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Abstract

This paper proposes a novel View-based Consistency model for Distributed Shared

Memory, in which a new concept, view, is coined. A view is a set of data objects that a pro-

cessor has the right to access in the shared memory. The View-based Consistency model

only requires that the data objects of a processor’s view are updated before a processor

accesses them. In this way, it can achieve the maximum relaxation of constraints on mod-

ification propagation and execution in data-race-free programs. This paper first briefly

reviews a number of related consistency models in terms of their use of three techniques

– time, processor and data selection – which each eliminate some unnecessary propaga-

tion of memory modifications while guaranteeing sequential consistency for data-race-free

programs. Then, we present the View-based Consistency model and its implementation. In

contrast with other models, the View-based Consistency model can achieve transparent

data selection without programmer annotation and can offer the maximum performance

advantage. Differences among related work are discussed through illustrative examples.
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Performance evaluation has shown that our implementation of the View-based Consistency

model outperforms the Lazy Release Consistency model, and that the View-based Consis-

tency model has advantages over optimal consistency protocols such as the Affinity Entry

Consistency protocol. Finally we summarises our contributions and points out our future

direction of implementation effort for distributed shared memory systems.

Key Words: Distributed Shared Memory, Sequential Consistency, Relaxed Sequential

Consistency, Entry Consistency, Scope Consistency, Lazy Release Consistency, Time se-

lection, Processor selection, Data selection, View-based Consistency, View detection, View

transition, False Sharing

1 Introduction

A Distributed Shared Memory (DSM) system can provide application programmers the illusion

of shared memory on top of message-passing distributed systems, which facilitates the task of

parallel programming in distributed systems. Distributed Shared Memory has become an active

area of research in parallel and distributed computing with the goals of making DSM systems

more convenient to program and more efficient to implement [21, 12, 20, 9, 7, 6, 3, 14, 15].

The consistency model of a DSM system specifies ordering constraints on concurrent mem-

ory accesses by multiple processors, and hence has fundamental impact on DSM systems’

programming convenience and implementation efficiency [22]. The Sequential Consistency

(SC) model [19] has been recognized as the most natural and user-friendly DSM consistency

model. The SC model guarantees that the result of any execution is the same as if the oper-

ations of all processors were executed in some global sequential order, and the operations of

each individual processor appear in this sequence in the order specified by its own program

[19]. This means that in an SC-based DSM system, memory accesses from different proces-

sors may be interleaved in any sequential order that is consistent with each processor’s order of

memory accesses, and the orders of memory accesses observed by different processors are the

same. One way to strictly implement the SC model is to ensure all memory modifications be

totally ordered and memory modifications generated and executed at one processor be propa-

gated to and executed in that order at other processors instantaneously. This implementation is

correct but it suffers from serious performance problems [25].
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In practice, not all parallel applications require each processor to see all memory modifi-

cations made by other processors, let alone to see them in order. Many parallel applications

regulate their accesses to shared data by synchronization, so not all valid interleavings of their

memory accesses are relevant to their real executions. Therefore, it is not necessary for the

DSM system to force a processor to propagate all its modifications to every other processor

(with a copy of the shared data) at every memory modification time. Under certain conditions,

the DSM system can select the time, the processor, and the data for propagating shared mem-

ory modifications in order to improve the performance while still appearing to be sequentially

consistent [24]. For example, consider a DSM system with four processors ��� , ��� , ��� , and

��� , where ��� , ��� , and ��� share a data object 	 , ��� , and ��� share a data object 	�
 , and ���

and ��� share a data object 
 , as shown in Fig. 1. The data objects � and 	�� are shared among

processors at a later time not shown in this scenario.

P1
P2
P3
P4 r(y)

w(x)

w: write    r: read

r(x) w(x)

program order

w(z)w(y)
w(x1)w(x2)

r(x)   r(x1)

Figure 1: A scenario of a DSM program

Suppose all memory accesses to shared data objects are serialized among competing proces-

sors by means of synchronization operations to avoid data races. Under these circumstances,

the following three basic techniques can be used [24]. Time selection: Modifications on a

shared data object by one processor are propagated to other processors only at the time when

the data object is to be read by them. For example, modifications on 	 by ��� may be propagated

outward only at the time when either ��� or ��� is about to read 	 . Processor selection: Modifi-

cations on a shared data object are propagated from one processor to only one other processor

which is the next one in sequence to read the shared data object. For example, modifications

on 	 by ��� may be propagated to ��� (but not to ��� ) if ��� is the next one in sequence to read

	 . Data selection: Processors propagate to each other only those shared data objects that are

really shared among them. For example, ��� , ��� , and ��� may propagate to each other only data

object 	 (not 
 ), and ��� and ��� propagate to each other only data object 
 (not 	 ).

To improve the performance of the strict SC model, a number of Relaxed Sequential Consis-

tency (RSC) models have been proposed [10, 13, 18, 5, 17], which perform one or more of the
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above three selection techniques. RSC models can be also called conditional Sequential Con-

sistency models because they guarantee Sequential Consistency for some class of programs

that satisfy the conditions imposed by the models. These models take advantage of the syn-

chronizations in data-race-free programs and relax the constraints on modification propagation

and execution. That means modifications generated and executed by a processor may not be

propagated to and executed at other processors immediately. Most RSC models can guarantee

Sequential Consistency for data-race-free programs that are properly labelled [13] (i.e., explicit

primitives, provided by the system, should be used for synchronization in the programs).

However, in these RSC models data selection is achieved by programmer annotation. The

programmer is required to provide annotations of the association between data objects and

synchronization objects, such as locks and barriers, so that the DSM system can know which

data objects should be propagated when a synchronization object is accessed. This type of

annotation is an extra burden on the programmer and causes an increase of the complexity of

parallel programming. The ease of programming would be improved if the need for human

annotation could be replaced with automatic detection of the association. Automatic detection

can be done at run time and/or compile time. Compile-time detection may cause a slower

compiling process, but has little run-time overhead. Run-time detection may have more run-

time overhead, but can get more accurate information. This paper proposes a novel View-

based Consistency (VC) model which can achieve, with run-time automatic view detection,

data selection transparently in addition to time and processor selection.

The rest of this paper is organised as follows. Section 2 briefly presents the background to

our work, especially the classification of RSC models in terms of time, processor, and data

selection. Section 3 presents the VC model [16], whose properties are described in detail.

Section 4 discusses implementation issues and presents our implementation of the VC model.

Section 5 describes the differences among related work through illustrative examples. Section 6

presents and evaluates performance results. Finally, the major contributions of this paper and

some suggestions for future work are summarized in Section 7.
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2 Relaxed Sequential Consistency Models

During the execution of a DSM parallel program, multiple processors communicate with each

other through the virtual shared memory. In shared memory some data objects are read-only,

and some are read/write. To prevent data races (where multiple processors read and write the

same data object concurrently), a parallel program has to guarantee that a processor has gained

exclusive access before accessing a read/write data object.

RSC models distinguish synchronization data objects from ordinary data objects in shared

memory. Synchronization data objects, such as locks and barriers1, are those that are explic-

itly used to enforce exclusive access to other data objects. The rest of the data objects in

shared memory are called ordinary data objects. RSC models require sequential consistency

for the synchronization data objects in synchronization primitives, such as acquire and release.

RSC models assume there is only one memory copy for the synchronization data objects and

accesses to the same data object are executed sequentially. For the storage of ordinary data

objects, RSC models adopt a replicated architecture to improve performance under the dis-

tributed environment. Copies are stored in the local memory of each participating processor.

Modifications generated and executed locally at some time by one of the processors may be

propagated to and executed by other processors at a later time. This delay may cause the viola-

tion of sequential consistency, but, if handled properly, can be used to improve the performance

of the DSM system. In order to achieve sequential consistency while taking advantage of the

delay, RSC models do not allow any data race on ordinary data objects in the program. Exclu-

sive access to ordinary data objects has to be guaranteed by explicitly using synchronization

primitives. If data races on ordinary data objects are prevented by using the synchronization

primitives in the program, most RSC models can guarantee sequential consistency for the or-

dinary data objects. In summary, RSC models strictly implement sequential consistency for

synchronization data objects, while they implement sequential consistency for ordinary data

objects under the condition that there is no data race on them. This can be guaranteed by

properly labelling the program with the synchronization primitives. A program is said to be

properly labelled if there is no data race in the program due to the use of the synchronization

primitives such as acquire, release and barrier [13]. An execution of such a DSM program can

1A barrier is a synchronization device that requires all processes to wait for the last of them to arrive at the

same synchronization point. It can be implemented by acquire and release.
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be viewed as a sequence of barrier sessions as shown in Fig. 2.

barrier session session
barrier

B
non−
critical
region

A
critical
region R

non−
critical
region

A region
critical

R B B

program order
B: barrier       A: acquire        R:release

Figure 2: A view of a program execution based on the concept of region

A barrier session begins with a barrier and ends with another barrier. Inside a barrier

session there is a sequence of regions comprising critical regions and non-critical regions.

These regions are delimited by acquire, release and barrier primitives. A critical region is a

section of code that ensures that only one processor executes the section of code at any time. It

begins with an acquire and ends with a release. A non-critical region begins with a release (the

outermost one when there are nested critical regions) or a barrier and ends with an acquire (the

outermost one when there are nested critical regions) or a barrier. A non-critical region does

not overlap with any critical region, but a critical region may be nested within another critical

region.

In an execution of a properly labelled program, accesses to data objects may have some

causal ordering. The causal ordering is essential to the definition of data races and data-race-

free programs. The RSC models take advantage of the assumption that programs are data-race

free to optimize modification propagation and execution.

Definition 1 Causal Ordering Relation “ � ”

At a high level we can model a DSM program as a set of sequences of actions (one sequence

for each processor). These actions include memory accesses and synchronization primitives

such as acquire, release and barrier. Given two actions � � and � � , generated by processors
�

and � , respectively, then � ��� � � if and only if (1)
��� � , and the generation of � � happened

before the generation of � � in program order; or (2)
���� � , � � is a release, � � is an acquire on

the same lock as � � , and � � releases the lock to � � ; or (3) there exists an access �
	 , such that

� ��� ��	 and ��	
� � � .
Definition 2 Previous and concurrent actions

Given any two actions � � and � � , (1) � � is said to be previous to � � if and only if � ��� � � ; (2)

� � and � � are said to be concurrent (written � ����� � ) if and only if neither � ��� � � nor � ��� � � .
6



Definition 3 Conflicting accesses, data race and data-race-free programs

Two memory accesses � � and � � conflict if and only if � � and � � access the same memory

location and at least one is a write. If there are two conflicting accesses � � and � � in an

execution of a program, and � � ��� � , then we say a data race occurs in the execution. A program

is data race free if and only if every possible execution of the program has no data race.

From the above definitions we know that if no data race occurs, then when a processor

modifies a data object inside a critical region, other processors will not access that data object.

Thus it is not necessary to propagate modifications during the execution of a critical region.

The RSC models have taken advantage of this relaxation of modification propagation to achieve

time, processor, and data selection. They can guarantee sequential consistency for data-race-

free programs while improving their performance. In the following we briefly describe the

RSC models in terms of the three selection techniques.

The Weak Consistency (WC) model [10] is an RSC model which achieves time selection.

The WC model requires a processor to propagate all its modifications to other processors only

at synchronization time, rather than at every memory modification time. With time selection,

modifications on shared data objects can be accumulated and only the final results are prop-

agated in batches at synchronization time. In this way, the number of messages in the WC

systems can be greatly reduced compared to that in strict SC systems.

The Eager Release Consistency (ERC) model [13] takes time selection one step further than

the WC model by distinguishing two different synchronization primitives: acquire and release,

which are the entry and exit of a critical region, respectively. The ERC model requires that

shared memory modifications be propagated outward only at release time. In other words, the

ERC model is more time selective than the WC model by propagating modifications outward

only at the exit of a critical region, instead of at both the entry and exit of a critical region as in

the WC model, thus further reducing the number of messages in the memory system.

The Lazy Release Consistency (LRC) model [18] improves the ERC model by performing

both time and processor selection. Instead of propagating modifications to all other processors

at release time as in ERC, LRC postpones the propagation of modifications until another pro-

cessor has successfully performed an acquire. At a successful acquire, the DSM system is able

to know precisely which processor is the next one to access the shared data, so modifications

can be propagated only to that particular processor (or no propagation at all is required if the
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next processor is the current processor), thus achieving processor selection in the LRC model.

By sending modifications only to the processor that is entering a critical region, a greater re-

duction in the number of messages can be achieved in the LRC model.

The Entry Consistency (EC) model [5] is very similar to LRC in propagating modifications

only to the next processor entering a critical region. In addition to time and processor selection,

the EC model also performs data selection by propagating only those shared data objects that

are associated with a synchronization data object such as a lock. These associations are anno-

tated by the programmer. Due to the inclusion of data selection, the EC model can be more

efficient than the LRC model [6].

The Scope Consistency (ScC) model [17] is able to offer most of the potential performance

advantages of the EC model by means of time, processor, and data selection, and it also im-

proves the programmability of the EC model by requiring programmers to attach consistency

scopes with code sections, instead of data. For critical regions, data objects can be automat-

ically associated with scopes; but the programmer has to annotate the scopes explicitly for

non-critical regions. If the annotation is not provided or is incorrect, ScC does not guarantee

sequential consistency for the program.

From the above discussion we can see that constraints on modification propagation and ex-

ecution have become more and more relaxed. This relaxation allows DSM systems to perform

time, processor, and data selection. To achieve these selections RSC models require program-

mers to annotate the programs manually so that selections can be combined with synchro-

nization primitives. For example, the ERC model requires programs to be properly labelled

with system-provided synchronization primitives, so that the DSM system is explicitly notified

of a processor’s entry to and exit from a critical region and can thereby select the exit time

to propagate modifications. The EC model, furthermore, requires the programmer to associate

synchronization data objects explicitly with ordinary data objects to achieve data selection. The

ScC model made one step toward (partially) transparent data selection by taking advantage of

the consistency scopes implicitly defined by synchronization primitives, but programmers may

still have to define additional consistency scopes explicitly in programs in order to guarantee

sequential consistency. We should be very cautious of requiring programmer annotation which

imposes an extra burden on programmers and increases the complexity of parallel program-

ming.
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We distinguish two types of programmer annotations: synchronization annotations which

are required to ensure both the correctness of parallel programs (to avoid data races) and the

correctness of memory consistency; and annotations which are required only for the correct-

ness of memory consistency. For the first type of annotations, such as acquire and release

primitives in the ERC, LRC, EC and ScC models, the DSM system can take advantage of

them to achieve time and/or processor selection without imposing an additional burden on

programmers. However, for the second type of annotations, such as the association between

synchronization objects and data objects for data selection in the EC model, and the addi-

tional consistency scopes in the ScC model, they are truly an extra burden on programmers

and increase the complexity of parallel programming. They should be replaced by automatic

associations via run-time detection and/or compile-time analysis [11].

In the following section we present the View-based Consistency model, which achieves time,

processor, and data selection and removes the extra burden on programmers required by previ-

ous data selection techniques.

3 View-based Consistency

The View-based Consistency (VC) model [16] has been proposed to achieve data selection

transparently without programmer annotation. Similar to other RSC models, it guarantees

Sequential Consistency for properly labelled data-race-free programs.

A view is a set of ordinary data objects that a processor has the right to access in the shared

memory at a particular point in time. We say a processor has the right to access some data

object if and only if it has gained exclusive access to the data object or the data object is read-

only.

In general we say that the view of a processor is a set of data objects that the processor has

the right to access. In data-race-free programs, we can say that the view comprises data objects

that the processor will access in some following period of execution, since the processor should

have got the access right to the data objects.

At any time point of an execution in a data-race-free program, suppose any two processors

��� and ��� have views
� � and

� � , respectively. Then
� ��� � � must only contain read-only data

objects, otherwise a data race would occur. This is illustrated in Fig. 3.
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Figure 3: A snapshot of processors’ views in a data-race-free program

In a DSM program, exclusive access to a data object can only be gained in the following

three ways:

1. implicit assignment by the programmer by making use of a barrier session. Exclusive

access is guaranteed by barriers.

2. explicit acquisition by calling the acquire primitive. Exclusive access is guaranteed by

the lock mechanism of critical regions.

3. implicit acquisition guaranteed by the programmer who controls access to the data object

by associating it with the status of another critical-region-protected object. For example,

exclusive access to a task can be guaranteed by removing the task from a lock-protected

task queue (and thus the status of the task queue has been changed).

Therefore, in an execution of a DSM program, only when a processor calls synchronization

primitives, e.g., barrier, acquire, and release, does its view change. A processor’s view is

constant inside a critical or non-critical region. Only when a processor moves from one region

to another does it gain or lose exclusive access to some data objects, which causes a change to

the view of the processor.

According to the above observation, views can be handled and processed based on regions

(critical and non-critical). For convenience of description in this paper, we classify views into

Critical Region Views (CRVs) and Non-critical Region Views (NRVs). A CRV is the view of

a processor while it executes a critical region, and an NRV is the view of a processor while it

executes a non-critical region. In data-race-free programs, a CRV consists of the data objects

accessed in the critical region, and an NRV consists of the data objects accessed in the non-

critical regions.
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Consistency maintenance in VC requires updating data objects of the view before a processor

enters a region. More precisely, the following consistency conditions are given for the View-

based Consistency (VC) model. Any implementation of VC should satisfy these conditions.

Definition 4 Conditions for View-based Consistency

� Before a processor ��� is allowed to enter a critical or non-critical region, all previous

write accesses to the ordinary data objects of the CRV or NRV must be performed with

respect to ��� according to their causal order.

� Before a processor ��� is allowed to pass a barrier primitive, all previous write accesses

must be performed with respect to ��� according to their causal order.

� The sequential consistency of synchronization data objects must be guaranteed by the

implementation of the system primitives such as acquire, release, and barrier.

A write access to a memory location is said to be performed with respect to processor ��� at

a time point when a subsequent read access to that location by ��� returns the value set by the

write access.

Inside a barrier session, based on the first condition, a processor is guaranteed to access the

up-to-date version of the data objects in its view.

The second condition states that when a processor reaches a barrier, it should be able to see

all the previous modifications made by other processors. This condition is also required in EC,

ScC and LRC.

SC correctness of VC Processors are synchronised to modify the same view one after an-

other, but may modify different views concurrently in any data-race-free program. Based on

this observation, for any parallel execution of a DSM program under VC, we can produce a

global sequential order of the modifications on views, in which the modifications on the same

view are ordered in the same way as the synchronised order of the parallel execution, and the

modifications on different views are put in program order if they are executed sequentially in

the program, otherwise they are parallel and put in any order. Parallel modifications on differ-

ent views can be executed in any order, which will not affect the execution result. Obviously,

according to the consistency conditions for VC, the parallel execution result of the program un-

der VC is the same as the above sequential execution of the modifications. Therefore, a global
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sequential order has been found to match the parallel execution result under VC. According

to the definition of the SC model, VC can guarantee Sequential Consistency for data-race-free

programs.

The first consistency condition of VC also indicates that, when a processor is entering a

new region, it is only required to update those data objects in the corresponding new view. In

this way, VC achieves time selection (at the entry of a region), processor selection (the next

processor which has the right to access the view), and data selection (only the data objects of

the view).

Any implementation of the VC model should conform with the above consistency condi-

tions. There are two important technical issues in the implementation: view detection and

view transition. View detection means identifying all the data objects in the new view of a pro-

cessor before it enters a new region. In data-race-free programs, the view consists of the data

objects to be accessed by the processor in the new region. Thus view detection is a prediction

of the data objects that will be accessed by the processor during execution of the new region.

View transition means updating all the data objects in the new view of a processor before it

enters a new region. In short, before a processor enters a new region, its view should have been

detected; when a processor enters a new region, the view transition should have been achieved.

Any implementation of the VC model should guarantee that view detection and transition are

implemented correctly.

Correctness and accuracy are two important issues in view detection. A correct view should

include all data objects that a processor has the right to access. An accurate view should

include and only include those data objects. The correctness of view detection must be satisfied

in VC implementation, while inaccuracy of view detection may only affect its performance

(e.g., propagation of irrelevant modifications of data objects). Of course, the performance also

depends on the effectiveness of view detection and view transition. We will discuss techniques

for view detection and transition in Section 4.

In the following discussion, we assume the view of every processor is correctly and accu-

rately detected under an ideal situation, in order to explain how the generic VC model works.

Fig. 4 shows how the VC model works using the same scenario shown in Fig. 1. In Fig. 4,

we assume the accesses to data object 	�
 are synchronised by the status of 	 , as in the third

way for acquiring exclusive access described early in this section. Under this assumption it is
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w(x1)w(x2) A(l2)             r(x)w(x)R(l2)x 

A(l2)         r(x)R(l2)         r(x1)

: request update on x and execute it at the processorx

x x1

Figure 4: View-based Consistency in action

not possible for � � and � � to race for 	�
 .

We assume there are two critical regions which are protected by locks � 
 and � � , respectively,

and ��� and ��� access data objects in non-critical regions. We also assume that the view of every

processor has been detected correctly at each step. The detected view of � � includes 
 when

it enters the critical region, the detected view of ��� and ��� includes 	 when they enter their

critical regions, and the detected view of ��� in the non-critical region includes 	�
 . Before ���

executes the critical region, only the modification of 
 is propagated to the processor to update

its view. For ��� and ��� , only the modification on 	 is propagated to them to update their views

in the same critical region. When ��� enters the non-critical region, only the modification on

	�
 is propagated. The lock acquisition and modification propagation are separate in the figure,

but they can be combined in an implementation in order to improve DSM performance.

Comparison with related models Among the RSC models, only ScC [17] and EC [5]

can achieve data selection. However, they cannot guarantee SC correctness for data-race-free

programs (see Section 5 for details). In order to guarantee SC correctness, extra programmer

annotations are required in programs. To selectively update data objects, EC uses guarded

shared data ��� and ScC uses scope. Guarded shared data ��� is a set of data objects associated

with a synchronisation data object � . This association is specified by the programmer. A scope

in ScC consists of some program sections protected by a synchronization data object such as

a lock. Both ��� and scope are static and fixed for a particular synchronization data object or

a critical region. Even if some data objects are not going to be accessed by a processor in a

critical region, they are updated simply because they are associated with the lock or the critical

region. For example, in Fig. 4, suppose 
 and � are associated with lock � 
 in EC. Thus after

��� acquires � 
 , modifications on 
 and � are propagated to it, even though it is not going to
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access � . This circumstance is not uncommon in parallel programs. In contrast, a view in VC

is dynamic and may be different every time the same critical region is entered. For example,

in Fig. 4, although ��� updates both � and 
 in the � 
 -related critical region, ��� ’s view only

includes 
 when ��� enters the � 
 -related critical region. Therefore only the modification on 


is propagated to ��� under VC.

Compared to LRC, VC can reduce more of the false-sharing2 effect in page-based DSM

systems (see Section 5 for details). The false-sharing effect is the propagation of useless mod-

ifications, which is caused by false sharing.

Programming interface The VC model provides the same programming interface as LRC,

ERC and WC. It can guarantee Sequential Consistency for data-race-free programs that are

properly labelled. In contrast, EC requires the programmer to provide correct lock-data asso-

ciation. If the lock-data association is not correct, EC does not guarantee the correct execution

of the program. Similarly, ScC does not guarantee the same execution result as Sequential

Consistency for some data-race-free programs if explicit scope annotations are not correctly

provided by the programmer (see Section 5 for details).

From the above discussion, we know that, in the generic VC model (an ideal implementation

of VC) where views can be accurately detected, no useless modifications will be propagated

among processors. Therefore, the generic VC model can achieve the maximum data selection.

In other words, the generic model can achieve the maximum relaxation of constraints on mod-

ification propagation and execution in data-race-free programs. As a consequence, we believe

the generic VC model can be used as a framework for future research on DSM implementa-

tions.

To summarise, we make the following statements which are true in the generic VC model.

� The view of a processor is constant within a region.

� When a processor enters a new region, only the data objects of its new view are updated.

� Sequential Consistency for data-race-free programs is guaranteed.

2False sharing occurs when one processor modifies a shared data object that lies in the same memory consis-

tency unit (e.g., a page) as another shared data object lies, while another processor reads or writes the other shared

data object.
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� Time, processor, and data selection are achieved. Data selection is achieved without

programmer annotations.

� Maximum relaxation of constraints on modification propagation and execution for data-

race-free programs is achieved.

In the following section, we will discuss our implementation of the VC model.

4 Implementation

We have implemented the VC model based on TreadMarks [3], which is a page-based DSM

system. In TreadMarks, a diff is used to represent modifications on a page. Initially a page

is write-protected. When a write-protected page is first modified by a processor, a twin of the

page is created and stored in the system space. When the modifications on the page are needed

by another processor, a comparison of the twin and the current version of the page is done to

create a diff, which can then be used to update copies of the page in other processors.

In our implementation, a page is treated as the basic unit of data objects. Thus a view in the

implementation consists of pages. The diffs can be regarded as modifications on pages.

4.1 View detection

In consistency maintenance we only need to know which are the modified data objects and

then update them. Likewise, to maintain the consistency of a view, we only need to update the

modified data objects in the view. Therefore, we are not interested in the unchanged pages of a

view and thus only the modified pages are recorded in our implementation of view detection.

In our implementation, view detection is achieved at run time. To detect modified pages

in a view, our implementation takes advantage of the following two existing mechanisms in

TreadMarks:

1. When a write access is performed on an invalidated page, a page fault will occur. A page

fault handler will request the diffs of the page from other processors. We extended the

page fault handler to store the page’s identifier into the corresponding view.
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2. When a write access is performed on a write-protected page, a protection violation in-

terrupt will occur. An interrupt handler will make a twin of the page under the multiple-

writer scheme [8]. We extended the interrupt handler to store the page’s identifier into

the corresponding view.

Since the above two mechanisms already existed in TreadMarks, there was little overhead

for storing the identifiers of modified pages.

4.1.1 View detection in critical regions

Views in critical regions are relatively easy to detect. All the pages previously modified in the

same critical region are included in the corresponding CRV, because they will be very likely

accessed later by a processor executing the same critical region, although program logic like if

statements may affect the access pattern of a processor. However, the pages merely modified

from outside a critical region are excluded from the CRV, since their diffs shouldn’t be used to

update the CRV, as this would indicate there is a data race in the program.

We construct a CRV by recording pages modified inside a critical region. However, if a

page is already writable before a new region is entered, that page will not be detected and

stored in the CRV or NRV if it is modified in the region. To detect all modified pages in a

region, we make all writable pages write-protected (read-only) when entering the region. This

is the additional overhead required for view detection. It is proportional to the number of times

critical regions are executed in the program. Fortunately, the overhead will be balanced by

the performance gain which is also proportional to the number of times critical regions are

executed. Our experimental results demonstrate this additional overhead is relatively small.

Based on the above write-protection mechanism, our view detection algorithm works as

below. A page set ��� is associated with each lock protecting a critical region. Initially ��� is

empty. During an execution of the critical region, if a page � � is detected as modified, then

��� � �����	�
� ��� . The page set ��� includes all the pages modified in the critical region. Since

a processor entering the critical region will very likely access the pages in ��� , ��� is used as

the detected CRV, and is reasonably accurate.
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4.1.2 View shrinkage in non-critical regions

Unfortunately, views in non-critical regions are not as easy to detect as in critical regions,

because there are no obvious connections between non-critical regions. The modified pages in

previous non-critical regions may not belong to the view of a successive non-critical region.

However, as for a CRV, it is certain that an NRV should only include pages modified in previous

non-critical regions, since modifications made in critical regions shouldn’t be used to update

an NRV, otherwise, it indicates that a data race occurs in the program. Of course, a modified

page may be included in both a CRV and an NRV or in two CRVs because of the false-sharing

problem.

In our implementation, an NRV initially consists of all pages previously modified in non-

critical regions and thus a detected NRV may be larger than the real one. This means that

when a processor executes a non-critical region it may not access some pages in the NRV. This

inaccuracy only affects the performance (less data selection and no reduction of false-sharing

effect in non-critical regions), not the correctness of the implementation.

To improve the performance of our implementation, we use Regional Locality [15] to dy-

namically shrink the NRV during execution of a non-critical region. Regional Locality is based

on the observation that a set of pages that are accessed in a non-critical region will be very likely

accessed as a whole in other non-critical regions. For example, suppose processor ��� enters

a non-critical region and accesses pages � � , � � , ..., ��� during execution of the non-critical

region, and processor ��� enters another non-critical region afterwards. Since data objects ac-

cessed in a non-critical region often migrate together from one processor to another processor,

as regulated by the programmer to shift workload among processors, when ��� accesses one or

two members of the page set ��� � , � � , ..., ��� � , it will very likely access every member of that

set.

To exploit Regional Locality in non-critical regions, we detect the pages modified in non-

critical regions and aggregate them. We adopt a Modified Pages Set (MPS) for grouping pages

modified in non-critical regions. An MPS is formed as below. When a processor enters a

non-critical region, a unique empty MPS is created for the non-critical region. If the processor

modifies a page during execution of the non-critical region, the identifier of the page is stored

into the MPS. When the processor exits from a non-critical region, the MPS becomes complete

and is stored for later use.
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We use some hints to decide whether we should shrink the view of a processor in a non-

critical region. The first hint we use is the access to any page in an MPS (called the first hit of

the MPS). This hint suggests that the full set of the pages in the MPS might be the real view

of the processor executing the non-critical region. If the accessed page belongs to multiple

MPSs, we use the access to another page (called the second hit of the MPS) to confirm which

MPS might be the real view. Once an MPS is assumed to be the real view of the processor, the

processor reduces its view to the MPS. The shrunken view can be used to prefetch diffs of the

view in the non-critical region. We will discuss how to take advantage of the shrunken view in

view transition.

The detected views are propagated to a processor when it calls acquire. Thus there are no

extra messages for view propagation, except for small data of views piggy-backed on the lock

release message.

4.2 View transition

View transition is to make a view (a set of pages) up to date. Before a new region is entered,

view transition must be done. Modification propagation and execution protocols (also called

consistency protocols) are used to achieve view transition, where pages that are required to be

made consistent by the consistency model are made up to date. The two common modifica-

tion propagation and execution protocols are the invalidation and the update protocol. If the

invalidation protocol is adopted, when a page is required to be made consistent (up to date) by

the consistency model, it is invalidated first and the diffs are propagated and applied by a page

fault later. If the update protocol is adopted, when a page is required to be made consistent, the

diffs are propagated and applied immediately.

From an implementation point of view, if a view is accurately detected and its pages are to

be accessed by the processor, it would be more efficient to use the update protocol to propagate

and apply the diffs, rather than using the invalidation protocol. However, if the detected view

is larger than the real view, the invalidation protocol may be more efficient. Since the detected

view has pages that will not be accessed by the processor, the update protocol will thus propa-

gate useless diffs. In contrast, the invalidation protocol propagates (small) invalidation notices

first to invalidate the pages in the detected view, but the diffs of a page are propagated only

when the page is in the real view and thus accessed by the processor. In this way, the prop-
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agations of useless diffs are avoided in the invalidation protocol, with the overhead of more

messages (and page faults). If the useless diffs are huge, there is a chance for the invalidation

protocol to be more efficient.

The update protocol is generally suitable for VC, just as the invalidation protocol is for LRC

(see Section 5 for details). However, since the detected NRVs in our implementation are not

accurate and are normally larger than the real ones in our implementation, we adopted the in-

validation protocol for the view transition into non-critical regions. The invalidation notices

for the NRV of a processor are propagated to the processor when it calls acquire, but are dis-

abled in critical regions. They are enabled and effective in any non-critical regions. When a

processor enters a non-critical region, the pages with the disabled invalidation notices are in-

validated. However, these notices will be disabled again in the following critical region if their

pages are not accessed in the non-critical region nor belong to the following CRV. Obviously,

compared with TreadMarks, enabling/disabling invalidation notices is another overhead in our

implementation. Again this overhead is proportional to the number of times critical regions are

executed.

During execution of the non-critical region, the NRV may shrink to one of the MPSs. Once

the NRV shrinks, we prefetch the diffs of the pages in the shrunken NRV and apply them to

their pages. This optimisation doesn’t change the effectiveness of the invalidation notices of

other pages.

5 Comparison with related work

Our implementation can improve performance at two levels: the consistency model and con-

sistency protocol levels. At the consistency model level, it only updates pages in the view of a

processor entering a new region. The detected CRVs are generally accurate and the update pro-

tocol is used to update them. The accurate CRVs detected in our implementation help reduce

the false-sharing effect, as will be discussed shortly. In LRC all previously modified pages

must be updated and the invalidation protocol is used to alleviate the overhead of propagation

of useless diffs.

At the consistency protocol level, besides the update protocol adopted for CRVs, our imple-

mentation uses shrunken views to prefetch the diffs in non-critical regions. This technique is
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similar to some optimal consistency protocols [23, 14, 4], which have been proposed to im-

prove the performance of the LRC model. These protocols choose optimal ways to propagate

diffs, e.g., prefetching of diffs. However, they work at the level of modification propagation

in LRC, instead of at the level of a consistency model. They don’t change the consistency

conditions of LRC. Therefore, they inherit the false-sharing effect from LRC. Though they

can reduce the number of messages and the overhead of page faults by prefetching, they can’t

remove the false-sharing effect in LRC, i.e., the propagation of useless diffs. These techniques

are complementary to our VC implementation and may be useful to further optimize the diff

propagation in non-critical regions in our implementation.

T1=sh_malloc(size_of_task);
produce_task(T1);
Acquire(L1);
enqueue(Q, T1);
Release(L1);

Acquire(L1);
dequeue(Q, T2);
Release(L1);
consume_task(T2);

P1 P2

Figure 5: A task queue program

To explain the subtle differences among related models, we will discuss a task queue pro-

gram shown in Fig. 5. To make the comparison fair, in the discussion we assume the invali-

dation protocol is used with the models being compared. This assumption is valid, since RSC

models address when to make which pages consistent in page-based DSM systems and thus

are independent of modification propagation and execution protocols (also called consistency

protocols) such as the invalidation or update protocol, although those protocols may affect the

performance of their implementations.

In the program in Fig. 5, the variable
�

is used as a task queue. Processor � 
 produces a

task � 
 and puts it into
�

, and then processor � � gets a task � � from
�

and consumes the

task, where � 
 and � � are local variables that store the addresses of the shared data objects for

tasks.

Fig. 6 illustrates the read/write accesses to the shared data objects in the task queue program.
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shared memory

T1

shared memory

T2

EC and ScC:  invalidate page 1.
LRC:  invalidates page 1 and 2.
VC:  propagates invalidation notices

for page 1 and 2, but the notice for
page 1 is only effective in the critical 
region and the one for page 2 is only  
effective in the non−critical region.

write(*T1)

Q

page1 page2

read(*T2), write(*T2)read(Q), write(Q) RA

read(Q), write(Q)A R

Q

page1 page2

P

P

1

2

program order

program order
A: acquire        R: release

Figure 6: Differences among EC, ScC, LRC, and VC

It is used to explain how different RSC models maintain consistency in a page-based DSM. To

make the subtle differences more clear, we assume � 
 and � � happen to point to the same task

data which is located in page 2, while
�

is in page 1.

In EC, the programmer is required to annotate that
�

is associated with lock � 
 , while in

ScC this association can be detected at run-time. In both EC and ScC, only
�

is required to be

made up to date before � � enters the critical region. Therefore, the invalidation notice for page

1 is propagated to � � and page 1 is made invalid there. A later page fault on page 1 will bring

it up to date. Since page 2 is not invalidated, � � will not read the up-to-date task data pointed

to by � � . Thus SC cannot be guaranteed for this data-race-free program under EC and ScC.

In LRC, all previous write accesses, including the writes on
�

and the task data pointed by

� 
 , must be performed before the acquire is performed in � � . Thus the invalidation notices

for page 1 and 2 are propagated and page 1 and 2 are made invalid. Later page faults will bring

them up-to-date.

In VC, all previous write accesses to the data objects in a view must be performed before a

processor enters the corresponding region. Run-time view detection in VC can determine that

page 1 (
�

) belongs to the CRV and that page 2 (the task data pointed to by � 
 ) belongs to

the NRV. Thus the invalidation notices for page 1 and 2 are propagated to � � , however, the

notice for page 1 is only effective in the critical region to bring
�

up to date, and the one for
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page 2 is only effective in the non-critical region to bring the task data up to date. Mindful

readers may realise that the more complicated processing of the invalidation notices in VC

is not superior to LRC in this example, given the extra overhead of enabling and disabling

invalidation notices. However, the individual treatments of the notices for different regions can

result in less false-sharing effect in many other situations, as will be described shortly.

From the above descriptions we know the RSC models are different in terms of when to

make which pages up to date, i.e., their consistency conditions are different. However, there

is another important aspect of difference among them regarding data selection. Through user

annotation in EC, run-time detection of scope-data association in ScC, or run-time view detec-

tion in VC, these models have firm knowledge that page 1 (
�

) will be very likely accessed in

the critical region, which can be readily used to improve their implementations. For example,

instead of adopting the invalidation protocol which causes one page fault and one modification

(diff) request in the above example, they can adopt the update protocol which can piggy-back

the diffs on the lock granting message, i.e., lock release (though extra messages may be re-

quired if diffs are huge) and thus save two messages (diff request and reply) and one page

fault.

On the other hand, LRC has no such knowledge and thus doesn’t know which diffs will

be useful. Therefore, the invalidation protocol can help avoid propagation of useless diffs in

such a situation. Of course, some extra work can be done to improve the diff propagation in

LRC. Examples are the Affinity Entry Consistency (AEC) protocol [23] which can pre-send

the modifications based on Lock Acquirer Prediction (LAP), and the Heuristic Diff Acquiring

(HDA) protocol [14] which adopts the update protocol for pages modified in critical regions

and piggy-backs the diffs on the lock granting message. However, these improvements don’t

change the consistency conditions in LRC such as which pages need to be made up to date

at acquire time. The following example will illustrate the difference between LRC and VC

in terms of reducing the false-sharing effect and the difference between VC and optimal diff

propagation (or consistency) protocols such as AEC.

Fig. 7 presents an example of the false sharing effect in LRC. In the example, data objects �

and � lie in the same page. Processor ��� modifies � in the first critical region ��� 
 and then

modifies � in the second critical region ��� � . After � � exits from ��� � , ��� enters it. Although

��� only accesses data objects � and � , according to LRC, both page 1 and page 2 of ��� should
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Figure 7: False sharing effect in LRC

be invalidated. When ��� reads � , there is a page fault on page 1, which is caused by false

sharing.
shared memory

X

Y
Z

: invalidated page

page fault because 
of true sharing

program order

program order

A: acquire    R: release

update Z by invalidating
page 2 of P2

shared memory

Y
Z

CR1 CR2

for page 1 and 2 to P2, but only
propagate invalidation notices

R A Rread(Y), write(Z)

RA read(Z), read(Y)

page1 page2

P

P

1

2

A write(X)

page1 page2

X

Figure 8: Reduction of the false sharing effect in VC

For the same example, Fig. 8 shows how VC removes that effect of false sharing. VC only

requires updating the data objects of the current view of a processor. The view of ��� in ��� �

only includes data objects � and � . Since � is not modified by � � , VC only updates � by

invalidating page 2, though the invalidation notice for page 1 is also propagated (but disabled)
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and may be effective later to bring � up to date in ��� . By restricting the effective scope of the

invalidation notice for page 1 (which is of no use for updating � and � in the view of ��� ), VC

can avoid the page fault on page 1 caused by false sharing. Naturally, as we said before, the

update protocol should be adopted to make the implementation of VC more efficient with the

knowledge of views.

As we mentioned before, LRC can be improved by adopting more complicated diff propaga-

tion protocols, such as AEC [23] and HDA [14]. AEC pre-sends diffs from critical regions to

the processors that will likely enter the same critical regions based on Lock Acquirer Prediction

(LAP). For the example in Fig. 7, AEC may be able to predict that � � will enter ��� � and thus

the diff of page 2 can be piggy-backed on the lock release message and applied to page 2 before

��� is entering ��� � . In this way, the number of page faults and diff request/reply messages can

be reduced. Similarly, HDA uses history records to pre-send likely-useful diffs to only the next

processor entering the same critical region. Though the performance of LRC can be improved

by the above optimal diff propagation protocols, they don’t change the consistency conditions

of LRC. This is the essential difference between consistency models and diff propagation (or

consistency) protocols. Therefore, in Fig 7, the invalidation notice for page 1 is still required

(by LRC) to be effective in AEC and HDA. Consequently, the page fault on page 1 will occur

due to false sharing in AEC and HDA, which reflects their essential difference from VC.
shared memory

X

Y
Z

: invalidated page

page fault because 
of true sharing

enable the invalidation notice 
for page 1 to cause page fault
because of w/w false sharing

program order

program order

A: acquire    R: release

update Z by invalidating
page 2 of P2

shared memory

Y
Z

CR1 CR2

for page 1 and 2 to P2, but only
propagate invalidation notices

R

page1 page2

A Rread(Y), write(Z)

RA read(Z), write(Y)

P

P

1

2

A write(X)

page1 page2

X

Figure 9: The w/w false sharing effect in the VC implementation
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There are two kinds of false-sharing effect, write/read (w/r) and write/write (w/w). A w/r

false-sharing effect occurs when one processor modifies a shared data object that lies in the

same memory consistency unit (e.g., a page) as another shared data object, while another pro-

cessor reads the other shared data object. For example, the false-sharing effect in Fig. 7 is w/r.

A w/w false-sharing effect occurs when one processor modifies a shared data object that lies in

the same memory consistency unit (e.g., a page) as another shared data object, while another

processor writes to the other shared data object. While our current implementation of VC can

reduce w/r false-sharing effect as shown in Fig. 8, it can’t reduce the w/w false-sharing effect

since a coarse-grained diff management scheme is adopted. For example, in Fig. 9 (which is

similar to the scenario in Figs. 7 and 8, except ��� writes rather than reads � ), when ��� writes

� on page 1, any implementation of VC will face two choices. One is to ignore the disabled

invalidation notice for page 1, make a twin of page 1 and make a diff later. This scheme has

to distinguish the diffs from different views and a complicated, fine-grained diff management

will be inevitable. The benefit of the scheme is the reduction of the w/w false-sharing effect.

The alternative choice is to enable the invalidation notice for page 1, bring it up to date

through the page fault before making its twin, as shown in Fig. 9. While the scheme simplifies

diff management, it tolerates the w/w false-sharing effect. We adopted the latter scheme in our

current implementation, but will investigate fine-grained diff management in the future.

SC correctness of our VC implementation Our implementation can normally guarantee

Sequential Consistency for data-race-free programs. It guarantees that pages that are previously

modified in a critical region are updated when a processor is entering the same critical region.

That means, pages that are not modified in the critical region are not put into the CRV in the

view detection. For most data-race-free programs, it is true that data objects required to be

updated and then accessed in a critical region are only those previously modified in the same

critical region. Our VC implementation can guarantee Sequential Consistency for those data-

race-free programs. However, there may be cases where pages modified in non-critical regions

are accessed in a critical region in a data-race-free program, in which cases our implementation

can’t guarantee Sequential Consistency. For example, if we modify the program in Fig. 5, so

that when � � dequeues a task it also checks the task data in the critical region. In that case, the

processor won’t read the up-to-date task data in the critical region (but will read the up-to-date

task data in the following non-critical regions) in our implementation, though there is no data
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race in the program. But we claim this kind of program is very peculiar, since the critical region

is designed to protect only the task queue, not the task data. Fortunately, we haven’t found this

kind of peculiar programs in our applications yet.

If the above peculiar type of program needs to be supported, we can enhance our implemen-

tation with compile-time analysis. Once the above access pattern is found at compile time, the

compiler can direct the DSM to enable the invalidation notices of all modified pages, which

will guarantee Sequential Consistency for those programs.

It is worth noting that the above problem with SC correctness of our implementation doesn’t

affect the SC correctness of the generic VC model.

6 Experimental evaluation

In this section, we present an experimental evaluation of the LRC model and our implementa-

tion of VC. Both of these have been implemented based on TreadMarks [3]. The experimental

platform consists of 8 PCs running Red Hat Linux 6.1, which are connected by a 10 Mbps

Ethernet. Each of the PCs has a 500 MHz processor and 128 Mbytes of memory. The page

size in the virtual memory is 4 KB.

We chose five applications in the experiment: TSP, QS, BT, Water and IS. TSP, QS, Water,

and IS are provided by the TreadMarks research group. All the programs are written in the

C language. TSP is the Travelling Salesperson Problem, which finds the minimum cost path

that starts at a designated city, passes through every other city exactly once, and returns to

the original city. QS is a task-queue style program. It uses a recursive sorting algorithm that

operates by repeatedly partitioning an unsorted input list into a pair of unsorted sublists, such

that all of the elements in one of the sublists are strictly greater than the elements of the other,

and then putting the sublists into a task queue. It recursively takes a sublist from the queue and

sorts the sublist, until the task queue is empty. BT is an algorithm that creates a fixed-depth

binary tree. In the algorithm, multiple processes explore a binary tree to search for unexpanded

nodes. If a process finds an unexpanded node, it expands the node and creates new unexpanded

nodes. The algorithm terminates when the fixed-depth binary tree is established. Water is a

molecular dynamics simulation. Each time step, the intra- and inter-molecular forces incident

on a molecule are computed. IS (Integer Sort) ranks an unsorted sequence of � keys. The
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rank of a key in a sequence is the index value
�

that the key would have if the sequence of keys

were sorted. All the keys are integers in the range [0, ������� ] and the method used is bucket

sort. These applications are representative of both numerical computing (Water, QS and IS),

and symbolic computing (TSP and BT ). The performance results are listed in Table 1.

App Seq. Time Model Time Diff Req RPF RFS Mesgs TFS

(Sec.) (Sec.)

LRC 2.54 962 - - 2763

TSP 1.89 VC i 2.56 960 - 0 2756 58

VC 1.65 25 937 0 911

LRC 7.09 3267 - - 12209

QS 0.29 VC i 7.15 3330 - 0 12375 2

VC 4.59 791 1044 0 5301

LRC 28.26 11437 - - 79468

BT 0.16 VC i 27.59 11347 - 792 79426 4347

VC 25.73 7429 3441 776 69342

LRC 19.86 12428 - - 96600

Wa- 10.25 VC i 19.91 12423 - 3 96600 6

ter VC 19.09 11891 511 3 95478

IS - LRC 113.42 4444 - - 11305 -

VC 108.20 2774 1569 0 7965

Table 1: Performance statistics for applications on eight processors

Other applications, such as FFT, SOR and Barnes, were not chosen since they don’t have

locks (critical regions) and thus they have no performance gain in our implementation. Since

the extra overhead of view maintenance is proportional to the number of times critical regions

are executed, our implementation is no worse for these problems than LRC. Though IS also

has no locks, it was chosen to demonstrate the performance gain of adopting view shrinkage in

non-critical regions. Its experimental results have been cited from previous work [15]. Though

view shrinkage is not the major contribution of this paper, we should mention that, from our

earlier results [15], it doesn’t work very well for FFT and SOR, as the detected MPSs include

pages that will not be accessed in the following barrier sessions (see Huang et al. [15] for
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details).

We designed the experiment in order to demonstrate the performance gain of VC at both

consistency model and consistency protocol levels. We also collected evidence of false-sharing

effect in our applications in order to demonstrate the potential performance gain of VC. The

extra overhead of view maintenance is also indicated from our results.

Table 1 shows the performance results for LRC and our VC implementation. VC i is the

VC implementation based on the invalidation protocol, which is used to investigate the perfor-

mance gain of VC at the consistency model level and to indicate the extra overhead of view

maintenance. Time is the total running time of an application program, Diff Req is the number

of messages for diff requests, RPF is the reduction in page faults due to overall improvement

in our VC implementation, RFS is the reduction in page faults due to the reduction of the

false-sharing effect in the VC model, and Mesgs is the total number of messages. The second

column Seq. Time is the running time of the sequential execution of the applications. Except

for TSP, the sequential execution of the applications is faster than their parallel execution on 8

PCs, which demonstrates the need for improving the DSM performance on cluster computers.

VC i vs. LRC

Table 1 shows that some applications, such as TSP and QS, don’t benefit from the implemen-

tation of VC i, because they have no w/r false-sharing effect in critical regions. As discussed

in Section 5, our implementation can only reduce w/r false-sharing effect.

In addition, in the task-queue style program QS, the inaccurate NRVs can’t help our imple-

mentation to reduce the false-sharing effect, though QS has w/r false-sharing effect in non-

critical regions.

For these two applications, the performance of VC i is not significantly worse than that

of LRC (0.7% worse for TSP, and 0.8% worse for QS). This indicates that the overhead of

view maintenance (including view detection and view transition) is only a trivial portion of the

expense of the whole system.

However, for BT which has high w/r and w/w false-sharing effects, VC i can improve its

performance up to 2.4%. Though this performance gain is not very significant, it can only

be achieved at the level of the consistency model and can’t be achieved by the optimal diff

propagation protocols [23, 14, 4] such as AEC. This performance gain will be increased if the
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w/w false-sharing effect can be reduced or the detected NRVs can be more accurate.

For Water, VC i is slightly (0.25%) worse than LRC. Though VC i has reduced the false-

sharing effect (reduction of three page faults) in Water, the overhead of view maintenance

overshadowed the benefit.

VC vs. LRC

In Table 1, VC is our implementation with the optimal diff propagation protocol as described

in Section 4.2, where the update protocol is adopted for updating CRVs. This optimisation is

very natural in our implementation, since the CRVs are readily available and predict the pages

to be very likely accessed.

Table 1 shows VC outperforms LRC for all five applications tested. VC has improved the

performance significantly compared with LRC (35% for TSP, 35.3% for QS, 9% for BT, 3.9%

for Water, and 4.6% for IS). The number of diff request messages in VC is significantly less

than that in LRC (97.4% less in TSP, 75.8% less in QS, 35% less in BT, 4.3% less in Water,

and 37.6% less in IS). The detected CRVs have helped the update protocol to reduce the diff

request messages. Consequently the total number of messages in VC has been greatly reduced

compared with LRC.

The major reason for the above improvement is that the diffs of the pages to be accessed in

critical regions (i.e., CRVs) are piggy-backed on the lock release messages and applied to the

pages immediately. Thus the number of diff request/reply messages and the overhead of page

faults are reduced in those applications.

It is worth noting that the above performance gain due to the use of the update protocol for

CRVs may be achieved by the optimal diff propagation protocols [23, 14, 4].

False-sharing effect

There are two applications, BT and Water, that demonstrate the reduction of the false-sharing

effect achieved in our implementation. BT, which uses locks to protect nodes in the binary

tree, has serious false-sharing effect, while Water has less false-sharing effect. For BT, the

performance improvement due to reduction of the false-sharing effect is 18.4% of the total

improvement. This significant proportion has demonstrated the advantage of the VC model
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over the consistency protocols, e.g. AEC, in terms of the programs with serious false-sharing

effect.

To get an impression of the false-sharing effect in our applications, we have recorded the

total number of page faults that are due to the false-sharing effect inside critical regions. In

Table 1, RFS is also the number of page faults that are due to the w/r false-sharing effect inside

the critical regions; TFS is the number of page faults that are due to all false-sharing effects

(including w/r and w/w false sharing) inside the critical regions. The results show the reduced

w/r false-sharing effect is only a small portion of the total false-sharing effect for half of our

applications (0% for TSP, 0% for QS, 18.2% for BT, and 50% for Water) inside the critical

regions. For the applications with serious false-sharing effect, such as BT, there is still a great

room for performance improvement which can only be achieved at the level of the consistency

model in VC.

We were not able to collect evidence for the false-sharing effect in non-critical regions, but

we believe applications such as QS and Water have significant false-sharing effect in non-

critical regions.

7 Conclusions

In this paper, we have presented a new RSC model, the VC model, for DSM systems. RSC

models have relaxed the constraints on modification (diff) propagation and execution for data-

race-free programs that are properly labelled while still guaranteeing sequential consistency for

those programs. We have briefly discussed each of them in terms of three selection techniques.

Among previous RSC models, only EC and ScC can perform data selection, but at the price of

a complex programmer interface which imposes an extra burden on the programmer.

The VC model has been proposed to remove such a burden by means of automatic view

detection. It can achieve data selection without programmer annotations and reduces more

false sharing effect than LRC. Its only consistency requirement is that all the data objects in

the view of a processor must be updated during view transition. In this way, it can achieve the

maximum relaxation on the consistency requirements and produces more room for optimisation

in DSM implementations. Therefore, the generic VC model can be used as a framework for

future research on DSM implementations.
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We have implemented the VC model based on TreadMarks. Techniques for the implementa-

tion of VC have been discussed in this paper. The differences between our VC implementation

and related work were illustrated through examples. Performance results have shown that our

VC implementation generally outperforms the LRC model and has advantages over the opti-

mal diff propagation protocols [23, 14, 4]. The results have also demonstrated that the extra

overhead of view maintenance in our VC implementation is relatively trivial.

Further research should be carried out under the framework of the VC model. First, fine-

grained diff management needs to be investigated. The current implementation tolerates the

w/w false sharing effect due to the adoption of simple diff management. More elaborate diff

management may help to reduce more of the false-sharing effect. Second, mechanisms for

detection of accurate NRVs need to be investigated. Finally, Run-time and compile-time tech-

niques [11] need to be developed for accurate view detection.
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