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Concurrent dynamic epistemic logic

H.P. van Ditmarsch* W. van der Hoek! B.P. Kooit

Abstract

When giving an analysis of knowledge in multiagent systems, one needs
a framework in which higher-order information and its dynamics can both
be represented. A recent tradition starting in original work by Plaza treats
all of knowledge, higher-order knowledge, and its dynamics on the same
foot. Our work is in that tradition. It also fits in approaches that not
only dynamize the epistemics, but also epistemize the dynamics: the ac-
tions that (groups of) agents perform are epistemic actions. Different
agents may have different information about which action is taking place,
including higher-order information. We demonstrate that such informa-
tion changes require subtle descriptions. Our contribution is to provide a
complete axiomatization for an action language of van Ditmarsch, where
an action is interpreted as a relation between epistemic states (pointed
models) and sets of epistemic states. The applicability of the framework
is found in every context where multiagent strategic decision making is
at stake, and already demonstrated in game-like scenarios such as Cluedo
and card games.

1 Introduction

Since Hintikka’s [Hin62] epistemic logic, the logic of knowledge, has been a
subject of research in philosophy [Hin86], computer science [FHMV95], artificial
intelligence [MvdH95] and game theory [AB95]. The latter three application
areas made it more and more apparent that in multiagent systems higher-order
information, knowledge about other agents’ knowledge, is crucial.

The famous paper [AGM85] by Alchourrén et al. put the change of infor-
mation, or belief revision, as a topic on the philosophical and logical agenda:
it was followed by a large stream of publications and much research in belief
revision, fine-tuning the notion of epistemic entrenchement [MLHO0], revising
(finite) belief bases [BDPWO02], differences between belief revision and belief
updates [KM91], and the problem of iterated belief change [DP97]. However, in
all these approaches the dynamics is studied on a level above the informational
level, making it impossible to reason about change of agents’ knowledge and
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ignorance within the framework, let alone about the change of other agents’
information.

Our work takes these the observations on higher-order knowledge and change
of information as a starting point: when giving an analysis of knowledge in
multiagent systems, one needs a framework in which higher-order information
and its dynamics can be represented.

Although the notion of a run in an interpreted system as described in
[FHMV95] makes it in principle possible to reason about the dynamics of an
agent’s knowledge, the interpretation of a run is typically that of a standard
program. Further, the pioneering work of Moore [MvdH95] also studies the
relation between actions and knowledge: there the emphasis is on epistemic
preconditions that are needed to perform certain actions in the world, such as
knowing a key-combination in order to open a safe.

From the point of view of expressivity, one can say that the work on in-
terpreted systems enables one to reason about the (change of) knowledge over
time, and adding actions to the language, one can also reason about the change
of knowledge brought about by performing certain plans. This enables one to
express properties like perfect recall and no learning. Recently, based on work
by Alur et al [AHK97], van der Hoek and Wooldridge [vdHWO02] added a social
or coalitional aspect to an epistemic framework, giving them the possibility to
express that for instance a group can establish that some knowledge is even-
tually obtained, or that two agents can enforce that they exchange a secret,
without a third agent getting to know this.

Our work fits in approaches that not only dynamize the epistemics, but
also epistemize the dynamics: the actions that (groups of) agents perform are
epistemic actions. Different agents may have different information about which
action is taking place, including higher-order information. This rather recent
tradition treats all of knowledge, higher-order knowledge, and its dynamics on
the same foot. Following an original contribution by Plaza in 1989 [Plag89)], a
stream of publications appeared around the year 2000 [GG97, Ger99, LR99,
Bal99, vD00, vB01, BMS02, vD02b, vD02a, tC02].

The following, possibly simplest example in the setting of multiagent systems
(two agents, one atom) attempts to demonstrate that the notions of higher-order
information and epistemic actions are indeed important and may be subtle.

Anne and Bert are in a bar, sitting at a table. A messenger comes in
and delivers a letter that is addressed to Anne. The letter contains
either an invitation for a night out in Amsterdam, or an obligation
to give a lecture instead. Anne and Bert commonly know that these
are the only alternatives.

This situation can be modelled as follows: There is one atom p, describing
‘the letter invites Anne for a night out in Amsterdam’, so that —p stands for
her lecture obligation. There are two agents 1 (Anne) and 2 (Bert). Whatever
happens in each of the following action scenarios, is publicly known (to Anne
and Bert). Also, assume that in fact p is true.



Action scenario 1 (tell) Anne reads the letter aloud. =
Action scenario 2 (read) Bert is seeing that Anne reads the letter. =

Action scenario 3 (mayread) Bert orders a drink at the bar so that Anne may
have read the letter. =

Action scenario 4 (bothmayread) Bert orders a drink at the bar while Anne
goes to the bathroom. Both may have read the letter. -

After execution of the first scenario it is common knowledge that p: in
the resulting epistemic state Ciap (i.e. Cf123p) holds. This is not the case
in the second scenario, but still, some common knowledge is obtained there:
C12(K1p V Ki—p): it is commonly known that Anne knows the contents of the
letter, irrespective of it being p or —p. Does this higher-order information change
in Scenario 3?7 Yes, in this case Bert does not even know if Anne knows p or
knows —p: —~Ko(K1pV K1—-p). In Scenario 4 something similar is happening,
that may best be described by saying that the agents concurrently learn that
the other may have learnt p or —p. Note that in this case both agents may have
learnt p, so that p is generally known: FEj2p, but they are in that case unaware
of each other’s knowledge — =C12p —, and that is commonly known.

Van Ditmarsch has described such actions as knowledge actions (with cor-
responding dynamic modal operators) in a multiagent dynamic epistemic lan-
guage [vD00, vD02b]. Knowledge actions are interpreted as a relation between
epistemic states. The contribution of our paper is that it provides a complete
axiomatization for the extension of this language with concurrency as found in
[vD01, vD02a]. This builds on work on concurrency in dynamic logic (PDL)
[Pel87, HKT00, Gol92] and is partially related to game theoretical semantics
for (extensions of) dynamic logic [Par85, Pau00].

The applicability of the framework is found in every context where multia-
gent strategic decision making is at stake, and already demonstrated in game-like
scenarios such as Cluedo and card games [vDO0O].

Section 2 introduces the language and its semantics. Section 3 defines the axioms
and derivation rules, and prerequisites for their formulation, such as syntactic
equivalence of actions, and shows the soundness of this proof system. Section
4 shows its completeness. Section 5 gives some applications of the language
in specifying multiagent system dynamics, and is followed by the conclusions
(Section 6).

2 Language and semantics

2.1 Structures

Given a finite set of agents N and a set of atoms P, a (Kripke) model M =
(W, R,V) consists of a domain W of worlds or factual states, for each agent
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Figure 1: Epistemic states resulting from the execution of actions described in the
four Action Scenarios. The top left figure represents (Arc,u). Points of epistemic
states are underlined. Assume transitivity of access. For mayread and bothmayread
only one of more executions is shown.

n € N a binary accessibility relation R,, on W, and a valuation V : P — P(W),
or in other words: for each atom p € P, a subset V}, of W. In an epistemic model
(commonly known as an S5 model) all accessibility relations are equivalence
relations. We then write ~,, for the equivalence relation for agent n. If w ~, w'
we say that w is the same as w' for n, or that w is equivalent to w' for n. Write
~p for (U,cp ~n)* (where R* is the transitive closure of a binary relation R).

Given a epistemic model M and a world w € M, (M, w) is called an epistemic
state, w the point of that epistemic state, and M the model underlying that
epistemic state.

For a given model M, D(M) returns its domain. Instead of w € D(M) we
also write w € M. If s = (M, w) and v € M we also write v € s (and D(s) for
D(M)). Write S5n(P) for the class of epistemic models for agents N and atoms
P, and S5cn(P) for |Jgcy S5B(P). Write oS5y (P) for the class of epistemic
states for agents N and atoms P (i.e., ‘pointed’ — ¢ — models). We drop the ‘P’
if it is clear from the context.

Given an epistemic model M or epistemic state s for a set of agents N, the
operator gr returns that set: gr(M) = gr(s) = N. This is called the group of
that epistemic model / state. The group of a set is the union of the groups of
its members.

Example 5 The background setting for ‘Lecture or Amsterdam’ can be repre-
sented by an epistemic state. Arc is the model ({u, v}, ~, V) such that both ~;



and ~ are the universal relation on {u,v}, and V, = {u}. The epistemic state
(Are,u) corresponds to p being actually the case. After Anne has read the letter,
an epistemic state is reached that is like (Arc,u) but with ~; = {(u,u), (v,v)}
instead. See Figure 1. -

2.2 Syntax

To a standard multiagent epistemic language with common knowledge for a
set N of agents and a set P of atoms [MvdH95, FHMV95], we add dynamic
modal operators for programs that are called knowledge actions or just actions.
Actions may change the knowledge of the agents involved. The formulas £ (P),
the actions £3*(P), and the group gr of an action are defined by simultaneous
induction:

Definition 6 (Formulas and actions)
The formulas Ly (P) are defined by

pu=plop|(pAe) | Knp | Cryp | [l

where p € P, n € N, BC N, a € L§(P), and ¢ € Ly (a)(P). The actions
L3t (P) are defined by

az=" | Lpf|(ala)|(aia)](a; B)|(aUa)]|(ana)

where ¢ € Ly(P), B C N, p € LF(P), and §' € L3, (P), and where the
group gr(a) of an action « € £38*(P) is defined as: gr(?¢) := 0, gr(Lga) := B,
and gr(aea') :=gr(a) Ngr(a’) fore="1,NU, ;. !

Other propositional connectives and modal operators are defined by standard
abbreviations, in particular Egp = A, .5 Knp. Outermost parentheses of
formulas and actions are deleted whenever convenient. As we may generally
assume an arbitrary P, write Ly instead of Ln(P), and L5 instead of L3 (P).
Instead of, e.g., Ctq,,c} we always write Cyp.. For an arbitrary epistemic (‘box’-

like) operator K, write K for its dual (‘diamond’). The dual of [a] is (a).

The program constructor L is called learning. Action ?¢ is a test, (a ; ')
is sequential execution, (aUc') is nondeterministic choice, (a ! ') is called (left)
local choice and (a | ') is called (right) local choice, and (aNa') is concurrent
execution. The construct Lp?y is pronounced as ‘B learn that ¢’. Local choice
a ! o' may, somewhat inaccurately, be seen as ‘from a and o', choose the first.’
Local choice a j o' may be seen as ‘from « and o/, choose the second.” We will
see that the interpretation of local choice ‘I’ and ‘j’ depends on the context
of learning that binds it: in Lg(a ! o), everybody in B but not in learning
operators occurring in «,q’, is unaware of the choice for a. That choice is
therefore ‘local’. Typically, we show properties of local choice for ‘I’ only.

The group gr was already used for the agents ‘occurring’ in epistemic states
and models. It serves a similar function on actions, whence the overloading.
The constructs [a]y, LB, and [a ; B, wherein gr is used (implicitly in Lgp),



guarantee that in an epistemic state for agents N that is the result of action
execution, formulas containing modal operators for agents not in N are not
considered for interpretation.

Example 7 The description in £35({p}) of the actions in the introduction are:

tell le?p U le?_!p
read L]_2 (Ll?p U L]_ ‘?_|p)
mayread Li5(Li?7pU L17-pU ?7T)
bothmayread L12( (Ll?p N L2?p) U (Ll?'ﬁp N L2?_|p)
ULl?p @] Ll?ﬁp U Lg?p @] Lg?ﬁpU ?T)

For example, the description of read (Anne reads the letter) reads as follows:
‘Anne and Bert learn that either Anne learns that she is invited for a night out
in Amsterdam or that Anne learns that she has to give a lecture instead.” In
the last two actions, instead of ?T (for ‘nothing happens’) we may as well write
?pU?-p. (Associativity of U is for now assumed, and proved later.) B

A nondeterministic action can have more than one execution in a given
epistemic state. The only way to get such an action is to use nondeterministic
choice operators U in its description. If we use ! operators instead, typically,
only some but not all of the agents are aware of the choices made. Constructs
U and ! are related as follows:

Definition 8 (Type and instance of an action, comparable actions) By
replacing all occurrences of ‘I’ and ¢}’ in an action a by ‘U’, except when under
the scope of 7, we get the type t(a) of that action. Slightly informally we can
write:

t(a) = all/u,i/U]
By replacing all occurrences of ‘U’ in an action « for either ‘I’ or ‘{’, except when
under the scope of 7, we get the set of instances T'(«) of that action. Informally

we can write:
T(a) == {ofU/Li]}

If t(a) = t(B) we say that a and § are the same type of action. Further, if
and g are identical modulo swapping of occurrences of ‘!’ for ‘i’ or vice versa,
write

?

a=rpf

Obviously, =7 is an equivalence. We say that «, 8 are comparable actions. -

Instead of a ! o' we generally write !a U o’. This expresses more clearly
that given choice between o and o, the agents involved in those actions choose
a, whereas that choice remains invisible to the agents that learn about these
alternatives but are not involved. Similarly, instead of a | @' we generally write
aU la'.

Comparable actions a =7 [ are ‘on the same level of abstraction in the type
hierarchy’. This means that they can be ‘compared’: it can be determined if
they are (syntactically) the same for a given agent or not, a notion needed in
the proof system to be introduced in Section 3.



Example 9 The action read where Bert is seeing that Anne reads the letter is
different from the instance of that action where Anne is actually invited for a
night out and Bert is seeing that Anne reads the letter. The last is described as
Ly5(L1?p ! L1 7-p): of the two alternatives L;7p and L ?7—p, the first is chosen,
but agent 2 is unaware of that choice. A different way of writing that action is
L15('Ly?7p U L1 7—p). The action read is its type. The other instance of action
read is L12(L17p i Ll?ﬁp) (le(Ll?pU 'Ll?_'p)) Actions L12('L1?p @] L1?_|p)
and Li2(L,?7pU Ly 7-p) are comparable to each other.

Somewhat similarly, the action bothmayread has four different executions if
p is true and another four if p is false: there are eight actions instances (state
transformers) of that type. -

2.3 Semantics

The semantics of Ln(P) (on epistemic models) is defined as usual [MvdH95],
plus an additional clause for the meaning of dynamic operators. The interpreta-
tion of a dynamic operator is a relation between an epistemic state and a set of
epistemic states. The composition (R o R') of two relations R, R' : W — P(W)
(such as [-]) is defined as follows: let v € W,V C W, then: (Ro R')(v,V) :&
3X : R(v,X) and Vx € X : 3V, : R'(z,V;) and V = {,cx Vz. Further,
RUR ={(v,V) |3V, V": Rw, V'), R (v,V"),and V = V' UV"}.

In the semantics, we need a notion of equivalence between sets of epistemic
states. We lift equivalence of worlds in an epistemic state to equivalence of
epistemic states and to equivalence of sets of epistemic states. Sets of epis-
temic states will occur as worlds in definition 11 of action interpretation, and
equivalence of such worlds for an agent will be defined as equivalence of those
sets.

Definition 10 (Equivalence of sets of epistemic states)
Let M,M' € S5n, v,w € M, and w' € M'. Let S,S" C ¢S5cn. Let n € N.
Then:

(M,w) ~p, (M,v) :iff w~, v
(M,w) ~, (M ,w') :iff Jve M:(M,v) & (M, w') and (M,w) ~, (M,v)
S~p S :iff [VseS:negr(s)=>3s' €S :s~y,s' ]| and
[Vs'eS :negr(s) =>3s€S:s~, s8]
%

Bisimilarity is a notion of sameness between epistemic states that implies equiv-
alence of their logical descriptions (theories), though not vice versa. The implicit
symmetric closure in the third clause of the definition is needed to keep ~,, an
equivalence relation.

In the second clause of the definition, ¢ stands for ‘is bisimilar to’ [BARVO01].

We now continue with the semantics. The interpretation of formulas and actions
is defined simultaneously.



Definition 11 (Interpretation of formulas and actions)

Let s = (M,w) € ¢S5n5(P), where M = (W,~,V); let ¢ € Ly(P), and let
a € L3(P). The interpretation |= of ¢ in (M, w) and the interpretation [-] of
o in (M, w) are both defined by inductive cases.

M,wkE=p (iff w e Vp)

M,w = —p Hiff M,w o

MwEeAYy iff MwlEgeand M,wE=1¢

MwEKyy il Vo:w ~,w=Muw Ep

M,wECpp :iff Yo' :w' ~pw=>Muw g

M,wElale :iff VS CeSicny: (M,w)[a]S=>3s'e€S:s' =g

s[?¢]S :iff sE¢and S ={((W,,0,V|W,),w)} } (see below)
s[Lpa]S :iff 35" :s[a]S" and S = {({W',~',V"),S)} } (see below)
[a; o] = [a]e[e]

[aud] = [a]Uld]
[a!d] = [ao]
[ana] = [e]uld]

For arbitrary S: S |= ¢ iff for all s € S: s = ¢. In the clause of action
interpretation for ‘test W, = {v € D(M) | M,v = ¢}. In the clause for
‘learning’> W' :={S" | Jv € M : (M,v)[t(a)]S"}; for an arbitrary agent n: ~!,
= ~,, where ~,, is equivalence of sets of epistemic states; and for an arbitrary

atom p: " € V) iff [ for all (W",~", V"), w") =s" € S":w" € V) ]. =
The notion {a) is dual to [a] and can be conveniently defined as
sE(a)p iff 35 :s[a]S and S | ¢

This may be intuitively more appealing: from the given epistemic state s, we can
reach a set of of epistemic states S where ¢ holds everywhere (‘concurrently’).
Our treatment of the dynamic operators is similar to that in dynamic logic
[Pel87, Gol92].

A test results in an epistemic state without access for any agent. This is
appropriate: how knowledge changes is only expressed in ‘learning’, so before we
encounter a learn operator we cannot say anything at all about the knowledge
of the agents in the epistemic state resulting from action execution: no access.
One might as well say that, while compositionally interpreting an action, the
computation of agents’ knowledge is deferred until L operators are encountered.

Learning Lpa is defined in terms of #(«), and this is how local choice con-
structions a ! o' get their meaning from being bound by a learning operator:
specifically, [Lg(8 ! 8')] is computed from [8 U £'], and therefore from [3]
and [B']. To execute an action Lpa in an epistemic state s, we do not just
have to execute the actual action « in the actual epistemic state s, but also any
other action of the same type t(a) as « in any other epistemic state s’ with the



same underlying model as s.! The results are the worlds in the epistemic state
that results from executing Lpa' in s. Such worlds (that are sets of epistemic
states) cannot be distinguished from each other by an agent n € B if they are
indistinguishable as sets. This induces a notion of n-equivalence among action
interpretations:

Definition 12 (Semantic accessibility of actions) Let a,a’ € L5, and

neN. Let M € S5y, w,w' € M, and S C eS5y. Then:

[o] ~n [@] iff [w~pw' and (M, w)[e]S ] =
[3S": (M,w")][a']S" and S ~,, S' ] 4

In other words, modulo nondeterminism and concurrency: two actions are
the same for an agent, if always when two worlds are the same for an agent,
executing those actions doesn’t make them different. An infinite number of
actions is similar in this sense. For example, ?p is the same for any agent as
?(pV p). However, given an action, it can be determined which actions that are
comparable to it (which is the finite set []=,), are the same for a given agent
or not. This will be addressed in section 3.

The semantics may appear complex, because worlds in the model resulting
from learning are actually sets of epistemic states. It is therefore important
to realize that this is merely a complexr naming device for worlds, but that the
semantics is simple where it matters: the accessibility between worlds (simple:
use ~p,), and the value of atoms (simple: keep current value).

If the interpretation of « in s is not empty, we say that « is executable in s.
For all actions except concurrent knowledge actions it is more intuitive to think
of their interpretation as a relation between epistemic states than as a relation
between an epistemic state and a set of epistemic states: if s[a]{s'}, we like
to think of s’ as the result of executing « in s. The notational abbreviation
sfa]s’ & s[a]{s'} allows us to keep using this helpful intuition. Further, if the
interpretation is functional as well, write s[«] for the unique s’ such that s[a]s’.
If this is the case for arbitrary s, we call a a state transformer. Note that tests
are state transformers.

Example 13 The interpretation of read = L12(L1?p U L1 ?7-p) (see Action sce-
nario 2) on (Arc,u) (see Example 5) is defined in terms of the interpretation of
Li?7p U Li?7-p on (Arc,u) and (Arc,v). To interpret Li?p U Ly ?—p on (Arc,u)
we may either interpret Li?p or Li7—p. Only the first can be executed. The
interpretation of Ly ?p on (Are,u) is defined in terms of the interpretation of ?p
on any epistemic state (Are,z) where ?p can be executed, i.e. where p holds,
that is on (Are,u); (Are,uw)[?p] is the singleton epistemic state consisting of

1 An alternative, equivalent, formulation of the semantics of L ga builds the domain of the
resulting epistemic state using all actions that are comparable to a:

w! .= {S" | weMIPB=rao: (M,’U)[[ﬂ]]S”}
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Figure 2: Details of the interpretation of action read in (Arc,u). All access is visu-
alized. Atom p holds in e worlds, and does not hold in o worlds. Linked boxes are
identical. See also Figure 1.

world u without access. This epistemic state is therefore the single world in the
domain of (Arc,u)[L17p]. That world has reflexive access for 1, because the
epistemic state it stands for lacks access for 1, so that:

(Arc,w)[?p] ~1 (Arc,u)[?p]
In the next and final stage of the interpretation, note that (as worlds)
(Arc,uw)[L1?p] ~2 (Arc,u)[L17-p]
because agent 2 does not occur in those epistemic states, but that
(Arc,u)[L17p] #1 (Arc,u)[L17-p]

because (Arc,u)[L1?p] is not bisimilar to (Are, u)[L; ?—p]. Further details have
been omitted. See Figure 2. !

Example 14 The interpretation of tell = Li2?p (see Action scenario 1) on
(Arc,u) can be computed along the same lines as that of read but is much
simpler. The interpretation of bothmayread = L15((L1?p N Ly?p) U (L17-p N

10



Ly?7-p) U L1?p U L1?7=p U La?p U Ly?—pU 7pU ?—p) (see Action scenario 4) is
more complex. The choice action bound by Lis can be executed in four ways in
(Arc,u), and similarly in four ways in (Are,v). These result in the eight worlds
of the cube-shaped model of Figure 1. We give a detail of the computation that
involves concurrency.

The world in the left-front-top corner of the cube in Figure 1 is the set of
epistemic states S such that (Arc,u)[L1?p]S, i.e., as the interpretation is clearly
functional: S = {(Arc,u)[L17p]}. The world in the left-back-top corner is the
set of epistemic states S’ such that (Arc,uw)[L17pNLa?p]S’, ie. 8" = SUS”, with
S" such that (Are, u)[L2?p]S". Therefore, S’ = {(Arc,u)[L17p], (Are, u)[L27p]}-
We have that S ~; S', because (Arc,u)[L17p] € S can be mapped to ditto in
S', and because (Arc,u)[L17p] ~1 (Arc,u)[L1?p]; and because, vice versa,
(Arc,u)[L1?p] € S' can be mapped to ditto in S, and agent 1 does not occur
in (Arc,u)[L2?p] € S". =

Example 15 The second clause in definition 10, where bisimilarity to an n-
equal epistemic state is a sufficient condition for n-equivality of epistemic states,
cannot be removed from the definition of equivalence between epistemic states.

E.g., with the stronger condition of identity (or isomorphism, even), agent
1 is unable to distinguish action

ng(!LlLl?p @] (Ll?p n Lg?p) U Ll?ﬁpU?T)

from action
L12 (L1L17pU '(Ll‘?p n L27p) @] L1?_|pU7T)

after execution in epistemic state (Are,u). Unlike before, we cannot now estab-
lish that (Are,uw)[L1L17p] ~1 (Are,uw)[L1?p N La?p]. This l-equivalence fails,
because (Arc,u)[L1L17p] #1 (Are,u)[L17p], because their underlying models
are different: the domain of the first consists of an epistemic state (Arc, w)[L17p]
(consisting of one world, accessible to 1, p holds), the domain of the second of
an epistemic state (Arc,u)[?p] (consisting of one world, no access, p holds).
However, obviously (Arc,u)[L1L1?p] & (Arc,u)[L1?p] (both have a domain
consisting of one world, that is accessible to 1, and where p holds).

Without the bisimilarity clause, in the resulting epistemic state agent 1
would know that agent 2 has not learnt p after execution of the first action. So,
also from a conceptual point of view, we can easily realise that this cannot be
correct. -

We close this section with some elementary properties of the semantics. Two
actions a, o’ are (semantically) equivalent, notation [a] = [&'], if they induce
the same relation between epistemic states and sets of epistemic states, modulo
names of worlds.

Proposition 16 (Action algebra) Let o,a/,a” € £3¢. Then:

[(aUd)UQ"] = JaU(a'Ua)]

[(a; o) 5 a"] = [a; (@; a")]

[(aUd); "] = [(a; a”)U(a; a")]

[(a; &)Uua"] = [(@aua”); ('Ua")] .

11



Proof By using simple relational algebra. We show the third, the rest is similar:

[(aUa’); @] = [aud]o[a"] = ([a]U[e'])o[a"] = ([e]e [«'])U([e] o [a"])

[a; d]UJa; "] =[(a; &)U (a; a")]. :

Associativity of U was already assumed in the text before. There are various
other algebraic properties of action interpretations, such as [LpLpa] = [Lpa].
The next proposition relates action instances and action types to other actions.

Proposition 17 (Action types and instances) Let oo € £5*. Then:

(@) [o] € [t(e)]

(b) Action instances have a functional interpretation.

(c) if B € T(a) then [8] C [o]

(d) o] =[Uper(a Al .

Proof

(a) Induction on a. The only nontrivial case is @' ! @”. We have that:
[« 1] =[] C [&/Ua"] = [o']U[a”] Sra [t(a)]U[t(a")] = [t(a')Ut(@")] =
[t(a' ! a™)].

(b) Induction on a. The only nontrivial case is nondeterministic choice.
Let 8 € T(a! Ua). Then either =" " or g = ' ", with g’ € T(a')
and 8" € T(a'). In the first case, by induction [5'] is functional, and therefore
also [B' ! "] = [B']- In the second case, this follows from the functionality of
|[,8”]].

(¢) Induction on a. A typical case: Let s € eS5y, S C ¢S5, and suppose
that s[o’ U a']S. Then either s[a']S or s[a”]S. If s[a']S then, by induction,
there is a ' € T'(a') such that s[8']S. Let 8" € T(a") be arbitrary. Then
B' 18" eT(aUa") and s[B']S =s[B" ! 8"]S.

(d) Induction on a. Some cases. Case ' ; &'': use Proposition 16. Case o' U
o [a'Ue"] =ru [Ugreran B'YUsrer(am B"1 = Up er(ary preram (B' 18U
Usrer(ar,sreran B i 8] = Uger(a) B]- Case Lpa': use that s[Lpa/T{(M’,
S)} presupposes s[a']S. =

n

Proposition 17.a expresses that the interpretation of an action is contained
in the interpretation of its type. Proposition 17.b entails that the interpretation
of state transformers is indeed functional. Proposition 17.c expresses that the
interpretation of an instance of an action is contained in the interpretation of
that action. Proposition 17.d expresses that an action is somehow the same
(induces the same interpretation) as nondeterministic choice between all its
instances.

The two main theorems of interest are the following. The proofs are adapted
from [vD02b]. They are by simultaneous induction (referring to each other).
For convenience in the proof, we lift the notion of bisimilarity from one between
epistemic states to one between sets of epistemic states: S < S’ iff for all s € S
there is an s’ € S’ such that s « s’, and for all s’ € S’ there is an s € S such
that s < s'.

12



Theorem 18 (Bisimilarity implies modal equivalence) Let ¢ € L. Let
5,8 €eS6ny. If s & ¢/, then s = & §' = 0. -

Proof By induction on the structure of ¢. The proof is standard, except for
the clause ¢ = [a]y that we therefore present in detail. Assume s |= [a]y). We
have to prove s' |= [a]y. Let S’ be arbitrary such that s'[a]S’. By simultaneous
induction hypothesis (Theorem 19) it follows from s'[a] S’ and s <> s’ that there
is an S such that S & S’ and s[a]S. From s[a]S and s | [a]y (given) follows
that there is an s” € S such that s" = 1¢. From S & 5, s" € S, and s" |= 9,
follows that there is an s’ € S’ such that s |= ¢. From s =9, s" € §', and
s'[a] S’ follows that s’ |= [a]w. =

Theorem 19 (Action execution preserves bisimilarity) Let a € £3¢* and
5,8' € oS5y. If s &+ s' and there is an S C eS5¢c n such that s[a]S, then there
is an S’ C eS5c n such that s'[a]S’ and S & §'. =

Proof By induction on the structure of «, or, to be slightly more accurate:
induction on the complexity of «, where Lpa > t(a).

We remind the reader of previously introduced notational conventions used
in this proof: If « is a state transformer and executable in s, write s[a] for the
s' such that s[a]{s'}; if (M,w) = s is an epistemic state and v € D(M), we
also write: v € s,or v € M.

Case ?¢: Suppose R : s & s'. By simultaneous induction (Theorem 18) it
follows from s & s' and s = ¢ that s' = ¢. Define, for all v € s[?¢], v' €
s'[7¢]: R (v,v") :& R(v,v'). Then R : s[?¢] & s'[?¢], because (Points:)
R’%(w,w), (Back and Forth:) both epistemic states have empty access, and
(Valuation:) ¢ (v,v') implies R(v,v'). In other words: {s'[?¢]} is the required
S’

Case Lpa': Suppose R : s & s’ and s[Lpa']{s+}. Let s = (M,w) and
s = (M',w'). Let Sy € sy be arbitrary (i.e.: a world Sy that is a set of
epistemic states, occurring in the domain of epistemic state s, ). Then there is
a z € s such that (M, z)[t(a)]S+. Because z € s and R : s & s, there is a
2" € s’ such that R(z, z') and obviously we also have that R : (M, z) & (M',2')
(the domain of an epistemic state is the domain of its underlying model). By
induction, using that the complexity of ¢(a) is smaller than that of Lga, there
is an S’ such that (M',2')[t(a)]S! and S; & S',.

Now define s/, as follows: its domain consists of worlds S’ constructed
according to the procedure just outlined; accessibility between such worlds is
accessibility between those worlds as sets of epistemic states, and valuation
corresponds to those in the bisimilar worlds of s. Finally, the point of s/, is a
set of epistemic states that is the result of executing « in s’ and that is bisimilar
to the point of s, . The accessibility on s/, corresponds to that on s, because
for arbitrary sets of epistemic states (and thus for worlds in s, s/, ): if S; ~, Sa,
S1 £ 57, and Sy & S5, then S| ~,, S5. Therefore s, & s, s'[Lpa]{s' }, and
{s!, } is the required S'.
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Case a; fB: Suppose s & s’ and s[a ; §]S. Note that [a ; 8] = [o] o [8].
Let S; be such that s[a]S; and for all s; € S; there is an Ss, such that s1[8]Ss,,
and S = U, S5, . By induction we have an S] such that s'[a]S] and S; & Sj.
Again by induction, for an arbitrary s; € S; such that s; & s{ € S] and
51[B]Ss, , we have an S', such that 51[5]]5’, and S5, & S’ Let S' = Uy S!,
Then s'[a ; ]S’ and S (—) S' (8" may be larger than S, but S o 8 then also
holds, see case N.)

Case aU f: Suppose s & s' and s[a U §]S. Then either s[a]S or s[g]S. If
s[a]S, then by induction there is an S’ such that s'[a]S’ and S < S’. Therefore
also s'[a U B]S’. Similarly, if s[5]S.

Cases a ! 8 and a | § are similar to a U .

Case a N B. Suppose s © s' and sfa N B]S. Let S; and Sz be such that
s[a]S1, s[B]S2, and S; U S2 = S. By induction, there are S} and S} such that
s'[a] Sy, S'[B]Sh, S1 & Si, Sa & S. The required S’ such that S & S’ is
S':= 5] USS. (It doesn’t matter if S; N.Ss is empty or not. In the last case, S|
and S may have been chosen so that S’ contains more epistemic states than S,
but S « S’ still holds.) =

A corollary of theorem 19 is the following:

Corollary 20 Let s,s' € oS5y, and let a € £5* be a state transformer that is
executable in s. If s & s, then s[a] & s'[a]. =

3 Proof system

In this section we present the proof system for concurrent dynamic epistemic
logic. It is based on the dynamic epistemic logics of [Ger99] and [BMS02], and
on Concurrent PDL [Pel87]. Before we present the proof system we need a
syntactic notion for the executability of an action and a syntactic notion for
equivalence of actions, because, among other things, we want to express the
following as an axiom (Action use): ‘after an action « an agent n knows that
p, iff the executability of o implies that n knows that, for each action g that is
equivalent to a for n, after § is executed ¢ holds.” The notion of executibility
is captured syntactically by the precondition, see Definition 29. The notion of
equivalence of actions can also be captured syntactically, and this is done in
Definition 22. This is merely a partition, for each agent, on the set of actions
that are comparable to a given action ([a] =T).

Example 21 Consider the action Lio3(?T U L1 ?7pU (L1?p N L2 ?p)), i.e., every-
body learns that either nothing happens, or 1 learns p or both 1 and 2 learn
p- Or, in a more ‘natural’ setting: an outsider tells Anne (1), Bill (2) and
Cath (3), who are sitting in a bar, at a table, that he may have told Anne,
or both Anne and Bill, that Anne is invited for a lecture. Even if Anne now
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knows that she is invited, she doesn’t know whether Bill knows that too. In
other words, Anne cannot distinguish action Lj23(?TU !L1?p U (L1 ?p N L2 7p))
from action Lia3(?T U L1?7pU (L1?p N Ly?p)). On the other hand, Bill can
distinguish those actions: if he has learnt p, he knows that Anne has learnt
p as well. However, both Anne and Bill can distinguish nothing happening —
L123(1?T U L1 ?pU (L1?p N Ly?p)) — from something happening, whereas Cath
cannot do so. —

A notion of accessibility among actions will be essential for the formulation
of axioms and rules in the proof system. Semantically, we were already able
to make that distinction, by the obvious way of ‘lifting’ the notion of access
within a model, to one between epistemic states, to one between sets of epis-
temic states, and to one between relations between epistemic states and sets of
epistemic states, such as between actions by means of their interpretation [-]
(see Definition 12). We now define a syntactic notion of accessibility among
actions, such that syntactic access implies semantic access.

Definition 22 (Syntactic accessibility) Let Gr(a) be the set of all agents
occurring in learning operators in a, except those under the scope of ‘?’. Then

an~, B iff a=rfand ar,f

where =2, is the symmetric closure of the smallest relation satisfying the follow-
ing conditions:

o~y B if ndéGr(a)UGrB)

Lpa =, Lgf if a=rfanda=,s

aea ~, Bef if a~,pBanda ~, [ fore=n, ; ,U
armg, pBlp

ald =, B!p5

dijax, ! f if a~,f

o jam, BB

awnﬂ’iﬂl

z;:gﬁfﬂ} it any B andn g Gr(8) .,

The ‘large group’ Gr of an action is the union of all groups learning anything
anywhere, except when under the scope of ‘7. Relation ~,, induces a partition
on the set of all actions of the same type (see Definition 8 of =7). In the clause
for ‘learning’ it is essential that the type requirement is made once more: note
that otherwise, e.g., L17p ~1 L17q, as tests are indistinguishable from each
other for any agent.

Proposition 23 ~,, is an equivalence. -

Proof We prove that =, is an equivalence, from which follows that ~,, is an
equivalence. Obviously, =, is reflexive and symmetrical. Transitivity is proven
by distinguishing many cases, we merely do the crucial ones.
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Suppose a ! o ~, 88 and 8| B ~, v !~7. Then, using the definition:
a ~, B and B' ~, 7. Using induction, we have a =, . By again using the
definition of ~2,,: @ ! @/ =, v 1 9.

Suppose a ~, SN B and v ~, BN G, and that the first holds because
a =~y B and n € Gr(8'), and the second because v ~, ' and n ¢ Gr(3). Now
observe that, in general, an agent n either learns something in both of two =,
equal actions (i.e., n is in Gr of both), or both actions are invisible from n’s
viewpoint (i.e., n is in Gr of neither). Therefore, from a &, 8 and n & Gr(f)
follows n ¢ Gr(a), and from v =, ' and n ¢ Gr(8') follows n & Gr(vy). From
n ¢ Gr(a) and n ¢ Gr(v) follows a ~, 7. -

Lemma 24 Given an action a, the set [a].., is effectively computable. 4

Proof If m is the number of ! and | operators in «, there are at most 2™
actions § that are comparable to « (such that 8 =7 a). So [a]=, can easily be
determined. The set [a]~, is determined by computing the partition on [a]=,
given =,. This can be determined in linear time with respect to the length of
the action. -

Example 25 (Syntactic accessibility) Consider Example 21 at the begin-
ning of this subsection. The type of action discussed was Ly23(? TUL ?pU(L1 7pN
L»?p)). More precisely, we may choose to read Li23((?TUL1 ?p)U(L1 ?pNLa7p))
(see Proposition 16). There are four instances of this type. This is a =7 equiv-
alence class. One of them is Li23((?T ! Li?p) ! (L1?p N L2?p)), which we
informally write as L123(1?T U L1 ?7p U (L1 ?p N Ly7p)). Note that only three of
the four instances are essentially different: once you have chosen ‘right’; it does
not matter whether the subsequent choice on the left is ‘right’ or ‘left’. We now
compute the mentioned equivalences on the set of instances:

‘Even if Anne now knows that she is invited, she doesn’t know whether Bill
is invited too’:

L123((?T i Ll?p) ! (Ll?pﬂLQ?p)) 1 ngg((?—r i Ll?p) i (Ll?pﬂLQ?p))
=

(?T 1 L1?p) ! (L1?p N L27p) ~1 (7T Li?p) i (L17p N L27p)
&=

&=

L17p N1 Ll?p n L2?p

=

‘Bill can distinguish those actions’. This proceeds similarly, except for the
last step, where L17p 24 L17pN Ly 7p, because 2 can distinguish an action where
he learns something, namely Lo?p, and that is part of Li?p N Ly?p, from one
that is invisible to him, namely L;?p (on the left).

Cath cannot distinguish nothing happening from something happening:
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Lios((?T 1 Ly7p) ! (Ln?pN La?p)) =3 Li2s3((?T | Li?p) ! (L17p N L?p))

< (..)

7T ! Ll?p 3 7T i Ll?p
=

7T 3 Ll?p

<~

3¢ Gr(?T)UGr(L,?p) = {1}
_{

Proposition 26 (Syntactic equivalence implies semantic equivalence)

Brn B = 8] ~n [51] 5

Proof We prove that 8 =, ' = [8] ~n [B'], from which the required follows.
The proof is by induction on the structure of the actions § and 8’ (i.e. prove
each inductive case of 8 by induction on 8'). We show the non-trivial cases.

If n & Gr(B8) UGr(8'), then trivially [8] ~n [8']: given arbitrary s and S
(resp. s and S') such that s[8]S (resp. s'[B]S’, the group of S (resp. S') must
be (. Therefore S ~, S’. A fortiori S ~, S’ when s ~, s, so that [8] ~, [8']

If Lya ~, LB and n € B, by the definition of ~,: a ~, , by induction:
[e] ~» [B], and by the construction of ~,, in the case ‘learning’ of the definition
of []: [Lea] ~» [LpB] immediately follows.

Ifal!f =, af, then a =, p', so by induction [a] ~, [8'], so, by
definition of [-], [a ! 8] ~» [&' | 8]

Suppose a =, BN B because a ~, B and n ¢ Gr(B'). By induction
[a] ~n [B]- As for arbitrary sets of epistemic states S,S’,S” it holds that: if
S ~p, S and n & gr(S"), then S ~,, S"US", the required [a] ~, [8 N B'] now
follows. B

Corollary 27 (Preservation of accessibility) Given an epistemic model M,
v,v'" € M, and actions 3, ' such that 3 is executable in (M,v) and ' is ex-
ecutable in (M,v"). If v ~, v and 8 ~,, B, then for S such that (M, v)[[ﬂ]]S
there is an S’ such that (M oN[A]S" and S ~,, S'.

Corollary 28 For action instances and other state transformers 3, 5': if v ~,,
v and f ~, B’ (and executability), then (M, v)[S] ~n (M,0")[5'] -

In Proposition 26 we have established that if two actions are syntactically
the same for an agent, they are also semantically the same: if 8 ~, §', then
[8] ~n [B']- For trivial reasons this is indeed a proper inclusion, because actions
of a different type cannot be syntactically the same. For example, we have that
[?p] ~1 [?7=—p] but ?p #1 ?=—p (because ?p #r ?=—p). Also, [L1?p] ~1
|[L1L17p]] but L ?p 741 LiL{?p, and [[Ll?pUleq]] 7(/1 [Ll?qULl?p]] but Ly 7puU
Lq7q 741 Li?7qU Ly 7p.
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What about actions of the same type? All of the above, and more, can easily
be incorporated as alternatives into actions of the same type. For example,
consider the actions Lio(L1 ?pUl(L1?——p N Ly7q)) and Li2(1L1?7p U (L1 ?7——p N
L,7q)). These are different for 1, because L;?p is different for 1 from L;?—-p,
because the types of the respective tests are different (this requires syntactic
identity!). Therefore, also in non-trivial cases, [8] ~, [8'] does not imply
B ~n ﬂl-

This should not necessarily be a problem, as long as we have ‘enough’ actions
that are the same for an agent to a given action to guarantee soudness of the
proof system wherein we use syntactic accessibility. But it turns out that we
have not enough. The principle of Action use, that will indeed occur in the
following proof system, says that, if n knows that [ after every action that is
for n the same as the actual action, ¢ holds |, then [ n knows that ¢ holds ]
after that action.

Because Lio(L1 ?pUl (L1 7——pNLy?q)) if different for agent 1 from Lq2(1L; 7pU
(L1?7-=p N Ly?q)), it is now derivable that after the first action 1 knows that
g! In other words: agent 1 can make some epistemic distinction between p and
——p, which does not make sense.

More in general, suppose we have arbitrarily complex and differently de-
scribed actions «, € L5*(P) and n € N such that a =7 § and [a] ~, [8] but
a &, B, and let ¢ € P, B D Gr(a) UGr(f8), and m ¢ B. Consider the action
where (everybody learns that) group B, which includes n, learn that either «
or 3 takes place, but that in the second case agent m, not in B, learns that
q- Obviously, we do not want n to be able to determine whether ¢ after that
action. However, Lgi,,(LpaU (LB N L;,?7q)) is different for agent n from
Lgim(!LpaU (LB N Ly?q)), so after the first action, because of Action use,
n knows that g, even though, of course, only m is supposed to know that.

Therefore we have to coarsen (as the opposite of ‘refine’) the partition on =7
for agents n in Definition 22, in order to guarantee the soundness of the proof
system to be introduced in Definition 31: we need more n-equal actions. In all
the counterexamples above, the problem was that equivalent actions — actions
such that [a] = [f], so that they are trivially n-equivalent as well: [a] ~, [8]
— should also be syntactically n-equal for any n. We therefore suggest to solve
our problem tentatively as follows: introduce a notion of ‘general’ syntactic
equivalence of actions: a =¢ o' iff, for arbitrary ¢ (however, depending on the
complexity of & and 3): F [a]p ¢ [@]¢; now redefine syntactic access ~,, as

a~y Biffa=rpfand Iy:y=r aand y=,

This definition is unsatisfactory for two reasons. First, because the auxiliary
notion of ~,, and the proof system yet to come are now defined simultaneously,
we must show that the derivation of syntactic action equivalence does not need
instances of axioms wherein syntactic action access thus established is used.
However, the complexity measure used in = may well take care of that. Second,
Lemma 24 no longer holds. Given an action «, the computation of [a]~, on
(the easily determined set) [a]=, may be undecidable (even though it remains
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clearly finite), as the notion of action equivalence used in ~,, is defined in terms
of derivability.

Other options out of the dilemma include: redefine =, by relaxing the con-
straint on Lpa (i), define &, not between arbitrary actions but between normal
forms of actions (ii), or we may ‘simply’ define a ~,, Siff @ =1 § and [a] ~,, [F],
but incorporating a semantic feature in a syntactic notion seems to ‘give away’
the computational advantage an axiomatization pretends to have (iii) over the
semantics. We hope to improve on the given solution.

In the remainder, assume that if [a] ~, [(], then there is a v =7 B such
that [a] ~, [v]. From this follows, that if & =7 8, then a ~,, 8 iff [a] ~, [B].

We continue by saying when an action can be executed. An action can be
executed in an epistemic state if its precondition is true. ‘Precondition’ is defined
as follows.

Definition 29 (Preconditions of an action)

1. pre(?p) := ¢

2. pre(a ; fB) := pre(a) A (a)pre(B)

3. pre(a U B) := pre(a) V pre(B)

4. pre(an B) := pre(a) A pre(f)

5. pre(a ! B) == pre(a)

6. pre(Lpa) := pre(a) .

Lemma 30
= pre(a) ¢ ()T 4

Proof By induction on a. Note that s |= (a)T iff there is a set of epistemic
states S such that s[a]S (omitting the trivial part: ‘and for alls’ € S : s’ = T).
The crucial case ‘learning’: Suppose s |= (Lpa)T. Let S be such that s[Lga]S.
For a point (world) S’ € s' € S we have s[a]S’ (because of the definition of
action interpretation). Le., s | (@)T. By induction s = pre(a) and because
pre(Lpa) = pre(a): s = pre(Lpa). =

Now we are ready to provide the proof system. It is based on the proof
systems of [BMS02] and [Pel87].
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Definition 31 (Proof system)

All propositional tautologies
Knowledge distribution
Truth

Positive introspection
Negative introspection
Common knowledge use
Test

Sequential composition
Nondeterministic choice
Concurrency

Learning

Local choice

Actions instances

Atomic permanence
Common knowledge induction

Koo — ¢

Knp = KyKnp

Ko = Kp=Knpp

Ceyp — (p AN EgCpyp)
[Pt < (0 = 1)

[a; o'lp < [a][a']e

[a U] < ([e]p Ala']p)
[ana]e < ([ele V[a]p)
(Lpa)T « pre(Lpa)

[a La'lp < [a]p

[a]p < /\ﬁeT(a)[ﬂ]QD

[a]p ¢ (pre(e) = p)

(¢ ANCp(p = Epyp)) = Cryp

Action use [@]Knp < (pre(a) = Ky Ay, ol']0)
Modus Ponens
Knowledge necessitation
Action facilitation
Action induction

if ¢ and ¢ — 9, then v

if ¢, then K,

if ¢ = ¢, then [a]y — [a]y

if : for all B such that o ~p 3 there is a x3
such that xg — [B]y and such that 8 ~, o
implies (xg A pre(8)) = EBXao,

then : xo = [@]CByp

A formula ¢ is deducable, abbreviated as - ¢, iff there exists a finite sequence of
formulas such that each formula is either an instantiation of one of the axioms
above, or if it is obtained by applying one of the rules above to formulas that
appear earlier in the sequence. B

Below we will give a few examples of proofs using this system. In these proofs
every formula in the sequence is given a number and written on one line. At the
end of the line is given the axiom that the formula is an instantiation of or the
rule that was applied to obtain it, including the lines of the formulas that the
rule was applied to. If one formula follows by simple propositional reasoning,
we write PC, accompanied by the lines of formulas.

Example 32 We show that F [L;?p]K;p. To see that this is the case we first
determine the precondition of Lq?p. It follows from the definition it is equal to
p. Below we will write pre(L;?p) for this to make clear which rules are applied.

1. pre(L17p) — p PC

2. [L1?plp « (pre(L17p) — p) Atomic permanence

3. [L1?plp PC 1,2
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4.
5.
6. [Ll?p]Klp ~ (pre(Ll?p) — Ki [Ll?p]p)
7.

Ki[Ly?plp
pre(Ly?p) — K;[L1?plp

[Ll ?p]Klp

Knowledge necessitation 3
PC4

Action use

PC 5,6

_|

Example 33 We now show that b [L127p]Ci2p. This example shows how the
action induction rule can be applied. Again pre(L127p) = p.

1.
2.

- W

10.

© »® N o oo

pre(L127p) = p

PC

[L127p]p ¢ (pre(L127p) — p) Atomic permanence
[L127plp PC1,2
T — [L127plp PC 3
T PC
KT Knowledge necessitation 5
K>T Knowledge necessitation 5
((T A pre(L12?p)) = K1 T) A ((T A pre(L12?p)) = Ky T) PC 6,7
T — [L127p]Ch2p Action induction 4,8

[L127p]C12p

PC9

_|

One might have expected a distribution axiom for [«], but this is not sound.
Such an axiom is also unsound in the logic presented in [Pel87], for the same
reason: the interpretation of actions are relations between epistemic states and
sets of epistemic states. The modality [a] corresponds to a V3 quantifier and
distribution does not hold for that. We do have a weaker form of distribution in
the form of the action facilitation rule. This is all we need in the completeness
proof.

The local choice axiom suggests that in arbitrary actions, subactions a ! a can
be substituted for . However, this is not the case, because such substitutions
cannot be performed within the scope of an Lp operator.

The following are used in the completeness proof for formulas of the form
[@]Cpy and in the soundness proof of the action induction rule.
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Definition 34 (Witness path) A witness path from w € M for (a)Cp1 (see
[BMS02]) is a path

'U):'I,U()an wl an"""’nk UJk:'U

in M, such that k > 0, n; € N and there are actions «; such that

Q=0 Vg Q1 Vpg Tt Ny ak:/B
and such that for 0 < i <k, (M,w;) = (a;)T, and (M, wy) E (o). .
Lemma 35 R
M,w = (a)Cpy iff [ there is a witness path for (a)Cp® from w |. 4

Proof Note that the right entails that there is a B ~p a such that M,w =
Cp{B)y. We reformulate the lemma as one about an arbitrary natural number
k and then prove the lemma by induction on &, first the implication to the right,
then the one to the left. Write ~% for a ~p-path of length k:

Let a € L5, (M,w) € oS5y, € Ly. For all k: [ there is an S, such that
(M, w)[a]S, and for all (M',w') € S,, there is a v’ ~& w' with M’ v' 1 ]
iff [ there is a witness path of length k for (a)Cpt from w .

First, note that the part ‘there is an S, such that (M,w)[a]S, and for
all (M',w') € Sy, might as well read ‘there is an (M',w') resulting from
executing o in (M,w):’ The more complex formulation is in accordance with
the semantics of actions.

‘=’ (k =0) Let (M',w') € Sy. Given v' ~% w' with M',v' |= 1. Choose
B =aand v=w and S, = S,. The required holds. (k = k+1) Let (M',w') €
Sy. Given v' ~EFL o' with M’ o' |= 4. Let n and 2’ be such that v/ ~&+!
w' =" ~, 2’ ~% w'. Choose @/ ~, a and z ~, w such that (M,z)[a']S,
and (M',z') € S;. Now by induction, there is a witness path of length k for
(o'YCpy from z. Let x ~% v be that path and o/ ~% 3 be the corresponding
chain of actions. Then w ~,, x ~% v is the required witness path from w, with
a ~p, o ~% B the required chain of actions.

‘<’ (k = 0) Given v = w and a = j (path length 0). We then have
M,w [ (a)y. Therefore, trivially, M,w | {a)Ct. Therefore, there is (by
the definition of ) an S, where ¢ holds throughout, as required for ‘zero
length’. (k =k +1) Let (M',w') € S,,. Given v and # such that w ~% v and
«a ~’f3+1 B as required. Let the first steps in those chains be w ~,, z and a ~,, o/,
respectively. By induction, there is an S, such that for all (M’,z') € S;, there
is a v’ ~& o' with M',v' |= 1. We now complete this to a path of length k + 1
as follows. As w ~, z and a ~, o', by Corollary 27 we may choose S,, such
that (M, w)[a]Sy and Sy ~p Sz. We can now complete our required path by
choosing (M',w') € Sy, such that w' ~,, 2’ (and note that - as required - for each
s € S, there must be such a corresponding epistemic state s’ € S, because
of the definition of ~, between sets of epistemic states; therefore, (M’ , w')
may be considered arbitrary). From (M,w)[a]S,, (M',w') € S, arbitrary,
W'~y @' AR and M ', follows: M, w = (@)Cri. .
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We are now ready to establish soundness of the proof system, with which
we close the section. The following section established the completeness of the
proof system.

Theorem 36 (Soundness) For all ¢ € Ln(P)
Fo = Fy .

Proof By induction on the length of the proof. We omit the familiar purely
epistemic cases, for that see, e.g., [MvdH95]. Throughout the proof, let (M, w) €
S5n(P) be arbitrary. Further, assume all introduced sets of epistemic states to
be subsets of some proper eS55. We remind the reader that ‘S |= ¢’ means
VseS:skE’

Case ‘Test’.

Note that in [?¢]p < (¢ — ), 1 must be a purely propositional formula
(1 € Ly(P)), because gr((M,w)[?p]) = 0. The truth of propositional formulas
is unaffected by action execution.

Suppose M,w = [?¢]ip and M,w |= ¢. Then (M,w)[?¢] E . Because
P € Ly(P), also M,w [= 9. Therefore M, w |= ¢ — 9.

Suppose M,w = ¢ = . If M,w [~ ¢, then (M, w) | [?¢]¢ trivially holds.
Otherwise, because M,w |= ¢, (M,w)[?¢] exists; and from M,w = ¢ and
M,w = ¢ — ¢ follows M,w = 1. Because ¢ € Lg(P), also (M,w)[?¢] = ¥.
Therefore, as well, (M,w) = [?¢]¢.

The axioms ‘Sequential composition’, ‘Nondeterministic choice’, and ‘Con-
currency’ are intuitively more appealing in their dual form: (a ; o)
(a)(@)p, (aUa)p < ((a)p V(a')p), and (aNa')p & ((a)p A (a')p). We
therefore show the validity of those.

Case ‘Sequential composition’.
M,w = (a; o)p

=

AS: (M,w)[a; &']Sand Vse€ S:s =

=

3S,8": (M, w)[a]S" and Vs' € S',3Sy : s'[a]Ss and S = |J, 1.5 Sy and Vs €
S:skEp

=

35,58 : (M,w)[a]S" and Vs' € §',3Sy C S : s'[a]Sy and Vs" € Sy : " E
pand S =, cg Ss

& take S = U, cg Ss
38" : (M,w)[a]S" and Vs' € ' : ' = (a')p

=

M,w = (a){a’)e

Case ‘Nondeterministic choice’.
M,wk (aUa)p

23



=
3S: (M,w)[aUa']Sand Vs € S:s=¢
=

AS: [ (M,w)[a]S or (M,w)[¢/]S]and Vs € S:s|=¢

=

A5 : [ (M, w)[a]S andVse€ S:s=p]or [ (M,w)[a']S andVs e S: s p]

=

[3S: (M,w)[a]S andVs e S:sl=p]or [IAS: (M,w)[c/]S and Vs € S: s =
]

i

M,w = (a)p or M,w = (o/)p

=

M,w = {@)p V{a')p

Case ‘Concurrency’.
M,w = (ana)y
=
3S: (M,w)[and]Sand Vs € S:s =
=
351, Sa : (M, w)[a]S: and (M,w)[a']S2 and Vs € 51,52 : s = ¢
=
M,w = (a)p and M,w = (a')¢p
=
M,w = (a)p Aa')p

Case ‘Learning’.
This follows immediately from Lemma 30, for case Lga. Incidentally, all other
cases of Lemma 30 are derivable and therefore not listed as axioms, see Lemma
48, in the continuation.

Case ‘Local choice’.
Trivial, as [a ! &'] = [a].

Case ‘Action instances’.
This follows directly from Proposition 17 (an action is equivalent to nonde-
terministic choice between its instances), and repeated application of axiom
‘Nondeterministic choice’, that has already been proved sound.

Case ‘Atomic permanence’.
Trivial.

Case ‘Action use’. R
We prove the validity of the dual form of action use which is (@) K¢ « (pre(a)A
KnVgn o{@)p). Note that M, w = (a)Knp can be rewritten as

35 : (M,w)[a]S and S = Ko (i)
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Next, M,w = (pre(a) A K, Ve, of@)p) can be rewritten as
M,w = pre(a) and Fv ~, w,3a’ ~, a,3S" : (M,v)[a']S" and S" = ¢ (i4)

Using Corollary 27, the executability of « in (ii) guarantees the existence of an
S such that: (M,w)[a]S and S ~, S'. From this follows by definition of K,
that S | Kpp: i.e., (i). Vice versa, given (i), an assumed S’ such that S’ ~,, S
and S’ = ¢, can only be established by executing some alternative ' to a in a
v with v ~, w (an agent cannot ‘forget’ distinctions). We now have [o/] ~, [¢]
by definition, and choosing o' from [a]—, we get a ~, o' as required: i.e., (ii).

Case ‘Action facilitation’.
As in other cases, we prove a dual version, namely: ‘from ¢ — 9 follows {a)p —
{a)yp’. Assume |= ¢ — 9. Suppose M, w = (o). Then there is an S such that
(M,w)[a]S and S = ¢. As we may assume ¢ — 1 to be valid, we have
SE¢—=19Y. From S |=¢and S = ¢ — ¢ follows S | 9. From (M,w)[a]S
and S |= ¢ follows M,w = (a)y. Winding up: M,w = (a)p — (a).

Case ‘Action induction’.
The soundness of this rule is proved along the lines of [BMS02], using Corollary
35. 4

4 Completeness

The completeness proof is based on [BMS02], [FHMV95], and [Pel87]. We quite
closely follow the structure of the proof in [BMS02]. The main difficulty in
the proof is the truth lemma, which is proven by induction on formulas. We
show that every formula is provably equivalent to a formula in a sublanguage
of the full language. The induction follows the structure of the formulas in the
sublanguage. We first define the translation to the sublanguage.

Definition 37 (Translation)
Define the following function f : Ln(P) U L3 (P) — Ln(P) U L3 (P):

f(p) = p

fep) = —f(v)
Fleny) = fle)Af¥)
f(Knﬁo) = an(‘p)
f(Csy) = CBf(p)
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F([70]¥) = flp) = f(¥)

f([Lpa]p) = f(pre(a)) = p

F([Lsa]-p) = VﬁeT(LBa) - f([Blp)

F(Leal(p AY)) = f([Leale) A f([Lealy)
F([LpalKyyp) = f(pre(a)) = Kn Age, £pa f([B]0)
F([Lpa]Cpy) = [Lef(2)]CBf(»)

F([Lsa][Ble) = f([La]f([Bl¥))

f(la! BlY) = f(lofy)

(o BlY) = f([a]f([8]¥))

f([aUBlY) = f(lody) A F([BlY)

f(lan BlY) = f(lody) Vv f([Bl)

(%) = f(p)

fla; B) = f(a); f(B)

flaup) = fla)Uf(B)

flanpB) = fla)Nf(B)

fla!p) = fla) ! f(B)

f(Lpa) = Lpf(a) .

Lemma 38 Given a formula ¢ € £y, we have that f(p) € E{V, where L’fv the
following BNF:

pu=p | ¢ | pAp | Knp | Ceyp | [Lpa]Cry
where all ¥ in Lpa are also in L’f\,. -
Proof By induction on ¢ € Ly (P). 4

The next lemma, shows, that if we can prove by induction that something holds
for every formula ¢ € Cfv, then it also applies to every ¢ € Ln.

Lemma 39 (well-founded order) There exists a well-founded order < on
the language £ with the following properties:

1. ¢ < ¢, for any subformula 1 of ¢

2. < is transitive

3. flp) <y -

Proof The proof is very much like a similar proof given in the appendix of
[BMS02], where a theorem about lexicographic path orders is used. We apply
the same technique but there is a key difference. A formula of the form [a]p
can be viewed as a function [-]- on a and ¢. The order of the arguments is
important for a lexicographic path order. In [BMS02] the order of the arguments
is switched in the definition of the lexicographic path order. Here we do not
switch the arguments.

26



Let ¥ be the signature of £y, where atomic propositions are viewed as 0-
ary functions, where negations, individual epistemic operators, common knowl-
edge operators, tests, and learn operators are viewed as unary functions, and
where conjunctions, sequential composition, non-deterministic choice, concur-
rent knowledge action, and the [-]- operators are viewed as binary operators.

Now consider the lexicographical path order < that is induced by fixing an
order on these such that []- is the greatest and the rest of the signature is
unordered. It follows directly from the theorem cited in [BMS02] that:

1. < is transitive.

2. < has the subterm property.
3. < is monotonic.

4. < is well-founded.

We now prove that f(p) < ¢ by induction on ¢. The cases for atoms,
negation, conjunction, individual epistemic operators, and common knowledge
operators is straightforward.

Suppose ¢ is of the form [?¢]x. Now we can show that f(¢) = f(x) < [?¢]x,
because [-]- is greater than — and because f(v) < ¢ and f(x) < x by the
induction hypothesis. Now 9 and x are both subterms of [?¢]x. Therefore
F(8) = 00 < [24]x.

Suppose g is of the form [a ; BJi. Now we can show that f([a]f([B]¢)) <
[ ; BlY, because [¢][f]Y < [a ; B]Y. Note that @ < a ; (8, because of the
subterm property. For the same reason we have a < [a ; S]i. Now we need to
show that [8]Y < [a; B]¢. And again this is induced by the subterm property.
The cases for nondeterministic choice, concurrent execution, and local choice
are analogous.

Now we turn to formulas of the form [Lpa]y. If ¢ is an atom p, note that
pre(a) < [a]y for all actions «, and p is obviously a subterm of [Lga]p.

If ¢ is a negation, we again use the observation that [-]- is greater than
disjunctions, and negations. Then we can simply apply the induction hypothesis.
The case for conjunctions and individual epistemic operators is analogous.

In case 9 is of the form Cpgy, we observe that the induction hypothesis
immediately implies that f(a) < a. This together with applying the induction
hypothesis to x show that [f(Lpa)|Csf(x) < [LBa]CBX-

The case where % is of the form [5]x, follows immediately from the induction
hypothesis. -

Lemma 40 We have both (a) and (b):
(@) Fflp) e 4
b)) Eflp) e

Proof (a) follows immediately from the axioms given in 31 whereas (b) follows
from (a) and the soundness theorem 36. =

27



We can now start constructing the canonical model. Because logics with reflex-
ive transitive closure operators are generally not compact we need to construct
a finite canonical model for every formula. That means we only look at max-
imally consistent sets with respect to some finite set of sentences. This set of
sentences is called the closure.

Definition 41 (Closure) Let ¢ € ﬁfv. The closure of ¢ is the minimal set
Cl(p) C ['{v such that

. p € Cl(y).
If ¢ € Cl(p) and x is a subformula of 1, then x € Cl(p).

—

If ¢ € Cl(p) and o itself is not a negation, then —p € Cl(yp)
If Cgy € Cl(yp), then K,Cgt € Cl(yp), for all a € B

If [a]Cgy € Cl(p), then for all B and all n € B such that a ~, §:
Kn[BICBY, [B]Y € Cl(p). a
_{

Lemma 42 For any formula ¢ € EQ, the closure of ¢ is finite.

AN

Proof One can first apply the clauses 1 and 2. This yields a finite set. To this
set, the clauses 4 and 5 can be applied, which preserves finiteness (by Lemma
24 we know that there are only finitely many S such that a ~, ). Finally,
applying clause 3 to this set at most doubles its size. -

From now on, we will often write @ for Cl(y).

Definition 43 (Maximally consistent in ®) A finite set of sentences I' such
that I' C ® is maximally consistent in @ iff:

1. T is consistent, i.e. i =(Ayer ¥)-
2. There is no I'' C ®, such that I'' D T" and T is consistent. -

Lemma 44 (Lindenbidumchen) Let @ be the closure of a consistent ¢ € Ef\,.
If ' C ® is consistent in ®, then there is a set I' O I' which is maximally
consistent in . -

Proof As & is finite, the members of ® can be enumerated. Let us suppose
#(®) = k and that ¢; (1 < i < k)is the i-th formula sentence of this enumera-
tion. Now define I'; (0 < ¢ < k) as follows:

Ty = T
{ T; if T; U {¢i+1} is inconsistent

i1 T; U{pit1} otherwise

It is easily seen that 'y is maximally consistent in ®. We can think of I' € Wy
both as a set of formulas of ® and as its conjunction: if we mean the latter we

write ' = A -
_{
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Definition 45 (®-canonical model) M® = (W% R® V?)
e W® ={I' C &:T is maximally ®-consistent}
e TRPAiff{pe® | K,pel}={yped®|K,pel}forallne N
o V¥(p)={T:pel} .

Note that M is finite: it contains at most 2!®! elements. Moreover, note that
it is a model in Sp, where B is the group of agents that occur in ¢, because the
accessibility relations RE are all equivalence relations.

Definition 46 (Good Path) A good path from I' € M for (a)Cp is a path
in M®
F:FO an Fl N’ng Nnk Fk

such that k£ > 0, n; € N and there are actions «; such that
04:040 an al Nng Nnk ak
such that (a;)T € I'; (0 <14 < k) and {(ag)v € k. =

The relationship of a ‘good path’ to the semantically motivated ‘witness path’
(Definition 34) will be obvious.

Lemma 47 Suppose [@]Cex € ®. Then: if there is a good path from Ty for
(a)Cp—), then {(a)Cp—p € Ty. =

Proof By induction on the length k of the path. If k = 0, then, since ag = a,
we have (a)—x € I'g. If (a)Cp—p ¢ Ty then, we have [a]Cpx € 'y, and hence,
by clause 5 of definition 41, and the fact that - [@]Cex — [a]x, we have that
[a]x € To; a contradiction.

Now suppose we have proven the result for k, and suppose that there is a
good path from Ty for (a)Cp—) of length k + 1. This gives us a good path
of length k from I'; for (al)CA'B—')C. We also have [a;]Cpx € @, and hence,
by using the induction hypothesis, we have (al)CA'B—'X € I';. Now suppose
(a)Cp—p & Ty, then [a]Csx € Ty. By lemma the action use axiom we know
that To F [@]Cex A pre(a) = Ky,[a1]Cex and hence K,[a1]Cex € L. =

Lemma 48 The precondition of an action « is provably equivalent with {(a)T.
_|

Proof By induction on «. The case for test follows from the test axiom. Using
the induction hypothesis the cases for sequential composition, non-deterministic
choice, concurrent action, local choice follow directly using the appropriate ax-
ioms. The case for the learn operator follows from the Learning axiom. -

Lemma 49 If (a)Cg—t € T then there is a good path from T for (a)C—¢)
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Proof Suppose (a)Cp—p € T. For each 8 such that a ~p 8, let Sz be the
(finite) set of all I' € Mg such that there is no good path from T for (8)Cg1.
We need to see that T' ¢ S,. Suppose toward a contradiction that T € S,. Let

xs=\ A

AES;;

Note that —xz is logically equivalent to \/ s, ¢S5 A’. Since we assumed I € S,
we have F T — 4.

We first claim that xg A (8)x is inconsistent. Otherwise, there would be
a A € Sz such that F A — xg A (B)x. Note that - (8)x — (8)T, and, by
Lemma 48, F (8)T « pre(83). But then the one point path A is a good path
from A for (3)Cpt. Thus A ¢ Sp, and this is a contradiction. So indeed,
X A (B)x is inconsistent. Therefore, F xg — [8]—x.

We will need the following standard claim: If A A KA'HA’ is consistent, then
ARZA'. To see this, suppose that not AR?A’. Then there must be a formula
K,x, such that K,x € A and K,x ¢ A’. Therefore, A + K, K,x and K,A' -
K, nX- This implies that A A K,A' is inconsistent.

We next show that for all n € B, and all 3 and p such that 3 ~p p, the
formula xs A pre(8) A Kp—x, is inconsistent. Suppose that it is consistent.
Because x s is a disjunction, we can pick a disjunct © for which © A pre(8) A
KA'nﬁx,l is consistent. Note that ©® € Sg. Since © is maximally consistent in @,
we have pre(8) € ©. Thus, we now have that © /\Kﬁn—-xu is consistent. Note that
—Xy is logically equivalent to \/g, ¢s, ©'. As K, distributes over disjunction,

we can now pick a disjunct Ian’ such that © A If'n@' is consistent. Therefore,
by the claim above, ® ~, ©'. Since pre(3) € © and 8 ~, p and there is a
good path for {(u)Cp® from ©', there is a good path for (a)Cp—) from ©. This
contradicts that © € Sgz. Therefore, - x5 A pre(8) = Knxu-

Now we can apply the Action induction rule to show that T' F x, — [a]Cp—x
and I' - x4. Therefore, [a]Cp—x € T'. This contradicts our initial assumption,
therefore, there is a good path for (a)Cp—p from T.

_{

Lemma 50 (Truth Lemma) If I' € Wy, then for all ¢y € @ it holds that
(Mg, T) =1 iff i € T. 4

Proof By induction on . Suppose ¢ € . For atoms p, negations, conjunc-

tions, individual epistemic operators and common knowledge operators we refer
to [FHMV95].
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Let 9 be of the form [a]Cpx. We have the following equivalences:

(Ms,T) | [2]Crx

& {Definition of {a)}
(M2,T)  (a)Cux

& {Lemma 35}
There exists a witness path for (a)Cp—x from T
& {Induction Hypothesis}
There exists a good path for (a)Cp—x from T
& {Lemma’s 49 and 47}

(@)Cp-x €T
& {T" is maximally consistent in &}
[a]Cex ¢ T

_|

Theorem 51 (Completeness) If I/ o, then there is a model (M, w) such that
(M, w) [~ ¢ .

Proof Suppose lf . Then, —p is consistent. Take f(—p). Note that —¢p
and f(—¢) are provably equivalent (Lemma 40). Now, there is a maximally
consistent set I' in the closure ® of f(—¢) such that f(—y) € I'. Because of the
truth lemma we may conclude that (M®,T) |= f(—), and therefore (Lemma
40), (Mg,T) |= - and thus (Ms,T) £ ¢ .

Corollary 52 (Decidability) The validity problem for concurrent dynamic
epistemic logic is decidable. 4

Proof As we noted earlier the canonical model for a formula ¢ has at most
2!® worlds. There are finitely many models with 2/ worlds. As we can check
whether ¢ holds in a model in finite time, we can check for all these models
whether they satisfy . If they all satisfy ¢, then we can conclude that F . -

5 Applications

In various publications this language has been applied to describe the dynam-
ics of concrete multiagent systems [vD00, vD02b, vD02a, vD02c]. We give an
overview of application areas by examples.

Example 53 (Card game actions)

Assume three players 1,2, 3 and three cards a, b, c. Each player is dealt one card.
Atom a; represents the fact where card a is held by player 1, etc. The action
where player 1 picks up his card, so that the others cannot see which card it is,
is described by the action

piCkUp = L123 (Ll?al U Ll?bl U Ll?bl)
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In some epistemic state s where each player is dealt one card and all players
have picked up their cards (for details, see [vD02b]), player 1 puts his card face
up on the table. This is described by the action

table = Li237ay U L1237b1 U Lis37¢y

Note that in a given epistemic state only one of these alternatives can be ex-
ecuted. Now in that same epistemic state s we can also execute two rather
different actions: firstly, player 1 can show his card to player 2 without player
3 seeing which card is shown. This action is described by

show = L123 (ng?al U ng?bl U L12?cl)

Next, player 2 can ask player 1 “please whisper in my ear the name of a card
that you do not have,” after which player 1 responds to 2’s request. That action
is described by

whisper = L123 (ng?—'al U le?_!bl U ng?ﬁcl)

In this case, whatever the actual epistemic state, 1 can choose one of two cards
to whisper (and indeed, the complexity of the resulting epistemic state has now
increased). 4

Example 54 (Cluedo) The ‘murder game’ Cluedo is a card game where ac-
tions as in the previous example can take place. Other typical actions in Cluedo
are ‘ending your move’ and ‘winning the game’. For a perfect logician, ending
a move in Cluedo is publicly announcing that you cannot win the game yet.
This is the action Ly?-win,, where win,, is an epistemic formula describing
knowledge of the ‘murder cards’, the cards ‘held by the table’ (agent 0) so to
speak, i.e. win,, = K, (scarletty A knifeg A kitcheng) V K,,... (all murder cards
combinations). =

Example 55 (Different cards)

Two players 1,2 face three cards a,b,c lying face-down in two stacks on the
table. Let a be the atom describing ‘card a is in the stack with two cards’, etc.
Consider the following two actions:

e Player 1 draws a card from the two-cards stack, looks at it, returns it, and
then player 2 draws a card from the two-cards stack and looks at it.

e Player 1 draws a card from the two-cards stack, and then player 2 takes
the remaining card from that stack. They both look at their card.

The first action is described by the sequence
Lo (Ll?p U Ll?q U Ll?T) ; L12(L2?p U L2?q U LQ?T')
Alternatively, the first action could have been described by

L12( U (Ll?.’IJ n Lg?y))

z,y=a,b,c
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The second action is described by

L12( U (Ll?.’E N L27y))
z#y=a,b,c

The first action has nine different executions, the second one six only. The
second action, where the alternatives chosen by 1 and 2 depend on each other,
has also a different description as a sequence of two actions, namely:

Lyo(Li?pU Ly?7qU Ly 7r) 5
Ly5(La?(p A =K1p) U Ly?(g A =K1q) U La?(r A =Ky7))

For example, Ly7(p A —K1p) expresses that player 2 only learns p when player 1
has not learnt p already (after which 1 knows that p). That dependence could
also have been put explicitly in local choices, which would have resulted in:

L12(
Lis(!L17pU L17qU L1 7r) 5 L12(L2?pU 1Lo?q U Ly?r) U
Li2(1Ly?pU Li?7qU Ly ?r) 5 Lia(L2?p U La?qU 1Ly7r) U
le (Ll?pU 'Ll?q U L1 7‘) 3 le('Lg‘?p U L27q U L2?7‘) U
le(Ll?pU 'Ll?q U L1 7‘) 3 12(L2?p @] LQ?qU 'LZ?T) @]
le (Ll?p @] Ll?qU 'Ll ’f‘) H 12('[42?]) U Lz?q @] Lg?’f') U
le (Ll?p @] Ll?qU 'Ll?’f‘) 3 L12 (LQ?pU 'Lz?q @] LQ?T‘)
) =

Example 56 (Suspicion) Suppose that an action a may have taken place. In
what sense? Some agents are involved in that action, others aren’t, and the
agents not involved can imagine one of two things to have taken place: either
that action, or nothing. They cannot distinguish one from the other. One might
say that they only suspect but do not know that the action has taken place, or
that they consider the action to have taken place (which is less biased towards
one of the alternatives). The result can be described as

consider(a) := Ly(aU ?T)

In words: group N learn that either a happens or that nothing happens (that
the ‘test on verity succeeds’: always).

It is a generalization of Action Scenario 3, where Bert can imagine Anne to
have read the letter. This action was described as L12(L,?p U L1 7—-pU ?T). -

Example 57 (Muddy children) We assume familiarity with the ‘muddy chil-
dren problem’ [FHMV95]. All actions taking place in the ‘muddy children
problem’ are public announcements. Public announcement of ¢ corresponds
in Lx to a knowledge action Ly?p. Suppose there are three children 1, 2,
and 3. First ‘father’ tells them that at least one of them is muddy. This is
described by Lis3?(my1 V mso V m3) (where m; stand for ‘child 4 is muddy’).
And then father tells them, that who knows whether (s)he is muddy may
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Figure 3: None of the children has stepped forward after father has told that at least
one of them is muddy. The actual epistemic state is 110: 1 and 2 muddy. Each world
of the resulting epistemic state is actually a set of three epistemic states. This is
visualized for world 101.

step forward. When nobody steps forward, that action noforward is gener-
ally [Pla89, GG97, Bal02] analysed as the public announcement of a conjunc-
tion describing that none of the children knows whether he/she is muddy:
L123?((—|K1m1 A —|K1—|m1) A (—|K2m2 A —|K2—|m2) A (—|K3m3 A ﬁK3—|m3)). Al-
though correct, this description is more from an external observer’s point of view
than from the point of view of a child having decided not to step forward. We
prefer an analysis where this is clear, in other words, where the action ‘nobody
steps forward’ is composed of subactions ‘1 does not step forward’, ‘2 does not
step forward’ and ‘3 does not step forward’:

noforward = L123( ngg?(—'Klml N —|K1—|m1)ﬂ
L123?(—|K2m2 A —|K2—|m2)ﬂ
L123?(—|K3m3 A —|K3—|m3) )

Suppose that child 1 and 2 are actually muddy, and let this epistemic state be
described by (Cube, 110). Then after the execution of L1237(m1 VmaVms) and
noforward the epistemic state of Figure 3 results, where it is the case that child
1 and 2 know that they are muddy (so will step forward at the next stage).

In Figure 3 we have visualized the precise structure of one of the worlds of
the resulting epistemic state, namely 101. The world named 101 is actually a
set of three epistemic states, corresponding to, from left to right, 2, 1, and 3
making public that they do not know whether they are muddy:

(Cube, 101)[[L123?(—|K2m2 N —-Ky —|m2)]]
(C’ube, 101)[[L123?(—|K1m1 A —|K1—|m1)]]
(C’ube, 101)[[L123?(—|K3m3 A —|K3—|m3)]]
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Note that this set of three epistemic states is indeed merely a complex name for
that world in the resulting model: the only thing that counts is ‘its valuation’,
namely that child 1 and 3 are muddy in that world and that child 2 is not
muddy (and of course, all three epistemic states in the set already corresponded
on that!). 4

Example 58 (Security protocols) From a pack of seven known cards (0, 1,
2, 3,4, 5, 6) two players Anne (a) and Bill (b) each draw three cards and
a third player Crow (c¢) gets the remaining card. How can Anne and Bill
openly (publicly) inform each other about their cards, without Crow learn-
ing from any of their cards who holds it? There are many solutions to this
problem [vD02c]. Suppose Anne actually holds {0,1,2} (012,), Bill {3,4,5},
and Crow card 6. One of the solutions consists of Anne saying “My hand is
one of 012,034,056,135,246” after which Bill says “Crow has card 6”. This is
described by the sequence of two public announcements

Lope 7K, (012, V 034, V 056, V 135, V 246,,) ; Lap.? K6,

Hereafter, it is common knowledge that Anne knows Bill’s cards, Bill knows
Anne’s cards, and Crow doesn’t know any of Anne’s or Bill’s cards. -

6 Conclusions

We have presented a proof system, and proved it to be sound and complete, for
a dynamic epistemic logic in which higher-order information and belief change,
and even higher-order belief change, can all be elegantly expressed. The crucial
technical features of the language are, (1) that the notion of epistemic accessibil-
ity is lifted from one between worlds of an epistemic state to one between more
complex semantic objects, such as sets of epistemic states, (2) the notion of the
group of models, of epistemic states, and of actions, and (3) that actions are in-
terpreted as a relation between epistemic states and sets of epistemic states. In
view of proving completeness, we introduced a useful notion of syntactic access
between actions. We gave an overview of the wide range of applications of this
language for concrete multiagent system specification. We intend to continue
this research by generalizing the semantics to include (not just knowledge but
also) belief.
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