
Department of Computer Science,
University of Otago

Technical Report OUCS-2004-01

Spherical Springs

Author:

Alexis Angelidis
Department of Computer Science

Status: unpublished

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/trseries/

Online Submission ID:

Spherical Springs

Category: Research

Abstract

The unit sphere is a space where geodesic distances can
be defined easily. Dynamic elements can therefore be effi-
ciently animated in it, provided that they are represented
adequately. We present basic elements for dynamic simula-
tion in the unit sphere. The presented formulas which apply
to quaternions parallel euclidean physics.

1 Introduction

One of the many ways of using spherical coordinates is for
texturing shapes in computer graphics. Traditionally, the
object is first build, and the texture is then added artificially
by projecting the points on the surface of a sphere, regardless
of issues like homogeneous texture density or surface folds in
texture space. In this paper, we focus on performing relax-
ation of the texture coordinates in texture space, considering
the object is homeomorphic to a sphere. The first step to
do this is to introduce spring in the spherical texture space.
Because of its bend nature, it is undesirable to use linear dis-
tance spring between to points in texture space: the points
would have to be reprojected on the sphere very often, and
the behavior of long springs would be unpredictable. In this
paper, we formulate spherical springs, which we believe is
the best way to define springs on the unit sphere.

2 Preliminaries

An excellent reference on quaternion is [Dam et al. 1998],
which we paraphrase briefly for the understanding of this
paper.

Quaternion space H is a 4 dimensional space. A quater-
nion is noted q = (s, v), where s ∈ R and v ∈ R

3. The
addition of two quaternions is obtained by adding the corre-
sponding components. The product of two quaternions is:

(s, v) ∗ (s′, v′) = (ss′ − vv′, sv′ + s′v + v × v′)

The most remarkable elements are the unit quaternions
H1, which can be written q = (cos(θ), sin(θ)n), and whose
norm s2 + v2 is equal to 1. The set of unit quaternions
constitute a unit sphere in four-dimensional space. The log-
arithm of quaternion q is p = (0, θn), and the exponential of
p is q. From the above definitions arise the exponentiation
of q ∈ H1:

qt = expt log q

A 3D point can be represented in quaternion notation:
x = (0, (x, y, z)). Note the for clarity, we note · the dot
product in opposition with ∗ the quaternion product. Unit
quaternion q doesn’t only represent a point on the unit 4D
sphere, but also a rotation of angle θ/2 around axis v. The
rotation of x around q is:

q ∗ x ∗ q̄

where q̄ = (s,−v) is the conjugate of q.
In this paper, the operation we perform on quaternion is

inspired from [Alexa 2002]. We use the logarithmic space to

perform linear combination of unit quaternions. The advan-
tage of using unit quaternions instead of matrices is the avail-
ability of closed forms formulas for the log and exp. In the
following sections, we use greedily the fact that explog p+log q

is a commutative combination of quaternion p and q.

3 Spherical Forces

Given a scalar condition C(x) which we want to be zero, C
gives rise to a force quaternion f , which expression parallels
the one for euclidean forces [Witkin and Baraff 2001], and is
obtained from expression

f = (∇̇C)−kC (1)

where ∇̇ denotes the spherical gradient quaternion(see ap-
pendix A), and where k is a stiffness constant of our choice.
The logarithm has a more familiar expression:

log f = −kC log(∇̇C) (2)

From now on, all forces will be expressed through their log-
arithm: this yields to more efficient formulas since the log
of a quaternion can be handled as a mere three dimensional
vector. Moreover it simplifies the writing and makes more
obvious the parallelism with euclidean physics.

3.1 Angle Spring

The angle spring aims at keeping a constant angle between
two points. Consider two mass points xi and xj , connected
with a spherical spring with rest angle θrest and stiffness
coefficient ks ∈ R

+ (see figure 4). The condition we use is:

C(xi, xj) = θij − θrest

Applying equation 2, the log of the force applying on pi,
fj→i ∈ H1 is simply the quaternion:

log fj→i = θr (3)

where θ = ks

2
(arccos(xi · xj) − θrest)

r =
xi×xj

||xi×xj ||

Note that by using the log instead of quaternion directly,
the stiffness ks won’t suffer from the periodicity of cos and
sin, thus large forces will be handled better. However, keep
in mind that a large stiffness may make explode the physi-
cal integration (though the particles will always stay on the
sphere).

3.2 Solid angle spring

The solid angle spring aims at keeping a constant solid angle
for a spherical triangle. Since three arcs define two spherical
triangles on either side of the sphere, this force is used to
keep constant the area of the spherical triangle whose ver-
tices are clockwise oriented when observed from outside the
sphere. The effect is to flip smoothly the triangle if the ver-
tices are wrongly oriented. Consider three mass points xi,

1

Online Submission ID:

θrest

θiji

j

x

x

r

Figure 1: Spherical angle spring.

xj and xk. Let Θijk be the solid angle of the triangle ijk,
and let Θrest be the rest solid angle. The condition we use
is:

C(xi, xj , xk) = Θijk − Θrest

An efficient expression of Θijk is given by [Oosterom and
Strackee 1983], which we can further simplify for points on
the unit sphere:

Θijk = 2 arctan(
x0 · (x1 × x2)

1 + x0 · x1 + x1 · x2 + x2 · x0
)

Let us call α and β the numerator and denominator of the
fraction inside the arctan. As in [Oosterom and Strackee
1983], we use the C function atan2 with α and β to compute
the arctan. The euclidian gradient of the solid angle is:

1

2
∇Θijk =

β(x1 × x2) − α(x1 + x2)

α2 + β2

The logarithm of the spherical gradient is (see the definition
of the spherical gradient in appendix A):

log ∇̇Θijk = (
1

2
∇Θijk · x)y − (

1

2
∇Θijk · y)x

where x and y are two arbitrary orthogonal tangent vectors.
The logarithm of the force is:

log fjk→i = −ks(Θijk − Θrest) log(∇̇Θijk) (4)

fkj i

i

k

j

x

x

x

Θ

Figure 2: Solid angle spring.

3.3 Oriented-Angle Spring

3.4 Particle damping

The damping of particle pi is defined using its speed vi ∈ H1,
which is defined in section 4. Its effect is to keep in place
the particle. Let kd ∈ R

+ be the damping coefficient. The
damping is:

log di = −kd log vi

where kd ∈ [0, m
dt

] (mass m and time step dt are defined later

on). However, as remarked [Baraff and Witkin 1998], this
damping is a simple viscous function that dissipates kinetic
energy independently from the type of motion.

3.5 Spring damping

To define the damping function in terms of the condition C,
we propose:

log di = −kd(log ∇̇C · log vi) log ∇̇C (5)

3.6 Combining forces

To compute the overall force applied on pi, we combine all
the forces in logarithmic space:

Fi = exp
P

j log(fj→i)−kdlog(vi)

4 Physical integration

For computing efficiency purposes, all the computations are
done in logarithmic space, thus the exponential is computed
only once for each particle at each time step. The combina-
tion of quaternions has to be done carefully, depending when
they represent vectors or positions.

Acceleration: To use an explicit euler integration, we pro-
pose an adaptation of the second law of motion for quater-
nions:

log ai =
1

m

X

j

log(fj→i)

Speed: At the begining of the simulation, the speed’s log
is initialized to the quaternion (0, (0, 0, 0)). Given a previous
speed log vi, the new speed’s log at next time step dt adds
up a portion dt of the acceleration. We choose the following
formula for computing the new speed:

log v′
i = log vi + dt log ai

Another possibility for computing v′
i would be to use v′

i =
adt

i vi, but this would yield to a more time consuming for-
mula.

Position The new position is obtained by rotating the point
using the speed:

p′
i = vdt

i piv
−dt
i

where vdt
i = expdt log vi

v−dt
i = vdt∗

i , the conjugate.

5 Summary

All the computations are done in logarithmic space, thus are
quite efficient. For each particle:

• compute the current acceleration (see section ?? for
computing forces):

log ai =
1

m

X

j

log fj→i

• compute the new speed:

log v′
i = log vi + dt log ai

• update the position:

dv = expdt log v′

i

p(t + dt) = dv ∗ p(t) ∗ d̄v

2

Online Submission ID:

6 Results

The result of implementing the springs is shown in figure
4. The motion integration is done with a simple explicit
euler [Witkin and Baraff 2001]. One of the advantage of
using spherical springs on the unit sphere instead of using
euclidian springs is when the system is unstable; instead of
sending the particles to infinity, they stay on the sphere.

A temporary problem occurs when the triangle flips with
the solid angle spring: at the transition state, the vertices
can gain a extremely large speed because of the arc-spring.
Using the solid angle in the arc-spring definition would cor-
rect that.

Figure 3: Animation of three spherical springs with rest an-
gles equal to π/2. At rest (sixth picture), the triangle is an
octant of the sphere.

A Spherical Gradient

The spherical gradient is the equivalent of the straight vector
euclidian gradient, but constrained to the sphere; thus it is
quaternion.

Cy

Cx

y

p

−x

x

∆

C

∆.
C

Figure 4: Spherical gradient.

Let us consider two great circles Cx and Cy that are or-
thogonal, defined by the tangents x and y, and a point p
at which the great circles intersect, such that p = x × y.
The quaternion (0, y) defines a rotation of angle π of p in
direction x along great circle Cx, and the quaternion (0,−x)
defines a rotation of angle π of p in direction y along great
circle Cy. In those terms, the spherical gradient of a function
C is the quaternion:

∇̇C = exp(0, 1

2
((∇C·x)y−(∇C·y)x)) (6)

In logarithm space, it has a more familiar look:

2 log ∇̇C = (∇C · x)y − (∇C · y)x (7)

The disapearance of ∇C ·z can be observed, which is aligned
with p. In spherical coordinates, the reader can verify that
it disappears too for the parametric gradient.

References

Alexa, M. 2002. Linear combination of transformations. In
Proceedings of SIGGRAPH’02, ACM Press / ACM SIG-
GRAPH, Computer Graphics Proceedings, Annual Con-
ference Series, ACM, 380–387.

Baraff, D., and Witkin, A. 1998. Large steps in cloth
simulation. In Proceedings of SIGGRAPH’98, Computer
Graphics Proceedings, Annual Conference Series, ACM,
46–54.

Dam, E. B., Koch, M., and Lillholm., M. 1998. Quater-
nions, interpolation and animation. Tech. rep., Insti-
tute of Computer Science (DIKU) University of Copen-
hagen. http://www.diku.dk/forskning/image/teaching/
Studentprojects/Quaternion/.

Oosterom, A. V., and Strackee, J. 1983. The solid angle
of a plane triangle. In IEEE Transactions on Biomedical
Engineering, vol. 30, 125–126.

Witkin, A., and Baraff, D., 2001. Physically
based modeling, online siggraph 2001 course notes.
http://www.pixar.com/companyinfo/research/pbm2001/.

3

