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Safe communication for card players by

combinatorial designs for two-step protocols

M. H. Albert∗ R. E. L. Aldred† M. D. Atkinson∗

H. P. van Ditmarsch∗ C. C. Handley∗

Abstract

Two parties A and B select a cards and b cards from a known deck
and a third party C receives the remaining c cards. We consider methods
whereby A can, in a single message, publicly inform B of her hand without
C learning any card held by A or by B. Conditions on a, b, c are given for
the existence of an appropriate message.

1 Introduction

At the Moscow 2000 Mathematical Olympiad the following problem was posed:

From a pack of seven known cards two players each draw in turn
three cards. A third player gets the remaining card. How can the
players with three cards openly inform each other about their cards
without the third player learning any of the cards in their hands?

This type of problem (with the same “card” terminology) has been studied in
[1] as a model for communication among a team of computationally unlimited
(perfectly rational) players including an eavesdropper, and this has been further
explored in [4]. The communication protocols that such problems throw up are
often rather subtle and they have been studied using dynamic epistemic logic in
[9]. This has been used as a basis for a model checking approach in [10]. Also,
various publications on the Russian cards problem intended for a more general
audience have seen the light [6, 8, 3, 7].

In this paper we regard the Russian cards problem as the (3, 3, 1) instance of
the (a, b, c)-problem. We shall study solutions that are known to consist of two
messages only. In such a solution the second message is trivial, because it may
consist of revealing what the third player’s c cards are, so our investigations
focus on the first message only. We call this a two-step protocol.
∗Department of Computer Science, University of Otago
†Department of Mathematics and Statistics, University of Otago
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We reformulate the problem in purely combinatorial terms, and show their
equivalence to logical terms defined in [9]. We also give solutions for various
(a, b, c), including one that applies in general when a = O(

√
b). Although our

solutions succeed in preventing the third player from learning any particular
card, they nevertheless reveal some information. Therefore we also give upper
and lower bounds on how much information has to be revealed to the third
player.

2 Notation and combinatorial formulation

We call the three players A,B,C, according to the number of cards a, b, c that
they hold. We also let v denote the total number a + b + c of cards, and
Ω the set of those cards. All messages are supposed to be public and truthful
announcements. Messages that enable A and B to learn each other’s cards must
originate from one of them. We shall suppose that the first message originates
from A. The second message is just an announcement by B of C’s card(s). All
the complexity is therefore contained in A’s announcement only.

Such an announcement may be of a very complex form (“I hold one of cards 1
and 4, if I hold card 3 then I do not hold card 6, moreover three of my cards
are prime values,. . . ”) but, no matter how complex it is, it is tantamount to
an announcement that simply lists a number of possible hands for A (“I hold
one of the following sets of cards...”). This is because it is commonly known
that a player’s announcement is based on his/her information. For a proof, see
[9]. We shall therefore take it that A announces a collection L of sets of size a
(‘A-hands’), one of which is her actual hand.

The collection L has to be such that B can (through knowing his own hand)
rule out all but one A-hand in L as A’s hand; yet C must not be able to infer
any card in either of A or B’s hands. The problem for A is to devise such an
announcement that will be effective no matter what B (or C) holds. Informally,
A’s announcement must achieve the following three goals:

G1. B must be able to infer the actual hand of A

G2. C must not be able to infer any of A’s cards

G3. C must not be able to infer any of B’s cards

We assume the players to be perfectly rational, so for ‘is able to infer’ we may
read ‘know’.

These informal goals suffer from imprecision. One complication is that the
meaning of A’s announcement is partially determined by her intention to keep
her cards a secret; and that intention depends on what the players consider an
acceptable protocol. Another complication is, that so far we have only required
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that A’s announcement is effective for a given actual A-hand, not that it is
effective for any A-hand in L. Before we continue, we give an example that
illustrates these complications:

Example We name the seven cards 0, 1, 2, 3, 4, 5, 6 and assume that the actual
deal is that A holds {0, 1, 2}, B holds {3, 4, 5} and C holds 6.

First, assume that A,B,C are told that A’s single announcement should be
sufficient for B to learn A’s hand. (This makes it common knowledge.) Suppose
A’s announcement is

012, 034, 056, 135, 246, 235.

Player C can now reason as follows: ”If A’s hand is either 135 or 235, then if
B’s hand were 046, B would not have learnt A’s hand. Player A knows that too.
Therefore A would not have made that announcement if she actually held 135
or 235. Therefore she holds neither 135 nor 235. Further, from the remaining
012, 034, 056, 246, A can obviously not hold 056 and 246 as I hold card 6 myself.
So A’s hand must be either 012 or 034, therefore A must hold card 0.” So
from the assumption that a single announcement by A (followed by a single
announcement of B) should solve the problem, we can derive that this given
announcement by A cannot be a solution.

Next, do not make that assumption. Instead, merely assume (‘A,B,C are told’)
that solutions are finite sequences of announcements. From A’s announcement
012, 034, 056, 135, 246, 235 it can be concluded, by the argument above, that it
is unclear to C if A knows that she has supplied enough information for B to
learn her hand. As a matter of fact, A has supplied enough information, which
becomes public from B now announcing in turn that C has card 6. But this
only reduces the possible A-hands to 012, 034, 135, 235 (C knew anyway that
B’s hand cannot be 056 or 246, so is not surprised by the outcome), and that is
not enough information for C to determine the ownership of any specific card,
other than card 6.

In other words: from the assumption that solutions are not required to consist
of two announcements only, we can conclude that this is an acceptable solution
that consists of two announcements. Now do we need to include this solution
in the length-two solutions, or not? a
Complications as illustrated in this example can be avoided by requiring that
the problem constraints are commonly known to be met after an announcement,
in a precise logical sense. For the problem domain that we investigate, this
corresponds to requiring that the conditions are met regardless of the actual
deal of cards or, in other words, that they are met whenever A can truthfully
make that announcement [9, 10]. From this it follows that it is commonly
known that A has informed B after her announcement, or, alternatively, that
it is common knowledge that the protocol to be executed has length two. From
now on, we will assume that this common knowledge requirement is always met.

The informal conditions given above can therefore be formalized as the following
epistemic axioms:
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EA1. Whenever A can announce L, B knows A’s hand after L.

EA2. Whenever A can announce L, C does not know any of A’s cards after L.

EA3. Whenever A can announce L, C does not know any of B’s cards after L.

We can also formalize the informal conditions by means of three combinatorial
axioms (a b-set is a set of b elements, etc.):

CA1. For every b-set X there is at most one member of L that avoids X.

CA2. For every c-set X the members of L avoiding X have empty intersection.

CA3. For every c-set X the members of L avoiding X have union consisting of
all cards except those of X.

We now prove that the epistemic and combinatorial axioms correspond. We have
to be careful in our formulations because of the interaction of different epistemic
requirements. This is unavoidable as the epistemic requirements do not directly
describe characteristics of the protocol but refer to its postconditions.

Theorem 1 The Epistemic Axioms 1, 2, and 3 correspond to the Combinato-
rial Axioms 1, 2, and 3.

Proof: Suppose that A announces a collection of possible hands L.

CA1 ⇒ EA1. Suppose that B’s hand is X. If no member of L avoids X, A
cannot have announced L. If one member Y of L avoids X, B can infer that Y
is A’s hand.

CA1 ⇐ EA1. Let X be a b-set such that there are unequal Y1, Y2 ∈ L with Y1

and Y2 both avoiding X. Then if B happened to hold X he would not know
whether A held Y1 or Y2.

(CA1 &) CA2 ⇒ EA2. Suppose that C’s hand is Y . Player C can exclude, as
hands for A, those members of L that intersect with his own. Also because of
CA1, which implies EA1, these are the only A-hands he can exclude.∗ Therefore,
in C’s eyes the possible hands for A are those that are disjoint from his own.
Since these possibilities have empty intersection, C cannot identify any card
held by A.

CA2⇐ EA2. Suppose there is a c-set X such that Z =
⋂
Y ∩X=∅ Y is nonempty

and let q ∈ Z. Then if C happened to hold X he would learn that A holds q.

(CA1 &) CA3 ⇒ EA3. Suppose that C’s hand is Y . Again, C can exclude,
as hands for A, those members of L that intersect with his own. And in the
∗Without the presence of CA1, CA2 does not imply EA2. A typical counterexample is the

one given above: for the given deal, after A-announcement L := 012, 034, 056, 135, 246, 235,
CA2 is satisfied but EA2 is not satisfied. Note that EA1 is indeed not satisfied, namely not
for 135 and 235.
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presence of CA1, these are the only members of L that he can exclude. So he
can deduce, as cards for B, only those cards not among such members of L;
but, by CA3, there are no such cards.

CA3 ⇐ EA3. Suppose there is a c-set X such that (strictly) Z =
⋃
Y ∩X=∅ Y ⊂

X and let q ∈ X \ Z. Then if C happened to hold X he would learn that B
held q.

In view of Theorem 1 we can, from now on, study two-step protocols using the
language of Combinatorial Axioms 1, 2, 3.

Definition 1 An announcement satisfying CA1, CA2, CA3 is called a good
announcement for parameter set (a, b, c).

To give a foretaste of our results we consider the original Russian cards prob-
lem. Let us suppose that A’s hand (three cards from {0, 1, . . . , 6}) is ac-
tually {0, 1, 2}. Then A can announce that she holds one of the following:
012, 034, 056, 135, 146, 236, 245. It is readily checked that this announcement
satisfies the axioms.

It is not coincidental that the triples of this good announcement are the lines
of the 7-point projective plane. As we shall see, many classical combinatorial
configurations can be used to find such protocols. Motivated by the projective
plane visualization of this Russian cards solution we shall henceforth refer to
the members of any announcement as the lines of the announcement, and to
the cards as the points.

We shall find it convenient sometimes to use an alternative formulation of CA1.

Lemma 1 An announcement L satisfies CA1 if and only if for every pair of
distinct lines L1, L2 ∈ L we have |L1 ∩ L2| < a− c.

Proof: Suppose that CA1 holds. Then for two lines L1, L2 ∈ L, the set Ω \
(L1 ∪L2) consists of less than b cards, because any b-set can avoid only one but
not two lines. We now have:

|Ω \ L1 ∪ L2| < b

a+ b+ c− 2a+ |L1 ∩ L2| < b

|L1 ∩ L2| < a− c

Since this argument can be reversed the proof is complete.

A direct consequence of Lemma 1 is:

Corollary 1 CA1 can only hold if c < a.

We can also prove that c has to be strictly smaller than a − 1. For that, see
Corollary 2, below. We further have that:
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Lemma 2 CA1 and CA2 can only hold simultaneously if c < b.

Proof: If c ≥ b, C can assume the role ofB. Let CA1 hold for an announcement
L, and suppose Z ∈ L is the single line avoiding some b-subset X of C’s actual
hand Y . Then Z either also avoids Y or intersects with Y . In the first case
CA2 will fail. In the second case A could not have made the announcement.

There is no obvious size relation between a and b.

3 Bounds on the size of a good announcement

Having heard a good announcement by A, C will not be completely ignorant of
what A holds. Initially, for a given C-hand, A could have had any one of

(
a+b
a

)
hands within

(
a+b+c
a

)
possibilities while, after the announcement, C knows A’s

hand to within |L| possibilities. Clearly, the least information is released to
C if we maximise |L|. Consequently, it will be of interest to give upper and
lower bounds on the size |L| of good announcements. It is easy to verify that
if an announcement satisfies CA1 then so does any subset of it. Also, if an
announcement satisfies CA2 (or CA3) then so does any superset. From this it
follows immediately that if L1,L2 satisfy CA1, CA2 and CA3, then also does
any announcement such that L1 ⊆ L ⊆ L2. So, in some cases, by finding a
good announcement that meets a lower bound and another that meets an upper
bound, we can infer the existence of good announcements having any value of
|L| between these bounds.

Lemma 3 In a good announcement every point lies in at least c+ 1 lines.

Proof: Suppose point x lies only in the lines {x, y1, . . .}, {x, y2, . . .}, . . . , {x, yt, . . .}
where t ≤ c. Consider a c-set X containing {y1, y2, . . . , yt}. Let L be a line that
avoids X. Then x 6∈ L (for otherwise L would contain one of y1, . . . , yt). Hence

x 6∈
⋃

L∩X=∅

L

This contradicts CA3 since the union in question is supposed to be the whole
of Ω \X.

Proposition 1 The number of lines in a good announcement is at least

(a+ b+ c)(c+ 1)/a

Proof: The number of pairs (p,X) with point p in line X is exactly ka, where
k is the number of lines. But, by Lemma 3, it is also at least equal to (a+ b+
c)(c+ 1).
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Corollary 2 If a good announcement exists then c < a− 1.

Proof: Corollary 1 shows that c ≤ a − 1. However, if c = a − 1 then, for all
lines L1 6= L2, we have L1 ∩ L2 = ∅ (by Lemma 1). Therefore every point lies
in at most one line which contradicts Lemma 3.

There is another lower bound argument that is better when a is relatively large
and is particularly powerful for the parameters (a, 2, 1). Suppose there are k
lines. As above, there are ka point-line incidences and so there is some point p
with at least ka/v lines through it and so with at most k − ka/v = k(v − a)/v
lines that avoid it. Now let X be any c-set that contains p and consider the lines
that avoid X. These lines certainly avoid p and so there are t ≤ k(v−a)/v lines
avoiding X. However, these t lines are subsets of the (v−c)-set Ω\X. This set of
lines has, by CA2, trivial intersection but, if t a-subsets of a u-element set have
empty intersection, then t ≥ u/(u− a). It follows that t ≥ (v− c)/(v− c− a) =
(a+ b)/b. Putting this with the upper bound for t we have

Proposition 2 The number of lines in a good announcement is at least

(a+ b)(a+ b+ c)
b(b+ c)

For upper bounds on the number of lines we have two results.

Proposition 3 The number of lines in a good announcement is at most

(a+ b+ c)!(c+ 1)!
(b+ c)!(c+ a+ 1)!

⌊
a+ c+ 1
c+ 1

⌋
Proof: In this argument we will apply axiom CA1 for b-sets, when counting
pairs (X,Y ) where X is a (b − 1)-set and Y is a line in L with X ∩ Y = ∅. If
there are k lines then there are k choices for Y and, for each Y ,

(
b+c
b−1

)
choices

for X. So there are k
(
b+c
b−1

)
such pairs. On the other hand we can choose X in(

a+b+c
b−1

)
ways. Having chosen X we want to bound the number t = |T | where

T is the set of lines that avoid X. Given any y 6∈ X, X ∪ {y} has size b and so,
by CA1, there is at most one line of T that avoids it. In other words at least
t − 1 of the lines of T contains y. Now we consider pairs (y, L) where y 6∈ X
and L ∈ T with y ∈ L. This gives the inequality

ta ≥ (a+ c+ 1)(t− 1)

from which we have t ≤
⌊
a+c+1
c+1

⌋
. We therefore obtain

k

(
b+ c

b− 1

)
≤
(
a+ b+ c

b− 1

)⌊
a+ c+ 1
c+ 1

⌋
which gives the result.

Another upper bound on the number of lines is that
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Proposition 4 The number of lines in a good announcement is at most

(a+ b+ c)!(c+ 1)!
a!(b+ 2c+ 1)!

⌊
b+ 2c+ 1
c+ 1

⌋

Proof: Again, we will apply CA1, but this time by counting pairs (U,L) where
U is a (a − c − 1)-set, L is a line from L, and U ⊆ L. If L contains k lines,
there are k

(
a

a−c−1

)
such pairs. On the other hand, if we have a (a − c − 1)-set

U , of which there are
(
a+b+c
a−c−1

)
, and look for the lines that contain it, we see, by

Lemma 1 (that is based on CA1), that these lines cannot overlap outside U . So
the b + 2c + 1 points outside U get partitioned by the lines containing U . As
the parts of such lines lying outside U have size a− (a− c− 1) = c+ 1, at most⌊
b+2c+1
c+1

⌋
such lines can exist. We therefore obtain

k

(
a

a− c− 1

)
≤
(
a+ b+ c

a− c− 1

)⌊
b+ 2c+ 1
c+ 1

⌋
which gives the result.

It is routine to determine the better of these upper bounds: if b + c ≤ a then
the bound of Proposition 3 should be used, otherwise the bound of Proposition
4 should be used. In a few rare cases the upper and lower bounds meet. In
particular

Theorem 2 For the parameter set (a, 2, 1) a good announcement exists if and
only if a = 0, 4 mod 6, and such an announcement consists of exactly (a +
3)(a+ 2)/6 lines.

Proof: Note that (a+ 3)(a+ 2)/6, the lower bound according to Proposition
2, and (a + 3)/3b(a + 2)/2c, the upper bound according to Proposition 3, are
only both integral if a = 0, 4 mod 6, and if so are equal. Otherwise, the upper
bound is smaller than the lower bound so a good announcement cannot exist.
The fact that a good announcement indeed exists when a = 0, 4 mod 6 is
justified subsequently in Corollary 3.

Example Given these lower and upper bounds, we now can eliminate various
conceivable candidates for good announcements. Those close to (3, 3, 1) may be
considered of interest: note that there are no good announcements for (3, 3, 2)
and for (3, 2, 1). a

4 Protocol constructions

In this section we give a number of constructions for producing two-step pro-
tocols for various parameter sets (a, b, c). They vary in the seriousness of the
proof required: here we have to keep in mind that our goal is to design protocols,
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and that the various constructions appear to serve that goal equally well. We
include some typical examples, and end the section with some examples outside
the presented constructions.

4.1 Given a and c, for sufficiently large b

Suppose that a and c are given with 1 ≤ c < a− 1. We shall construct a good
announcement with a+ b+ c = Ω(a2). Choose any prime p with p ≥ a− 1. In
the interests of economy we may wish to choose p as small as possible; certainly
we can take p < 2a by Bertrand’s postulate but much tighter bounds are known.
There is a Singer difference set S of size p+1 for the modulus v = p2 +p+1 [5].
The defining property of S is that the p(p − 1) non-zero differences {s1 − s2 |
s1, s2 ∈ S} represent every non-zero number modulo v exactly once. In S we
choose any subset T of size a and define the family of subsets

L = {x+ T | x ∈ Zv}

Here Zv denotes the set of integers modulo v and the addition x + T denotes
addition modulo v.

Theorem 3 If 1 ≤ c < a − 1 and b = v − a − c then L is the set of lines of a
good announcement for the parameters (a, b, c).

Proof: We verify the axioms in turn.

CA1. Let x+T and y+T be distinct lines. An element in their intersection has
the form x+ t1 and also the form y + t2 with t1, t2 ∈ T . But if x+ t1 = y + t2
mod v then x − y = t2 − t1 mod v and this, by the difference set property,
defines t1 and t2 uniquely so no further elements of the intersection can exist.
Hence, for every two distinct lines L1, L2 we have |L1 ∩L2| ≤ 1 < a− c and we
now appeal to Lemma 1.

CA2. Let {u1, u2, . . . , uc} be an arbitrary c-set. Suppose there was a point p,
such that in an arbitrary line x + T that avoided this c-set, p was in it. Then
we would have

if ui 6∈ x+ T for all i then p ∈ x+ T

which we may rewrite as

if x 6∈ ui − T for all i then x ∈ p− T

and this says that ⋃
(ui − T ) ⊆ p− T

Comparing the sizes of these sets we have

v − ca ≤ a
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which gives

v ≤ ca+ a ≤ (a− 2)a+ a ≤ (p− 1)(p+ 1) + p+ 1 = p2 + p

a contradiction.

CA3. Again let {u1, u2, . . . , uc} be an arbitrary c-set. This time suppose there
was a point p not equal to any ui in none of the lines that avoided this c-set.
Then we would have

if ui 6∈ x+ T for all i then p 6∈ x+ T

which we may rewrite as

if x 6∈ ui − T for all i then x 6∈ p− T

and this condition is exactly that

p− T ⊆
⋃

(ui − T )

which we can write as

p− T =
⋃

((ui − T ) ∩ (p− T ))

Since p− T (a set of size a) is a union of c subsets one of them must have size
at least a/c > 1. But each (ui−T )∩ (p−T ) is the negative of (T −ui)∩ (T −p)
which we saw above had size at most 1. Again, a contradiction.

Example An example is the 13-line good announcement for (4, 7, 2). Note
that (p = 3) 32 + 3 + 1 = 13. We also get a 7-line announcement for (3, 3, 1)
this way (p = 2), e.g. {012, 034, 056, 135, 146, 236, 245}. a

4.2 Good announcements for (3, b, 1)

If a = 3 a good announcement can only exist if c = 1 (Corollary 2). Here we
have

Proposition 5 If b ≥ 3 there is a good announcement with parameters (3, b, 1).

Proof: We give a constructive proof. First suppose that the number of points
b + 4 is a multiple of 3, say 3m. As points we take symbols xi, yi, zi with
0 ≤ i < m. Consider the set of (altogether 2m) lines

{xi, yi, zi}, {xi, yi+1, zi+2}

where 0 ≤ i < m and subscripts are interpreted modulo m. It is readily checked
that the conditions for a good announcement hold provided that m ≥ 3. If
b + 4 = 2, 1 mod 3 we begin with the announcement above and remove one
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or two points respectively with a suitable adjustment of lines. In the first
case we remove the single point zm−1, and the lines {xm−1, ym−1, zm−1} and
{xm−3, ym−2, zm−1} that contain it. Then we define new lines {xm−1, ym−1, ym−2}
and {xm−3, ym−2, xm−1}. In the second case we remove ym−1 and zm−1 and
their three incident lines replacing them by {xm−3, ym−2, xm−1} and {xm−2, xm−2, z0}.
In both cases it is easy to verify that the resulting configurations are good an-
nouncements of the required types.

Notice that the construction produces a good announcement whose number of
lines meets the lower bound of Proposition 1.

Example Applying this construction, we get a 5-line good announcement for
(3, 3, 1), e.g. {012, 034, 056, 135, 246}. It is not contained in a 7-line announce-
ment as found above. Note that the initial example motivating the ‘common
knowledge’ requirements is an extension of this announcement (with 235). a

4.3 Good announcements for (a, 2, 1) using block designs

The combinatorial axioms are reminiscent of design-theoretic definitions so it is
perhaps not surprising that we can use designs to generate good announcements.
We recall the definition of a t-design with parameters (v, k, λ). Relative to a
v-set Ω this is a collection of k-subsets of Ω called blocks with the property that
every t-subset of Ω is contained in exactly λ blocks.

Proposition 6 If D is a b − (a + 2b − 1, 2b − 1, 1)-design, then D is a good
announcement for (a, b, b − 1) where D denotes the set of lines that are the
complements of the blocks of D.

Proof: We check each of the three axioms in turn.

CA1. Let X be an arbitrary b-set. If X avoids at least two lines in D then, as
the lines in D are the complements of the blocks in D, there must be at least
two blocks in D that contain X, a contradiction.

CA2. Let X be an arbitrary c-set (where c = b − 1) and consider the lines
that avoid it. If this set of lines did not have empty intersection then some
element x would belong to all of them. But that would mean that, in D, no
block containing X would also contain x.

CA3. Let X be an arbitrary c-set (again c = b− 1) and consider the lines that
avoid it. If the union of this set of lines was not Ω \ X we could find some
x 6∈ X belonging to none of them. So, in D, every block containing X would
also contain x. But there is only one such block and therefore only one line
avoiding X contradicting CA2.

As a consequence we can complete the proof of Theorem 2.

Corollary 3 There is a good announcement for (a, 2, 1) if a = 0, 4 mod 6.
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Proof: With b = 2 the designs of the previous proposition are exactly the
Steiner triple systems; it is well known [2]that these exist if and only if a = 0, 4
mod 6.

Example Applying this construction, we get a 7-line good announcement for
(4, 2, 1). It may further be observed that this is the complement of a 7-line good
announcement for (3, 3, 1) as found above (for no apparent reason related to
designs). a

4.4 From (a, b, c+ 1) to (a, b, c)

Proposition 7 If there is a good announcement for (a, b, c + 1), then there is
one for (a, b, c).

Proof: In the case (a, b, c), player A starts by publicly introducing a virtual
new card q. Player A then makes a good announcement for (a, b, c+ 1).

This proposition also applies when c = 0. However, cases (a, b, 0) are trivial,
because then A and B already know each other’s hand without the need for
any announcement at all. A non-trivial example is that there exists a good
announcement for (4, 7, 1), because (by Theorem 3) we have one for (4, 7, 2).

4.5 From (a, b, c) to (b, a, c)

There is a good announcement for (4, 2, 1), by Corollary 3. There is no good
announcement for (2, 4, 1), because a−1 6< c (Corollary 2). What does this mean
for players A and B that want to communicate their hand of cards to each other?
From a communicative perspective, it is sufficient if at least one, if not both, of
the players can make an informative announcement. As all players are aware
of this, in the case of (2, 4, 1) player A would simply wait for B to announce a
(4, 2, 1) protocol, and only then respond. Alternatively, A might have started
by saying to B: “Please go ahead, B, you know I can’t do anything.”

4.6 Good announcements for (4, 4, 1) and (5, 5, 1)

For values of b ≥ 3, designs that satisfy the hypotheses of Proposition 6 are
fairly rare. Rare designs also arise in the construction of good announcements
for other parameter sets. However, we shall be content with giving just two
further examples that, in some sense, are the ‘next’ larger versions of the original
Russian cards problem.

Proposition 8 Name the cards 1, 2, 3, 4, 5, 6, 7, 8, 9. The 18 quadruples

2468, 4579, 2347, 1679, 1456, 1389, 3678, 2359, 1258
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1357, 1236, 5689, 3458, 2789, 2567, 1249, 1478, 3469

are a good announcement for the parameter set (4, 4, 1). Every good announce-
ment for (4, 4, 1) has at most 18 lines.

Proof: The fact that a good announcement cannot have more than 18 lines
is a consequence of Proposition 4. It may be verified directly that the stated
announcement satisfies CA1, CA2, and CA3. However we shall give a brief
indication of how this announcement was discovered. Let F be the field of
9 elements. The multiplicative group of F is the disjoint union G ∪ H of its
subgroup of order 4 with its other coset. The announcement then consists of
the additive translates of G and H by elements of F . This algebraic definition
makes it somewhat easier to check the axioms.

Proposition 9 There exists a set of 66 quintuples that are a good announce-
ment for the parameter set (5, 5, 1). No good announcement for (5, 5, 1) has
more than 66 lines.

Proof: Proposition 4 gives the upper bound. The good announcement meeting
this upper bound is the set of 66 blocks of the 4 − (11, 5, 1) design whose au-
tomorphism group is the quadruply transitive group M11. Two distinct blocks
cannot intersect in a set of size 4 as that contradicts the defining property of
the design so CA1 holds by Lemma 1. Axioms CA2 and CA3 are also easily
proved. Let x be any point and let L0 be the set of blocks that avoid x. If there
exists a point y in the intersection of this set of blocks then, as the stabiliser of
x in M11 permutes the members of L0 and acts transitively on the set of points
not equal to x, every point y lies in the intersection; this contradicts CA1. The
same argument reaches a contradiction from the assumption that there exists a
point y 6= x in none of the blocks of L0.

5 Conclusions and further research

Given three players A, B, C that hold, respectively, a, b, c cards from a deck
of known cards, A can sometimes publicly inform B of her hand without C
learning any card held by A or by B. General combinatorial requirements have
been shown to be equivalent to known logical terms. We have given solutions,
called ‘good announcements’ for various (a, b, c), including one that applies in
general when a = O(

√
b). We have also given upper and lower bounds on how

much information has to be revealed to the third player.

We are not yet able to determine for an arbitrary (a, b, c) if a good announcement
exists and if so, to construct one.

There are two main reasons why our results may be considered relevant for
cryptology. First, the upper and lower bounds on revealed information can also
be turned around: based on a security requirement for A and B, e.g., that
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an eavesdropper C should have a less than 5% chance to guess their secrets
correctly after having intercepted the message, one may design a protocol by
appropriate choices of (a, b, c). Note that the underlying scenario is not very
specific for card deals but rather generally applicable to distributed systems
where a scarce resource is known to be distributed over the agents. Second,
the initial example in which it was not assumed that the protocol is commonly
known to be of length two, illustrates that we may weaken good announcements
so that they are still effective for A and B but even less informative to C, as
C may not even learn that A has succeeded in informing B, before B confirms
that. In other words: a rational eavesdropper does not yet have enough reason
to break into B’s computer in order to gather the secret, but may still consider
to await further messages from either A or B. This is to the advantage of A
and B.
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