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Introduction

Welcome to PP2003, the first conference devoted exclusively to the study of per-
mutation patterns and related results. We thank you all for coming such great
distances and hope that you will enjoy your stay.

We would like to thank the New Zealand Institue of Mathematics and its Appli-
cations (NZIMA), Otago University, the department of Computer Science, and the
department of Mathematics and Statistics for having provided support to the con-
ference in various ways.

These proceedings are intended as a set of abstracts and extended abstracts. The
formatting of some of the submissions has been changed slightly to provide a (some-
what) uniform style. Many of the papers (and others) will appear as full versions
in the special issue of the Electronic Journal of Combinatorics on Permutation Pat-
terns.
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Simple permutations, partial well-order,

and enumeration

M. H. Albert
M. D. Atkinson

Department of Computer Science, University of Otago

1 Introduction

A class X of permutations is said to be closed if whenever σ ∈ X and τ is a
subpermutation of σ (a pattern within σ) then τ ∈ X also. Closed classes of
permutations are precisely the classes that are defined by pattern restrictions. We
often want to answer the following three questions about such classes:

1. Is there an efficient recognition algorithm for deciding when a permutation
belongs to the class?

2. Can the class be defined by a finite set of pattern restrictions?

3. How many permutations of length n does the class contain?

The first question is NP-complete for some classes [5, 6]. The second question
usually has a negative answer [1]. The third question is, in general, so difficult
that we are often content with partial answers (such as confirming the Wilf-Stanley
conjecture). Despite this pessimistic summary many classes that arise in practice
often have positive or computable answers for all three questions. In this paper
we examine some conditions which ensure that a class of permutations is tractable
from this point of view.

A component of a permutation σ = s1 · · · sn is a segment si · · · sj with the property
that the set {si, . . . , sj} is a set of consecutive integers (a range). A component is
trivial if it is of length 1 or n. If σ has no non-trivial component it is said to be
simple. For example, 58317462 is simple but 61835247 is not simple because of its
component 3524.

We shall be concerned with closed classes of permutations which contain only finitely
many simple permutations. For these classes we can establish the following:

1. There is a polynomial time algorithm to determine membership.

2. The class is defined by a finite set of pattern restrictions.

3. Let sn be the number of permutations of length n in the class; then the
ordinary generating function

∑∞
n=1 snx

n is algebraic.

Proofs of these results are constructive and in some special cases even stronger
results can be obtained. In the next two sections we sketch the proofs of the second
and third of these results (the first follows from the second); and in the final section
we give an asymptotic result for the number of simple permutations of length n.
The results of section two have also been obtained by Murphy [4]. Because of the
constructive nature of the methods it is also possible to extend some of the results
to some classes which contain an infinite family of simple permutations.

5



Permutation Patterns 2003 M.H. Albert and M.D. Atkinson

2 A finite number of restrictions

We begin with a technical result about simple permutations.

Proposition 2.1. Every simple permutation σ of length n > 2 has a simple sub-
permutation of length n− 1 or n− 2. If it has no simple subpermutation of length
n − 1 then n = 2m is even and σ = 2, 4, . . . , 2m, 1, 3, . . . , 2m − 1 or one of three
permutations obtained from this by symmetry.

Proof. A proof of this may be found in [4]. A shorter proof will appear in the full
version of this paper.

Now let F = {φ1, . . . , φm} be a finite set of simple permutations. To avoid trivi-
alities we assume that any simple subpermutation of a permutation in F also lies
in F . Consider the largest closed class L whose set of simple permutations is F
precisely; L certainly exists since the union of two closed classes is also closed.

Lemma 2.2. L is defined by a finite set of pattern restrictions.

Proof. It is easy to see that a sufficient set of pattern restrictions is provided by
those permutations that are minimal in the pattern containment order subject to
not belonging to L (in the terminology of [1] the basis of L). Let α be such a
permutation. We shall argue that α is simple.

For a contradiction, assume that α = βγδ where γ is a non-trivial component of α.
By choosing γ of minimal length we may take γ to be simple. It is easy to see that
any simple subpermutation of α is either a subpermutation of βgδ where g is the
contraction of γ to a single symbol, or is γ itself; so all such simple subpermutations
are in F . But then α and all of its subpermutations could be adjoined to L without
adding any simple permutations, contradicting the maximality of L with respect to
this property.

Since α is simple it has, by Proposition 2.1, a simple subpermutation of length |α|−1
or |α| − 2. By the minimality of α this subpermutation is one of the permutations
of F and so |α| is bounded.

The proof also shows that the minimal set of restrictions that define L is easily
computable. Of course L is only one (the largest) of the closed classes whose set of
simple permutations is precisely F . To get a similar result for the other classes we
need a partial well-order result.

Proposition 2.3. The class L is partially well-ordered by the pattern containment
order.

Proof. We shall give L the structure of an algebra with an operator for each φ ∈ F .
Let φ = f1f2 · · · ft ∈ F and let ξ1, ξ2, . . . , ξt be any t permutations of L. Then we
define

φ(ξ1, ξ2, . . . , ξt) = ξ′1ξ
′
2 · · · ξ′t

where each ξ′i is a component, is order isomorphic to ξi, and the relative order of
the components is given by the permutation φ. The crucial point is that the right
hand side also belongs to L for it is easy to see that this permutation can have no
simple subpermutations other than those in F (and so, if it was not in L, we could
adjoin it and all its subpermutations to L and contradict the maximal property of
L).
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It follows also that L is generated, as an algebra, by the single permutation of length
1. It is easy to check that the conditions necessary to apply Higman’s theorem [2]
are satisfied and therefore L is partially well-ordered.

Now we have, by Proposition 1.1 of [1],

Corollary 2.4. Every closed class of permutations having only a finite number of
simple permutations is determined by a finite set of restrictions.

3 Algebraic generating functions

We shall outline a calculus capable of enumerating closed classes that have only a
finite number of simple permutations. This calculus exploits the following way of
decomposing a permutation π. Consider the maximal proper components of π. If
two such components overlap then clearly their union is also a component, hence the
whole of π; in this case it is easy to see that π decomposes as π = αβ where either
α < β or α > β. In the more interesting case that π has no such decomposition,
the maximal proper components form a partition of π and the pattern determined
by the blocks of this partition define a simple permutation of length more than 2
called the skeleton of π.

Suppose that π is a simple permutation of length n > 2, and A1, A2, . . . , An are
sets of permutations. Then

π(A1, A2, . . . , An)

denotes the set of all permutations θ that have a wreath decomposition

θ = θ1 θ2 · · · θn

whose pattern is π and for which θ ∈ Ai. Notice that every permutation of this set
has skeleton π. From the uniqueness of the skeleton we have

Lemma 3.1. If π is simple of length n > 2 then

π(A1, A2, . . . , An) ∩ π(B1, B2, . . . , Bn) = π(A1 ∩ B1, A2 ∩B2, . . . , An ∩ Bn)

To see how these ideas apply to enumerating classes with only a finite number
of simple permutations we first consider again the largest class L whose simple
permutations are {12, 21, φ3, . . . , φm}. Permutations of L either have skeleton one
of φ3, . . . , φm or the form αβ with α < β or α > β. The first types are permutations
within φi(L,L, . . . , L) and all these sets are disjoint. This gives rise to an equation
for the generating function of the form

f(x) =
m∑

i=3

f(x)|φi| + p(x) + q(x)

Each summand on the right hand side arises from one of the forms above. We omit
here the special argument that is used to handle the terms p(x) and q(x).

To obtain information about the generating functions of subclasses of L we shall
use the main result of the previous section: these subclasses arise from L by impos-
ing a finite number of further pattern restrictions. When we start imposing such
restrictions we find that sets of the form π(A1, A2, . . . , An) as defined above play a
crucial part. In order to get an inductive argument going, we have to analyse the
effect of restricting such a set by a single permutation τ .
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In general, the notation A[τ1, τ2, . . . , τk] denotes the subclass of A whose permuta-
tions avoid all of τ1, τ2, . . . , τk. To analyse the class

π(A1, A2, . . . , An)[τ ]

we define an embedding by blocks of τ in π to consist of a decomposition τ = τ1 · · · τl
whose pattern σ is a subpermutation of π together with a map

s : {1, 2, . . . , l} −→ {1, 2, . . . , n}

expressing the subpermutation embedding. Let E be the set of all such embeddings
by blocks.

If τ is a subpermutation of some element α = α1 · · ·αn of π(A1, A2, . . . , An) then
there must be some embedding by blocks of τ in π such that each of the parts τi of the
decomposition is a subpermutation of αs(i). So the elements of π(A1, A2, . . . , An)[τ ]
are those for which no s ∈ E is such an embedding; hence for every s ∈ E there is
some part τi that is not a subpermutation of αs(i). Therefore

π(A1, A2, . . . , An)[τ ] =
⋂

E

l⋃

i=1

π(A1, . . . , As(i)[τi], . . . . . . , An)

We may write the right hand side in disjunctive normal form (as a union of terms,
each of which is an intersection of terms like π(A1, . . . , As(i)[τi], . . . . . . , An)). These
intersections, by Lemma 3.1, have the form π(B1, . . . , . . . , Bn) where each Bi is
either Ai or Ai restricted by finitely many permutations.

The size of the left hand side can now be expressed, using inclusion exclusion, as a
sum and difference of sizes of these π(B1, . . . , . . . , Bn) and their intersections taken
several at a time. Again, by Lemma 3.1, such intersections have the same form.

In this way we can express the enumeration of π(A1, A2, . . . , An)[τ ] in terms of
enumerations of simpler sets of the same type and this leads to the theorem

Theorem 3.2. The generating function of every class with just a finite number of
simple permutations is algebraic.

4 Asymptotics of simple permutations

The number sn of simple permutations of small degree can be computed by means
of a straighforward recurrence, and the first few values are given by

n 2 3 4 5 6 7 8 9 10 11 12
sn 2 0 2 6 46 338 2926 28146 298526 3454434 43286526

We also have an asymptotic result.

Theorem 4.1.

lim
n→∞

sn

n!
=

1

e2

Proof. Let Sn denote the numbers of simple permutations of length n and Tn the
number of permutations with no simple component of size 2. Obviously Sn ⊆ Tn.
It is proved in [3] that

lim
n→∞

|Tn|
n!

=
1

e2
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Since Tn \ Sn consists of permutations which have a simple component of size k,
with 4 ≤ k < n, it is enough to show that the number un permutations of this latter
type is asymptotically negligible.

We can choose the position of a simple component of length k in n − k + 1 ways,
the set of consecutive values that comprise it in n− k + 1 ways, their arrangement
in sk ways, and the arrangement of the remaining items in (n−k)! ways so we have

un

n!
≤

n−1∑

k=4

sk(n− k + 1)2(n− k)!
n!

For 4 ≤ k ≤ n− 4 we bound the kth term by

sk(n− k + 1)2(n− k)!
n!

≤ k!n2(n− k)!
n!

≤ n2

(
n

k

)−1

≤ n2

(
n

4

)−1

= O(1/n2)

For n−4 < k ≤ n−1 we can bound the kth term using sk ≤ (n−1)! and n−k+1 ≤ 4
so that

sk(n− k + 1)2(n− k)!
n!

= O(1/n)

Thus un/n! = O(1/n) and the proof is complete.
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Sorting with a forklift.

M. H. Albert
M. D. Atkinson

Department of Computer Science, University of Otago

A standard analogy for explaining the operation of a stack is to speak about stacks
of plates, allowing one plate to be added to, or removed from, the top of the stack.
In the context of this analogy it is natural to wonder why multiple plates cannot
be simultaneously removed from or added to the stack. In this talk we explore the
ramifications of allowing such operations.

In particular we will consider the problem of a dishwasher and his helper. The
dishwasher receives dirty plates, washes them, and adds them one at a time to a
stack to be put away. The helper can remove plates from the stack, but she can
move more than one plate at a time. It so happens, that all the plates are of slightly
differing sizes, and her objective is to make sure that when they are placed in the
cupboard, they range in order from biggest at the bottom, to smallest at the top. It
is easy to see that if the dishwasher processes three dishes in order: middle, smallest,
largest then his helper can easily succeed in the model given (simply waiting for the
largest plate, and then moving the two smaller ones on top as a pair). However, if
she is replaced by a small child who can only move a single plate at a time, then
the desired order cannot be achieved.

An alternative, slightly more general, analogy provides the source of our title. We
begin with a stack of boxes, called the input, labelled 1 through n in some order.
We have at our disposal a powerful forklift which can remove any segment of boxes
from the top of the stack, and move it to the top of another stack, the working
stack. From there another forklift can move the boxes to a final, output, stack.
Physical limitations, or union rules, prevent boxes being moved from the working
stack to the input, or from the output to the working stack. The desired outcome
is that the output should be ordered with box number 1 on top, then 2, then 3, . . . ,
with box n at the bottom.

The problems we wish to consider in this context are:

• How should such permutations be sorted?

• Which permutations can be successfully sorted?

• How many such permutations are there?

We will also consider these questions in the restricted context where one or both of
the moves allowed are of limited power – for example, say, at most three boxes at a
time can be moved from the input stack to the working stack, and at most six from
the working stack to the output stack.

Our main results are the following:

• In either the full or restricted contexts the class of permutations which are
sortable is a class defined by a finite number of pattern restrictions.

• There is a simple algorithm for recognizing the sortable permutations (i.e. for
operating the forklifts when sorting is possible).

10
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• In any restricted context, the generating function for the class of sortable
permutations is algebraic and, in principle, can be computed.

The results in the case of the dishwasher problem are particularly interesting. In
this case, with the most limited possible helper, the class is of course one of the
Catalan classes, with exponential constant 4 in its growth rate. With a helper of
unlimited power the enumeration sequence is:

1, 1, 2, 6, 21, 79, 311, 1265, 5275, 22431, 96900, 424068, . . .

the binomial transform of Fine’s sequence, and has exponential constant 5. Both
these generating functions satisfy quadratic equations. However, for helpers who
can lift k dishes where 2 ≤ k < ∞, the degree of the polynomial satisfied by the
corresponding generating function is k + 1, and the difference between 5 and its
radius of convergence is geometrically decreasing (asymptotically, by a factor of 3).

11



A survey of stack-sortable permutations

Miklós Bóna
Department of Mathematics

University of Florida
Gainesville FL 32611

Abstract

We discuss various recent developments concerning stack-sortable permu-
tations. We mention results connected to unimodality, symmetry, and simpli-
cial complexes. Conjectures on log-concavity and enumeration are included

1 Introduction

In what follows, permutations of length n will be called n-permutations. The stack-
sorting operation s can be defined on the set of all n-permutations as follows. Let
p = LnR be an n-permutation, with L and R respectively denoting its subword
before and after the maximal entry. Let s(p) = s(L)s(R)n, where L and R are
defined recursively by this same rule. For a nonrecursive, algorithmic definition, or
the origin of the notion see [8], [10].

A permutation p is called t-stack sortable if st(p) is the identity permutation. The
stack-sorting operation, and 2-stack sortable permutations, were the subject of nu-
merous research efforts during the past decade, and connections between this field
and labeled trees [9], Young tableaux [7], and planar maps have been found.

The set of 1-stack sortable n-permutations is easy to characterize by the following
notion of pattern avoidance. Let q = (q1, q2, . . . , qk) be a k-permutation and let
p = (p1, p2, . . . , pn) be an n-permutation. We say that p contains a q-subsequence
if there exists 1 ≤ iq1

< iq2
< . . . < iqk

≤ n such that pi1 < pi2 < . . . < pik
. We

say that p avoids q if p contains no q-subsequence. For example, p avoids 231 if it
cannot be written as · · · , a, · · · , b, · · · c, · · · so that c < a < b. It is easy to show [8]
[10] that a permutation is 1-stack sortable if and only if it avoids the pattern 231.
In particular, the number of 1-stack sortable permutations is therefore Cn, the nth
Catalan number.

The set of 2-stack sortable permutations is much more complex. For example, it is
not true that a subword of a 2-stack sortable permutation is always 2-stack sortable;
for 35241 is 2-stack sortable, while its substring 3241 is not. So in general, t-stack
sortability cannot be described by regular pattern avoidance. Similarly, it is far
more difficult to find a formula for the number Wn of these permutations [9], [5],
[11] than for that of 1-stack sortable ones.

12
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2 Symmetry and Unimodality

The exact numbers Wt(n, k) of t-stack sortable n-permutations with k descents are
known if t = 1 or t = 2, and show several interesting properties.

As 1-stack sortable permutations are the 231-avoiding ones, it is well-known that
the numbers W1(n, k) will be the famous Narayana numbers, that is,

W1(n, k) =
1

n

(
n

k

)(
n

k + 1

)
.

In particular, for any fixed n, the sequence {W1(n, k)}, 0 ≤ k ≤ n− 1 is symmetric.
This symmetry is further explained by present author and R. Simion, who proved
(up to a trivial symmetry) that there are as many 1-stack sortable n-permutations
with descent set S ⊆ {1, 2, · · ·n− 1} as there are with descent set S∗, where S∗ is
the reverse complement of S, that is, i ∈ S∗ if and only if n− i /∈ S.

If t = 2, then determining the numbers W2(n, k) is much more difficult. Construct-
ing a bijection with nonseparable planar maps, it can be shown [9] that

W2(n, k) =
(n+ k)!(2n− k − 1)!

(k + 1)!(n− k)!(2k + 1)!(2n− 2k − 1)!
.

In particular, we get again that for any fixed n, the sequence {W2(n, k)}, 0 ≤
k ≤ n − 1 is symmetric. This raises the question whether the sequence Wt(n, k),
0 ≤ k ≤ n− 1 is symmetric for any fixed t and any fixed n.

We will show that this sequence is in fact symmetric, and even unimodal for all
fixed t and n. We conjecture that the sequence is also log-concave, and that its
generating function has real zeros only.

3 A Simplicial Complex of 2-stack sortable per-

mutations

The polynomials Wn,t(x) are generalizations of the Eulerian polynomials. Let us
find out which properties of the Eulerian polynomials are preserved by this gener-
alization.

Recently, V. Gasharov constructively proved the following interesting result [6] that
has been proved before by F. Brenti [3] by other means, and discussed as a special
case of a more general setup (Coxeter groups, instead of just the symmetric group).

Denote by [n] the set {1, 2, ..., n}.
Theorem 3.1. There exists a simplicial complex whose (k − 1)-dimensional faces
correspond to permutations of [n] with k descents.

Gasharov’s constructive proof raises the following question. Is it true that for any
fixed n, there a simplicial complex whose (k − 1)-dimensional faces correspond to

13
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t-stack sortable permutations of [n] with k descents (or ascents)? In other words,
are the polynomials Wn,t(x) Hilbert series?

We answer this question for each n in the affirmative for the easy case of t =
1, and for the more interesting case of t = 2. While these questions could be
answered in other ways, our proofs will be constructive. In this case, this is an
important difference. Indeed, the reason that makes a different, computational
approach possible when t = 1 or t = 2 is that there are formulae [9] [1], for the
numbers W1(n, k), and W2(n, k). Once all these numbers are known, there is a
numerical sufficient and necessary condition [3] for them to form the f -vector of a
simplicial complex. However, if these numbers are not known, as it is the case when
t > 2, that approach will not work. Present author conjectures that the answer to
this question is in the affirmative for all t.

4 The case of t = 1

Theorem 4.1. There exists a simplicial complex S whose k − 1-dimensional faces
correspond to stack sortable permutations with k ascents.

Proof. As we mentioned, a permutation is stack sortable if and only if it avoids
the pattern 231. On the other hand, 231-avoiding n-permutations are in bijection
with northeastern lattice paths from (0, 0) to (n, n) that never go above the main
diagonal. The following refinement of this fact is well-known, but we include it for
self-containment.

Lemma 4.2. There is a bijection r from the set of 231-avoiding n-permutations
with k ascents onto that of NE lattice paths from (0, 0) to (n, n) that never go above
the main diagonal and have k north-to-east turns.

Proof. Let p = p1p2 · · · pn be a 231-avoiding n-permutation with k ascents. If the
entry n of p is not in the first position, then everything on the left of n must be
smaller than everything on the right of n. That is, if n = pi, then the string
p′ = p1p2 · · · pi−1 forms a 231-avoiding permutation on [i − 1], while the string
p′′ = pipi+1 · · · pn forms a 231-avoiding permutation on {i, i+ 1, · · · , n}. Thus we
can define r(p) = L as the lattice path that is a concatenation of L1 and L2, where
L1 = r(p′) and L2 = r(p′′) as defined recursively by this same algorithm. (The path
L1 goes from (0, 0) to (i− 1, i− 1), while L2 goes from (i− 1, i− 1) to (n, n)).

If n = p1, then the first step of r(p) = L is to the east, and the last step of L is to the
north. We still have to define the part of L that goes from (1, 0) to (n, n− 1). That
part is set to be r(p2p3 · · · pn), defined again recursively by this same algorithm.

It is straightforward to check (by induction, or otherwise), that the map r we
constructed is a bijection with the desired property. 3

Now the proof of Theorem 4.1 is straightforward. Take any northeastern lattice
path L that has k north-to-east turns. Denote t1, · · · , tk the positions of these
turns. Here the ti are points in N2, and t1 < · · · < tk in the usual (coordinate-wise)
ordering of N2.

14
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L L L

L

1 2 3

Figure 1: Decomposing a lattice path.

It is clear that the set of its north-to-east turns completely determines L, so f is
an injection. On the other hand, f is not a surjection onto the set of all ordered
k-tuples of subdiagonal NE paths from (0, 0) to (n, n). Indeed, for (L1, L2, · · ·Lk)
to have a preimage, all the k north-to-east turns contained in the Li must be in
different rows, and in different columns. Moreover, the subposet of N2 that is
induced by the elements t1, · · · , tk has to be a chain. In other words, if i < j, and
ti = (a, b), and tj = (c, d), then a < c and b < d have to hold.

We define L to be the set of all subdiagonal NE paths from (0, 0) to (n, n) having one
NE turn. Let ∆1 be the simplicial complex of all ordered subsets (L1, L2, · · ·Lm)
of L that have a preimage by f . Then the above discussion shows that the k − 1
dimensional faces of this complex are precisely the subdiagonal NE lattice paths
(0, 0) to (n, n) having k NE turns. 3

We point out that the definition of simplicial complexes uses sets of nodes, not
k-tuples, or in other words, ordered sets. This did not cause a problem, however,
for each set of k NE turns could have at most one ordering that belonged to our
simplicial complex. This phenomenon will occur in the next section, too.

5 The case of t = 2

In this section, we prove the following analogue of Theorem 3.1 for 2-stack sortable
permutations.

Theorem 5.1. There exists a simplicial complex S whose k − 1-dimensional faces
correspond to stack 2-sortable permutations with k ascents.

In general, 2-stack sortable permutations turn out to be much more difficult to han-
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dle than stack sortable permutations, and this particular problem is no exception.
The extra layer of difficulty lies in the representation of these permutations by other
objects. The representation we will use needs the following definition.

Definition 5.2. [4] [9] A rooted plane tree with positive integer labels l(v) on each
of its nodes v is called a β(1, 0)-tree if it satisfies the following conditions:

• if v is a leaf, then l(v) = 1,

• if v is the root and v1, v2, · · · , vk are its children, then l(v) =
∑k

i=1 l(vk),

• if v is an internal node (that is, not the root, and not a leaf), and v1, v2, · · · , vk

are its children, then l(v) ≤∑k
i=1 l(vk).

Note that this implies that no node can have a larger label than the total number
of its descendents. See Figure 2 for an example.

1 1 1 1 1 1 1 1 1

1
12 2 2

23 1 1

7

Figure 2: A β(1, 0)-tree .

The relevance of β(1, 0)-trees to our problem is revealed by the following Theorem,
which is quite difficult to prove.

Theorem 5.3. [4] [9] There exists a bijection b from the set of all β(1, 0)-trees on
n+ 1 nodes onto that of all 2-stack sortable n-permutations so that if a β(1, 0)-tree
T has k internal nodes, then b(k) has k ascents.

Denote D
β(1,0)
n+1,k the set of all β(1, 0)-trees on n + 1 nodes having k internal nodes.

Our plan is as follows. To each β(1, 0)-tree T ∈ Dβ(1,0)
n+1,k we will associate a k-tuple

(T1, T2, · · · , Tk) ∈ [D
β(1,0)
n+1,1 ]

k of β(1, 0)-trees . Again, we will do it in an injective
way.

We have to specify the order in which we will treat the k internal nodes of T . We
define an order call postorder on the set of all nodes of T ; the restriction of that
order to the set of internal nodes will then tell us in which order to treat the internal
nodes.

Postorder is defined as follows. For every node V , first we read the subtrees of the
children of V from left to right, then V itself. The subtrees of the children of V are
read recursively, according to the same rule. This rule linearly orders all nodes of
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T , and in particular, turns our set {V1, · · · , Vk} of internal nodes into the k-tuple
(V1, · · · , Vk) of internal nodes.

Let i ∈ [k] and let Vi be the ith internal node of our β(1, 0)-tree T . Let Vi have di

descendents, excluding itself. Moreover, denote li the number of nodes of T that
precede Vi in the postorder reading of T . Similarly, denote by ri the nodes of T
follow Vi in the postorder reading of T .

Then we define Ti as the unique β(1, 0)-tree with one internal node Zi so that Zi

has di descendants, and the root of Ti has li leaf-children on the left of Zi and ri
leaf-children on the right of Zi. The only node whose label has to be defined is the
only internal node Zi, and we set labelTi

(Zi) = labelT (Vi).

We show that we can indeed always set labelTi
(Zi) = labelT (Vi), that is, labelT (Vi)

is never too big for the label of Zi. Indeed, Zi has di children, all leafs, so any
positive integer at most as large as di is a valid choice for the label of Zi. On the
other hand, Vi has di descendents in T , so labelT (Vi) ≤ di, and therefore labelT (Vi)
is indeed a valid choice for labelTi

(Zi).

Now we define our decomposition map, h(T ) = (T1, T2, · · · , Tk). See Figure 3 for
an example of this map.

1 1

1 1

1

3

2

2

2

2

1 1 1 1 1
1

1
1

11111111

11

6

4

6
1

Figure 3: Decomposing a β(1, 0)-tree .

Lemma 5.4. The map h : D
β(1,0)
n+1,k → [D

β(1,0)
n+1,1]

k defined by h(T ) = (T1, T2, · · · , Tk)
is an injection.
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Abstract

We define the packing density on words and find the packing densities of
several types of patterns with repeated letters allowed.

A string 213322 contains three subsequences 233, 133, 122 each of which is order-
isomorphic (or simply isomorphic) to the string 122, i.e. ordered in the same way
as 122. In this situation we call the string 122 a pattern.

Herb Wilf first proposed the systematic study of pattern containment in his 1992
address to the SIAM meeting on Discrete Mathematics. However, several earlier
results on pattern containment exist, for example, those by Knuth [11] and Tarjan
[15].

Most results on pattern containment actually deal with pattern avoidance, in other
words, enumerate or consider properties of strings over a totally ordered alphabet
which avoid a given pattern or set of patterns. Knuth [11] found that, for any π ∈ S3,
the number of n-permutations avoiding π is Cn, the nth Catalan number. Later,
Simion and Schmidt [13] determined the number the number of permutations in Sn

simultaneously avoiding any given set of patterns Π ⊆ S3. Burstein [4] extended this
result to the number of strings with repeated letters avoiding any set of patterns
Π ⊆ S3. Burstein and Mansour [5] considered forbidden patterns with repeated
letters.

There is considerably less research on other aspects of pattern containment, specif-
ically, on packing patterns into strings over a totally ordered alphabet (but see
[1, 3, 12, 14]). In fact, all pattern packing except the one in [14] (later generalized
in [1]) dealt with packing permutation patterns into permutations (i.e. strings with-
out repeated letters). In this paper, we generalize the packing statistics and results
to patterns over strings with repeated letters and relate them to the corresponding
results on permutations.

1 Preliminaries

Let [k] = {1, 2, . . . , k} be our canonical totally ordered alphabet on k letters, and
consider the set [k]n of n-letter words over [k]. We say that a pattern π ∈ [l]m
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occurs in σ ∈ [k]n, or that σ contains the pattern π, if there is a subsequence of σ
order-isomorphic to π.

Given a word σ ∈ [k]n and a set of patterns Π ⊆ [l]m, let ν(Π, σ) be the total
number of occurrences of patterns in Π (Π-patterns, for short) in σ. Obviously,
the largest possible number of Π-occurrences in σ is

(
n
m

)
, when each subsequence

of length m of σ is an occurrence of a Π-pattern. Define

µ(Π, k, n) = max{ ν(Π, σ) |σ ∈ [k]n},

d(Π, σ) =
ν(Π, σ)(

n
m

) ,

δ(Π, k, n) =
µ(Π, k, n)(

n
m

) = max{ d(Π, σ) |σ ∈ [k]n},

respectively, the maximum number of Π-patterns in a word in [k]n, the probability
that a subsequence of σ of length m is an occurrence of a Π-pattern, and the
maximum such probability over words in [k]n. We want to consider the asymptotic
behavior of δ(Π, k, n) as n→∞ and k →∞.

Proposition 1.1. If n > m, then δ(Π, k, n) ≤ δ(Π, k, n − 1) and δ(Π, k, n) ≥
δ(Π, k − 1, n).

Proof. The proof of Proposition 1.1 in [1] also applies to the first inequality in our
proposition as well, since possible repetition of letters is irrelevant here. To see that
the second inequality is true, note that increasing k, i.e. allowing more letters in
our alphabet, can only increase µ(Π, k, n), and hence, δ(Π, k, n). 2

The greatest possible number of distinct letters in a word σ of length n is n, which
implies that µ(Π, k, n) = µ(Π, n, n) for k ≥ n, and hence, δ(Π, k, n) = δ(Π, n, n) for
k ≥ n. Therefore,

δ(Π, n, n) = lim
k→∞

δ(Π, k, n).

We also have δ(Π, n, n) = δ(Π, n + 1, n) ≥ δ(Π, n + 1, n + 1), so δ(Π, n, n) is non-
increasing and nonnegative, so there exists

δ(Π) = lim
n→∞

δ(Π, n, n) = lim
n→∞

lim
k→∞

δ(Π, k, n).

We call δ(Π) the packing density of Π.

Obviously, there are two double limits. Since 0 ≤ δ(Π, k, n) ≤ 1, it immediately
follows that there exists

δ(Π, k) = lim
n→∞

δ(Π, k, n) ∈ [0, 1]

and that {δ(Π, k) | k ∈ N} is nondecreasing as k →∞. Hence, there exists

δ′(Π) = lim
k→∞

δ(Π, k) = lim
k→∞

lim
n→∞

δ(Π, k, n).

It is easy to see that δ′(Π) ≤ δ(Π). Naturally, one wishes to determine when
δ′(Π) = δ(Π). In this paper, we will provide a sufficient condition for this equality.

The set [k]n is finite, so for each k and n, there is a string σ(Π, k, n) ∈ [k]n such that
d(Π, σ(Π, k, n)) = δ(Π, k, n). To find δ(Π), we will need to find δ(Π, k, n), hence
maximal Π-containing permutations σ(Π, k, n) are of interest to us, especially, their
asymptotic shape as n→∞ and k →∞.
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Example 1.2. Let Π = {cm}, where cm is a constant string of m 1’s. Then,
clearly, σ(Π, k, n) = cn and d(cm, cn) = 1 for n ≥ m, so δ(cm, k, n) = 1 for n ≥ m,
and hence δ′(cm) = δ(cm) = 1 for any m ≥ 1.

Example 1.3. Let Π = {idm}, where idm is the identity permutation of Sm. Then
σ(idm, n, n) = idn, so d(idm, idn) = 1, δ(idm, n, n) = 1 and δ(idm) = 1.

Determining δ′(idm) is a bit harder. Consider a permutation τ ∈ [k]n. Deleting the
all 1’s of σ and inserting them at the left end of τ can only increase the number of
occurrences of idm. Call the resulting permutation τ1. Then d(idm, τ) ≤ d(idm, τ1).
Similarly, deleting all 2’s of τ1 and inserting them immediately after the (ini-
tial) block of 1’s can only increase the the number of occurrences of idm. It-
erating this procedure k times, we see that σ(idm, k, n) must be an nondecreas-
ing string of digits in [k]. Let ni be the number of digits i in σ(idm, k, n), then
µ(idm, k, n) = ν(idm, σ(idm, k, n)) = n1n2 . . . nk and n1 + n2 + · · · + nk = n. To
maximize the above product we need n1 = n2 = · · · = nk = n

k . (More exactly,
[12] shows that we should choose for ni’s to be such integers that |ni − n

k | < 1 and
|n1 + · · ·+ nr − rn

k | < 1 for each r = 1, 2, . . . , k.) It follows that

δ(idm, k, n) ∼
(

k
m

) (
n
k

)m

(
n
m

)

(where an ∼ bn means limn→∞ an/bn = 1), so δ(idm, k) =
( k

m)
km , and thus δ′(idm) =

1 as expected.

Packing density was initially defined for patterns in permutations. Therefore, we
must show that the packing density on permutations agrees with the packing density
on words.

Theorem 1.4. Let Π ⊆ Sm be a set of permutation patterns, then

δ(Π) = lim
n→∞

max{ ν(Π, σ) |σ ∈ Sn}(
n
m

) ,

i.e. the packing density of Π on words is equal to that on permutations.

Proof. It is enough to prove that

µ(Π, n, n) = max{ ν(Π, σ) |σ ∈ Sn},

in other words, that there is a permutation in Sn among the maximal Π-containing
words in [n]n. Consider any maximal Π-containing word σ ∈ [n]n. Let ni be the
multiplicity of the letter i in σ. Let ij denote the jth occurrence of the letter i, and

consider the map f : [n]n → Sn induced by the map ij 7→
∑i

r=1 nr − j + 1. Since
all letters of each pattern in Π are distinct, Π occurs in f(σ) at least at the same
positions Π occurs in σ, so ν(Π, f(σ)) ≥ ν(Π, σ). The rest is easy. 2

Apart from computing packing densities of patterns, we would also like to determine
which patterns have equal packing densities, which ones are asymptotically more
packable than others, etc. For example, it is easy to see that the packing density
is invariant under the usual symmetry operations on [l]m: reversal r : τ(i) →
τ(m − i + 1) and complement c : τ(i) → l − τ(i) + 1, (packing density is also
invariant under inverse i : τ → τ−1 when packing permutations into permutations).
The operations r and c generateD2, while r, c, i generateD4. Patterns which can be
obtained from each other by a sequence of symmetry operations are said to belong
to the same symmetry class.

21



Permutation Patterns 2003 Alexander Burstein and Toufik Mansour

Example 1.5. The symmetry class representatives of patterns in [3]3 are

123, 132, 112, 121, 111.

We know that δ(111) = 1 = δ(123). Galvin, Kleitmann and Stromquist (indepen-
dently, unpublished, see chronology in [12]) showed that δ(132) = 2

√
3−3 ≈ 0.4641.

Thus, we only need to determine the packing densities of 112 and 121 to completely
classify patterns of length 3.

Price [12] extended Stromquist’s results [14] to packing a single pattern π = 1m(m−
1) . . . 2 and handled other single patterns such as 2143. Since we will also be con-
cerned mostly with singleton sets of patterns Π = {π}, we will write δ(π) for δ({π}),
etc.

Price’s results deal with patterns of specific type, the so-called layered patterns.

Definition 1.6. A layered pattern is a strictly increasing sequence of strictly de-
creasing substrings. These substrings are called the layers of σ.

For example, 1̂2̂3̂, 1̂3̂2, 2̂13̂, 3̂21 are layered, with layers denoted by hats, while
312, 231 are non-layered.

In fact, note that the union of symmetry classes of layered patterns consists of ex-
actly the permutations avoiding patterns in the symmetry classes of 1342, 1423, 2413.

In [14], Stromquist proved a theorem (later generalized in [1]) on packing layered
patterns into permutations.

The inductive proof of this theorem defines a permutation (or a poset) π to be
layered on top (or LOT ) if any of its maximal elements is greater than any non-
maximal element. The set of these maximal elements is called the final layer of π
(even if π is not necessarily layered).

Proposition 1.7. Let Π be a multiset of LOT permutations (not necessarily all dis-
tinct or of the same length). Then there is an LOT permutation σ∗ which maximizes
the expression

ν(Π, σ) =
∑

π∈Π

aπν(π, σ), aπ ≥ 0. (1.1)

Furthermore, if the final layer of every π ∈ Π has size greater than 1, then every
such σ∗ is LOT.

Applying this proposition inductively, [1], following [14], obtains

Theorem 1.8. Let Π be a multiset of layered permutations. Then there is a layered
permutation σ∗ which maximizes the expression (1.1). Furthermore, if all the layers
of every π ∈ Π have size greater than 1, then every such σ∗ is layered.

Following [1, 12], we will also define the `-layer packing density δ`(Π) for sets of
layered permutations Π as the packing density of Π among the permutations with
at most ` layers. It was shown in both of the above papers that δ(Π) = lim

`→∞
δ`(Π).

2 Monotone patterns

The easiest type of patterns with repeated letters are those whose letters are non-
decreasing (or non-increasing) from left to right. By analogy with layered patterns,
we will consider nondecreasing patterns.
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Theorem 2.1. Let Π ∈ [l]m be a set of nondecreasing patterns π and let ai(π) be
the number of i’s in π. For each π ∈ Π ⊆ [l]m, let π̂ ∈ Sm be the layered pattern
with layer lengths (a1(π), . . . , al(π)), and let Π̂ = {π̂ |π ∈ Π}. Then δ(Π, k) = δk(Π̂)
and δ′(Π) = δ(Π) = δ(Π̂).

Proof. There is an natural bijection between nondecreasing patterns on k letters
and layered patterns with k layers. If π is a nondecreasing pattern with layer
lengths (a1(π), . . . , al(π)), then the map f of Theorem 1.4 induced by the map

ij 7→
∑i

r=1 ar(π)−j+1 (where ij is the jth i from left) maps π to π̂ ∈ Sm. Clearly,
f−1 is induced by a map with takes each element in the ith layer (the ith basic
subsequence, in general) to integer i. 2

Example 2.2. Using the results of Price [12], we obtain δ(112) = δ(2̂13̂) = 2
√

3−3,

δ(1122) = δ(2̂14̂3) = 3/8. More generally, for k ≥ 2,

δ(1 . . . 1︸ ︷︷ ︸
k

2) = ka(1− a)k−1, where 0 < a < 1, kak+1 − (k + 1)a+ 1 = 0.

Similarly, for r, s ≥ 2,

δ(1 . . . 1︸ ︷︷ ︸
r

2 . . . 2︸ ︷︷ ︸
s

) = δ(1 . . . 1︸ ︷︷ ︸
r

2 . . . 2︸ ︷︷ ︸
s

, 2) =

(
r + s

r, s

)
rrss

(r + s)r+s
.

Using the results of Albert et al. [1], we also find that δ(1123) = δ(1233) =
δ(1243) = 3/8, δ({122, 112}) = δ({132, 213}) = 3/4.

3 Weakly layered patterns

Again, by analogy with layered permutations, we define weakly layered strings as
follows.

Definition 3.1. A string π ∈ [l]m is weakly layered if it is a concatenation of a
nondecreasing sequence of non-increasing substrings. In other words, π = π1 . . . πr,
where πi are non-increasing, and π1 ≤ · · · ≤ πr (that is any letter of πi is not
greater than any letter of πj if i ≤ j). Substrings πi maximal with respect to these
properties are called the layers of π.

It follows that the consecutive layers of a weakly layered pattern may have at most

one letter value in common, for example, 1̂2̂1, 2̂12̂, 1̂3̂21, 1̂2̂3̂2, 2̂13̂2, 2̂21113̂32.
However, 1231 is not weakly layered.

Theorem 3.2. If Π is a set of weakly layered patterns none of which contains a
layer of length 1, then for each n and k, all maximal Π-containing strings in [k]n

are weakly layered.

Proof. If f is an operation as in Theorems 1.4 and 2.1 and π is weakly layered, then
f(π) is layered. Let f(Π) = {f(π) | π ∈ Π}. It is easy to see that if σ is a maximal
Π-containing string, then f(σ) is a maximal f(Π)-containing string. If such σ is
non-weakly layered, then it contains a pattern 231 or a pattern 312, hence, 231 or
312 also occurs in f(σ), so f(σ) is non-layered. But by Theorem 2.2 of [1], f(σ)
must be layered, contradicting our assumption. Thus, every maximal Π-containing
string σ is weakly layered. 2

23



Permutation Patterns 2003 Alexander Burstein and Toufik Mansour

Conjecture 3.3. If Π is a set of weakly layered patterns, then δ′(Π) = δ(Π) and
among maximal Π-containing strings in [k]n, there is one which is weakly layered.

Note that some maximal Π-containing strings in the above conjecture may not be
weakly layered. For example, 12121 is a maximal 121-containing string in [2]5.

We will now find the packing density of some specific weakly layered patterns.

Theorem 3.4. δ(121) =
√

3− 3/2 = 1
2δ(112) = 1

2δ(213).

Proof. We will begin with the pattern π = 121. Let σ = σ(n, k) be a maximal 121-
containing string in [k]n. Without loss of generality, we can assume the smallest
letter of σ(n, k) is 1, next smallest letter is 2, etc. It is easy to see that σ should
begin and end with 1.

Let σ contain n1 1’s. Let a > 1 be a letter in σ and ma and ba be the numbers of
1’s to the left and to the right of a, respectively. Then ma + ba = n1, and a occurs

in maba ≤
⌊

n2
1

4

⌋
patterns 121 in σ which involve the letter 1. The equality certainly

occurs for each a when all the 1’s of σ are at the beginning or at the end of σ.
Consequently, σ = 1 . . . 1σ21 . . . 1, where σ2 is a string on letters 2 and greater, is
maximal 121-containing. Note that σ2 is also maximal 121-containing.

Following Price [12], we will find the asymptotic ratio α = limn→∞
n1

n . Then it is
easy to see that if nr is the number of letters r in σ, we must have limn→∞

nr

n =
α(1− α)r−1.

Since all the 1’s of σ are at the beginning or at the end of σ, it is easy to see that
half of them should be in the initial block of 1’s and the other half, in the terminal
block of 1’s. Therefore, we have

d(121, σ) = max
0≤n1≤n

(
d(121, σ2) +

⌊
n2

1

4

⌋
(n− n1)

)

Now the same calculations as in [12, Theorem 5.2] yield

δ(121) =
3

2
max

α∈[0,1]

α2(1− α)

1− (1− α)3
,

so α = (3−
√

3)/2, 1− α = (
√

3− 1)/2, and δ(121) =
√

3− 3/2. 2

Here is the complete inventory of packing densities of 3-letter patterns by symmetry
class.

Symmetry class 111 112 121 132 123

Packing density 1 2
√

3− 3
2
√

3− 3

2
2
√

3− 3 1

4 Generalized patterns

Generalized patterns were introduced by Babson and Steingŕımsson [2] and allow the
requirement that some adjacent letters in a pattern be adjacent in its occurrences
in an ambient string as well. For example, an occurrence of a generalized pattern
21-3 in a permutation π = a1a2 · · ·an is a subsequence aiai+1aj of π such that
ai+1 < ai < aj . Clearly, in the new notation, classical patterns are those with all
hyphens, such as 1-3-2.
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Notation 4.1. This notation (introduced in [2]) may be a little confusing since
classical patterns (the ones with all hyphens) were previously written the same way
as the generalized patterns with all adjacent letters (i.e. with no hyphens). From
now on, we will use the generalized pattern notation. However, if we consider
subword patterns (those with no hyphens), we may write πg for a generalized pattern
π without hyphens where the context allows for ambiguity.

As with the classical patterns, considered in the earlier sections, most papers on
generalized patterns deal with pattern avoidance. For example, Claesson [8] and
Claesson and Mansour [9] considered the number of permutations avoiding one or
two generalized patterns with one hyphen. Burstein and Mansour [6] looked at the
same problem with repeated letters allowed in both in the pattern and the ambient
string. Elizalde and Noy [10] and Burstein and Mansour [7] considered generalized
patterns without hyphens, i.e. with all consecutive letters adjacent.

Here we consider packing generalized patterns into words.

If π ∈ [l]m is a generalized pattern with b blocks of consecutive letters (i.e. b − 1
hyphens), then it is easy to see by considering the positions of the first letters of the
blocks of π that the maximum possible number of times π can occur in σ ∈ [k]n is

(
n−m+ b

b

)
∼ nb

b!
as n→∞

(this yields
(

n
m

)
when b = m, i.e. when π is a classical pattern).

In fact, this maximum is achieved when π is a constant generalized pattern, i.e. any
of the generalized patterns obtained from the constant strings 11 . . . 1 by inserting
hyphens at arbitrary positions (possibly, none). Obviously, maximal π-containing
strings are the constant strings of length n. Thus, any set of constant general-
ized patterns has packing density 1. Similarly, any set Π of hyphenated identity
generalized patterns has δ(Π) = 1.

Given a set of generalized patterns with b blocks, Π ⊆ [l]m, we define the packing
density of Π similarly to that of a set of classical patterns. We will use the same
notation as in Section 1 for the generalized patterns.

It is not hard to see that the analog of Theorem 1.4 holds for generalized patterns
as well.

Theorem 4.2. Let Π ⊆ Sm be a set of generalized permutation patterns, then the
packing density of Π on words is equal to that on permutations.

Proof. The same argument as in Theorem 1.4 shows that among maximal Π-
containing strings in [n]n there is one that has no repeated letters. 2

4.1 Generalized patterns without hyphens

The maximal number of occurrences of a generalized pattern in [l]m without hyphens
(i.e. with b = 1 blocks) is

(
n−m+1

1

)
= n−m+ 1 ∼ n as n→∞.

Theorem 4.3. Let π ∈ [l]m be a nonconstant, nonidentity monotone general-
ized pattern without hyphens in which each letter i occurs mi times. Let Mπ =
max(m1, . . . ,ml). Then δ(π) = δ′(π) = 1/Mπ.

Proof. Let σ ∈ [k]n be a word with maximal π-containing word, then it is easy
to see that σ has the form σ = σ′σ′ · · ·σ′σ′′, where σ′ = 11 . . .122 . . .2 . . . (k −
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1)(k − 1) . . . (k − 1)k . . . k such that every letter 1, 2, .. . . . , k − 1 appears Mπ times,
k appears mk times, and σ′′ is a prefix of σ′. Hence, if n′ = n − length(σ′′) (so
n−Mπ(k − 1)−mk < n′ ≤ n), then

n′

Mπ(k−1)+mk
(k − 1)

n−m+ 1
≤ µ(π, n, k)

n−m+ 1
≤

n−mk

Mπ(k−1)+mk
(k − 1)

n−m+ 1
.

Therefore, δ(π) = δ′(π) = 1/Mπ. 2

Theorem 4.4. Let π = (φ1, . . . , φs) ∈ [l]m be any s-layered generalized pattern
without hyphens such that s > 1. Let Mπ = max1≤j≤s |φj |. Then δ(π) = δ′(π) =
1/Mπ.

Proof. The same mapping as in Theorem 2.1 shows that our π has the same pack-
ing density as the corresponding monotone generalized pattern without hyphens of
Theorem 4.3. 2

Corollary 4.5. Let π1 = 11 . . .12g ∈ [2]m and π2 = 1m(m− 1) . . . 2g ∈ [m]m, then
δ(π1) = δ′(π1) = 1/(m− 1) and δ(π2) = δ′(π2) = 1/(m− 1).

For instance, δ(112g) = δ′(112g) = 1/2, δ(132g) = δ′(132g) = 1/2, δ(123g) =
δ′(123g) = 1.

4.2 Generalized patterns with one hyphen

The maximal number of occurrences of a generalized pattern in [l]m with one hyphen
(i.e. with b = 2 blocks) is

(
n−m+2

2

)
∼ n2/2 as n→∞.

Proposition 4.6. δ(11-2) = δ′(11-2) = 1.

Proof. Let σ ∈ [k]n be a maximal (11-2)-containing word, then σ is a monotone
nondecreasing string in which letter i occurs ni times, n1 + · · · + nk = n. Then
µ(11-2, n, k) = max{∑k

i=1 (ni − 1)(ni+1 + · · ·+ nk) : n1 + · · · + nk = n}. From
here, it is not difficult to determine that µ(11-2, n, k) ∼ n2/2 as n → ∞. Choose
ni’s to be such integers that |ni − n

k | < 1 and |n1 + · · · + nr − rn
k | < 1 for each

r = 1, 2, . . . , k. Then

µ(11-2, n, k) ∼
(n
k

)2
(
k

2

)
,

out of
(
n−1

2

)
maximum possible occurrences, and the result follows. 2

Proposition 4.7. δ(12-1) = δ′(12-1) = 1/3.

Proof. Let σ ∈ [k]n be a word with maximum occurrences of 12-1, then

σ = 1212 · · ·1211..1 ∈ [2]n

where the string 12 occurs in α exactly d times. So µ(12-1, n, k) = max1≤d≤n(d(d−
1)/2 + d(n− 2d)), and the maximum occurs at d ∼ n/3. The rest is easy to check.
2

Proposition 4.8. δ(12-3) = δ(21-3) = 1.

Proof. For pattern 12-3, consider the identity permutation. For pattern 21-3, con-
sider the layered permutation with layers of equal length. 2
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[2] E. Babson, E. Steingŕımsson, Generalized permutation patterns and a classi-
fication of the Mahonian statistics, Séminaire Lotharingien de Combinatoire,
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Some Contributions to the Coupon

Collector Problem

Anant P. Godbole

Consider a sequence {π1, π2, . . .} of random permutations of {1, 2, . . . , n} and let

N = inf{m : {π1(1), π2(1), . . . , πm(1)} = {1, 2, . . . , n}}.

The random variableN , rephrased as above in the language of permutation patterns,
represents the key variable of interest in the so-called “coupon collector” problem,
where the object is to collect one of each of n different types of “toys” that are
randomly distributed in “cereal boxes”. How many cereal boxes must one buy to
achieve one’s goal? Several approximations to the distribution of N may be found
in the literature; these include normal; Poisson-based; log-normal; and saddle point
approximations. We will first argue that the normal approximations we present
yield excellent results when n grows very large, and that claims of superiority of
other distributions are true only for small to moderate values of n.

An auxiliary variable of interest is Xr, which is the number of times, at the comple-
tion of the coupon collection process, that the rth toy to appear is collected. It is
clear that Xn = 1, and that there is a form of stochastic monotonicity in the vari-
ables {Xr : r ≥ 1}. We use the Stein-Chen method (see, e.g., Barbour, A., Holst, L.,
and Janson, S. (1992). Poisson Approximation, Oxford University Press.) to show
that good univariate and multivariate Poisson approximations may respectively be
obtained for the variables Xr, and for the ensemble {Xs : 1 ≤ s ≤ t}, where t is not
too large.

Finally, we address a question brought to our attention at the 2001 “Random Struc-
tures and Algorithms” conference (held in Poznán, Poland) by Doron Zeilberger,
and researched recently by persons such as Foata, Myers, Wilf and Zeilberger: Let
Wr be the number of toys that appear exactly r times at the end of the collection
process. Clearly W1 ≥ 1, and, in fact, the distribution of W1 can be approximated
quite well, but the situation gets extremely delicate for values of r ≥ 2. We present
some results along these lines.

This is joint work with Alina Badus (Carleton College), Natalie Lents (Centre Col-
lege) and Erin LeDell (Trinity College).
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The packing density of layered

permutations

Peter A. Hästö

The purpose of this talk is to present some results on the packing density of layered
permutations. As an introduction the work of W. Stromquist [4], A. Price [3] and
M. H. Albert, M. D. Atkinson, C. C. Handley, D. A. Holton & W. Stromquist [1]
is considered. The main part of the talk consists of presenting some extensions of
mine of these results, from [2].

Let σ ∈ Sn (the symmetric group of n letters) and π ∈ Sm. The number of
occurrences of π in σ is the number of m element subsets E of [n] := {1, 2, . . . , n}
such that σ|E and π are isomorphic (as mappings of ordered sets). For instance
the permutation 1374625 contains 5 occurrences of the permutation 1423, namely
1746, 1745, 1725, 3746 and 3745. The packing density problem consists of finding
the maximum number of containments of a given permutation.

Let us denote the number of times that π ∈ Sm is contained in σ ∈ Sn by ν(π, σ).
If we divide this number by the total number of subsequences of σ of length m (for
m ≤ n) we get the density of π in σ:

d(π, σ) :=
ν(π, σ)(

n
m

) .

Since we want to determine the maximum number of containments, we further
define

dn(π) := max
σ∈Sn

d(π, σ).

We say that a permutation σ ∈ Sn is π-maximal if dn(π) = d(π, σ). It turns out
that dn(π) is decreasing in n and hence it makes sense to define the packing density
of π by

d(π) := lim
n→∞

dn(π)

(this is proved in [1, Proposition 1.1], although the authors of that paper consider
it a part of combinatorial folklore).

Since the packing density problem seems to be quite difficult in general we restrict
our attention to the packing density of layered permutations. We say that the
permutation π ∈ Sm is layered if there exist numbers m1, . . . ,mr, the sum of
which equals m, such that π starts with the m1 first positive integers in reverse
order, followed by the next m2 positive integers in reverse order and so on. More
specifically, we say that this permutation is of type [m1, . . . ,mr]. For instance
213654 is layered of type [2, 1, 3]. Notice that the type of a layered permutation
uniquely determines the permutation. The nice thing about considering layered
permutations is that W. Stromquist [4] proved:

Theorem 2.2, [1]. Let π be a layered permutation. Among the π-maximal permu-
tations of each length there will be one that is layered. Furthermore, if all the layers
of π have size greater than 1, then every π-maximal permutation is layered.

In [2] only the packing density of layered permutations was considered and therefore
the following convention was introduced:
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Notation. Throughout this abstract we denote by π a layered permutation of
type [m1, . . . ,mr] and by m the sum m1 + . . .mr. All other permutations are also
assumed to be layered, unless specified to the contrary.

The central theme of the results in [2] is the number of layers in near π-maximal
permutations. It was shown in [3] for some permutations the number of layers in
π-maximal σn ∈ Sn is bounded as n → ∞ whereas for others it is unbounded
(we say that these are of the bounded and unbounded type, respectively). Albert,
Atkinson, Handley, Holton & Stromberg (hereafter referred to as AAHH&S) stated
the following conjecture.

Conjecture 2.9, [1]. Suppose that π is a layered permutation whose first and last
layers have size greater than 1 and which has no adjacent layers of size 1. Then π
is of the bounded type.

These authors showed that the conjecture is true when we consider only layered
permutations with at most three layers [1, Proposition 2.8] or permutations with
every layer of size two or greater [1, Theorem 2.7]. Also, in Proposition 2.10 they
showed that the assumption on the first and last layers is necessary. Knowing
that a permutation is of the bounded type has certain implications, in particular
it allows us to estimate (and in principle, also to calculate the exact value of) the
packing density by finding a maximum of a certain function introduced by Price
in [3]. Nevertheless, the bounds on the number of layer given by the previous
finiteness results are so large that they are virtually useless in determining the
packing density. For instance, Theorem 2.7 of [1] implies that the number of layers
in a π-maximal permutation for π of type [2, 3, 2] is less than 30 [1, p. 19] whereas
AAHH&S suggested that the correct number in this case should be three. The
contribution of [2] are two results which apply only to more limited classes of layered
permutations, but conversely give optimal bounds for the number of layers in near
π-maximal permutations.

Let us say that the layered permutation π is simple if there exists a sequence {σn}
with σn ∈ Sn such that every σn has r layers and limn→∞ d(π, σn) = d(π). It turns
out that it is very easy to calculate the packing density of a simple permutation, see
[3, Theorem 4.1]. The next result shows that there are many simple permutations:

Theorem 1.2, [2]. Let π ∈ Sm be a layered permutation of type [m1, . . . ,mr]. If
log2(r + 1) ≤ min{mi} then π is simple and

d(π) =
m!

mm

r∏

k=1

mmk

k

mk!
,

where m := m1 + . . .+mr.

In [2, Lemma 3.5] it is shown that there exists a permutation with

min{mi} ≤
log(r + 1)

r log(1 + 1/r)

which is not simple. This implies that the logarithmic bound in the previous theo-
rem is asymptotically off by at most a factor of 1/ log 2.

Notice that the previous theorem solves the packing density problem for layered
permutations with two or three layers none of which is a singleton (i.e. has length
1). Since A. Price [3] has previously solved the packing density problem for permu-
tations of the type [1, k] this means that the we now know how to handle all the
two layer cases.

The (non-trivial) layered permutations with three layers not covered by the theorem
are of type [1, k1, k2], [1, k1, 1], [1, 1, k1] or [k1, 1, k2] (with k1, k2 ≥ 2). Recall that
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k Upper Lower Rel. error
3 0.124502 0.133108 6.912 · 10−2

4 0.106597 0.107403 7.567 · 10−3

5 0.094881 0.094941 6.300 · 10−4

6 0.086331 0.086335 4.253 · 10−5

Table 1: Estimates of the packing density of the permutation of type [k, 1, k]

the first three of these were shown to be of the unbounded type in Proposition 2.10,
[1], which suggests that it will be difficult to calculate or estimate their packing
density (it might be possible to handle the case [1, 1, k1] as in [1, Proposition 2.4]
but the generalization is not straightforward). Section 4 of [2] is devoted to a special
case of the fourth type, [k1, 1, k2].

It turns out that permutations with a singleton layer are never simple, however, in
some cases near π-maximal permutation can be chosen to have exactly one layer
more than the packed permutation. More precisely, let us say that a permutation
π is almost simple if it is not simple, but there there exists a sequence {σn} with
σn ∈ Sn such that every σn has r + 1 layers and limn→∞ d(π, σn) = d(π).

Theorem 1.3, [2]. Let π be a layered permutation of type [k, 1, k] with k ≥ 3.
Then π is almost simple.

This result gives us very good estimates of the packing densities of these permuta-
tionsm, see Table 1. Unfortunately, the case [2, 1, 2] is not covered, which means
that we are not able to answer the question asked in [1, p. 19] regarding the packing
density of this permutation.

The talk is concluded by some remarks on why it seems to be difficult to use the
methods of [2] to tackle the conjecture of AAHH&S on which permutations are of
the bounded type.
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Permutation polytopes

Frank K. Hwang and Uriel G. Rothblum

Let p be a positive integer. A real-valued function λ over subsets of {1, 2, . . . , p} de-
fines a mapping of permutations of {1, 2, . . . , p} into p-vectors where coordinate i of
the vector corresponding to a permutation is the augmented λ-value obtained from
adding i to the coordinates that precede it. The permutation polytope correspond-
ing to λ is then the convex hull of the vectors corresponding to all permutations.
When λ is supermodular, we derive a characterizing system of linear inequalities for
the permutation polytope, we show the the “spanning vectors” are the vertices of
the polytope and show the the directions of the edges are differences of unit vectors.
Further, under tightened supermodularity conditions, isomorphic representation of
the face lattice are obtained. Applications to partitioning problems and to convex
games are discussed.
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Abstract

Let In(π) denote the number of involutions in the symmetric group Sn

which avoid the permutation π. We say that two permutations α, β ∈ Sj may

be exchanged if for every k and ordering τ of j + 1, . . . , k, we have In(ατ ) =
In(βτ ) for every n.

Our primary results are that both the prefixes 12 and 21 and the prefixes
123 and 321 may be exchanged. The first result gives a number of known
results for patterns of length 4 and some new results for longer patterns. The
second implies a conjecture of Guibert, thus completing the classification of S4

with respect to pattern avoidance by involutions, and gives additional results
for longer patterns. Our approach parallels that used by Babson and West to
prove analogous results for pattern avoidance by general permutations (with-
out the restriction to involutions), with some modifications made necessary
by the symmetry of the current problem.

1 Introduction and Results

The pattern of a sequence w1w2 . . . wk of k distinct letters is the order preserving
relabelling of the sequence with [k] = {1, 2, . . . , k}. Given a permutation π =
π1π2 . . . πn in the symmetric group Sn, we say that π avoids the pattern σ =
σ1σ2 . . . σk ∈ Sk there is no subsequence πi1 . . . πik

, i1 < · · · < ik, whose pattern is
σ.

Let In(σ) denote the number of involutions (permutations whose square is the
identity permutation) in Sn which avoid the pattern σ, and write σ ∼ σ′ if for every
n, In(σ) = In(σ′) (we also say that σ and σ′ are in the same cardinality class). For
α, β ∈ Sj , we say that the prefixes α and β may be exchanged if for every k ≥ j
and ordering τ = τ1τ2 . . . τk−j of [k] \ [j] we have ατ ∼ βτ (i.e., if the patterns
α1 . . . αjτ1 . . . τk−j and β1 . . . βjτ1 . . . τk−j are ∼-equivalent for every possible choice
of τ).

Our primary results are the following two theorems and their corollaries.

Theorem 3.2. The prefixes 12 and 21 may be exchanged.

This implies some of the known ∼-equivalences for patterns in S4, the most notable
being 1234 ∼ 2143, as well as some new results for longer patterns.

∗Partially supported by the DoD University Research Initiative (URI) program administered
by the Office of Naval Research under Grant N00014-01-1-0795, and by NSF Grant CCR-0098096.
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Theorem 4.2. The prefixes 123 and 321 may be exchanged.

This implies 1234 ∼ 3214, which was conjectured by Guibert ([2], as reported in [3,
4]). The resolution of this conjecture completes the classification of S4 according
to ∼-equivalence. This second theorem implies additional new results for longer
patterns.

Both of these theorems follow from Theorem 2.4, stated below, as applied to ap-
propriate lemmas. This parallels the approach of Babson and West [1], who proved
the results analogous to Theorems 3.2 and 4.2 for pattern avoidance by general
permutations (without the restriction to involutions).

Section 2 gives some preliminary definitions and uses these to state our general the-
orem giving sufficient conditions for being able to exchange prefixes. Theorem 3.2,
related lemmas, and some of its corollaries are stated in Section 3, while Theo-
rem 4.2, related lemmas, and some corollaries are stated in Section 4.

2 Preliminaries and General Results

We start by placing dots in the boxes of partition diagrams, which we take to have
their longest row at the bottom and which we coordinatize from the bottom left
corner.

Definition 2.1. Given a partition λ, a placement on λ is an assignment of dots to
some of the boxes in the Young diagram of λ such that no row or column contains
more than one dot. These are often thought of as non-attacking rooks on a general-
ized chessboard of shape λ. We call the placement full if each row and column of λ
contains exactly 1 dot. We define the transpose of a placement to be the placement
which has a dot in box (i, j) iff the original placement had a dot in box (j, i). The
transpose of a placement on λ is a placement on the conjugate λ′ of λ. We call
a placement on a partition λ symmetric if the transpose of the placement is the
original placement.

The connection between permutations and rook theoretic language of placements
on boards comes through the graphs of permutations.

Definition 2.2. The graph of an n-permutation π is the full placement on the
n × n square SQn which has dots in exactly the boxes {(i, π(i))}i∈[n]. Note that
the graph of π−1 is the transpose of the graph of π.

We also define a notion of pattern containment for placements on general boards.

Definition 2.3. Given σ = σ1 . . . σj ∈ Sj and a placement on a partition λ, we say
that this placement contains the pattern σ if there are dots (x1, y1), . . . , (xj , yj) in
the placement with x1 < · · · < xj and the pattern of y1 . . . yj equal to σ and such
that if ymax = max{yi}, the box (xj , ymax) is contained in the partition λ. If a
placement does not contain σ, then that placement avoids σ.

Note that an n-permutation π contains the pattern σ ∈ Sj iff the graph of π, viewed
as a placement on SQn, contains σ in the sense of Definition 2.3. A general sufficient
condition which allows to involutions to be exchanged as prefixes is given by the
following theorem.

Theorem 2.4. Let λsym(σ) be the number of symmetric full placements on the
partition λ which avoid the pattern σ. Let α and β be involutions in Sj . If, for
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every self-conjugate partition λ we have λsym(α) = λsym(β), then the prefixes α
and β may be exchanged.

In order to prove Theorem 2.4, we define a self-conjugate partition for an n-
involution π and arrangement τ of [k] \ [j].

Definition 2.5. Let π be an involution in Sn and τ some ordering of [k] \ [j]
for some k ≥ j. Take all boxes (x, y) such that the graph of π contains a set of
dots (xj+1, yj+1), . . . , (xk, yk) with xj+1 < · · · < xk , where the pattern of the word
yj+1, . . . , yk is the same as the pattern of τ , and either x < xj+1 and y < min{yi} or
x < min{yi} and y < xj+1. This forms a self-conjugate partition on which there is a
(not necessarily full) symmetric placement obtained by restricting the graph of π to
this partition. Delete the rows and columns of this partition which do not contain
a dot to obtain another self-conjugate partition; we call this the self-conjugate τ -
partition of π and denote it by λτ (π). The deletion of empty rows and columns
yields a full symmetric placement on λτ (π); we call this the placement on λτ (π)
induced by π.

We use these definitions to state and prove the following lemma.

Lemma 2.6. If π is an n-involution, σ a j-involution, and τ any arrangement of
[k] \ [j], then π contains the pattern στ ∈ Sk if and only if λτ (π) is nonempty and
the placement on λτ (π) induced by π contains σ in the sense of Definition 2.3.

Proof. (Sketch) If π contains στ , this is straightforward by the construction of
λτ (π).

If λτ (π) contains an occurrence of σ, then the graph of π must contain dots whose
pattern is that of τ and which are northeast of a copy of either σ or σ−1. By our
assumption that σ is an involution, each of these possibilities gives an occurrence
of the pattern στ in π.

Proof. (Of Theorem 2.4, sketch) When constructing λτ (π), note which squares
from the graph of π correspond to those in λτ (π). Consider the set of involutions π
for which λτ (π) = µ for some fixed µ, which have the same squares in their graphs
corresponding to their symmetric τ -shapes, and which agree everywhere outside
these squares. Since λsym(α) = λsym(β), Lemma 2.6 implies that the number of
involutions in this set which avoid ατ equals the number which avoid βτ . Summing
over all such sets of involutions completes the proof.

3 Exchanging 12 and 21

Lemma 3.1. For any self-conjugate partition λ, the number of symmetric full place-
ments on λ which avoid 12 equals the number which avoid 21.

Proof. If λ has any full placements, there are unique full placements on λ which
avoid 12 and 21 as shown in [1]. If λ is self-conjugate, the reflection of any placement
on λ across the diagonal of symmetry gives another placement on λ. This placement
avoids 12 (21, respectively) iff the original placement did. By the uniqueness of the
full placements which avoid 12 and 21, the reflected placement must coincide with
the original one and is thus symmetric.

Applying Theorem 2.4 to Lemma 3.1 allows us to exchange 12 and 21.
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Theorem 3.2. The prefixes 12 and 21 may be exchanged.

As a corollary, we have many of the previously known equivalences for patterns of
length 4. In particular, 1234 ∼ 2143 as conjectured by Guibert [2] and proved more
recently by Guibert, Pergola, and Pinzani [4].

Corollary 3.3.
1234 ∼ 2134 ∼ 2143

Proof. Symmetry relations give 2134 ∼ 1243, then apply Theorem 3.2.

Numerical results both suggest possible ∼-equivalences and indicate which symme-
try classes (i.e., permutations which are trivially ∼-equivalent based on symmetry
arguments) cannot be in the same cardinality class. Among non-involutions of
length 5, there is only one possible ∼-equivalence between symmetry classes. The-
orem 3.2 shows that this does indeed hold.

Corollary 3.4.
12453 ∼ 21453

Among involutions of length 5, one cardinality class contains at most the symmetry
classes 12435 and 21435; these are in fact ∼-equivalent.

Corollary 3.5.
12435 ∼ 21435

Numerical results suggest that a large number of symmetry classes may form a
single cardinality class with 12345. Theorem 3.2 collapses two of these symmetry
classes and a different set of three of these symmetry classes as follows.

Corollary 3.6.
12543 ∼ 21543

Corollary 3.7.
12345 ∼ 12354 ∼ 21354

As a corollary of Theorem 4.2, we see that these five symmetry classes are all part
of the same cardinality class.

4 Exchanging 123 and 321

We prove that the prefixes 123 and 321 may be exchanged using an approach which
parallels that used by Babson and West to prove the analogous result for pattern
avoiding permutations (without the restriction to involutions); we symmetrize one
of their results as Lemma 4.1. Note that the symmetrized property does not hold
for square partitions (consider the graphs of involutions in S3), which we treat as
an additional base case for the induction used in our proof.

Lemma 4.1. If λ = (λ1, . . . , λk) is a non-square self-conjugate partition then the
number of symmetric full placements on λ which avoid 123 and have a dot in (i, λ1),
1 ≤ i ≤ λk, equals the number of symmetric full placements on λ which avoid 321
and have a dot in (λk + 1− i, λ1).
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We postpone discussion of the proof of Lemma 4.1 and first consider its primary
application, the exchanging of the prefixes 123 and 321, and some corollaries of this
theorem.

Theorem 4.2. The prefixes 123 and 321 may be exchanged.

Proof. Summing Lemma 4.1 over 1 ≤ i ≤ λk, the number of 123-avoiding symmetric
full placements on a non-square self-conjugate partition equals the number of 321-
avoiding such placements. Symmetry of the RSK algorithm gives 123 ∼ 321, so the
number of symmetric full placements on SQn which avoid 123 equals the number
which avoid 321. We may then apply Theorem 2.4.

This affirmatively answers a conjecture of Guibert (Conjecture 5.3 of [4], originally
from [2]; recall that 1432 ∼ 3214 by symmetry), completing the classification of
patterns of length 4 according to containment by involutions.

Corollary 4.3.
1234 ∼ 3214

As noted in Section 3, this also has applications for determining the cardinality
classes among patterns of length 5. The symmetry classes in Corollaries 3.6 and 3.7
are in the same cardinality class (12543 ∼ 32145 by symmetry).

Corollary 4.4.
12345 ∼ 32145

In order to prove Lemma 4.6 we start with the following lemma, which follows
directly from the symmetry of the RSK algorithm. This gives additional base cases
for the symmetrization of the induction used in [1].

Lemma 4.5. The number of full symmetric placements on SQn which avoid the
pattern 123 and whose leftmost i columns avoid 12 equals the number of full sym-
metric placements on SQn which avoid 321 and whose rightmost i columns avoid
21.

Proof. We use the language of n-involutions instead of full symmetric placements
on SQn.

123-avoiding involutions correspond to standard Young tableaux with at most 2
columns. Those which avoid 12 in their first i entries are those whose first i entries
form a decreasing subsequence; these correspond to tableaux with at most 2 columns
and whose first column contains 1, . . . , i.

321-avoiding involutions which avoid 21 in their last i entries may be reversed
to obtain 123-avoiding permutations which avoid 12 in their first i entries. These
correspond to pairs (P,Q) of tableaux which have at most two columns and in which
Q contain 1, . . . , i in its first column. The pairs of this type which correspond to
the reversal of an involution are exactly those in which P is the transpose of the
evacuation of the transpose of Q (see Appendix A.1 of [5]).

Finally, we symmetrize Lemma 2.2 of [1] as follows. This lemma is proved by
case analysis (somewhat more extensive than in the asymmetric case); many of the
transformations involved resemble those used in the asymmetric case.

Lemma 4.6. Let λ be a symmetric partition of length k, i < λk, j ≤ λk − i. The
number of symmetric full placements on λ which avoid 321 and which avoid 21 in
columns i+1, . . . , i+j is the number which avoid 321 everywhere and 21 in columns
i, . . . , i+ j − 1.
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Given a nonsqaure self-conjugate partition λ, let λ̂ be the self-conjugate partition
obtained by deleting the leftmost and rightmost columns and top and bottom rows
of λ. We prove Theorem 4.1 by an induction on λ̂ which closely follows that in [1],

making use of Lemma 4.6. In the case that λ̂ is a square, we invoke Lemma 4.5.
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Abstract

The dancesport scrutineering problem is a particular instance of the gen-
eral problem of combining several particular preferences into a global one. The
desired properties for such a scrutineering differ however from other contexts
of social welfare functions. In this paper we deal with the Kemeny-Young
method, focusing on the properties which are desirable in dancesport. We
also give a new interpretation of Kemeny-Young method in terms of graph
theory, which allows to modify it in order to avoid some of the possible ties.

1 Introduction

An extensive literature has been devoted to the design of social welfare functions,
i.e. rules for aggregating individual preferences or rankings into a global preference
or final ranking. probably because of the large number of contexts in which social
welfare functions are needed (artificial intelligence, voting schemes, professional
sport,. . . ).

Even, the number of different social welfare functions used in professional sport is
almost as large as the number of sports. This is not surprising, since different sports
have different rules for competition and different ways to obtain particular rankings
which should be aggregated to a collective final ranking. Due to these differences, a
ranking method may be appropriate for a certain sport and inappropriate or even
unfair for another one.

It is not the same, for instance, a soccer league, in which particular rankings are
obtained by pairwise competitions, and a car race competition, in which all partic-
ipants meet in all races. It is also different the case in which only the first ranked
participants are to be classified as in the eliminatories on olympic athletics, to the
case in which the whole ranking is required, as in the tennis ATP ranking, or to the
case in which only an olympic medal is to be obtained. Sometimes all preferences
may be considered to have the same weight, as in pairwise competition in a basket-
ball league, and in some other cases, some asymmetry is desirable, as in pairwise
chess competitions. Rankings in judge competitions such as synchronized swim-
ming or skating have different requirements that rankings coming from measurable
objective data such in length jump, in which manipulability of judges does seldom
make sense. Notice that there are even sports in which rankings are obtained both
from judges and from objective data, like in sky jump.

But even focussing on judge competitions, not all competitions are equivalent. In
some sports, participants compete in sequential order, and they are scored by judges
as in gymnastics, and in some others all participants compete together and they are
not scored but ranked by judges, as in dancesport.
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Since we will focus, in this paper, on dancesport competitions, let us first of all
explain the particularities of this sport.

The goal of a dancesport competition is to sort the participant couples according
to the quality in the performance of a certain number of dances. This is done by
means of a certain number of judges, typically not less than 3 and not larger than
21.

If the number of couples exceeds a certain value, then the competition includes
one or more eliminatories in order to do a progressive selection. In any case, the
competition ends with a final in which he number of couples is usually less than or
equal to 7.

Unequal to other judge sports, all couples dance at the same time and judges do
not score them, but only sort them from the best performer to the worst one. Each
judge acts independently from the rest according to his/her point of view, with
the only restriction that no ties are allowed in his/her verdict. If the competition
consists on different dances, this process is repeated for each dance. The goal of
the social welfare function is to combine these multiple rankings in order to obtain
a global ranking of all couples. Table 1(a) shows a typical verdict of judges for a
single dance. In this example there are 7 couples with dorsals 11, . . . , 17, and 5
judges labelled with letters A, . . . , E. Table 1(b) shows the same data, in a different
presentation.

Ord A B C D E
1 11 11 14 16 12
2 13 12 13 14 13
3 14 14 12 12 16
4 12 15 17 13 15
5 17 16 15 17 14
6 15 13 16 15 17
7 16 17 11 11 11

A B C D E
11 1 1 7 7 7
12 4 2 3 3 1
13 2 6 2 4 2
14 3 3 1 2 5
15 6 4 5 6 4
16 7 5 6 1 3
17 5 7 4 5 6

a) ranking for couples. b) Ordinal for couples.

Table 1: A typical ranking table in dancesport competitions

The method used nowadays to obtain the final ranking is the so called Skating
system [8]. This method has been used without modifications since 1956, but some
paradoxes have been recently observed, and yet there are people who claim that
this system should be improved. Although many of these paradoxes appear when
competitions consist on more than one dance, we will focus in the case of a single
dance competition, since the origin of those paradoxes is often the method used to
rank a single dance.

The remaining sections of the paper are structured the following way: In Section 2
we present the desiderable conditions that a ranking method for dancesport as well
as some previous results. Section 3 is devoted to give an overview of the Kemeny-
Young method from the graph theory point of view. In Section 4 the nature of
ties in Kemeny-Young method are revisted. Finally in the remanning sections we
propose slight modifications in Kemeny-Young method in order to avoid possible
ties
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2 Setting of the problem and previous results

In order to find a reasonable and fair sorting method it is important to fix the
requirements that must hold, but taking into account that the more restrictive the
requirements are, the more difficult it will be to find a method that meets all of
them. In this sense there is a classical impossibility result from Arrow for social
welfare functions [1].

Among the large amount of principles that could be required for the ranking method
in dancesport, in order to avoid some of the paradoxes, X.Mora [9], proposed to focus
on the following ones:

1. Majority Principle (MP). If a couple is ranked in the first place by an absolute
majority of the judges, then it should be the winner in the final ranking. This
principle is also known as Condorcet principle.

2. Independence of irrelevant alternatives (IIA). Positions in the ranking should
not be altered when removing the worst ranked couple.

3. Discrimination. The less the number of ties, the better.

There are other standard requirements that should also hold, although not men-
tioned in [9], such as neutrality (the method should be symmetric in the treatment
of all participants), or consistency (if two set of judges arrive to the same consensus
ordering, then meeting together this should still be their consensus). The reader is
referred to [11] for an further possible requirements.

Concerning to manipulability, i.e. the robustness of the method against cheating
judges, it is not clear if should be included or not. On one hand, there does not
exist any non manipulable method [3] (though there are methods which are more
robust than others against cheating [11]). On the other hand, should a discordant
verdict be considered as a manipulation?.

Independence of irrelevant alternatives seems a quite reasonable restriction, but it
does not hold in the nowadays skating system and neither in many of the ranking
systems used ins sports. Since the number of couples in a final is not fixed, it
happened more than once that the first classified couples would have changed if
the eliminatories would have been more restrictive, and thus leading to complains
from the non winner couples. IIR would not be a so important requirement if the
number of participants in a final were be fixed or at least larger than it is.

In order to fulfil IIR, it sounds logical that the ranking method should not take
into account the absolute positions in the particular rankings as in the Borda–like
functions (the larger the number of participants, the worse it is to be ranked in
the last position), but rather paying attention on a pairwise comparison between
couples (counting the number of the judges who prefer couple x to couple y) as in
the Condorcet–like functions. See [6] for an explanation of Borda and Condorcet
methods.

Looking in this direction, Table 2 shows the preferences of judges in pairwise com-
parison corresponding to Table 1. The entry for cell (i, j) stands for the number
of judges who prefer couple i to couple j. We will refer to this table as pairwise
comparison matrix.

This pairwise comparison often leads to paradoxes. In the example given in Table
2, it is shown that a majority of judges prefer couple 15 to couple 16, and also a
majority prefer couple 16 to 17. The paradox is that also a majority prefer couple
17 to couple 15. We will refer to this paradoxes as Condorcet cycles.

41



Permutation Patterns 2003 Xavier Munoz

11 12 13 14 15 16 17
11 - 2 2 2 2 2 2
12 3 - 3 2 5 4 5
13 3 2 - 2 4 3 5
14 3 3 3 - 4 3 5
15 3 0 1 1 - 3 2
16 3 1 2 2 2 - 3
17 3 0 0 0 3 2 -

Table 2: Pairwise comparison matrix from Table 1

It is not strange the existence of these “inconsistences”, because when ranking
couples there are different points of view and also different aspects to be considered.
This could lead to the existence of Condorcet cycles even in the judges’ mind. On
the other hand, these cycles are not simply academic pathologies, but are often
found in real competitions (specially in the middle ranked couples) (see [11] for
examples of cycles in real figure skating olympic competitions).

In 1959, Kemeny proposed a method based on the idea of distance between any
two preference orders [4, 5]. The defined distance was obtained as the only defini-
tion meeting a set of axioms (including triangular inequality, and other standard
properties of distances). The cumulative preference is given by the preference that
minimizes either the sum of distances to the rankings given by judges, or either the
sum of the squares of such distances. Kemeny let open both possibilities without
specifying which one was better.

In 1978, Young and Levenglick [12] proved that the Kemeny method, when minimiz-
ing the sum of distances, is the unique preference function that is neutral, consistent
and Condorcet (MP). Young also proved that Kemeny method is IIA. Due to that
paper, Kemeny method when minimizing the sum of distances is also known as
Kemeny-Young method.

These previous results apparently solves the original question of X.Mora, setting
Kemeny-Young method as the method meeting the proposed requirements (the
discrimination requirement is not really a restriction, but a matter of degree). In
fact Kemeny-Young has already been proposed as an interesting ranking function
for figure skating [11]. (There are other ranking functions satisfying MP and IIA
requirements such as the Copeland method. The reader is referred to [13] for more
information about other functions).

The remaining sections of the paper are devoted to better understanding of ties in
the kemeny-Young method as well as some proposals to solve ties.

3 Kemeny-Young method by means of graph the-

ory

Let us call competition C(n, k) to a subset with cardinality k of the symmetric
group Sn. A permutation in C(n, k) will stand for a sorting of couples done by one
judge (a column in Table 1a).

Given a competition C(n, k) = {σ1, . . . , σk} ⊂ Sn, the competition graph is defined
as the edge–colored bipartite (multi)–graph CG(n, k) = (V1 ∪ V2, E, φ) with Vi =
{(i, aj) : j = 1..n}, i = 1, 2, and φ : E → {1, 2, . . . , k}, and such that there exists
an edge e = [(1, ai), (2, aj)] with color φ(e) = m whenever σm(aj) = ai.
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Given τ ∈ Sn, let cm(τ) be the number of crossings between edges with the same
color m when the graph is drawn as follows: Vertices in V1 are placed in a straight
line sorted from left to right (1, τ(a1)), . . . (1, τ(an)). Vertices in V2 are placed in a
parallel line sorted (2, a1), . . . , (2, an), and edges are represented by straight lines.
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Figure 1: Competition graph for judges B (thinlines) and C (thicklines)

Figure 1 shows a Competition graph for judges B (thinlines) and C (thiklines) of the
example in Table 1 drawn considering that τ is the identity permutation. Labels
for the vertices in that example illustrate the meaning for the graph: Lower vertices
should be seen as ranking positions and upper vertices will stand for couples. In
the example of the figure, we have cB(Id) = 3 and CC(Id) = 11.

In general, the value of cm(τ) measures the disagreement between the preference
given by permutation tau and the preference of judge m. It is not difficult to prove
the following result:

Proposition 3.1. Let d(τ, σm) be the distance between to permutations τ and σm

defined by Kemeny. Then d(τ, σm) = 2cm(τ).

The cost of a given permutation τ with respect to a competition C(n, k) is defined

as d(τ, C(n, k)) =
∑k

i=1 d(τ, σi), and the solution of a competition is defined as the
set of permutations with minimum cost with respect to the competition, i.e. S(C) =
{τ ∈ Sn | d(τ, C(n, k)) ≤ d(σ,C(n, k)), ∀σ ∈ Sn}. The set S(C) is clearly the set
of collective preferences given by the Kemeny-Young method. (Notice, however,
that Kemeny allowed solutions to be ties, i.e. preferences not being permutations,
but here we restrict solutions to be strictly permutations).

From the point of view of graph theory, finding the solutions of a given competition is
equivalent to solve a slight variation of the One side crossing minimization problem
(OSCM), i.e. placing the vertices in V1 on a line in such a way that the number of
edge-crossings is minimized. This problem was studied in [10], and we will use the
same techniques to better understanding how can the elements in S(C) be.

4 Sorting graph. Solution for competitions

Following the ideas in [10], let us consider a permutation τ1 and let τ2 be another
permutation obtained from τ1 by transposing two adjacent couples ai and aj , i.e.
τ1 = (. . . , ai, aj , . . .) and τ2 = (. . . , aj , ai, . . .). Then, the difference of costs of
permutations τ1 and τ2 is due to the crossings between edges incident to ai and the
edges incident to aj .

Precisely, let Gi,j be the subgraph of CG(n, k) obtained by deleting all vertices in V1

except vertices (1, ai) and (1, aj). Let c(i, j) and s(i, j) be the number of crossings
between edges with the same color, and edges with different colors, respectively, in
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the graph Gi,j when it is drawn as follows: Vertices (1, ai) and (1, aj) are placed in
a straight line being (1, ai) placed on the right hand side. Vertices in V2 are placed
in a parallel line sorted (2, a1), . . . , (2, an), and edges are represented by straight
lines. In terms of the original problem, c(i, j) is the number of judges who prefer
couple ai to couple aj .

Let the sorting graph be the directed weighted graph SG(C) = (V,A, ψ), with
V = {1, . . . , n}, and such that there is an arc (i, j) whenever c(i, j) > c(j, i). The
weight of the arc (i, j) is ψ(i, j) = aij = c(i, j) − c(j, i). Notice that the sorting
graph can be obtained immediately from the pairwise comparison matrix.

Since a judge cannot assign the same place in the ranking to two different couples,
it is immediate that c(i, j) + c(j, i) = k, where k stands for the number of judges,
and thus, If k is odd, then c(i, j)−c(j, i) 6= 0. This means that given any to vertices
i, j in the sorting graph, there will always exist either the arc (i, j) or either the arc
(j, i). In other words:

Remark 4.1. If the number of judges is odd, then SG(C) is a tournament.

In case the graph SG(C) is a tournament not containing directed cycles, it is a total
order that determines univocally a unique solution for C(n, k) (|S(C)| = 1). But
if SG(C) is not a tournament (and has neither no directed cycles), it is a partial
order. This partial order, in general, is compatible with more than a total order.
And hence |S(C)| > 1, i.e. a tie will appear. Since these kind of ties can be avoided
by using an odd number of judges, from now on we will assume that the number of
judges is odd.

The problem arrises when SG(C) contains Condorcet cycles. However, the existence
of Condorcet cycles does not necessary imply a multiple solution in the Kemeny-
Young method, and in fact most Condorcet–like methods differ one from each other
only in the way they deal with Condorcet cycles.

The removal of cycles by deleting arcs such that the total weight of removed arcs
is minimum is known as the feedback arc–set problem (FAS) [2]. In [10] it is shown
that the minimum number of crossings in CG(n, k) are obtained by solving the FAS
problem in the graph SG(C).

Taking into account the following easy result,

Proposition 4.2. Given a tournament G, each solution of FAS for G produces a
partial order, which is compatible with a unique total order.

it is straightforward that

Theorem 4.3. If C is a competition with an odd number of judges, then each
solution of the FAS problem for SG(C) determines a solution of the Kemeny-Young
method for the competition C.

As a consequence, S(C) contains more than one permutation if and only if there is
more than one solution of the FAS problem for SG(C).

In the example given in Table 1, there is only one Condorcet cycle (couples 15,16
and 17), but the weights of arcs in that cycle are all the same. Hence, there are three
different solutions for the FAS problem (each one corresponding to the removal a
single arc in the cycle). In that case, a tie must be given to couples 15, 16 and 17.
The final ranking should be, then,

15
14 12 13 16 11

17
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Ties in Kemeny-Young method are not always as “nice” as in this example. In Table
3, there are up to 9 Condorcet cycles (11-13-12; 11-13-15; 11-13-12-14; 11-13-15-
14; 11-13-12-15-14; 11-13-12-15; 12-14-13; 12-15-14-13; 13-15-14) and two different
solutions for the FAS problem, leading to two possible rankings (13,12,15,14,11 and
12,15,14,11,13). Notice that couple 13 is in a very strange situation.

A B C
11 5 4 1
12 2 1 5
13 1 5 3
14 4 3 2
15 3 2 4

Table 3: Another example

5 Modified Sorting Graph: Tie breaking.

Ties in sports are usually solved by using other secondary criteria to determine the
final ranking among possible solutions given by the main sorting method. These
secondary criteria take into account different aspects not considered by the main
sorting function and this usually leads to a loss of some properties of the global
sorting function. Precisely we conjecture the following:

Conjecture 5.1. There is no possible method to select one permutation among the
solutions for a competition preserving the IIA property in all instances.

Obviously it would make no sense giving more than one ranking as a solution for a
sports competition (specially if solutions are like the one shown in the example of
Table 3). For this reason we propose a method to solve some of the ties in Kemeny-
Young method which appears as a natural refinement from the point of view of
graph theory.

In order to remove undecided condorcet cycles, we propose to look for information
not taken into account until now: Condorcet–like methods use only preferences
of individual judges to build a solution, let us say “vertical information”, while
information regarding to the rank different judges give to a certain couple has been
skipped (“horizontal information”).

5.1 First proposal

Let us modify the sorting graph by introducing some “perturbations” on the weights
of the arcs. The modified sorting graph SG′ = (V,A, ψ′) has the same vertex and arc
sets that SG, but given an arc (i, j), ψ′(i, j) = aij + εbij where bij = s(i, j)− s(j, i)
and ε is such that εbij < 1, ∀i, j ∈ V .

The perturbations added take into account the discrepancies of judges regarding to
the ranking of a given couple with respect to the others. From the graph theory
point of view we are not only looking at monochromatic edge–crossings, but to all
possible crossings. The condition imposed on ε assures that this perturbations will
only be considered in those cases in which there is an undecided tie (acting as a
secondary function). Some of the cycles can be untied now by using FAS on the
modified sorting graph. Following the example in Table 1, the Condorcet cycle has
now the weights show in Figure 2
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Figure 2: edge weights in the modified competition graph for vertices 15,16 and 17,
corresponding to Table 1

and the FAS solution turns to be unique (by removing arc (17,15)), leading to a
unique ranking given by

11 12 13 15 16 17 11

5.2 Second proposal

The idea of this second proposal is to make “corrections” on the rankings given
by the judges according to their discrepancies with respect to the average position
given to couples. Namely, let us consider ordinal positions as points on a line (like
in the competition graph), and let us move those points closer to the mean value
for each couple.

Let {ri1, . . . , rik} be the set of ordinals given to couple ci (Table 1b) and let ri =
1
k

∑k
j=1 rij be the mean value of those numbers. Given 0 < α < 1

2k , let r′ij =
rij − α(rij − ri) Then the modified competition graph CG′ = (V ′

1 ∪ V ′
2 , E

′, φ′) is
defined as the edge–colored bipartite (multi)–graph with V ′

1 = {ci : i = 1..n},
V ′

2 = {r′ij : i : 1..n, j = 1..k}, E′ = {(ci, r′ij) : i : 1..n, j = 1..k} and φ′(ci, r
′
ij) = j.

Let us draw vertices in V2 on a straight sorted from left to right according to their
numeric value. Figure 3 shows the modifications introduced in the Competition
Graph for a certain α > 0. (Notice that if α = 0 then CG = GC ′.)

s11

sss��
�

�
�

��

A
A

A
A

A
A

@
@

@
@

@
@

1 4 5

s s s

11s

�
�

�
�

�

A
A

A
A
A

@
@

@
@

@

1 + 2.3α 4 − 0.7α 5 − 1.7α

Figure 3: Modifications on GC

The second proposal consists on applying the FAS algorithm on the modified sorting
graph associated to the modified competition graph. The upper bound for α ensures
that r′ij > r′i′j′ if rij > ri′j′ and thus the values for c(i, j) will be the same as in the
previous sections.

Notice that if α = 1 the method is equivalent to the mean method, i.e. couples are
sorted according to the mean value of the ordinals they are given by judges.
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The solutions given by this modification are a subset of the solutions for the Kemeny-
Young method. This second proposal seems more selective than the proposed in
the previous subsection, though both fail to untie the example in Table 3.

6 Conclusions

We presented in this paper a proposal for a ranking method in dancesport compe-
titions. The method is based on the Kemeny-Young method. The interpretation
done of this method through graph theory allowed us to find a refinement of the
method in the sense that the number of ties is smaller. As a counterpart, under
some instances the method is not independent from irrelevant alternatives.

We strongly recommend the number of judges to be odd in all competitions in order
to avoid unnecessary ties.
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1 Summary

Involvement is a partial well order on the set of all finite permutations. Pattern
Classes are the down closed sets of permutations under this partial order. It is of
interest whether a given pattern class is partially well ordered, or in other words
if a given pattern class does not contain any infinite antichain. We approach this
question by looking at definitions of infinite antichains that are in some way minimal,
and do not involve more patterns than necessary. Especially, we present the very
simple definition of a ‘fundamental’ antichain. Although little is as yet known about
fundamental antichains, it is already clear that fundamental antichains produce
some very nice patterns, and that there are strong similarities between fundamental
antichains in pattern classes, and in topological minors, finite posets under inclusion,
and other naturally occuring partial orders.

2 Involvement as a partial order

We give a brief recap of the partial order central to permutation patterns.

Let A be a totally ordered set, which is to say that if a, b ∈ A then either a < b or
else a > b or else a = b. For our purposes A may be thought of without error as
any subset of the real numbers. Two sequences a1 . . . am and b1 . . . bn are said to
be order isomorphic if they are of equal length, and that being satisfied, if for all
i, j ≤ n we have that ai ≤ aj if and only if bi ≤ bj . A typical example of two order
isomorphic sequences is given by 1 3 2 4 and 7 27 10 28.

One sequence, α = a1 . . . am, is said to be involved in another, β = b1 . . . bn,
if the former is order isomorphic to a subsequence of the latter. If this is the case
we may write α � β. If we call a sequence a permutation if it contains each of the
integers 1, 2, . . . ,m exactly once, then involvement forms a partial well order on the
set of all permutations.

Involvement occurs naturally in sorting devices limited by fixed properties, such as
limited memory or a restrictive set of rules according to which sorting may occur,
as is the case in the card game of Patience. In general, if such a system can sort
317624958 then it can sort every sequence involved in that permutation, such as
3142. The study of the involvement partial order is applicable to situations in
parallel computing and data communication networks.

3 A notation with potential

In common with many students of restricted permutations we like to plot permuta-
tions on two dimensional coordinates. The plotting method that we prefer to use,
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by M.D. Atkinson and R. Beals has a nice consequence for the pattern classes that
cannot be written as a union of two smaller pattern classes, and so we afford it a
brief comment.
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The figure shows a typical plot of the permutation π = 3 1 4 7 5 6 2 = π(1) . . . π(7).
It is clear that the x-coordinates satisfy x1 < x2 < . . . < x7, the y-coordinates
y1 < y2 < . . . < y7 and that if the point with x-coordinate xi is denoted f(xi)
(where i ∈ {1, 2, . . . , 7}) then f(xi) = yπ(i). We require nothing more than this of
the plot. We do not require the coordinates to be integers, nor do we require the
values on the x-coordinate to be the same, permuted, as those on the y. And yet
the plot uniquely identifies a permutation.

The leniency of this notation causes that if we have any injective function f : A→ B
from one subset A of the real numbers to another, B, then any restriction of f to
a finite domain represents a permutation. Given such a function, the set of all
permutations represented by restricting it to a finite domain is clearly down closed,
and so is a pattern class. Finally, as the coup de bonheur, we have that the set of
all pattern classes representable in this way is precisely the set of pattern classes
that cannot be expressed as the union of two smaller pattern classes. Thus pattern
classes indivisible by finite union can be thought of in terms of a function plotted
on two axes.

Some nice results about union indivisibility and down closed subsets of arbitrary
partial orders can be found in R. Diestel and O. Pikhurko’s paper [3] (On the
cofinality of infinite partially ordered sets: factoring a poset into lean essential
subsets), which refers to earlier work. But we finish our notational comment by
giving a simple example of a pattern class not expressible as the union of two
smaller pattern classes, and a real function that represents it. The down closed
pattern class X = Sub(1 ⊕ R) = {12, 132, 1432, 15432, . . .} ∪ {1, 21, 321, 4321, . . .},
and the function f : [0, 1)→ [0, 1) defined by:

f(x) =

{
0 if x = 0

1− x otherwise

The function f restricted to finite domains including zero represents the permuta-
tions {12, 132, 1432, 15432, . . .}, and f restricted to finite domains excluding zero
represents the permutations {1, 21, 321, 4321, . . .}.
Note: The pattern classes arising from functions on some domains and ranges have
been classified; results are available in [2].
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Figure 1: Two stacks in series, a simple sorting network.

4 The main subject: Simple infinite antichains

We will demonstrate that infinite antichains do appear in natural permutation class
contexts, that they are important, and that they can still be both simple and
pleasing.

We define the antichain X1, the first three terms of which are plotted:
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In general elements of X1 have the form:

ξn = 3 2 4 7 6 1 10 9 5 13 12 8 16 15 11 19 18 15 . . .

. . . 6n+ 1 6n 6n− 4 6n+ 2 6n+ 4 6n+ 3 6n− 1

where n ∈ Z+.

It is not elementary to see, but can still be proved by a short and elegant argu-
ment, that none of the permutations in X1 can be sorted by two stacks in series.
However they are minimal in that respect as every permutation involved in, but
not equal to, an element of X1 can be sorted. That also is easy to prove, but
to give a specific example, let the reader try as he will to sort the permutation
ξ1 = 3 2 4 7 6 1 8 10 9 5. Now let the reader attempt to sort the permutation
ξ1 \ {3} ∼= 2 3 6 5 1 7 9 8 4, which is order isomorphic to the sequence ξ1 less
the first term. The previously frustrated effort will succeed quite easily, as it would
were any other term of ξ1 removed.

Of the two most basic antichains of pattern classes, namely minimal permutations
not in a class (basis) and maximal permutations within a class, this demonstrates
an example of the first kind even though we do not give the entire basis. It is
sufficient to note that infinite antichains do appear in natural situations and that
a better understanding of infinite antichains will aid the understanding of pattern
classes as a whole. We will therefore attempt to isolate the essence of permutation
antichains.
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5 Superfluous terms

We will consider an infinite antichain, X2, and contrast it with another by M. Bona.
It will be clear that the permutations in X2 contain terms that do not contribute
to X2 being an antichain. We define an antichain to be trim if no permutation in
it contains such superfluous terms:

Definition 5.1. An antichain Z is trim if there does not exist ζ ∈ Z and a per-
mutation η ≺ ζ such that (Z \ {ζ}) ∪ {η} is an antichain.

Note: Every non-trim antichain can be reduced to a trim antichain of the same size,
by removal of terms. This process does not necessarily produce a unique result.

6 Terms supporting superfluous sub-antichains

We will consider another infinite antichain, X3, that is trim but that still contains
permutations with superfluous terms of another sort: Terms necessary to maintain
some relatively small subset of X3 in the state of being an antichain, but where the
complement of that small part still contains an infinite antichain.

Definition 6.1. An antichain Z is strongly trim if there does not exist a permuta-
tion η properly involved in an element of Z, and a subset Y of Z such that Y ∪ {η}
is an antichain having the same size as Z.

Note: Every non strongly trim antichain can be reduced to a strongly trim antichain
of the same size, by removal of terms and entire permutations. This process does
not necessarily produce a unique result.

7 Fundamental antichains

There are infinite permutation antichains, strongly trim, constructed by wreath from
another infinite antichain of the same cardinality. Wreath is a permutation con-
struction introduced in [1], that gives rise to the divisibility ordering and RIP -tree
frames of [2]. Since constructing infinite antichains from other infinite antichains
and a divisibility construction is an understood science, this suggests that if we wish
to seek the basic building blocks of infinite antichains, we need a definition yet more
selective than that of strongly trim. We suggest the following:

Definition 7.1. An antichain Z is fundamental if the down closure of Z under
involvement contains no antichains Y of the same size as Z, except those that are
subsets of Z itself.

We propose that fundamental antichains are those most worthy of examination.
This has numerous reasons that we sketch out below.

All fundamental antichains known at present have very simple, pleasing and regular
patterns. Fundamental antichains are defined in a poset theoretic context, and
infinite fundamental antichains also exist for finite graphs under deletion of vertices,
finite posets under the partial order of inclusion, and topological minors. In all of
these contexts simple regular patterns appear with strong and obvious similarities
with the permutation antichains. In the case of finite graphs under deletion of
vertices, all fundamental antichains have been classified. It seems entirely feasible
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to do the same for fundamental permutation antichains, even though it is known
that there are infinitely many fundamental permutation antichains.

Fundamental antichains behave nicely in terms of established well known pattern
class concepts. To give an example we first define the proper down closure of a
permutation ζ to be all permutations involved in ζ, but excluding ζ itself. Proper
down closure extends easily to sets of permutations, providing that the permutations
form an antichain. The proper down closure of an infinite antichain is a pattern
class, and one that cannot be expressed as the union of two smaller pattern classes.
Recall the reason for our plotting notation. Another example of nice behaviour is
this: An antichain Z is said to be maximal if there does not exist a permutation
ζ /∈ Z such that Z ∪ {ζ} is an antichain. It is conjectured that the down closure
of every infinite maximal fundamental antichain is finitely based. This conjecture
has been tested on all the simpler known infinite fundamental antichains, and is
believed to be true for all known infinite fundamental antichains.

Finally, in almost every sphere of structural analysis of permutation patterns it is
of interest whether a given class is partially well ordered, i.e. does not contain an
infinite antichain. It is easy to see that a pattern class contains an infinite antichain
if and only if it contains an infinite fundamental antichain. So a classification of all
infinite fundamental antichains would solve the partial well ordered question in all
cases.

8 Current analysis of fundamental antichains

The approach we are using at present is to regard wreath decomposition as a di-
visibility order on permutations, and to use wreath in this context to examine
fundamental antichains. The RIP -frames of [2] are of use.

Theorem 8.1. Only finitely many permutations in a fundamental antichain have
a wreath interval of size greater than two.

Conjecture 8.2. Every permutation in an infinite fundamental antichain has ei-
ther no, one or two maximal intervals of size two.

We expect that fundamental antichain results for permutations will have analogous
results for fundamental antichains in other contexts, such as graph minors.
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We study various computational aspects of the problem of determining whether
a given order contains a given sub-order. Formally, given a permutation π on
k elements, and a permutation σ on n > k elements, the goal is to determine
whether there exists a strictly increasing function f from [1..k] to [1..n] which is
order preserving, i.e. f satisfies σ(f(i)) > σ(f(j)) whenever π(i) > π(j). We call
this decision problem the sub-permutation problem.

The study falls into two parts. In the first part we develop and analyze an algorithm
(or rather an algorithmic paradigm) for this problem. We show that the complexity
of this algorithm is at most O(n1+C(π)) where C(π) is a naturally defined function
of the permutation π.

In the second part we study C(π). In particular, we show that C(π) ≤ 0.46k+ o(k)
implying that the complexity of the sub-permutation problem is O(ck +n0.46k+o(k)).
On the other hand we prove that for most π’s, C(π) = Ω(k) establishing a lower
bound for the algorithm. In addition we develop a fast polylogarithmic approxima-
tion algorithm for computing C(π) and bound the value of this parameter for some
interesting families of permutations.

The results are joint work with Shlomo Ahal.
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We develop a new (dynamical system) approach to the Stanley-Wilf (SW) conjec-
ture, and make the first steps in its study. We believe that the new approach will
eventually lead to new significant results and to a refined understanding of the circle
of problems related to the SW conjecture.

Let π be a fixed forbidden permutation. Consider an infinite tree T whose root is
an empty permutation and whose nodes are the π-avoiding permutations σ. The
children of σ ∈ Sk−1 are all the π-avoiding extensions of σ by the new element
k. We introduce an equivalence relation ≡ on π-avoiding permutation by σ ≡ τ if
the subtrees of T rooted at σ and τ are isomorphic. This leads to a definition of
the type [σ]. The object of our study is the linear dynamical system D defined by
[σ]→ {[σ′]} where {σ′} are the children of σ in T .

The SW conjecture turns out to be equivalent to the existence of a nonnegative
eigenvector of D with positive finite eigenvalue r. Or equivalently, to the existence
of a nonnegative subinvariant potential p on the types so that:

R · p([σ]) ≥
∑

p(σ′)

for some R > 0. We demonstrate the efficiency of this approach by (re-)proving the
SW conjecture for special π.

Considering an altered dynamical system (a Markov chain) P where [σ] passes to
its random child [σ′], we conclude that SW is equivalent to showing that:

E[X0 ·X1 · · ·Xk−1]
1/k → r <∞

where Xi is the number of children of the ith descendant of (any) σ0. We make a
first step in the desired direction by showing that:

E[Xn]→ c (≤ |π|2).
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Permutation diagrams and forbidden patterns

Astrid Reifegerste∗

1. Introduction

In recent time much work has been done counting permutations with restrictions on
the patterns they contain. Given a permutation π ∈ Sn and a permutation τ ∈ Sm,
an occurrence of τ in π is an integer sequence 1 ≤ i1 < i2 < . . . < im ≤ n such that
the letters of the word πi1πi2 · · ·πim

are in the same relative order as the letters of
τ . In this context, τ is called a pattern. If there is no occurrence we say that π
avoids τ , or alternatively, π is τ -avoiding.
In [2, 3] we have utilized the diagram of a permutation to study certain forbidden
patterns. For π ∈ Sn, we obtain its diagram from the n × n array representation
of π by shading, for each dot, the cell containing it and the squares that are due
south and due east of it. Each square left unshaded we call a diagram square.
The connected components of the diagram squares form Young diagrams. For any
diagram square, its rank is defined as the number of dots northwest of it. (Clearly,
connected diagram squares have the same rank.)
In this paper, we consider the both permutation statistics which count the distinct
pairs arising from the last two terms of occurrences of patterns τ1 · · · τm−2m(m−1)
and τ1 · · · τm−2(m − 1)m in a permutation, respectively. By a simple involution
in terms of permutation diagrams we will prove their equidistribution over the
symmetric group. As special case we obtain a one-to-one correspondence between
permutations which avoid each of the patterns τ1 · · · τm−2m(m− 1) ∈ Sm and such
ones which avoid each of the patterns τ1 · · · τm−2(m − 1)m ∈ Sm which coincides
for m = 3 with the bijection given by Simion and Schmidt in their famous paper
about restricted permutations.

2. Main Results

For m ≥ 2, define the pattern sets

Am = {τ ∈ Sm : τm−1 = m, τm = m− 1}
Bm = {τ ∈ Sm : τm−1 = m− 1, τm = m}.

For a permutation π ∈ Sn, denote by am(π) resp. bm(π) the number of distinct
pairs (i, j) where 1 ≤ i < j ≤ n such that i, j are the last terms of an occurrence of
a pattern belonging to Am and Bm, respectively, in π. If we have am(π) = 0 then
π avoids each pattern in Am; analogously, bm(π) = 0 means the avoidance of every
pattern of Bm.
For example, in π = 7 1 4 2 6 3 5 ∈ S7 the sequences (2, 3, 5, 7), (2, 4, 5, 6), (2, 4, 5, 7)
are the occurrences of 1243, (3, 4, 5, 7) is the only occurrence of 2143. Furthermore,
π contains once the pattern 1234 and avoids 2134. Hence a4(π) = 2 and b4(π) = 1.

It is easy to determine the number am(π) from the ranked diagram of π. Obviously,
any square (i, j) is a diagram square of rank at least m− 2 if and only if i, π−1

j are
the last two terms of an occurrence of a pattern contained in Am.

Proposition 1. Let π ∈ Sn be a permutation. Then am(π) equals the number of
diagram squares of rank at least m− 2. In particular, π avoids each pattern in Am

if and only if every diagram square is of rank at most m− 3.

∗Institut für Mathematik, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
email: reifegerste@math.uni-hannover.de
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By definition, the number bm(π) counts the number of non-inversions on the letters
of π which are greater than at least m − 2 elements to its left. (Here a pair (i, j)
is called a non-inversion if i < j and πi < πj .) It is easy to see as well that all
informations about a permutation are encoded in the diagram squares of rank at
most m− 3 and the set of pairs which are counted by bm(π).

Proposition 2. Any permutation π ∈ Sn can be completely recovered from the
diagram squares having rank at most m− 3 and the pairs (i, j) arising from the last
two terms in an occurrence of a pattern belonging to Bm.

Let D be a set of squares, and let O be a set of integer pairs that are obtained from
a permutation π ∈ Sn as diagram squares of rank at most m−3 and as ending terms
of occurrences of patterns belonging to Bm, respectively. Then we can recover π as
follows:
First represent the elements of D as white squares in an n × n array, shaded oth-
erwise. Row by row, put a dot in the leftmost shaded square such that there is
exactly one dot in each column. Each dot having at least m − 2 dots northwest
is deleted now. Then arrange the missing dots such that O is precisely the set of
non-inversions on these dots, that is, the dot contained in the ith row lies strictly
to the left of the dot contained in the jth row if and only if (i, j) ∈ O.
For example, the diagram squares of rank at most 1 of the permutation π =
7 1 4 2 6 3 5 ∈ S7 are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 3). Further-
more, the only occurrence of a pattern of B4 in π, namely (2, 4, 6, 7), ends with
(6, 7). Thus we obtain:

rr rr r r r

rr rr rr r
−→

5

6

7

These properties of permutation diagrams are fundamental for the construction of
a bijection Φm on the symmetric group which proves

Theorem 3. We have |{π ∈ Sn : am(π) = k}| = |{π ∈ Sn : bm(π) = k}| for all n
and k.

Let π ∈ Sn and D(π) the set of its ranked diagram squares. Define Φm(π) to be the
permutation whose diagram squares of rank at most m − 3 are just the elements
of D(π) of rank at most m − 3 and whose pairs (i, j) arising from the last two
terms of an occurrence of any pattern of Bm are just those pairs for which (i, πj)
is an element of D(π) of rank at least m − 2. By the construction, we have both
bm(Φm(π)) = am(π) and am(Φm(π)) = bm(π) for all π ∈ Sn.

For example, for π = 7 1 4 2 6 3 5 ∈ S7 we obtain Φ4(π) = 7 1 4 2 3 6 5:

rr rr rr r

rr rr r rr

0 0 0 0 0 0

1 1

2 3

−→

The diagram squares having rank at most 1 coincide for π and Φ4(π). The set O
containing the ending terms of the occurrences of patterns of B4 is obtained from
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the diagram squares of rank at least 2. (We have O = {(5, 6), (5, 7)}.) We have
a4(π) = b4(Φ4(π)) = 2 and b4(π) = a4(Φ4(π)) = 1.

The case k = 0 means the Wilf-equivalence of the pattern sets Am and Bm, that
is, there are as many permutations in Sn which avoid each pattern in Am as those
which avoid each pattern in Bm. Their number was determined in [1].

Corollary 0.3. For each m ≥ 2, the sets Am and Bm are Wilf-equivalent.

3. Some remarks

Restricting Φm on the set of permutations which avoid each pattern in Am yields
a bijection between Am-avoiding and Bm-avoiding permutations. For π ∈ Sn with
am(π) = 0, the construction of σ = Φm(π) is even more simple. Every diagram
square of π has rank at most m − 3. Therefore the construction works as follows.
Set σi = πi if there are at most m − 3 integers j < i satisfying πj < πi. Then
arrange the remaining elements in decreasing order.
In case m = 3 this describes exactly the bijection between 132-avoiding and 123-
avoiding permutations given by Simion and Schmidt in [4, Prop. 19].

Moreover, the restriction of Φm on the set of Am-avoiding permutations is reason-
able regarding some further permutation statistics.

Proposition 4. Let π ∈ Sn be a permutation which avoids each pattern of Am,
and σ = Φm(π). Then the number of elements πi having at least m− 2 elements πj

to its left equals the number of elements σi satisfying i+ σi > n+m− 2.
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1 Introduction

The field of patterns in permutations is a very rapidly growing area with connections
to combinatorics, computer science, and algebraic geometry. Our purpose is to
define an analogous notion of patterns in set partitions which promises to be as rich
a vein for exploration. In fact, we will give two possible set-partition analogues of
this concept both of which have interesting consequences. But first we begin with
some definitions and notation.

Given any sets S, T and a function f : S → T , we apply f element-wise to combi-
natorial objects built from S. So if p = a1a2 . . . ak is a word over the alphabet S
(possibly with repeated elements) then we let

f(p) = f(a1)f(a2) . . . f(ak). (1.1)

Another example that will be useful is if we take a subset B ⊆ S then

f(B) = {f(a) | a ∈ B}.

One function that we will be particularly interested in is the restriction map. Given
positive integers m,n ∈ P we let [m,n] = {m,m+ 1, . . . , n} and if m = 1 then we
write [n] = [1, n]. Now given any set S ⊂ P of cardinality #S = n, the unique
order-preserving function rS : S → [n] will be called the restriction map of S.
For example, if S = {2, 5, 7, 8} then the corresponding restriction map is rS(2) =
1, rS(5) = 2, rS(7) = 3, rS(8) = 4.

In this context, we can formulate the idea of pattern containment in permutations as
follows. Let q be a pattern, i.e., q is a permutation in some Sk, the symmetric group
on [k]. Then p = a1a2 . . . an ∈ Sn contains q if there is a subword p′ = ai1ai2 . . . aik

of p such that
rS(p′) = q

where S = {ai1 , ai2 , . . . , aik
}. Both of our definitions of pattern containment in set

partitions will be of this form.
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2 The first definition

Let us start with some basic defintions concerning set partitions. A partition π of
a set S is a family of nonempty sets B1, B2, . . . , Bl such that ]iBi = S (disjoint
union). The Bi are called the blocks or parts of π and the number of blocks or
length of π is denoted l = l(π). We will write π = B1/B2/ . . . /Bl ` S and will leave
out the set braces and commas from the Bi to reduce clutter. So, for example,
137/28/456/9 ` [9].

The set of all partitions of [n] will be denoted Πn and let Π = ]n≥1Πn. Now given
two partitions π = B1/ . . . /Bl and σ = C1/ . . . /Ck then we say that σ is contained
in π, σ ⊆ π, if the blocks of π can be labeled in such a way that Ci ⊆ Bi for
1 ≤ i ≤ k. As an example, 28/3/46⊆ 137/28/456/9 because 28 ⊆ 28, 3 ⊆ 137, and
46 ⊆ 456.

Definition 2.1. Let σ be a partition in Πk , called the pattern. Then π ∈ Πn

contains the pattern σ, written σ v π, if there is a partition π′ = B′
1/ . . . /B

′
k ⊆ π

with
rS(π′) = σ

where π′ ` S and rS(π′) = rS(B′
1)/ . . . /rS(B′

k).

By way of illustration, consider the pattern σ = 13/2. Then those π containing σ
are exactly the partitions which contain three elements with the smallest and largest
in one block and the middle one in a different block. In particular, the permuta-
tion π = 14/236/5 contains six copies of 13/2 corresponding to the subpartitions
14/2, 14/3, 26/4, 26/5, 36/4, 36/5.

We will say that π avoids σ if σ 6v π. Let

Πn(σ) = {π ∈ Πn | π avoids σ}

and
Π(σ) =

⊎

n≥1

Πn(σ).

3 Enumerative results

As might be expected, many of the enumerative results about pattern avoidance
for partitions are best expressed in terms of exponential generating functions. So it
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will be useful to have the following notation

exp(x) =

∞∑

n=0

xn

n!

exp(x) =

∞∑

n=1

xn

n!

expk(x) =
k∑

n=0

xn

n!

expk(x) =

k∑

n=1

xn

n!

Also, given any formal power series F (x) with real coefficients, we let

CnF (x) = the coefficient of xn/n! in F (x).

More generally, given any set S of nonnegative integers we let

CSF (x) =
∑

n∈S

CnF (x).

When dealing with permutations, one has the action of the full dihedral group of the
square to cut down on the number of cases one needs to consider. Unfortunately,
when dealing with partitions only one symmetry survives. Given σ = C1/ . . . /Cl `
[k] we let

σ′ = C ′
1/ . . . /C

′
l where C ′

i = {k + 1− a | a ∈ Ci} for 1 ≤ i ≤ l. (3.1)

For example, if σ = 135/24/6 then σ′ = 642/53/1. The following lemma follows
easily from the definitions.

Lemma 5. We have

Π(σ′) = {π′ | π ∈ Π(σ)}, and

#Πn(σ′) = #Πn(σ) for n ≥ 1.

We start by considering the two simplest patterns which are the unique minimal
element 0̂k = 1/2/ . . . /k and unique maximal element 1̂k = 12 . . . k of Πk when
partially ordered by refinement. The next result is a direct consequence of the
famous Exponential Formula for exponential generating functions [4] and shows a
pleasing duality bewteen these two cases.

Theorem 3.1. For the pattern σ = 1/2/ . . . /k we have

Π(1/2/ . . . /k) = {π | π has fewer than k blocks},

#Πn(1/2/ . . . /k) = Cn expk−1(exp x).

For the pattern σ = 12 . . . k we have

Π(12 . . . k) = {π | each block of π has fewer than k elements},

#Πn(12 . . . k) = Cn exp(expk−1x).
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Although for general k there is no simple expression for the desired coefficients in
the previous theorem, things do simplify if k = 3. If all the blocks of σ have one or
two elements then we will call σ an involution. If σ has all blocks of size two then
it will be called a matching. If σ ` S is a matching then |S| = 2i for some integer i
and the number of such matchings is the double factorial

(2i)!! = 1 · 3 · 5 · · · (2i− 1).

Finally, we let the binomial coefficient
(
n
i

)
be zero if i > n or i < 0.

Corollary 3.1. For the pattern σ = 1/2/3 we have

Π(1/2/3) = {π | π has at most 2 blocks},

#Πn(1/2/3) = 2n−1.

For the pattern σ = 123 we have

Π(123) = {π | π is an involution},

#Πn(123) =
∑

i≥0

(
n

2i

)
(2i)!!

We next consider the two-block pattern σ = 12 . . . (k−1)/k. In order to explain the
partitions avoiding this pattern, we need the following notion. Given a partition
π = B1/ . . . /Bl ∈ Πn and j ≥ 1, the intersection of π with [j] is the partition

π ∩ [j] = D1/ . . . /Dl

where Di = Bi ∩ [j] and empty intersections have been deleted.

Theorem 3.2. we have π ∈ Πn(12 . . . (k − 1)/k) if and only if there is some j ≥ 1
such that

1. π ∩ [j] has the same length as π with all blocks containing at most k − 2
elements, and

2. [j + 1, n] is a subset of a single block of π.

Furthermore, letting a vertical bar after a function denote evaluation,

#Πn(12 . . . (k − 1)/k) = C[n−1]
∂

∂t
exp(t expk−2x)|t=1 + Cn exp(expk−2x).

Again, there are simplifications when k = 3.

Corollary 3.2. For the pattern σ = 12/3 we have

Π(12/3) = {π | for some j, π ∩ [j] = 0̂j and [j + 1, n] are all in one block of π},

#Πn(12/3) =

(
n

2

)
+ 1.

In view of the previous results and the fact that 1/23 = (12/3)′, we will have
completed the enumeration of partitions avoiding a single pattern of length at most
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three as soon as we do the case σ = 13/2. Call a partition π layered if it is of the
form

π = [1, i]/[i+ 1, j]/ . . . /[k + 1, n]

The analogous concept for permutations as discussed in [1, 2, 3, 5, 6, 7] has proven
very useful.

Theorem 3.3. For the pattern σ = 13/2 we have

Π(13/2) = {π | π is layered},

#Πn(13/2) = 2n−1.

4 The Stanley-Wilf Conjecture

Given a pattern permutation q ∈ Sk, let Sn(q) denote the set of all permutations in
Sn avoiding q. It will also be convenient to let absolute value signs be an alternate
notation for cardinality. The famous Stanley-Wilf conjecture has been one of the
stimuli for the interest in permutation pattern avoidance .

Conjecture 4.1 (Stanley-Wilf). For every pattern q the limit

lim
n→∞

|Sn(q)|1/n

exists and is finite.

Here we will investigate the analogous question for partitions. But it is easy to find
patterns σ such that the limit

lim
n→∞

|Πn(σ)|1/n (4.1)

is infinite. For example, consider σ = 123 with n even. Then |Πn(123)| is bounded
below by the number of matchings of [n]. Using Stirling’s approximation gives

|Πn(123)|1/n ≥ n!!1/n =

[
n!

2n/2(n/2)!

]1/n

≥ C√n

for a positive constant C. One can get a similar bound for |Πn(123)|1/n when n is
odd. In fact, one can analyze all the patterns considered in the previous section to
prove the following result.

Theorem 4.1. For the following patterns, the limit (4.1) is finite:

1/2/ . . . /k and all patterns with at most three elements except 123.

For the following patterns, the limit (4.1) is infinite:

12 . . . k for k ≥ 3 and 12 . . . (k − 1)/k for k ≥ 4.

Any limit satisfies one of three possibilities: it exists and is finite, it exists and is
infinite, or it does not exist. For a large class of partitions, the third possibility
does not occur. Define σ = C1/ . . . /Ck to be reducible if there is a j with 0 < j < n
such that, possibly after reindexing the blocks, we have

C1/ . . . /Ci ` [j] and Ci+1/ . . . /Ck ` [j + 1, n].

Otherwise, σ is said to be irreducible. One can use Fekete’s Lemma to prove the
following.
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Theorem 4.2. If σ is irreducible then the limit (4.1) exists (and may be infinite).

With this evidence, we make the following conjecture cum problem.

Conjecture 4.2. For every partition σ, the limit (4.1) exists. Characterize those
patterns for which it is finite.

5 The second definition

Partitions can be viewed as certain sequences called restricted growth functions. A
sequence of positive integers p = a1a2 . . . an is called a restricted growth function
(RGF) of length n if

a1 = 1 and for i ≥ 2 we have ai ≤ 1 + max{a1, . . . , ai−1}.

We let Rn denote the set of RGFs of length n and R = ]n≥1Rn.

To see the connection with partitions, we assume from now on that the blocks of
π = B1/B2/ . . . /Bl will always be indexed so that

minB1 < minB2 < . . . < minBl (5.1)

Now given π ` [n], we construct a sequence p(π) = a1a2 . . . an by letting ai = j
iff i ∈ Bj . So, for example, p(137/28/456/9) = 121333124. It is easy to check
that condition (5.1) forces p(π) to be an RGF. Furthermore, this map is invertible,
setting up a bijection p : Πn ←→ Rn. We can now use (1.1) to obtain the second
definition of containment of a partition pattern.

Definition 5.1. Let s be an RGF in Rk, called the pattern. Then p ∈ Rn contains
the pattern s, written s � p, if there is a subword p′ = ai1ai2 . . . aik

of p such that

rS(p′) = s

where S = {ai1 , ai2 , . . . , aik
}.

As before, we say that p avoids s if s 6� p and write Rn(s) and R(s) for those RGFs
in Rn and R, respectively, which avoid s. One can now derive many interesting
results about Rn(s) and R(s) similar to those about Πn(σ) and Π(σ) either by
working directly with RGFs or after reformulating these definitions in terms of
partitions themselves. Furthermore, most questions about patterns in partitions
remain unanswered. We hope the reader will be stimulated to look at some of
them.

References

[1] M. Albert, M. Atkinson, C. Handley, D. Holton, and W. Stromquist, On pack-
ing densities of permutations, Electron. J. Combin. 9 (2002), R5, 20 pp.
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1 Introduction

It is an old and often rediscovered fact that there are infinite antichains of permuta-
tions with respect to the pattern containment ordering. See, for example, Pratt [4],
Tarjan [6], and Speilman and Bóna [5]. Recall that we say that a partially ordered
set is well partially ordered (WPO) if it contains neither an infinite properly de-
creasing sequence nor an infinite antichain, so these constructions show that the set
of all finite permutations is not WPO. Nevertheless, Atkinson et al. [2] found several
natural subsets of this poset that are WPO, for example, the set of permutations
avoiding two different permutations of length three. We continue this investigation
here.

First we need a few definitions. The reduction of a word w of distinct integers of
length k is the k-permutation obtained by replacing the smallest element of w by 1,
the second smallest element by 2, and so on. If q ∈ Sk, we say that the permutation
p ∈ Sn contains a q pattern, and write q ≤ p, if and only if there is a subsequence
1 ≤ i1 < · · · < ik ≤ n so that p(i1) . . . p(ik) reduces to q. Otherwise we say that p
is q-avoiding (and write q 6≤ p).
If Q is any set of permutations, we let A(Q) denote the set of finite permutations
that avoid every member of Q. We also let cl(Q) denote the closure of Q, that is,
the set of all permutations p such that there is a q ∈ Q that contains p. We say
that the set Q is closed (or that it is an ideal or a down-set) if cl(Q) = Q.

If Q is any set of permutations, we define the taming set of Q, tame(Q), to be
the set of permutations p such that A(Q ∪ {p}) is WPO. If q ≤ p ∈ tame(Q), then
A(Q∪{q}) ⊆ A(Q∪{p}), so taming sets are closed. For example, Atkinson et al. [2]
showed that tame(∅) = {1, 12, 21, 132, 213, 231, 312} and they found tame(321)∩S4.
We will show later that tame(321) = A(321, 2341, 3412, 4123), as an application of
the much more general Theorem 2.4. In particular, this shows that taming sets
may be infinite. Also note that by symmetry, this determines the taming sets of all
permutations of length three.

Our arguments rely heavily on Higman’s result that the set of finite words over a
WPO set is WPO. More precisely, if (X,≤) is a poset let X∗ denote the set of
all finite words with letters from X . We say that a = a1 . . . ak is a subword of
b = b1 . . . bn (and write a ≤ b) if there is a subsequence i1 ≤ · · · ≤ ik such that
aj ≤ bij

for all j ∈ [k].

Theorem 1.1. [3] If (X,≤) is WPO then so is (X∗,≤).

∗This work has been partially supported by an NSF VIGRE grant to the Rutgers University
Department of Mathematics.
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Our first application of this theorem is to direct sums of permutations. If p ∈ Sm

and p′ ∈ Sn, we define p⊕ p′ to be the (m+ n)-permutation given by

(p⊕ p′)(i) =

{
p(i) if 1 ≤ i ≤ m,
p′(i−m) +m if m+ 1 ≤ i ≤ m+ n.

If X is any set of permutations, set
⊕n

X = {p1⊕· · ·⊕pn : p1, . . . , pn ∈ X}, and let⊕
X consist of all finite direct sums of elements from X , i.e.,

⊕
X =

⋃
n≥0

⊕n
X .

This set is WPO if X is WPO by Higman’s Theorem 1.1.

2 Profile classes of 0/± 1 matrices

Recall that the permutation matrix corresponding to p ∈ Sn, Mp = (mi,j)i,j∈[n], is
given by

mi,j =

{
1 if j = p(i),
0 otherwise.

If M = (mi,j) is a 0/1 matrix, we define the support of M , supp(M), to be the set
of pairs (i, j) such that mi,j = 1. If P and Q are both 0/1 matrices, we say that P
contains a Q pattern if there is a submatrix of P , say P ′, with supp(Q) ⊆ supp(P ′)
(note that here we have implicitly re-indexed the support of P ′, so we do not
necessarily have supp(P ′) ⊆ supp(P )). We write Q ≤ P when P contains a Q
pattern. If q and p are permutations then q ≤ p if and only if Mq ≤Mp.

We define the reduction of a matrix M to be the matrix red(M) obtained from
M by removing the all-zero columns and rows. Given a set of ordered pairs X let
∆(X) denote the smallest 0/1 matrix with supp(∆(X)) = X . If red(Q) = Q (for
instance, if Q is a permutation matrix) then Q ≤ P if and only if there is a set
X ⊆ supp(P ) with red(∆(X)) = Q.

IfM = (mi,j) then we letMI×J = (mi,j)i∈I,j∈J and we letMT denote the transpose
of M . We define the direct sum of the matrices M1 and M2, written M1 ⊕M2, to
be the matrix (

M1 0
0 M2

)

This definition agrees with the one we made for permutations in the sense that
Mp⊕p′ = Mp ⊕Mp′ . If X is a set of 0/1 matrices and n ≥ 0, we let

⊕nX denote
the set of all matrices of the form M1 ⊕ · · · ⊕Mn where M1, . . . ,Mn ∈ X , and we
set

⊕
X =

⋃

n≥0

n⊕
X.

As with permutations, if X is a WPO set of permutation matrices (or, more gener-
ally, 0/1 matrices) then Higman’s Theorem 1.1 shows that

⊕
X is WPO.

We say that M is a sub-permutation matrix if there is a permutation matrix M ′

that contains an M pattern, or equivelantly, if red(M) is a permutation matrix.
If M is a sub-permutation matrix and supp(M) = {(i1, j1), . . . , (i`, j`)} with 1 ≤
i1 < · · · < i`, we say that M is increasing if 1 ≤ j1 < · · · < j` and decreasing if
j1 > · · · > j` ≥ 1.

Suppose that M = (mi,j) is an r× s 0/± 1 matrix and P is a permutation matrix.
An M -partition of P is a pair (I, J) of multisets I = {1 = i1 ≤ · · · ≤ ir+1 = n+ 1}
and J = {1 = j1 ≤ · · · ≤ js+1 = n+ 1} such that

(i) if mk,` = 0 then P[ik ,ik+1)×[j`,j`+1) = 0,

67



Permutation Patterns 2003 Vincent R. Vatter

(ii) if mk,` = 1 then P[ik ,ik+1)×[j`,j`+1) is increasing,

(iii) if mk,` = −1 then P[ik ,ik+1)×[j`,j`+1) is decreasing.

For any 0/± 1 matrix M we define the profile class of M , Prof(M), to be the set
of all permutation matrices that admit an M -partition, and we let Part(M) consist
of the set of triples (P, I, J) where P ∈ Prof(M) and (I, J) is an M -partition of P .

The profile classes of 0/±1 matrices defined here generalize both the profile classes
of permutations used by Atkinson [1] and the “generalized W ’s,” used by Atkin-
son et al. [2]. Unlike those two constructions, it is not true that all of these
classes are WPO. For example, consider the infinite sequence of permutations
W = {w1, w2, . . . } given by

w1 = 8, 1 | 5, 3, 6, 7, 9, 4 | | 10, 11, 2,

w2 = 12, 1, 10, 3 | 7, 5, 8, 9, 11, 6 | 13, 4 | 14, 15, 2,

. . .

wk = 4k + 4, 1, 4k+ 2, 3, . . . , 2k + 6, 2k − 1 |
2k + 3, 2k + 1, 2k + 4, 2k + 5, 2k + 7, 2k + 2 |
2k + 9, 2k, 2k+ 11, 2k − 2, . . . , 4k + 5, 4 |
4k + 6, 4k + 7, 2,

where the vertical bars indicate that wk consists of four different parts, of which
the first part is the interleaving of 4k + 4, 4k + 2, . . . , 2k + 6 with 1, 3, . . . , 2k − 1,
the second part consists of just six terms, the third part is the interleaving of
2k + 9, 2k + 11, . . . , 4k + 5 with 2k, 2k − 2, . . . , 4, and the fourth part has only 3
terms. Atkinson et al. [2] showed that W is an antichain. Furthermore, each Mwk

has a

(
1 −1
−1 1

)
-partition: ({1, 2k+3, 4k+8}, {1, 2k+3, 4k+8}). For example,

Mw2
=




1
1

1
1

1
1

1
1

1
1

1
1

1
1

1




∈ Prof

((
1 −1
−1 1

))
.

Therefore Prof

((
1 −1
−1 1

))
is not WPO under the pattern containment order-

ing.

Suppose that M is an r × s 0/ ± 1 matrix with (P, I, J), (Q, I ′, J ′) ∈ Part(M)
where I = {i1 ≤ · · · ≤ ir+1}, J = {j1 ≤ · · · ≤ js+1}, I ′ = {i′1 ≤ · · · ≤ i′r+1},
and J ′ = {j′1 ≤ · · · ≤ j′s+1}. Then we write (Q, I ′, J ′) � (P, I, J) if there is a set
X ⊆ supp(P ) such that red(∆(X)) = Q and for all k ∈ [r] and ` ∈ [s],

|X ∩ ([ik, ik+1)× [j`, j`+1))| = |supp(Q) ∩ ([i′k, i
′
k+1)× [j′`, j

′
`+1))|.

The poset we are really interested in, (Prof(M),≤), is a homomorphic image of
(Part(M),�). Consequently, if for some M we can show that (Part(M),�) is
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WPO, then we may conclude that (Prof(M),≤) is WPO. The following proposition
shows that we need only examine the cases where M is a 0/1 matrix.

Proposition 2.1. Let M = (mi,j)i∈[r],j∈[s] and M ′ = (m′
i,j)i∈[r],j∈[s] be 0/ ± 1

matrices with |mi,j | = |m′
i,j | for all i ∈ [r], j ∈ [s]. Then (Part(M),�) is WPO if

and only if (Part(M ′),�) is WPO.

The next two propositions also follow easily from the definitions.

Proposition 2.2. Let M be a 0/± 1 matrix. Then (Part(MT ),�) is WPO if and
only if (Part(M),�) is WPO.

Proposition 2.3. Let M be a 0/± 1 matrix and suppose that M ′ can be obtained
by permuting the rows and columns of M . Then (Part(M),�) is WPO if and only
if (Part(M ′),�) is WPO.

Note that the analogue of Proposition 2.2 for the poset (Prof(M),≤) is true, whereas
the analogues of Propositions 2.1 and 2.3 are not obvious.

IfM = (mi,j) is an r×s 0/±1 matrix we define the bipartite graph ofM , G(M), to be
the graph with vertices {x1, . . . , xr} ∪ {y1, . . . , ys} and edges {(xi, yj) : |mi,j | = 1}.
Figure 1 shows an example. Propositions 2.1, 2.2, and 2.3 suggest that whether or
not (Part(M),�) is WPO depends only on the isomorphism class of G(M). The
main result of this section, below, characterizes these graphs.

Theorem 2.4. Let M be a 0/± 1 matrix. Then (Part(M),�) is WPO if and only
if G(M) is a forest.

It seems natural to expect that Theorem 2.4 would remain true if (Part(M),�)
were replaced by (Prof(M),≤). One direction is already done; Theorem 2.4 shows
that (Prof(M),≤) is WPO whenever G(M) is a forest. It only remains to show
that (Prof(M),≤) is not WPO if G(M) contains a cycle.

Conjecture 2.5. Let M be a 0/ ± 1 matrix. Then (Prof(M),≤) is WPO if and
only if G(M) is a forest.

3 The taming set of 321

Theorem 2.4 is used to prove the following theorem.

Theorem 3.1. The taming set of 321 is A(321, 2341, 3412, 4123).

Like Theorem 2.4, the proof of Theorem 3.1 is rather technical, but we will try to
shed some light on it with a few comments. First, to show that

tame(321) ⊆ A(321, 2341, 3412, 4123),
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we need only exhibit various infinite antichains, and this work has already been
done by Atkinson et al. [2].

The other direction is more demanding. We begin by finding a more convenient
description forA(321, 2341, 3412, 4123). For all k ≥ 1, let bk denote the permutation
obtained from the reduction of the first k terms of the infinite sequence

4, 1, 6, 3, 8, 5, . . . ,

and let B = {b1, b2, . . . }. We show that

A(321, 2341, 3412, 4123) = cl
(⊕ (

B ∪ B−1
))
.

Because taming sets are closed, it suffices to show that

⊕ (
B ∪ B−1

)
⊆ tame(321).

Furthermore, B and B−1 form chains in the pattern containment ordering, so it
suffices to show that

j⊕
{bk, b−1

k } ⊆ tame(321)

for all j, k ≥ 1. We prove, by double induction on j and k, that for all q ∈⊕j{bk, b−1
k }, there is a matrix M(q) with G(M(q)) a forest so that if p ∈ A(321, q)

then Mp ∈
⊕

Prof(M(q)). We are then done by Higman’s Theorem 1.1 and Theo-
rem 2.4.
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Is there always a large Wilf class, and why

isn’t it larger?

Julian West

We are quite good at showing that two sets of permutation patterns are equally
restrictive. We are less good at showing that two sets of patterns are not equally re-
strictive, the usual approach being brute-force enumeration. In particular, it seems
credible that we know about all the cases of Wilf-equivalence for single patterns.
But we don’t know how to show that there are no further instances. In this talk,
we will survey some of the relevant literature, highlighting suggested approaches for
proving inequivalence.
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Longest increasing subsequences in

pattern-restricted permutations

Herb Wilf

Recent breakthroughs by Baik, Deift and Johansson have resulted in the discovery
of the complete limiting distribution function of the length of the longest increasing
subsequence in a random permutation. The same questions can be asked in pattern-
restricted classes of permutations. For example, what, asymptotically, is the length
of the longest increasing subsequence in a random (132)-avoiding permutation?
What is the complete limiting distribution function? Some recent results of Chow
and West, and of Reifegerste, when viewed in the light of these breakthroughs, allow
us to find the answers to some of these questions and to raise many others. This is
joint work with Adolf Hildebrand, of the University of Illinois.
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