s, then
s[a] & s'[a].

3. PROOF SYSTEM

In this section we present the proof system for concurrent
dynamic epistemic logic. It is based on the dynamic epistic
logics of [10] and [5], and on Concurrent PDL [21].

We first introduce some syntactic notions to be used in the
proof system: the set of state transformers that are the con-
cretizations or instances of an action, syntactic equivalence
of actions, and the precondition of an action.

A nondeterministic action can have more than one exe-
cution in a given epistemic state. By replacing nondeter-
ministic choice operators in a given action with local choice
operators we get a concrete action, i.e. a state tranformer,
of the same type.

DEFINITION 16. Set T'(«) is defined by induction on ac-
tion structure (no details) with only nontrivial clause T (aU
o) = {81 | B €T(a) and § € T(a)} U{F | B | B €
T(a) and B € T(a')}.

LEMMA 17. The interpretation of every action is equiva-
lent to nondeterministic choice between all the state trans-
formers that are its concretizations: [a] = [Uger(a) Bl-

Given some a, set T'(t(«)) is the set of all concretizations
of t(), i.e. the set of state transformers of type a. We now
use T'(t(a)) to define syntactic accessibility between actions:
given the finite and effectively computable set of all actions
of the same type, which of those are syntactically indistin-
guishable for an agent n? We omit details:

DEFINITION 18 (SYNTACTIC ACCESSIBILITY).
Given a € L5' and n € N, an equivalence relation ~, in-
duces a partition on T (t(a)).

(ACTION EXECUTION PRESERVES BISIM.).

ExampLE 19. Consider action Li2(!L1?p U Li7-p) (i.e.,
Li2(L1?p ! Li?7-p)). We have that T(L12(!L1?7pUL17-p)) =
{L12(\L1?p U L1 ?=p)} (it is already a state transformer),
that t(L12(!L1?p U Ll?ﬁp)) = L12(L1?p @] Ll?ﬁp) and that
T(t(L12('L17p U Ll?ﬁp))) = {L12 ('Ll?p @] Ll?ﬁp), L12(L1?p
U 1L1?7-p)}: there are two state transformers of that type.
Agent 1, but not agent 2, can tell learning p apart from
learning —p:

L12(!L1 ?p @] Ll?ﬁp) 761 L12(L1?pU 'Ll 7—|p)
L12(!L1?pUL1?—|p) ~9 L12(L1?pU !Ll?—lp)

PROPOSITION 20. Given are € L', n € N, and 3,8 €

T(t()). If B ~n B', then [B] ~n [B].

In other words: syntactic equivalence of actions implies
semantic equivalence. The converse does not hold! But we
will see that there are ‘just enough’ indistinguishable actions
to ensure completeness.

THEOREM 21 (PRESERVATION OF ACCESSIBILITY).
If v,v' € M € S5n such that v ~, V', and 3,5 € LY such
that B ~y, (', and (M, v)[B]S, then there is an S’ such that
(M,0")[B']S" and S ~, S".

COROLLARY 22. For state transformers 3,3 we have:
if v~ o' and ~on 8, then (M, 0)[8] ~n (M,0)[8'].

The last notion that we need in the proof system is that
of the precondition of an action. If the precondition of an
action holds, the action can be executed.

DEFINITION 23 (PRECONDITION).
pre(?¢p) =
pre(a ; B) = pre(a) A (a)pre(B)
pre(a UB) = pre(a) V pre(8)
pre(anfB) = pre(a) A pre(B)
pre(ae ! B) = pre(a)
pre(Lpa) := pre(a)

DEFINITION 24 (PROOF SYSTEM).

All propositional tautologies
Ku(p =) > (Kup = Kot
Knp = ¢

K,p — K,K,p

—Knp = Kn—Kyp

Cpp — (p A EpCpyp)

el < (¢ =)

[a 5 a']p < [a]la]p
[aUa']p < ([a]e Ale']p)
[ana'le < ([a]e V[a']e)
(Lpa)T « pre(Lpa)

[a !l < [a]p

[a]p < AgerBle

[a]p <> (pre(r) = p)

(¢ ANCs(p = EByp)) > Cpyp
[a]Kng <> (pre(a) = Kn A0, o [2]0)

LSS SN?v“-*-?'Q\m QO e

if ¢ and ¢ — 9, then ¢

if ¢, then K,¢

if ¢ = 1, then [a]p — [aly

if + for all a ~p B there is a xp such that:
xg = [Bly, and such that

B ~n o implies (x5 A pre(8)) = EgXar,
then xa — [@]Cep

W 3

A formula ¢ is deducable, abbreviated as - ¢, iff there ex-
ists a finite sequence of formulas such that each formula is
either an instantiation of one of the axioms a — p, or if it is
obtained by applying one of the rules q — t to formulas that

appear earlier in the sequence.
THEOREM 25 (SOUNDNESS). IfF ¢, then |= ¢.

The soundness of most of the axioms is easily seen. For m
we use lemma 17. For rule ¢ some more work needs to be
done. For this we need the following lemma (based on [5]).

LEMMA 26 (WITNESS PATH). [M,w = (a)Cr—] iff
[there is a B ~B a such that M,w = Cg{B)—¢].

EXAMPLE 27. + [L127p]Ci2p

1 p—p a

2 [Li2?plp & (p = p) n

3 [Lw2?plp a,q 1,2
4 T — [Li27plp a,q 3

5 T a

6 KlT T 5

7 KQT T 5

8 ((TAp)—»KiT)A({TAp)— K2T) a,q 6,7
9 T [Lm?p]Cmp t 4,8
10 [ng?p]clzp q 5,9

One might have expected a distribution axiom for [a], but
this is not sound. Such an axiom is also unsound in the logic
presented in [21], for the same reason: the interpretation of
actions are relations between states and sets of states. The
modality [a] correspond to a V3 quantifier and distribution
does not hold for that. We do have a weaker form of dis-
tribution in the form of rule s. This is all we need in the
completeness proof.

4. COMPLETENESS

The completeness proof is based on [5], [9], and [21]. Space
does not permit us to go into much detail. We generally fol-
low the structure of the proof in [5]. The main difficulty
in the proof is the truth lemma, which is proven by induc-
tion on formulas. We show that every formula is provably
equivalent to a formula in a sublanguage of the full lan-
guage. The induction follows the structure of the formulas
in the sublanguage. We first define the translation to the
sublanguage.

DEFINITION 28 (TRANSLATION).
f(p) =P
f(=p) = f(p)
FleAY) = @) AF{)
f(Knyp) = Knf(p)
f(Cryp) = Csflp)
F([Pely) = flp) = f(¥)
f(la 5 BlY) = [(la]f(81¥))
f([a U Bly) = [(la]e) A F([BlY)
f([an Bly) = f([a]d) v ([BlY)
f([a ! Bly) = f([a]y)
f([Lralp) = f(pre(a)) = p
f([LBa]-y) = VBeT(LBa) —f([Ble)
f(Lea(pA9)) = f([Lealp) A f([Lpaly)
f(Lpa]Knp) = f(pre()) = Kn Ay 0 F([Bl0)
f(LpalCry) = [Lef(®)|Csf(p)
f(LsdBle) = f([Lsadf([Bly))

() = 7f(y)
fla; B) == fla); f(B)
flaup) = fla)Uf(B)
flaenB) = f(a)Nf(B)
flal B) = fla)! f(B)
f(Lpa) := Lpf(a)

LEMMA 29. F f(p) ¢ ¢

The sublanguage has the following structure.

LEMMA 30. Given a formula ¢ € Ly, we have that f(p) €
E{V, where E{v is defined by the following BNF':

wi=p| w| wAw | Kpw | Cpw | [La]Cpw
where, if w' occurs in Lpa, it is also of the form w € E{V.

The next lemma shows we can apply induction on this sub-
language in the truth lemma.

LEMMA 31 (WELL-FOUNDED ORDER). There is a well-
founded order < on the language LN with the following prop-
erties: (1) for any subformula ¥ of ¢, ¥ < @, (2) < is
transitive, (8) f(p) < .

We can now start constructing the canonical model. Be-
cause logics with reflexive transitive closure operators are
generally not compact we need to construct a finite canon-
ical model for every formula. That means we only look at
maximally consistent sets with respect to some finite set of
sentences. This set of sentences is called the closure.

DEFINITION 32 (CLOSURE). Let w € L) The closure
of w is the minimal set Cl(w) C LY such that

1 weCll(w)

If W' € Cl(w) and w" is a subf. of W', then w" € Cl(w).
If ' € Cl(w) and w' is not a negation, then —~w' € Cl(w)
If Cpw' € Cl(w), then K,Cpw' € Cl(w), for all a € B.

If [@]CBw' € Cl(w), then for all B and all n € B such that
a~y, B: K, [B]Cew, [Blw' € Cl(w).

Tl W N

For any formula w € £, the closure of w is finite. We will
often write Q for Cl(w). Now we only look at maximally
consistent sets in 2. It is clear that any consistent subset of
Q can be expanded to a maximally consistent subset.

DEFINITION 33 (Q-CANONICAL MODEL).
The Q-canonical model is M = (W, ~2 V?) where

we = {IL'CQ:T is mazimally Q-consistent}
I~2A iff {WeQ|Kw el}

{_w' €| Kyw' € A}
Vep) = {T:pel}

Note that M is finite: it contains at most 2/ elements.
Moreover, note that it is a model in Sp, where B is the
group of agents that occur in ¢, because the accessibility
relations ~;’ are all equivalence relations. To ensure that
the truth lemma holds for sentences of the form [Lpa]Cpw
we need the following definition and lemma, which is also
based on a similar definition and lemma found in [5].

DEFINITION 34 (Goobp PATH). A good path from T' €
M* for (a)Cpp is a path in M

[=T0 ~py Tt~y -~y T

such that k > 0, n; € N and there are actions a; such that

Q= Qo ~Vny Q1 Vny t ot Yy Ok

such that (a;)T €Ty (0 <i<k) and {ar)y € .

LEMMA 35. Suppose [a]Crx € Q. Then: there is a good
path from To for {a)Cp—), iff (a)Cp—p € Tg.

This ensures that the truth lemma holds.

LEMMA 36 (TrRuTH LEMMA). IfT' € Waq, then for all
v € Q it holds that (Ma,T") E~v iff y € T.

Completeness follows in the standard way from the truth
lemma.

THEOREM 37 (COMPLETENESS). Iflf ¢, then there is a
model (M, w) such that (M,w) = ¢

PROOF. Suppose I/ ¢. Then, -y is consistent. Take w =
f(=¢). Note that ¢ and w are provably equivalent (Lemma
29). Now, there is a maximally consistent set I" in the closure
Q of w such that w € T'. Because of the finite truth lemma
we may conclude that (M, T) = w, and therefore (Lemma,
29), (Mq,T) = =g and thus (Mq,T) £ O

S. APPLICATIONS

In various publications this language has been applied to
describe the dynamics of concrete multiagent systems [26,
29, 28, 30]. We merely give an overview of application areas
by examples, without much detail.

ExAaMPLE 38 (CARD GAME ACTIONS).
Assume three players 1,2,3 and three cards a,b,c. Each
player is dealt one card. Atom ai represents the fact where
card a s held by player 1, etc. The action where player 1
picks up his card, so that the others cannot see which card
it 1s, is described by the action

pickup = Lia3 (Ll?al ULi?b1 U Ll?bl)

In some state s where each player is dealt one card and all
players have picked up their cards (for details, see [29]),
player 1 puts his card face up on the table. This is described
by the action

table = Lis37a1 U L1237b1 U L1237c1

Note that in a given epistemic state only one of these alter-
natives can be executed. Now in that same state s we can
also execute two rather different actions: firstly, player 1
can show his card to player 2 without player 3 seeing which
card is shown. This action is described by

ShOW = L123(L12?a1 U le?bl U L12?Cl)

Next, player 2 can ask player 1 “please whisper in my ear
the name of a card that you do not have,” after which player
1 responds to 2’s request. That action is described by

whisper = L123(L12?—-a1 U L12?—|b1 U le?ﬁcl)

In this case, whatever the actual state, 1 can choose one
of two cards to whisper (and indeed, the complezity of the
resulting epistemic state has now increased).

ExaMpPLE 39 (CLUEDO). The ‘murder game’ Cluedo is
a card game where actions as in the previous erxample can
take place. Other typical actions in Cluedo are ‘ending your
move’ and ‘winning the game’. For a perfect logician, ending
a move in Cluedo is publicly announcing that you cannot
win the game yet. This is the action Ly 7-win,,, where win,
is an epistemic formula describing knowledge of the ‘murder
cards’, the cards ‘held by the table’ (agent 0) so to speak, i.e.
win, = K, (scarletty A knifeg A kitcheng) V K,... (all murder
cards combinations).

EXAMPLE 40 (DIFFERENT CARDS).
Two players 1,2 face three cards a,b,c lying face-down in
two stacks on the table. Let a be the atom describing ‘card
a 1s in the stack with two cards’, etc. Some outsider hands
player 1 one of the two-stack cards and, ‘at the same time,
with his other hand’, player 2 the other (‘different’) card.
The action 1s described by

differentcards = L1 (U (L1?x N L27y))

r#y=a,b,c

ExaMPLE 41 (MUDDY CHILDREN). We assume familiar-
ity with the ‘muddy children problem’ [9]. Public announce-
ment of ¢ corresponds in Ly to a knowledge action Ly 7e.
Suppose there are three children 1, 2, and 8. First ‘father’
tells them that ot least one of them is muddy. This is de-
scribed by Li23?(m1 V ma V m3) (where m; stand for ‘child
t is muddy’). And then father tells them, that who knows
whether (s)he is muddy may step forward. When nobody
steps forward, that action noforward is generally [22, 11, 4]
analysed as the public announcement of a conjunction de-
scribing that none of the children knows whether he/she is
muddy L123?((—|K1m1 A —|K1 —|m1) A (—|K2m2 A —|K2—-m2) A
(mKsms A 7K3—mg3)). We prefer an analysis where ‘no-
body steps forward’ is composed of subprograms ‘1 does not
step forward’, ‘2 does not step forward’ and ‘8 does not step
forward’:

noforward = Li23(Li23?(=Kimi A =Ki—mq)N
Li23?7(nKoma A 7 Ko—ma)N
Li23?7(=K3zms A =K3z—mg3))

EXAMPLE 42 (SECURITY PROTOCOLS). From a pack of
seven known cards (0,1,2,3,4,5,6) two players Anne (a)
and Bill (b) each draw three cards and a third player Crow
(c) gets the remaining card. How can Anne and Bill openly
(publicly) inform each other about their cards, without Crow
learning from any of their cards who holds it? There are
many solutions to this problem [30]. Suppose Anne actually
holds {0,1,2} (012,), Bill {3,4,5}, and Crow card 6. One
of the solutions consists of Anne saying “My hand is one
of 012,034,056, 135,246” after which Bill says “Crow has
card 6”. This is described by the sequence of two public
announcements

Labe?7Ka (012, V 034, V 056, V 1354 V 2464) ;5 Lape?Kp6e

Hereafter, it is common knowledge that Anne knows Bill’s
cards, Bill knows Anne’s cards, and Crow doesn’t know any
of Anne’s or Bill’s cards.

6. CONCLUSIONS

We have presented a proof system, and proved it to be
sound and complete, for a dynamic epistemic logic in which

higher-order information and belief change, and even higher-
order belief change, can all be elegantly expressed. The
crucial technical features of the language are, (1) that the
notion of epistemic accessibility is lifted from one between
worlds of an epistemic state to one between more complex
semantic objects, such as sets of states, (2) the notion of the
group of models, states, and actions, and (3) that actions are
interpreted as a relation between states and sets of states. In
view of proving completeness, we introduced a useful notion
of syntactic access between actions. We gave an overview of
the wide range of applications of this language for concrete
MAS specification. We intend to continue this research by
generalizing the semantics to include (not just knowledge
but also) belief.

7. ACKNOWLEDGMENTS

Wiebe van der Hoek has carried out part of this research
while visiting the University of Otago on a William Evans
Fellowship. Barteld Kooi has been carrying out this research
with the assistance of the Netherlands Organization for Sci-
entific Research (NWO).

8. REFERENCES

[1] C. Alchourrén, P. Géardenfors, and D. Makinson. On

the logic of theory change: partial meet contraction

and revision functions. Journal of Symbolic Logic,

50:510-530, 1985.

R. Alur, T. A. Henzinger, and O. Kupferman.

Alternating-time temporal logic. In Proceedings of the

38th IEEE Symposium on Foundations of Computer

Science, pages 100-109, Florida, October 1997.

[3] R. Aumann and A. Brandenburger. Epistemic

conditions for Nash equilibrium. Econometrica,

(63):1161-1180, 1995.

A. Baltag. A logic for suspicious players: Epistemic

actions and belief updates in games. Bulletin of

Economic Research, 54(1):1-45, 2002.

[5] A. Baltag, L. Moss, and S. Solecki. The logic of public
announcements, common knowledge and private
suspicions. Presented at TARK 98, accepted for
Annals of Pure and Applied Logic, 2002.

[6] S. Benferhat, D. Dubois, H. Prade, and M. Williams.
A practical approach to revising prioritized knowledge
bases. Studia Logica, 70(1), 2002.

[7] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic. Cambridge University Press, Cambridge, 2001.
Cambridge Tracts in Theoretical Computer Science 53.

[8] A. Darwiche and J. Pearl. On the logic of iterated
belief revision. Artificial Intelligence, 89(1-2):1-29,
1997.

[9] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about Knowledge. MIT Press, Cambridge
MA, 1995.

[10] J. Gerbrandy. Bisimulations on Planet Kripke. PhD
thesis, University of Amsterdam, 1999. ILLC
Dissertation Series DS-1999-01.

[11] J. Gerbrandy and W. Groeneveld. Reasoning about
information change. Journal of Logic, Language, and
Information, 6:147-169, 1997.

[12] R. Goldblatt. Logics of Time and Computation. CSLI
Publications, Stanford, 2 edition, 1992. CSLI Lecture
Notes No. 7.

[2

[4

[13] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
MIT Press, Cambridge MA, 2000. Foundations of
Computing Series.

[14] J. Hintikka. Knowledge and Belief. Cornell University
Press: Ithaca, NY, 1962.

[15] J. Hintikka. Reasoning about knowledge in philosophy.
In J. Y. Halpern, editor, Proceedings of TARK 1986,
pages 63—-80. Morgan Kaufmann: San Mateo, CA,
1986.

[16] H. Katsuno and A. Mendelzon. On the difference
between updating a knowledge base and revising it. In
Proceedings of KR 91, pages 387-394, 1991.

[17] J.-J. Meyer and W. van der Hoek. Epistemic Logic for
AI and Computer Science. Cambridge Tracts in
Theoretical Computer Science 41. Cambridge
University Press, Cambridge, 1995.

[18] T. Meyer, W. Labuschagne, and J. Heidema. Refined
epistemic entrenchment. Journal of Logic, Language
and Information, 9:237-259, 2000.

[19] R. Parikh. The logic of games and its applications. In
M. Karpinski and J. van Leeuwen, editors, Topics in
the theory of computation Annals of Discrete
Mathematics 24, pages 111-139, Amsterdam, 1985.
Elsevier Science.

[20] M. Pauly. Logic for social software. PhD thesis,
University of Amsterdam, 2001. ILLC Dissertation
Series DS-2001-10.

[21] D. Peleg. Concurrent dynamic logic. Journal of the
ACM, 34(2):450-479, 1987.

[22] J. Plaza. Logics of public communications. In
M. Emrich, M. Pfeifer, M. Hadzikadic, and Z. Ras,
editors, Proceedings of the 4th International
Symposium on Methodologies for Intelligent Systems,
pages 201-216, 1989.

[23] B. ten Cate. Internalizing epistemic actions. In
M. Martinez, editor, Proceedings of the NASSLLI-2002
student session, Stanford University, 2002.

[24] J. van Benthem. Logics for information update. In
J. van Benthem, editor, Proceedings of TARK VIII,
pages 51-88, Los Altos, 2001. Morgan Kaufmann.

[25] W. van der Hoek and M. Wooldridge. Tractable multi
agent planning for epistemic goals. In C. Castelfranchi
and W. Johnson, editors, Proceedings of AAMAS,
pages 1167-1174, New York, USA, 2002. ACM Press.

[26] H. van Ditmarsch. Knowledge games. PhD thesis,
University of Groningen, 2000. ILLC Dissertation
Series DS-2000-06.

[27] H. van Ditmarsch. The semantics of concurrent
knowledge actions. In M. Pauly and G. Sandu, editors,
ESSLLI 2001 workshop on Logic and Games, 2001.

[28] H. van Ditmarsch. The description of game actions in
cluedo. In L. Petrosian and V. Mazalov, editors, Game
Theory and Applications, volume 8, pages 1-28,
Commack, NY, USA, 2002. Nova Science Publishers.

[29] H. van Ditmarsch. Descriptions of game actions.
Journal of Logic, Language and Information,
11:349-365, 2002.

[30] H. van Ditmarsch. The russian cards problem: a case
study in cryptography with public announcements.
Technical report, Department of Computer Science,
University of Otago, 2002. OUCS-2002-08.

