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The enumeration of simple permutations

M.H. Albert∗ M.D. Atkinson† M. Klazar‡

Abstract

A simple permutation is one which maps no proper non-singleton
interval onto an interval. We consider the enumeration of simple per-
mutations from several aspects. Our results include a straightforward
relationship between the ordinary generating function for simple per-
mutations and that for all permutations, that the coefficients of this
series are not P -recursive, an asymptotic expansion for these coeffi-
cients, and a number of congruence results.
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AMS Subject Classification: 05A05, 05A15, 05A16, 11A07

1 Introduction and definitions

The permutation 2647513 maps the interval 2..5 onto the interval 4..7. In
other words, it has a segment (set of consecutive positions) whose values
form a range (set of consecutive values). Such a segment is called a block of
the permutation. Every permutation has singleton blocks, together with the
block 1..n. If these are the only blocks the permutation is called simple. For
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example, 58317462 is simple and the simple permutations of length up to 5
are as follows:.

Length Simple permutations

1 1
2 12, 21
3 None
4 2413, 3142
5 24153, 25314, 31524, 35142, 41352, 42513

Simple permutations have recently had important applications in the study
of pattern closed classes of permutations [1].

Let sn denote the number of simple permutations of length n. We shall
be concerned with properties of the sequence (sn). Consider the ordinary
generating functions:

F (x) =
∞∑

k=1

k!xk;

S(x) =
∞∑

k=4

skx
k.

We start S(x) from x4 because simple permutations of length 1 and 2 need
special treatment. Later in this section we will see that the coefficients of S
differ from those of −F 〈−1〉 (functional inverse, not reciprocal) alternately by
2 and −2. The coefficients of F 〈−1〉(x) were considered by Comtet [4, p. 171]
without any combinatorial interpretation. The sequence of absolute values
of these coefficients appears as sequence A059372 of [12], and the first few
terms are:

1, 2, 2, 4, 4, 48, 336, 2928, 28144, 298528, 3454432, 43286528.

So we shall see that the numbers sn are:

1, 2, 0, 2, 6, 46, 338, 2926, 28146, 298526, 3454434, 43286526.

In section 2 we shall prove that (sn) is not P-recursive (it cannot be defined
by a linear recurrence with polynomial coefficients). In section 3 we derive
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Figure 1: A block decomposition of 67183524. The pattern of the block
decomposition is the permutation whose graph is defined by the occupied
cells, namely 3142. Within each occupied cell, the individual blocks also
define permutations namely 12, 1, 1, and 2413.

the asymptotic behaviour of sn (the main term is n!/e2) and section 4 gives
various congruences satisfied by the numbers sn.

In the remainder of this section we derive a structure theorem that shows
how arbitrary permutations are built from simple ones, and read off from it
equations satisfied by generating functions. We begin with some terminology
and notation that will be used throughout.

A block decomposition of a permutation σ is a partition of σ into blocks. Of
course, if σ is simple there will only be the two trivial block decompositions.
An example of a non-trivial decomposition is σ = 67183524 with blocks
(67)(1)(8)(3524).

Given a block decomposition of σ, its pattern is the permutation defined by
the relative order of the blocks. In the example above, the pattern of the block
decomposition (67)(1)(8)(3524) is 3142. We may think of the permutation
67183524 as being constructed from the permutation 3142 by inflating each
of the elements into a block, in this case the blocks 12, 1, 1, and 2413 (we
view each block as a permutation in its own right). We write:

67183524 = (3142)[12, 1, 1, 2413].

This example is further illustrated in Figure 1. The inflation procedure is an
instance of the wreath product for permutations [2].

A permutation which cannot be written in the form (12)[α, β] is called plus
indecomposable, and one which cannot be written in the form (21)[α, β] is
called minus indecomposable. Let in denote the number of plus indecompos-
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able permutations of length n. The number of minus indecomposable per-
mutations of length n is also in as is easily seen by considering the bijection
on permutations of length n which sends π to π′ where π′(t) = n + 1− π(t).

Theorem 1 For every non-singleton permutation π there exists a unique
simple non-singleton permutation σ, and permutations α1, α2, . . . , αk such
that

π = σ[α1, α2, . . . , αk].

Moreover, if σ 6= 12, 21 then α1, α2, . . . , αk are also uniquely determined. If
σ = 12 (respectively 21) then α1 and α2 are uniquely determined subject to
the additional condition that α1 be plus (respectively minus) indecomposable.

The caveat added for the case where σ = 12 (or 21) is necessary, as is easily
seen by considering π = 123. This can be decomposed as (12)[1, 12] or as
(12)[12, 1]. However, only the former decomposition has a plus indecompos-
able first part.

Proof: We first of all suppose that π has two distinct maximal proper
blocks A and B that have a non-empty intersection. Then, as the union of
intersecting segments is a segment and the union of intersecting ranges is a
range, A ∪ B is a block. Because of the maximality, A ∪ B = [n]. But it is
also clear that A cannot be an interior segment of [n] nor can it define an
interior range. In other words we have

π = σ[α, β]

where σ = 12 or σ = 21. These two possibilities are obviously mutually
exclusive. In either case consider all decompositions of π as σ[γ, δ]. The
intersection of their γ parts is also the γ part of a decomposition of this type.
So there is a unique such decomposition with smallest γ part. Clearly, this
part is plus indecomposable in the case σ = 12 and minus indecomposable if
σ = 21.

We next suppose that every pair of distinct maximal blocks has empty inter-
section. Obviously, then the maximal blocks form a block decomposition of
π and this decomposition must be coarser than every other block decompo-
sition of π. It follows that this decomposition is the only one whose pattern
σ is simple and so we obtain the unique representation claimed for π.
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We shall shortly see that this theorem gives relations between the following
three generating functions:

F (x) =
∞∑

k=1

k!xk;

I(x) =
∞∑

k=1

ikx
k;

S(x) =
∞∑

k=4

skx
k.

Note that our generating functions are all taken to have zero constant term.
This slightly unconventional choice turns out to be algebraically convenient
at several points.

From Theorem 1 it is easy to see that there is a one to one correspondence
between the collection of all permutations with length at least 2 and the
collection of sequences:

(σ, α1, α2, . . . , αk).

Here σ may be any simple permutation of length k ≥ 2, and if σ 6= 12, 21
then α1 through αk are arbitrary permutations, while if σ = 12 (respectively
21), α1 is plus-indecomposable (respectively minus indecomposable) and α2

is arbitrary.

This correspondence, together with the earlier observation that the numbers
of plus and minus indecomposable permutations of length n are the same,
translates naturally into the following equation:

F (x) = x + 2I(x)F (x) + (S ◦ F )(x). (1)

However, since a plus indecomposable permutation cannot correspond to
a sequence beginning with 12, while all other sequences do represent plus
indecomposables, it is also clear from the correspondence that

I(x) = x + I(x)F (x) + (S ◦ F )(x).

Solving this latter equation for I, and then substituting in equation (1) before
solving for S ◦ F gives:

(S ◦ F )(x) =
F (x)− F (x)2

1 + F (x)
− x.
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Now letting t = F (x) we obtain:

S(t) = t− 2t2

1 + t
− F 〈−1〉(t). (2)

We can also obtain an equation for the ordinary generating function of plus
indecomposable permutations through the observation that every permuta-
tion decomposes into a sequence of plus indecomposable permutations so

F (x) =
I(x)

1− I(x)

or equivalently

I(x) =
F (x)

1 + F (x)
. (3)

Denoting the coefficient of tn in F 〈−1〉(t) by Comn (in reference to Comtet
who initiated the consideration of this sequence) we obtain directly from
equation (2) the simple relationship that for n ≥ 4:

sn = −Comn + (−1)n+1 · 2.

2 Non P-recursiveness

A sequence of numbers (an) is called P-recursive if it satisfies a linear re-
currence with polynomial coefficients. A power series is called D-finite if
it satisfies a linear differential equation with polynomial coefficients. A
sequence (an) is P-recursive if and only if its ordinary generating func-
tion A(x) =

∑
n anx

n is D-finite. More information on D-finiteness and
P-recursiveness can be found in Stanley [13, Chapter 6]. If an = n! then
an − nan−1 = 0, and thus the sequence (n!) is P-recursive. We show that on
the other hand neither sequence (in) nor (sn) is P-recursive. By (2), instead
of the latter sequence we can work with (Comn).

Proposition 2 The power series I(x) and C(x) = F 〈−1〉(x) =
∑∞

k=1 Comkx
k

satisfy the differential equations

I ′ = −x−2I2 + (x−2 + x−1)I − x−1;

C ′ =
C2

x− (1 + x)C
.
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Proof: It follows from the recurrence for n! that F (x) satisfies x + xF +
x2F ′ = F . Thus F ′ = ((1−x)F −x)/x2. Combining this with F = I/(1− I)
we obtain the differential equation for I(x). Similarly, C ′ = 1/F ′(C) =
C2/((1− C)x− C) which is the differential equation for C(x).

Klazar [8] used the following method to show that a sequence (an) is not P-
recursive. Suppose that the ordinary generating function A(x) is non-analytic
and satisfies a first order differential equation A′ = R(x, A) where R is some
expression. Differentiating this relationship and replacing A′ by R(x, A),
the derivatives of A are expressed as A(k) = Rk(x, A); R0(x, A) = A and
R1(x, A) = R(x, A). Substituting Rk(x, A) in the equation of D-finiteness

b0A + b1A
′ + b2A

′′ + · · ·+ bsA
(s) = 0,

where s ≥ 1, bi ∈ C(x) and bs 6= 0, we get a non-differential equation∑s
k=0 bkRk(x, A) = 0. If R is such that the expressions R0, R1, R2, . . . are (i)

analytic or even algebraic and (ii) linearly independent over C(x), we have
a nontrivial analytic equation for A. This implies that A is analytic (see
Klazar’s paper [8] for more details) which is a contradiction. So A cannot be
D-finite and the sequence of its coefficients cannot be P-recursive.

To state the result of [8] precisely, we remind the reader that a power series
R(x, y) ∈ C[[x, y]] is analytic if it absolutely converges in a neighborhood of
the origin and that R(x, y) ∈ C((x, y)) is an analytic Laurent series if, for
some positive integer k, (xy)kR(x, y) ∈ C[[x, y]] is analytic. Theorem 1 of
[8] says that if A ∈ C[[x]] is non-analytic, R(x, y) ∈ C((x, y)) is analytic,
A′ = R(x, A), and R contains at least one monomial axiyj, a 6= 0, with
j < 0, then A is not D-finite. This result applies directly neither to I(x) nor
C(x) (see Proposition 2) because in the case of I(x) the last condition on R
is not satisfied and in the case of C(x) the right hand side R even cannot be
expanded as a Laurent series.

However, the substitution x − (1 + x)C(x) = θ(x) transforms the second
differential equation of Proposition 2 into

θ′ = − x2

1 + x
· 1

θ
+

1 + 2x

1 + x
.

Now all conditions are satisfied (F (x) is clearly non-analytic which implies
that C(x) and θ(x) are non-analytic) and thus θ(x) is not D-finite by Theorem
1 of [8]. The dependence of C(x) and S(x) on θ(x) and the fact that D-finite
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power series form a C(x)-algebra ([13, Theorem 6.4.9]) shows that neither
C(x) nor S(x) is D-finite.

In order to deal with the case of I(x), we use this opportunity to complement
Theorem 1 of [8] in which R ∈ C((x, y)) by the following theorem which treats
the case R ∈ C(x, y). Neither of the theorems subsumes the other because
not every rational function in x and y can be represented by an element of
C((x, y)) (as we have seen) and, of course, not every Laurent series sums up
to a rational function. However, the next theorem seems to be more useful
because in both examples in [8] and both examples here the right hand side
R(x, y) is, in fact, a rational function.

Theorem 3 Let P, Q ∈ C[x, y] be two nonzero coprime polynomials and
A ∈ C[[x]] be a non-analytic power series which satisfies the differential
equation

A′ =
P (x, A)

Q(x, A)
.

If degy Q = 0 and degy P ≤ 1 then A is, trivially, D-finite. In all remaining
cases A is not D-finite.

Proof: The first claim is clear. If degy Q = 0 and r = degy P ≥ 2 then
A′ = a0+a1A+· · ·+arA

r where ai ∈ C(x), r ≥ 2, and ar 6= 0. Differentiation
by x gives

A(k) = Rk(x, A) = a0,k + a1,kA + · · ·+ akr−k+1,kA
kr−k+1

where ai,j ∈ C(x) and

akr−k+1,k = r(2r − 1)(3r − 2) . . . ((k − 1)r − k + 2)ak
r 6= 0.

Thus Rk(x, y) ∈ C(x)[y] have y-degrees kr − k + 1, k = 0, 1, 2, . . ., which is
for r ≥ 2 a strictly increasing sequence. Therefore R0, R1, R2, . . . are linearly
independent over C(x) and, by the above discussion, A is not D-finite.

In the remaining case degy Q ≥ 1. Differentiation of A′ = R(x, A) =

P (x, A)/Q(x, A) by x gives A(k) = Rk(x, A) where Rk(x, y) ∈ C(x, y). For
example,

R2 =
(Px + PyR1)Q− P (Qx + QyR1)

Q2

=
PxQ− PQx

Q2
+

P (PyQ− PQy)

Q3
.
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Let α, Q(x, α) = 0, be a pole of R1(x, y) of order ordα(R1) = ordα(P/Q) =
−ordα(Q) = l ≥ 1. We have ordα((PxQ−PQx)Q

−2) ≤ 2l and ordα(P (PyQ−
PQy)Q

−3) = 3l+ordα(PyQ−PQy) = 2l+1 since ordα(P ) = 0, ordα(PyQ) ≤
−l, and ordα(PQy) = −l + 1. So ordα(R2) = 2l + 1. In general, the same
argument shows that ordα(Rk+1) = 2 · ordα(Rk) + 1. Hence ordα(Rk) =
2k−1l + 2k−1 − 1, k = 1, 2, . . .. This is a strictly increasing sequence and we
conclude again, since R0, R1, R2, . . . are linearly independent over C(x), that
A is not D-finite.

Proposition 2 and Theorem 3 show that I(x) is not D-finite and we can
summarize the results of this section in the following corollary.

Corollary 4 The sequences (in), (Comn), and (sn) are not P-recursive.

3 Asymptotics

We turn now to the computation of an asymptotic expansion for the numbers
sn. We will prove that:

Theorem 5

sn =
n!

e2

(
1− 4

n
+

2

n(n− 1)
+ O(n−3)

)
.

Our methods are such that, in principle, higher order terms could be obtained
as a matter of brute force computation. In order to carry out this expansion
we will first consider permutations which may not be simple, but whose non-
trivial blocks all have length greater than some fixed value m. We will apply
inclusion-exclusion arguments (dressed in the form of generating functions [5,
6]), an argument which allows us to reduce the number of terms considered,
and a bootstrapping approach.

The case m = 2, was already considered by Kaplansky [7]. Permutations
of this type are those in which no two elements consecutive in position are
also consecutive in value (in either order). These were called irreducible
permutations by Atkinson and Stitt [2], but there is no standard terminology
in the field. Indeed the permutations that we have referred to as plus and
minus indecomposable have also been called irreducible in other contexts.
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An amusing equivalent form for the case m = 2 is that the number of such
permutations is also the number of ways of placing n mutually non-attacking
krooks on an n×n chessboard. A krook is a piece which can move either like
a king, or a rook in chess. Kaplansky’s expansion is:

n!

e2

(
1− 2

n(n− 1)
+ O(n−3)

)
.

In fact he derives asymptotic forms for the number of permutations contain-
ing exactly r blocks of length 2 for any r. Our methods parallel his, and
could also be used to derive such detailed information.

The decomposition provided by Theorem 1 of a permutation into its maximal
proper blocks represents a top down view of how non-simple permutations
are constructed from simple ones. There is a corresponding bottom-up view
that focuses on minimal blocks, put together in an arbitrary order. By a
minimal block in π we mean a non-singleton block in π minimal with respect
to inclusion. Note that the pattern of each minimal block is that of a simple
permutation. Any permutation can be decomposed into minimal blocks and
singletons, e.g., 3524716 = (3524)(7)(1)(6). However, this decomposition
is not unique, for two essentially different reasons. The first one is that
decompositions π = σ[α1, α2, . . . , αk], where σ is arbitrary and αi are simple,
are not unique because it may be possible to coalesce singletons into simple
blocks, or vice versa. Thus besides 3524716 = 2413[2413, 1, 1, 1] we also have
3524716 = 3524716[1, 1, 1, 1, 1, 1, 1]. The second problem is that we require
any two minimal blocks to be disjoint. While this is necessarily true whenever
either of them has length more than 2, two minimal blocks of length 2 may
intersect, as in 123. Thus we consider decompositions π = σ[α1, α2, . . . , αk]
where σ is arbitrary and each αi is either 1, a simple permutation of length
at least 4, or the identity permutation of length at least 2 or its reverse. We
refer to blocks of the latter type as clusters in π.

By using clusters we have solved the second problem but the non-uniqueness
remains and, moreover, we have introduced another source of it: consecutive
(reversed) identical permutations may coalesce into longer (reversed) identi-
cal permutations, as in 345612 = 21[1234, 12] = 231[12, 12, 12]. To remedy
the non-uniqueness we introduce the notion of marking a permutation. A
marked permutation (π, M) consists of a permutation π and a collection M
of minimal blocks of π. A marked cluster in (π, M) is a maximal chain of
marked overlapping minimal blocks of length 2 (a marked cluster may be
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a proper subset of a maximal cluster). Let B1 denote the set of all sim-
ple permutations of length at least 4 and B2 denote the set of all identical
permutations of length at least 2 and their reversals. Marking makes our
decomposition unique:

Theorem 6 Let X be the set of all marked permutations (π, M) and Y be the
set of all sequences (σ; α1, α2, . . . , αk) where σ is any permutation of length
k ≥ 1 and αi ∈ {1}∪B1 ∪B2. There is a bijection between the sets X and Y
such that if (π, M) 7→ (σ; α1, α2, . . . , αk), where r of the αi belong to B1 and
s of them to B2, then

π = σ[α1, α2, . . . , αk]

and |M | = r + l − s where l is the total length of the αi belonging to B2.

Proof: Given a marked permutation, collapse its marked minimal blocks
of length at least 4 and its marked clusters into singletons. This gives the
permutation σ. If the i-th term of σ was not obtained by collapse then
αi = 1, otherwise αi equals to the corresponding element of B1 ∪ B2. Since
each αi ∈ B1 contributes 1 to |M | and each αi ∈ B2 of length m contributes
m − 1, we have |M | = r + l − s. It is clear that π = σ[α1, α2, . . . , αk] and
that (π, M) can be uniquely recovered from (σ; α1, α2, . . . , αk).

Now suppose m to be some fixed value (we will later make choices of m
suitable for our purposes, but will always assume that m ≥ 2 since smaller
values of m are trivial). Each permutation π has an associated collection
Bm(π) consisting of the minimal blocks of π whose length is less than or
equal to m. So, if π is simple and of length greater than m, Bm(π) is empty,
while for π = 5672413, B2(π) = {56, 67}, and B4(π) = {56, 67, 2413}. An
m-marking of π is simply a subset of Bm(π). We consider the generating
function:

Fm(x, v) =
∑
π

x|π|
∑

M⊆Bm(π)

v|M | =
∑
π

x|π|(1 + v)|Bm(π)|.

Then of course Fm(x,−1) is the ordinary generating function for permuta-
tions all of whose non-singleton blocks have length greater than m.

We remark that Fm(x, t− 1) is the generating function where the coefficient
of xntk is precisely the number of permutations of length n with k minimal
blocks of length less than or equal to m.
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Let

Sm(x) =
m∑

j=4

sjx
j.

We apply the bijection of Theorem 6 to marked permutations which contain
no marked minimal blocks of length more than m. It follows that the gener-
ating function of the corresponding permutations α ∈ {1}∪B1∪B2, in which
x counts the length and v the contribution to |M |, is

x + vSm(x) +
2vx2

1− vx
.

So:

Fm(x, v) =
∑
k≥1

k!

(
x +

2vx2

1− vx
+ vSm(x)

)k

from which it follows that:

fm(x) := Fm(x,−1) =
∑
k≥1

k!

(
x− 2x2

1 + x
− Sm(x)

)k

. (4)

Before using this equation to derive asymptotic information about sn we
digress briefly to show how it can be used to obtain an alternative derivation
of (2). Instead of using Sm(x) in (4), use S(x). This gives us f∞(x), an
ordinary generating function for permutations having no minimal block. The
only such permutation is 1 so f∞(x) = x. That is:

x = F (x− 2x2

1 + x
− S(x))

which yields (2) after applying F 〈−1〉 to both sides.

Now recall that fm(x) is the generating function for permutations all of whose
blocks have length greater than m. In order to make use of these generating
functions in the asymptotic computation of sn we must determine a suitable
value of m so that fm provides useful information about sn. To that end the
following lemma is useful.

Lemma 7 If pn,k denotes the number of permutations of length n which
contain a minimal block of length k then for any fixed positive integer c:

n−c∑
k=c+2

pn,k

n!
= O(n−c).
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Proof: First observe that

pn,k ≤ sk(n− k + 1)(n− k + 1)!

since the right hand side counts the number of ways to choose the structure
of a block of length k, to choose its minimal element, and to arrange it with
other elements, so it overcounts permutations with more than one such block.

The estimate given then follows directly by using the fact that sk ≤ k!. Only
the two extreme terms in the sum can have magnitude as large as O(n−c),
and the remaining terms have magnitude O(n−c−1). Since there are fewer
than n terms, the result follows.

So when seeking an asymptotic expansion of sn/n! with an error term of
O(n−c−1) we may count instead the permutations which contain no blocks
of length less than or equal to c + 2, or greater than or equal to n − c.
In particular, as a direct consequence of the result quoted above due to
Kaplansky [7] we obtain:

Observation 8

sn

n!
=

1

e2
+ O(n−1).

An alternative proof of this result follows from a more general theorem of
Bender and Richmond [3] which provides the first order asymptotics of a
class of series which include the inverse series of F (x).

We will set as our goal to obtain the asymptotics of sn/n! with error term
O(n−3). However, the technique we use is completely general, and could be
applied, at the expense of a great deal of tedious computation, to any fixed
error bound of this type. By the remarks above, we may ignore minimal
block sizes between 5 and n − 3 inclusive. We first consider f4(x) which
enumerates permutations having no minimal blocks of size less than or equal
to 4. Recall that:

f4(x) =
∑
k≥1

k!

(
x− 2x2

1 + x
− 2x4

)k

.

So:

1

n!
[tn]f4(t) =

1

n!

∞∑
k=0

k! [tn]

(
t− 2t2

1 + t
− 2t4

)k
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=
1

n!

∞∑
k=0

k! [tn−k]
(
1− 2t

1 + t
− 2t3

)k

=
1

n!

n∑
l=0

(n− l)! [tl]
(
1− 2t

1 + t
− 2t3

)n−l

=
1

n!

n∑
l=0

(n− l)!
l∑

i=0

(−2)i

(
n− l

i

)
[tl]

(
t

1 + t
+ t3

)i

=
1

n!

n∑
l=0

(n− l)!
l∑

i=0

(−2)i

(
n− l

i

)
[tl−i]

(
1

1 + t
+ t2

)i

. (5)

Consider now any fixed value of l in equation (5). In order to obtain terms
whose order in n is n−2 or more, we need only consider the values l−2 ≤ i ≤ l.
Despite the fact that we sum over values of l running from 0 through n, we
may safely ignore the other terms. As we shall see in computing the three
significant terms the summation over l does not affect the order of the terms.

So, the three terms that we need to consider are:

(n−l)!
n!

(−2)l
(

n−l
l

)
+

(n−l)!
n!

(
(−2)l−1

(
n−l
l−1

)
(−l + 1)

)
+

(n−l)!
n!

(
(−2)l−2

(
n−l
l−2

)
((−l + 2)(−l + 1)/2 + l − 2)

)
.

(6)

Each of these terms will be converted to the form:

(−2)l

l!
(an asymptotic expansion in n) .

Since the first two and the first part of the third, are the same as those arising
in the m = 2 case, we can make use of their known form, that is, use the
asymptotics from Kaplansky’s result, leaving only the term

(n− l)!(−2)l−2(l − 2)

n!

(
n− l

l − 2

)
=

(−2)l

l!

(
l(l − 1)(l − 2)

4

(n− l)!(n− l)!

n!(n− 2l + 2)!

)

=
(−2)l

l!

(
l(l − 1)(l − 2)

4n(n− 1)
+ O(n−3)

)
Summing this expression over l gives −2e−2/n(n− 1) + O(n−3).

Now we combine this additional term with Kaplansky’s results to give the
asymptotic expansion of [tn]f4(t) through three terms as:

[tn]f4(t) =
n!

e2

(
1− 4

n(n− 1)
+ O(n−3)

)
.

14



Finally we use this in establishing the second order asymptotics of sn. From
Observation 8 applied to sn−1 we obtain:

sn−1 =
n!

e2

(
1

n
+ O(n−2)

)
.

Furthermore, the number of permutations of length n containing a simple
block of length n− 1 is precisely 4sn−1. Since, in computing the 1/n term in
the expansion of sn we can ignore contributions arising from blocks of length
n − 2, and since the events of having a simple block of length from 2 to 4,
and having a simple block of length (n− 1) are disjoint:

sn = [tn]f4(t)− 4sn−1 + O(n−2n!);

=
n!

e2

(
1− 4

n
+ O(n−2)

)
.

We apply this bootstrap approach once more to get the second order be-
haviour. We now know that:

sn−1 =
n!

e2

(
1

n
− 4

n(n− 1)
+ O(n−3)

)

sn−2 =
n!

e2

(
1

n(n− 1)
+ O(n−3)

)
.

Furthermore there are 18sn−2 permutations of length n containing a simple
block of length n− 2. However, of these 8sn−2 also contain a simple block of
length 2. So:

sn = [tn]f4(t)− 4sn−1 − 10sn−2 + O(n−3n!)

=
n!

e2

(
1− 4

n
+

2

n(n− 1)
+ O(n−3)

)
,

as we claimed at the beginning of this section.

Finally, in this section we note that the asymptotic estimate of sn is, as might
be expected, a poor approximation. For example, s20 = 264111424634864638
and our asymptotic estimate has a relative error of about 3.89× 10−3.

4 Congruences

In this section we derive congruence properties of the numbers Comn for
the moduli 2a and 3 (from which follow similar congruences for sn). Our
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main tool is the following result that follows immediately from the Lagrange
inversion formula.

Lemma 9

n · Comn = [xn−1]

∑
k≥0

(−1)k(2!x + 3!x2 + · · ·)k

n

.

For a prime p, let ordp(n) denote the largest integer m such that pm divides
n. As the following table shows, ord2(Comn) is unexpectedly large:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ord2(Comn) 0 1 1 2 2 4 4 4 4 5 5 15 13 12 12

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
8 8 9 9 10 10 12 12 14 14 15 15 17 17 22

In Theorem 11 we give a lower bound on ord2(Comn) which is tight for
infinitely many n and we completely characterize the values of n for which
the equality is attained.

For convenience we note the following result that follows directly from the
well-known formula

ordp(m!) =

⌊
m

p

⌋
+

⌊
m

p2

⌋
+ · · ·

Lemma 10 For all m, ord2((m+1)!) ≥
⌈

m
2

⌉
where equality holds if and only

if m = 1 or 2. Also, ord3(m!) ≤ m− 1 for all m.

Theorem 11 Let m = bn/2c. Then

ord2(Comn) ≥
⌈
n− 1

2

⌉
.

Equality holds if and only if
(

3m
m

)
is odd and this happens if and only if the

binary expansion of m has no two consecutive unit digits.

16



Proof: Let the numbers bk, k ≥ 0, be defined by∑
k≥0

bkx
k =

∑
k≥0

(−1)k(2!x + 3!x2 + · · ·)k.

Thus b0 = 1 and for k ≥ 1,

bk =
∑

c1,c2,...,cs≥1
c1+c2+···+cs=k

(−1)s · (c1 + 1)! · (c2 + 1)! · . . . · (cs + 1)!.

By Lemma 9,
n · Comn =

∑
k1,k2,...,kn≥0

k1+k2+···+kn=n−1

bk1bk2 . . . bkn .

By Lemma 10, ord2((c + 1)!) ≥ c/2 for all c. Hence, for all k and n,

ord2(bk) ≥
k

2
and ord2(n · Comn) ≥ n− 1

2
.

In particular, for odd n we have ord2(Comn) = ord2(n · Comn) ≥ (n− 1)/2.

To obtain the more exact result of the theorem we need the following better
estimates for ord2(bk):

ord2(bk)


= k/2 for even k;
= (k + 1)/2 for k ≡ 1 mod 4;
> (k + 1)/2 for k ≡ 3 mod 4.

To prove them we look more closely at the sum for bk. Suppose first that
k is even. Then the sum has exactly one summand with ord2 equal to k/2,
namely that with c1 = c2 = . . . = ck/2 = 2 (by Lemma 10, ord2((c+1)!) = c/2
only if c = 2), and the other summands have ord2 bigger than k/2. Hence
ord2(bk) = k/2. Now suppose that k is odd. Then each summand has an odd
number of odd ci’s. The summands t with three and more odd ci’s satisfy
ord2(t) ≥ (k+3)/2 (each odd ci contributes 1/2 to k/2). The same is true if t
has only one odd ci but that ci is not 1 (by Lemma 10, ord2((c+1)!) ≥ (c+3)/2
for odd c > 1), or if some even ci is not 2 (Lemma 10). The remaining
summands t, in which ci = 2 with multiplicity (k − 1)/2 and once ci = 1,
satisfy ord2(t) = (k + 1)/2. We see that, for odd k, ord2(bk) = (k + 1)/2
if and only if the number of the remaining summands is odd. This number
equals (k− 1)/2+1 = (k +1)/2. So ord2(bk) = (k +1)/2 if and only if k ≡ 1
mod 4.
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Let n = 2m + 1 be odd. If s is a summand of the above sum for n · Comn,
then ord2(s) = (n− 1)/2 if and only if all ki in s are even; other summands
t have ord2(t) > (n − 1)/2. It follows that ord2(Comn) = (n − 1)/2 if and
only if the number of the former summands s is odd. This number equals

[xn−1]

∑
r≥0

x2r

n

= [xn−1]
1

(1− x2)n
= [xn−1]

∑
r≥0

(
n + r − 1

r

)
x2r =

(
3m

m

)
.

Let n = 2m be even. We know that ord2(bk) = k/2 for even k and ord2(bk) ≥
(k + 1)/2 for odd k. In the sum for n · Comn, every composition k1 + k2 +
· · · + kn = n − 1 of n − 1 has an odd number of odd parts. For any t-tuple
l1, l2, . . . , lt, where t and all li are odd and l1 + · · · + lt ≤ n − 1, we let
S(l1, l2, . . . , lt) denote the sum of those bk1bk2 . . . bkn with k1 +k2 + · · ·+kn =
n− 1 in which ki = li, 1 ≤ i ≤ t, and ki is even for i > t. It follows that

n · Comn =
∑(

n

t

)
S(l1, l2, . . . , lt)

where we sum over all mentioned t-tuples l1, l2, . . . , lt. By the properties of
ord2 and of the numbers bk, ord2(S(l1, l2, . . . , lt)) ≥ (n + t − 1)/2. Also, for

odd t we have ord2(
(

n
t

)
) = ord2(

n
t

(
n−1
t−1

)
) = ord2(n)− ord2(t)+ord2(

(
n−1
t−1

)
) ≥

ord2(n), and ord2(
(

n
1

)
) = ord2(n). It follows that ord2(Comn) ≥ n/2 and,

moreover, ord2(Comn) = n/2 if and only if

ord2

 ∑
l≤n, l odd

S(l)

 = n/2.

In the last sum still many summands have ord2 bigger than n/2: if l ≡ 3
mod 4 then ord(S(l)) > n/2. On the other hand, if l ≡ 1 mod 4 then each
summand blbk2 . . . bkn in S(l) has ord2(blbk2 . . . bkn) = n/2. We conclude that
ord2(Comn) = n/2 if and only if the number c(n) of compositions of n − 1
into n parts, where the first part is ≡ 1 mod 4 and the remaining n− 1 parts
are even (zero parts are allowed), is odd. We have

c(n) = [xn−1]
x

1− x4
· 1

(1− x2)n−1
= [xn−1]

x

1 + x2
· 1

(1− x2)n

≡ [xn−1]
x

1− x2
· 1

(1− x2)n
= [xn−1]

x

(1− x2)n+1
mod 2

18



=

(
3m− 1

m− 1

)
≡ 3m

m

(
3m− 1

m− 1

)
mod 2

=

(
3m

m

)
.

It was noted by Kummer [9], see also Singmaster [11], that ordp(
(

a+b
b

)
) is

equal to the number of carries required when adding a and b in the p-ary
notation. Applying this for p = 2, a = m, and b = 2m, we get the stated
criterion.

Corollary 12 For all n ≥ 3,

sn ≡
{

2 mod 2(n−1)/2 for odd n;
−2 mod 2n/2 for even n.

Let

Cn =
1

n + 1

(
2n

n

)
be the nth Catalan number.

Proposition 13 For all n, Comn ≡ Cn−1 mod 3.

Proof: We have, for every non-negative integer k,

(2!x + 3!x2 + · · ·)k = (2x)k + 3ak(x)

with ak(x) ∈ Z[[x]]. Thus

∑
k≥0

(−1)k(2!x + 3!x2 + · · ·)k =
1

1 + 2x
+ 3

∑
k≥0

(−1)kak(x)

=
1

1 + 2x
+ 3b(x)

with b(x) ∈ Z[[x]]. Let m = ord3(n). Since ord3(k!) ≤ k − 1 for every k
(Lemma 10), we have

ord3

(
3k
(

n
k

))
≥ m + 1 for k = 1, 2, . . . , n.
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By Lemma 9,

n · Comn = [xn−1]
(

1

1 + 2x
+ 3b(x)

)n

≡ [xn−1]
1

(1 + 2x)n
mod 3m+1

= (−2)n−1

(
2n− 2

n− 1

)
.

Canceling in the last congruence the common factor 3m, we get

n

3m
· Comn ≡

(−2)n−1

3m

(
2n− 2

n− 1

)
≡ 1

3m

(
2n− 2

n− 1

)
mod 3.

Since n/3m 6≡ 0 mod 3, we can divide by it and get

Comn ≡
1

n

(
2n− 2

n− 1

)
mod 3.

Corollary 14 For all n > 2,

sn ≡ −Cn−1 + (−1)n mod 3.

5 Concluding remarks

The simplicity property for permutations does not seem to have been stud-
ied until very recently [10, 1]. We have begun the study of the numbers
sn by showing that they are not P-recursive, giving the first few terms of
their asymptotic expansion, and showing that they satisfy some unexpected
congruence properties.

These results suggest a number of natural continuations. Although, in prin-
ciple, we could obtain more terms of the asymptotic expansion the entire
expansion remains elusive, and computing it seems to be rather a difficult
problem. On the other hand we have some computational evidence to suggest
that the sequence Comn has additional congruence properties, particularly
with respect to odd primes.

We suggest also some algorithmic problems that are natural counterparts to
the enumerative results:

20



• How can one efficiently generate simple permutations in lexicographic
order?

• Is it possible to generate simple permutations uniformly at random in
worst-case linear time per permutation?

• How efficiently can one recognise a simple permutation?

With regards to the final question, there is a natural dynamic programming
algorithm that achieves the task in O(n2) time; so the issue is whether one
can do better.
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ciprocitätsgezetzen, J. Reine Angew. Math., 44 (1852), 93–146.

[10] M. M. Murphy, Restricted permutations, antichains, atomic classes and
stack sorting, PhD thesis, University of St. Andrews, 2002.

[11] David Singmaster, Notes on binomial coefficients. I. A generalization of
Lucas’ congruence, J. London Math. Soc. (2), 8 (1974), 545–548.

[12] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http:

//www.research.att.com/~njas/sequences/, 2003.

[13] Richard P. Stanley, Enumerative combinatorics. Vol. 2, volume 62 of
Cambridge Studies in Advanced Mathematics, Cambridge University
Press, 1999.

22




