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Abstract

Bivariate generating functions for various subsets of the class of per-
mutations containing no descending sequence of length three or more are
determined. The notion of absolute indecomposability of a permutation
is introduced, and used in enumerating permutations which have a block
structure avoiding 321, and whose blocks also have such structure (recur-
sively). Generalizations of these results are discussed.

1 Introduction

Let a permutation τ ∈ Sk be given. A permutation π ∈ Sn is said to contain
the pattern τ if there exists a subsequence of π (written in the usual left to right
form) all of whose order relationships are the same as those in the corresponding
positions in τ . That is, for some 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n, and all 1 ≤ s, t,≤ k,
π(is) < π(it) if and only if τ(s) < τ(t). If π does not contain the pattern τ then
it is said to avoid the pattern τ . The collection of all permutations avoiding a
permutation τ is denoted A(τ).

The association of a permutation of {1, 2, . . . , n} with its graph provides a nat-
ural geometric viewpoint in which to consider pattern avoidance. In fact, in
this context “the pattern τ” is simply a subset of k vertices of the graph which
could be identified as the graph of τ without altering any horizontal or vertical
relationships.

Thus, for example, a permutation π avoids 132 if the points to the left of the
highest point of its graph, all lie above the points to the right, and this condition
is true recursively of the points to the left and to the right of the highest point.
Since, when we consider pattern avoidance, we are only concerned with the
relative horizontal and vertical positioning of the points in the graph of π, we
can represent the geometric information about 132 avoidance as a picture, with
a point for the maximum, and two bounding rectangles to its left and right, the
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Avoids 132

Avoids 132

Figure 1: Schematic representation of a 132 avoiding permutation.

former lying above the latter, together with an implicit understanding that the
structure within the rectangles is to be similar (see Figure 1). These associations
provide a geometrical context in which to consider pattern avoidance, and are a
common tool in understanding the class of permutations that avoid one or more
patterns. We explore some ramifications of this viewpoint in the very simple
situation of 321 avoiding permutations.

The main purpose of this paper then, is to show how the geometric context
provides a simple method to obtain more detailed enumeration results about
321 avoiding permutations than have hitherto been available. Moreover, these
results are obtained uniformly in some sense. The underlying technique consists
of identifying a suitable geometric configuration to be attained or avoided, and
then using the structural constraints which that implies in order to compute the
generating function, often multivariate, of the associated collection of permuta-
tions. We describe this construction and the basic results associated with it in
the next section.

The following section then applies the results to the problem of enumerating
the subsets of 321 avoiding permutations consisting of: plus irreducible, minus
irreducible, plus indecomposable, and simple permutations. These terms, and
their significance for enumeration questions are defined below. In the univariate
case, only the last of these is definitely new, although we have not found detailed
expositions of the others in the literature.

In the penultimate section we make use of the enumeration of the simple 321
avoiding permutations to enumerate another class, built from 321 avoiding per-
mutations by a recursive construction based upon the wreath product intro-
duced in [4]. In the final section we try to foreshadow future applications of the
methods illustrated here, and mention some connections with other work in the
area of pattern classes.
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Figure 2: A 321-avoiding permutation with four left to right maxima. The given
occupancies of the cells define the permutation 45 1 27 3 6108 9. Note that
the relative horizontal position of the occupants of the two occupied vertically
aligned cells is determined by the fact that the resulting permutation is not to
contain 321.

2 Graphs of 321-avoiding permutations

Thought of as a set of points, a permutation avoids 321 if it does not contain
three points, every pair of which determine a line segment of negative slope. Of
course it is also the case that any 321 avoiding permutation is the merge of two
increasing sequences. It is easy to see that one of these sequences can be taken
as the sequence of left to right maxima, that is, those elements which dominate
all of their predecessors.

Let a 321-avoiding permutation π be given, and let M be the set of points in
its graph which represent left to right maxima. The other elements of π form
an increasing sequence L. In the graph of π, each element of L lies below at
least one of the elements of M to its left. That is, if we think of the elements
of M as defining a grid structure on the plane by passing a horizontal and a
vertical line through each, then the remaining elements of the graph all lie in
cells to the right of and below at least one element of M . As the elements of L
are increasing, the pattern of elements within each occupied cell is determined
solely by the number of elements occurring in that cell, and no two cells can
be occupied if they are joined by a line of negative slope. The situation is
illustrated for the permutation 4512736(10)89 in Figure 2.

As is well known, the total number of 132 avoiding permutations of length n and
the total number of 321 avoiding permutations of length n are the same, both
being equal to the nth Catalan number. However, the schematic representation
of the 132 avoiding permutations makes the correspondence between them and
plane binary trees clear and hence also the equation satisfied by the generating
function of the class, while the corresponding diagram for the 321 avoiding
permutations does not. In some sense A(321) is a class which exhibits more
subtle structure than A(132) does.

Our earlier observations establish that, subject to having a fixed number of left
to right maxima, the possible 321 avoiding permutations that can be formed
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Figure 3: The coordinate frame for 321-avoiding permutations with four left to
right maxima (represented by the open circles). In this frame, the permutation
45 1 27 3 6108 9 would be represented by labelling (2, 0) with 2, (3, 0) and (3, 2)
with 1, (4, 3) with 2, and the remaining points with 0.

are in one to one correspondence with assignments of non-negative integers to
the cells of the corresponding diagram so that no two cells whose centres are
connected by a segment of negative slope are assigned positive labels. In order
to explore this correspondence further it is helpful to introduce a coordinate
frame to Figure 2 which is shown in Figure 3.

Using this coordinate frame, we see that the 321-avoiding permutations having
a fixed number n of left to right maxima are in one to one correspondence with
labellings of the grid points (i, j) with 0 ≤ j < i ≤ n by non-negative integers,
such that no two points connected by a segment of negative slope both carry
positive labels. Alternatively, we could connect the points carrying positive
labels by segments, add segments from (0, 0) to the first, i.e. leftmost and
lowest, such point and from the last such point to (n + 1, n + 1) and obtain
a correspondence with lattice paths in the plane from (0, 0) to (n + 1, n + 1),
below the line y = x (except at the endpoints) where each segment has non-
negative slope, and the end of each segment (except the last) carries a positive
integer weight (representing the number of elements in the corresponding cell).
The unweighted forms of such paths (or trivial variations) are enumerated in
[14] and [13], the former of which also provides a bijective interpretation of
the relationship between their enumeration and that of standard Delannoy and
Schröder paths.

Let S(x, y) be the generating function associated with such unweighted paths,
where the coefficient of xnyk in S(x, y) is the number of such paths from (0, 0)
to (n + 1, n + 1) having k + 1 segments. Then:

xS2 + (xy + x − 2y − 1)S + 1 + y = 0 (1)

This equation can easily be derived from those in the references cited above,
or by other methods, such as constructing a context free grammar representing
paths of this type.
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By substituting y = 1 we will obtain the total number of allowed pths with fixed
endpoints. So, defining S(x) = S(x, 1):

S(x)2 + (2x − 3)S(x) + 2 = 0.

The discriminant of the latter equation is
√

4x2 − 12x + 1 illustrating a connec-
tion between these numbers and the Schröder numbers (sequence A001003 of
[11]). In fact:

S(x) = 1 + 2x +
∞
∑

n=1

2n+1snxn

where sn is the nth Schröder number.

This sequence of coefficients also arises as the number of non-crossing graphs,
that is, graphs with n vertices arranged as the vertices of a convex polygon,
with straight edges connecting these vertices subject to the condition that no
two edges should intersect at an interior point. This result is due to [7], with a
more modern derivation, as well as other related results, given in [8].

If we consider the
(

n+1

2

)

sub-diagonal grid points of the original grid as the ver-
tices of a graph, Tn, two vertices being adjacent if they are connected by a line of
negative slope, then the coefficient of xn in S(x) counts the independent subsets
of Tn. The number of non-crossing graphs is also the number of independent
sets in a graph. Namely, take as vertices of the graph the set of all segments
between vertices of the polygon, with two such segments being considered if
they meet internally. In this graph NCn, a non-crossing graph corresponds to
an independent set.

So, the generating function for independent subsets of the sequence of graphs Tn

and NCn+1 are the same. In fact, inspection of the results in [8] together with
a little algebra shows that this is also true of the bivariate generating functions
which mark the sizes of the independent subsets. That is:

Proposition 1 For every n and every k, Tn and NCn+1 have exactly the same
number of independent subsets of size k.

However, it is easy to see that for n ≥ 4, Tn and NCn+1 are not isomorphic. For,
Tn has exactly four isolated vertices, while NCn+1 has n + 1 isolated vertices.
Detailed expressions for the coefficients in S(x) and S(x, y) can be found in [8]
(Theorem 2, part (ii)) as well as discussions of their asymptotic expansions.

3 Consequences for 321 avoiding permutations

Before turning to the enumeration of various subsets of the 321 avoiding per-
mutations we begin with some remarks about the full class (whose enumeration
is, of course, already well understood beginning apparently from [9]).
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In our original setting, the occupied cells arose by considering a 321 avoiding
permutation having n left-to-right maxima. We argued that any such permuta-
tion corresponded to a labelling of occupied cells with positive integers repre-
senting the number of elements of a permutation contained in a particular cell.
Let A(x, y) be the generating function for 321 avoiding permutations where the
exponent of x denotes the number of left to right maxima, and that of y the
number of remaining elements. Since we obtain a 321 avoiding permutation
from its corresponding path by replacing a single cell, marked by a y in S(x, y),
by a positive integer, marked therefore by yn for some n > 0, we obtain:

A(x, y) = S(x, y + y2 + · · ·) = S

(

x,
y

1 − y

)

We can also make this substitution in the equation that S satisfies and then
simplify to obtain:

yA2 + (x − y − 1)A + 1 = 0. (2)

On the other hand, it is perhaps more natural to count permutations of a com-
mon size. So, using Aam to denote the generating function where the coefficient
of xnyk is the number of 321 avoiding permutations of length n having k left to
right maxima, we obtain:

Aam(x, y) = S

(

xy,
x

1 − x

)

.

By algebraic manipulation this function also satisfies a quadratic equation with
coefficients polynomial in x and y namely:

xA2
am + (xy − x − 1)Aam + 1 = 0 (3)

A further reduction in complexity occurs when we substitute y = 1 in Aam (or
y = x in (2)) giving:

xA(x)2 − A(x) + 1 = 0

thus confirming, in a rather roundabout way, that the total number of 321
avoiding permutations of length n is enumerated by the Catalan numbers.

The coefficient of xnyk in Aam(x, y), which is non-zero only for 1 ≤ k ≤ n is a
Narayana number,

[xnyk]A =
1

n

(

n

k

)(

n

k − 1

)

.

These numbers also arise in [14], but not as a direct translation of this result
since we are no longer in the context of path counting. They also arise in a
number of other contexts including the enumeration of k-way trees ([3]) and as
the number of non-crossing partitions of n ([8]).

We now turn to the enumeration of various subsets of A(321). First let us define
those classes and the symbols used to specify them:

Definition 2 Let π be a permutation (in A(321)). Then:
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(A+irr) π is plus irreducible if it does not contain a subword of the form i (i+1),

(A−irr) π is minus irreducible if it does not contain a subword of the form
i (i − 1),

(A+ind) π is plus indecomposable if it does not have a proper initial segment
whose values form an initial segment of [1, n],

(A−ind) π is minus indecomposable if it does not have a proper final segment
whose values form an initial segment of [1, n],

(Asim) π is simple if it does not have a proper subword of length greater than
1 whose values form an interval in [1, n].

The irreducible or indecomposable elements of a collection of permutations can
(under suitable closure properties) be thought of as components in the con-
struction of the other elements of that class. Again, granted certain closure
and uniqueness assumptions, this can allow enumeration of the entire set based
on an enumeration of one of the collections of components, or vice versa. This
particular exposition of a general combinatorial theme is explored in [4]. We
note that the results in that paper could be used to derive the univariate gen-
erating function for the plus irreducibles and plus indecomposables in A(321)
(results which we will rederive here as a result of obtaining the bivariate form).
Furthermore, the only minus decomposable permutations that avoid 321 are of
the form:

(k + 1) (k + 2) · · ·n 1 2 · · ·k
so we will not concern ourselves with that case.

The condition of simplicity is a new one, and we will see its application in the
next section. The definition is not so unnatural as it might appear at first sight.
In terms of the graph of a permutation it says that if some proper, non-singleton,
part of the permutation is bounded by a rectangle, then there must be at least
one element of the permutation outside of the rectangle but in either the vertical
strip or the horizontal strip determined by it. That is, the permutation cannot
be decomposed into blocks in any non-trivial way.

Enumeration results in this section generally take equation (1) as their starting
point. So, all the generating functions we compute will be in the form where the
coefficient of xnyk marks the number of permutations of that type having n left
to right maxima and k other elements. As usual, a simple change of variable,
replacing x by xy and y by x would produce the function enumerating by total
number of elements, and number of left to right maxima.

If π is a plus irreducible member of A(321) then no cell can be occupied by
more than one element. Among the diagrams that meet this criteria, the plus
reducible elements contain sequences of more than one left to right maximum
such that the vertical and horizontal bands which they determine are otherwise
empty. Suppose then that we knew the generating function A+irr(x, y) for the
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plus irreducible members of the class. The preceding sentences imply that we
would obtain the generating function S(x, y) by replacing x in A+irr(x, y) by
x/(1−x). So, since the inverse of sending x to x/(1−x) is to send it to x/(1+x):

A+irr(x, y) = S(x/(1 + x), y).

Substitution and simplification in equation 1 then yields:

x(y + 1)A2
+irr

− (xy + 2y + 1)A+irr + (x + 1)(y + 1) = 0. (4)

The corresponding univariate form is:

x(x + 1)A2
+irr − (x + 1)2A+irr + (x + 1)2 = 0.

An element π of A(321) can only be minus reducible if some left to right maxi-
mum k is followed immediately by k − 1. So

π = αk (k − 1) β,

for some α, β ∈ A(321) (with β of course having all its values increased by k).
We can make this decomposition unique by requiring k, k−1 to be the first pair
of elements witnessing minus reducibility. Then α is minus irreducible, while β
could be any 321-avoiding permutation. Thus we obtain:

A(x, y) = A−irr(x, y) + A−irr(x, y)(xy)A(x, y).

Or, solving for A−irr(x, y):

A−irr(x, y) =
A(x, y)

1 + xyA(x, y)
. (5)

The bivariate algebraic equation for A−irr is not very pretty, but the univariate
form is more presentable:

(x4 + x2 + x)A2
−irr + (1 − 2x2)A−irr + 1 = 0.

Enumerating plus indecomposables is easier and standard. Every element of
A(321) is either of length 0 or of the form α1α2 · · ·αc where each αi is a plus
indecomposable, shifted upwards by the sum of the lengths of the preceding
α’s. Since this decomposition is unique, then using A+ind to enumerate the non
empty plus indecomposables, we obtain:

A =
1

1 − A+ind

,

which can then be readily solved for A+ind.

Finally we come to simplicity. Since the simple permutations form a subset
of the collection of plus indecomposables, and of the plus irreducibles, we be-
gin with the basic form of the generating function which is like that for plus
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Figure 4: A potential rectangle for the violation of indecomposability.

indecomposables. This already reduces us to permutations that are plus inde-
composable, and plus irreducible in their non left to right maxima.

S+ind(x, y) =
S(x, y)

1 + S(x, y)
.

Which, by now standard manipulations, satisfies:

(1 + y)S2
+ind − (1 + x + xy)S+ind + xy + x = 0.

Consider which non empty rectangles in the diagram associated to an element of
S+ind might not contain other elements inside the vertical and horizontal strip
which they define. In order for this to hold, the top edge of the rectangle cannot
cross a vertical line in the triangular grid of cells, nor can the left edge cross
such a horizontal line. So, the upper right and lower left corners lie outside of
the grid. Such a rectangle is illustrated in Figure 4. The vertical area above
the rectangle is automatically empty as is the horizontal area to the left. So
problems can occur only when we have a non-empty sequence of left to right
maxima such that there are no marked cells in the horizontal or vertical strip
which they define.

If we knew the function Asim(x, y) how could we compute S+ind(x, y)? An ele-
ment of the latter class could be obtained beginning from an element enumerated
by Asim(x, y) by inflating some of the left to right maxima into a sequence of
such maxima, adding no additional elements in the horizontal or vertical strips
which they determine. If we imagine in Figure 4 that the illustrated rectangle
(and subrectangles of it) are the only ones which cause a violation of simplicity,
then that permutation has been constructed by inflating the left to right max-
imum just to the left of the rectangle into six such maxima. As we’ve already
insisted on plus indecomposability, a rectangle whose leftmost boundary is to
the left of the first maximal cannot be problematic, and so there always is an
available maximal to inflate.
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n 0 1 2 3 4 5 6 7 8 9 10
all 1 1 2 5 14 42 132 429 1430 4862 16796
plus irr. 1 1 1 2 4 9 21 51 127 323 835
minus irr. 1 1 1 3 10 31 98 321 1078 3686 12789
simple 1 1 2 0 2 2 7 14 37 90 233

Table 1: Sizes of A(321) and some of its subsets
.

There is just a single exception. The permutation 1 is simple, but when we
inflate it we do not obtain plus indecomposable permutations.

Thus, beginning from Asim(x, y)− x, we should replace x by x/(1− x) in order
to obtain S+ind(x, y). Inverting this replacement we get:

Asim(x, y) = S+ind

(

x

1 + x
, y

)

− x

1 + x
.

Carrying out these substitutions and manipulations on the equations satisfied
by the generating function yields:

(1 + x)(1 + y)A2
sim

+ (xy − 1)Asim + xy = 0. (6)

Or in univariate form:

(x + 1)2A2
sim + (x2 − 1)Asim + x2 = 0.

In fact, this does not quite get us all the simples as it omits 1, 12, and the empty
permutation. Adjusting the equations to include these comes at considerable
cost to their appearance, so we prefer to leave the equation as it stands, adding
the necessary 1+x+x2 to the generating function post facto. Table 1 summarizes
the sizes of these subsets of A(321).

4 A “fractal” class

As an application of the final results of the preceding section we will show how
the knowledge of the generating function for Asim can be used to compute that
of a much more complicated class. At the risk of further abusing a term which
has suffered much abuse already we would like to introduce the class F (321)
of fractal 321-avoiders. These are permutations which, from a distance, appear
to avoid 321 but which on closer inspection are made up of blocks, arranged in
a 321-avoiding pattern where each block appears to avoid 321 but perhaps on
closer inspection is in fact made up out of blocks . . .

That is, π ∈ F (321) if either, π ∈ A(321), or π = α1α2 · · ·αc where

• the values occurring in each αi form an interval,
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• the permutation represented by αi is in F (321), and

• the relative ordering of the αi, interpreted as a permutation of length c is
in A(321).

Many well-known permutation classes can be defined as fractal classes in this
way, or occasionally as natural subclasses of such fractal classes. For example,
the class of separable permutations is precisely the fractal class generated from
the finite base class {12, 21}.
There is a complementary bottom up description of F (321). Namely, this class
is the closure of the class consisting just of 1 under the operation of replacing
an element of a permutation by a 321-avoiding block. For example:

1 → 2413 → 423615

where we initially replace 1 by 2413 and then replace the element 2 by the
permutation 312 while retaining its relative order within the entire permutation.
Geometrically, we begin with the graph of 2413 and then expand the vertex
representing 2 into a copy of the graph of 312. Such replacements could just
as easily be applied to each element of a permutation and, in some sense, they
already have been, only 1 has been replaced by 1 in three instances. Thus
the two descriptions are equivalent – the permutation 423615 consists of blocks
(423)(6)(1)(5) whose relative order is 321-avoiding, and where each block is in
F (321) (in this instance, in fact in A(321)).

We could also define F (321) algebraically using the wreath product operator of
[4] as the smallest non-empty class X satisfying the equation X = X o A where
A = A(321). This corresponds to the bottom up description, while the top
down one would suggest X = A oX . Consider the first equational description of
X . Since X contains A we also get that X contains A oA. Then also X contains
(A o A) o A and so on. Letting An = An−1 o A for n > 1, and A1 = A we obtain

X ⊇ ∪∞

n=0A
n.

On the other hand, the right hand side is contained in its wreath product with
A, and so by the definition of X :

X = ∪∞

n=0A
n.

The second equational definition can be manipulated in the same way and in
fact, as the wreath product is associative, leads to the same equation, thus
confirming that the two approaches are indeed equivalent.

Such an algebraic representation suggests that we ought to be able to transfer
our knowledge of generating functions for A to similar knowledge about F .
There is though, a small complication. This arises from the fact that the choice
of blocks to witness the fact that a permutation belongs to F (321) is not uniquely
defined. We need to obtain uniqueness of some sort if we hope to carry out the
enumeration, and the following general result helps to provide that.
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Definition 3 Let θ be a permutation of length k and let π be a permutation
of length n. Then π is θ-decomposable if π = α1α2 · · ·αk for some non-empty
subwords αi such that the set of values occurring in each of the αi forms an
interval and the relative ordering of these values agrees with the relative ordering
of the corresponding elements of θ. The factorization π = α1α2 · · ·αk is called
a θ-decomposition of π.

With this new definition, we see that a permutation of length 3 or more is plus
decomposable if and only if it is 12-decomposable, while a permutation π is
simple if and only if it is not θ-decomposable for any θ 6= π. The following
result appears (with different terminology) in [10].

Proposition 4 Let π be an arbitrary permutation. Then there is a unique
simple permutation θ such that π is θ-decomposable. Moreover, if θ 6= 12 and
θ 6= 21 then the θ-decomposition of π is also unique, and is the coarsest non-
trivial decomposition of π into subwords whose values form intervals.

For example, for 423615 this decomposition is (423)(6)(1)(5) with relative or-
dering 2413, while for 724513986 it is (7)(24513)(98)(6) with relative ordering
3142. On the other hand 123 which is 12-decomposable admits two such de-
compositions.

We now return to the analysis of F (321). Let π ∈ F (321) be given. Suppose that
it is neither 12-decomposable nor 21-decomposable. By the proposition above,
π = α1α2 · · ·αk for some subwords αi whose values form intervals, and whose
relative ordering forms a simple permutation. Since π has some decomposition
into subwords whose relative ordering avoids 321, and since the α’s form the
coarsest possible proper partition of π into subwords whose values form intervals,
it must be the case that the relative ordering of the αi avoids 321. Of course,
we also have that each αi belongs to F (321). Conversely, given αi in F (321),
shifted to have relative order equal to some simple element θ of A(321), then, by
the very definition of F (321), the permutation α1α2 · · ·αk belongs to F (321).

Let F (x) be the generating function for F (321), taken to have constant term
0, and Asim(t) be the univariate generating function for the simple members
of A(321) of length greater than or equal to 3. From the above we see that
Asim(F (x)) is the generating function for the elements of F of length at least
3 which are neither 12-decomposable nor 21-decomposable. Let F+ denote the
generating function for the 12-indecomposable elements of F , and F− that of
the 21-indecomposable elements of F , again taken with constant term 0. Then
F+F enumerates the 12-decomposable members of F while F−F enumerates
the 21-decomposables. Further relations arise from the observation that a 12-
indecomposable is either 21-decomposable or both 12- and 21-indecomposable,
and similarly for minus indecomposables. We thereby obtain the system of
equations:

F = x + F+F + F−F + Asim(F )
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F+ = x + F−F + Asim(F )

F− = x + F+F + Asim(F ).

Solving this system for F gives:

F 2 + (Asim(F ) − 1 + x)F + Asim(F ) + x = 0. (7)

We can use the work of the previous section to obtain a radical expansion of
Asim:

Asim(x) =
1 − x −

√
−3 x2 − 2 x + 1

2(x + 1)
− x2.

Then substitution in (7) and elimination of radicals gives:

F 6 + (−2 x + 3) F 4 + (−2 x − 1)F 3+
(

−3 x + 3 + x2
)

F 2 +
(

2 x2 − 1 − 2 x
)

F + x + x2 = 0. (8)

The first few terms of the associated power series are:

x + 2 x2 + 6 x3 + 24 x4 + 116 x5 + 625 x6 + 3580 x7+
21297 x8 + 130084 x9 + 810737 x10 + O

(

x11
)

and the exponential constant governing the growth rate, is the reciprocal of the
radius of convergence of this series. This radius is the least positive root of the
discriminant of (8), which is an irreducible polynomial of degree 7. The value
of the exponential constant is approximately 7.346751, compared to 4 for the
underlying class A(321).

5 Remarks and Conclusions

We remarked that it was possible to find an unambiguous context free grammar
which described the paths that formed the central part of all our enumeration
results. In general there is a close connection between combinatorial classes with
algebraic generating functions and unambiguous context free languages. This
connection can either be used to provide an explicit enumeration of a class, or to
provide a “soft” proof that the generating function of a class is in fact algebraic.
The former approach has become much more attractive with the ready avail-
ability of symbolic algebra packages since the algebraic manipulations necessary
to solve the equations arising from the grammar are undeniably tedious. The
latter approach has been used in [2] to provide algebraicity results for a family
of pattern classes. It can also be used in the context of generating functions for
generating trees, thereby generalizing a number of the theorems in [5] about the
existence of algebraic generating functions. It must be noted though that the
results of that paper and similar results in [6] provide much more explicit detail
concerning the generating functions that they produce.
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One of the striking features of the equations for the various irreducible and
indecomposable subsets of A(321) is their simplicity. In some sense then the
enumerative coincidences that we observed are not so startling, since there is a
relatively limited supply of simple quadratic equations. Because of the simple
form of these equations, one could apply Lagrange inversion to obtain explicit
formulae for many of the coefficients, as is done for example in [8], or indeed
carry out detailed asymptotic analyses of these coefficients.

We restricted ourselves to bivariate generating functions but the reader should
note that the techniques employed can be naturally applied to produce other
statistics of these permutations. For example, it would be a simple matter
to produce, if one wished, a generating function A(x, y, z, w) where x marked
total size, y marked left to right maxima, z marked the number of occurences
of i(i + 1) among the left to right maxima, and w that number among the
remaining elements.

The class A(321) is the simplest pattern class, in terms of the patterns which
it avoids, that contains infinitely many absolutely irreducibles. The techniques
used in the preceding section to solve (in the sense of enumeration) the wreath
fixed point equation:

X = A o X
apply, owing to proposition 4, completely generally to any base class A in which
the absolutely irreducibles can be enumerated. In particular for a positive inte-
ger n let Dn be the class of permutations which “fractally have ≤ n elements”.
That is, they are comprised of at most n blocks, each of which is comprised of
at most n blocks, each of which . . . Then Dn is the solution of the fixed point
equation:

X = Fn o X
where Fn is the class of permutations of size ≤ n. Since Fn is finite equation
(7) is simply a polynomial and we obtain:

Corollary 5 Each of the classes Dn has an algebraic generating function.

There is much further information to be gleaned from the representation of a
class as a subclass of Dn and we hope, along with M. Atkinson and M. Murphy
to explore these matters in a future paper.

One aspect of F (321) that has been notably omitted is a description in terms
of minimal forbidden patterns. It appears that this set may be finite consisting
of:

42513, 35142, 41352, 362514, 531642

but all that can be said with certainty at this point is that no further minimal
forbidden patterns exist of length 12 or less.
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