
Department of Computer Science,  
University of Otago 

 

 
 

 
Technical Report OUCS-2004-06 

 
Tauira: A bilingual dialogue-based lexical 

acquisition system 
 

Author: 
Maarten van Schagen 

University of Twente  

 
 

Status:  Internship Project Report 
 

 

 
 

Department of Computer Science,  
University of Otago, PO Box 56, Dunedin, Otago, New Zealand 

 
http://www.cs.otago.ac.nz/trseries/ 



Tauira:
A bilingual dialogue-based lexical acquisition

system

Maarten H van Schagen

Intern
Artificial Intelligence Group

Department of Computer Science
University of Otago

New Zealand
maarten@cs.otago.ac.nz

Supervisor: Alistair Knott
alik@cs.otago.ac.nz

Student
Parlevink Group

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
the Netherlands

schagen@cs.utwente.nl

Supervisor: Anton Nijholt
anijholt@cs.utwente.nl



Abstract

A lexical authoring tool (Tauira) placed within a bilingual bidirectional dialogue
context is described. The tool’s dialogue is initiated when one or more unknown
words are uttered by the user in the surrounding dialogue system. Based on the
context of the sentence the word was uttered in a set of hypotheses are created for
possible word types and stems of the unknown word. These hypotheses are reduced
using a set of multiple choice questions until only one remains: the new word
entry. Hypothesis reduction is done by asking closed questions about the syntactic
validity of the unknown word in example sentences. These example sentences are
generated based on sentences from the test suite which accompanies the system’s
grammar. Because the tool operates in a bilingual (English-Māori) context, both
the unknown word and its translation are added. The translation for an unknown
word is deduced from a translation of the original sentence containing the source
word. Not only does this tool provide an interesting addition to the field of lexical
authoring but in addition also can side effects of the project can be used to formally
evaluate the coverage of a test suite on a grammar concerning word types.



Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Te Kaitito project . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Te Kaitito architecture . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Linguistic Knowledge Building system . . . . . . . . . . . . . . 4
1.5 Tauira project goals . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related works 7
2.1 Learning by instruction . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Syntactic processing of unknown words . . . . . . . . . . . . . . 8

2.2.1 Extracting information from sentence context . . . . . . . 8
2.2.2 Extracting information from statistics . . . . . . . . . . . 10

2.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Design 12
3.1 Top-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Modifications to Te Kaitito . . . . . . . . . . . . . . . . . 13
3.1.3 Preprocessing: trawling a test suite to look for example

sentences . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.4 Algorithm overview . . . . . . . . . . . . . . . . . . . . 14

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Locating unknown words . . . . . . . . . . . . . . . . . . 15
3.2.2 Creating hypotheses . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Dialogue based approaches for hypothesis reduction . . . 16
3.2.4 Translation feature extraction . . . . . . . . . . . . . . . 19

4 Implementation 21
4.1 Setting open word types . . . . . . . . . . . . . . . . . . . . . . 21

i



4.2 Creating test sentences . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Preprocessing algorithm . . . . . . . . . . . . . . . . . . 21
4.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Locating unknown words . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Creating hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Eliminating hypotheses . . . . . . . . . . . . . . . . . . . . . . . 28

4.5.1 Multiple choice example phrases strategy . . . . . . . . . 28
4.5.2 Single choice example phrases strategy . . . . . . . . . . 30
4.5.3 Multiple choice example words strategy . . . . . . . . . . 31
4.5.4 Multiple choice stem selection strategy . . . . . . . . . . 32

4.6 Translation request . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 Finalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Results 33
5.1 High ambiguity example . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Proper name . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 Adjective . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Morphology example . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Bilingual Multiple word example . . . . . . . . . . . . . . . . . 37

6 Summary and future works 41
6.1 Project limitations . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Test suites . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Project Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.1 LKB system . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . 43
6.2.3 Processing of unknown words . . . . . . . . . . . . . . . 43
6.2.4 Lexical acquisition in a dialogue context . . . . . . . . . 44

6.3 Improving usability . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.1 User evaluation . . . . . . . . . . . . . . . . . . . . . . 44
6.3.2 User errors . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.3 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.4 Selecting example sentences . . . . . . . . . . . . . . . . 45
6.3.5 Translation . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.6 Generation . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Expanding functionality . . . . . . . . . . . . . . . . . . . . . . 47
6.4.1 Irregular morphology . . . . . . . . . . . . . . . . . . . 47
6.4.2 Homonyms . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



6.5 Additional applications . . . . . . . . . . . . . . . . . . . . . . . 48
6.5.1 Authoring mode . . . . . . . . . . . . . . . . . . . . . . 49
6.5.2 Ngata dictionary . . . . . . . . . . . . . . . . . . . . . . 49

A Grammar writer’s guide 52
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.2 Extending grammar script . . . . . . . . . . . . . . . . . . . . . 52
A.3 Preprocessing test suites . . . . . . . . . . . . . . . . . . . . . . 55
A.4 Running Tauira . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B User’s guide 58
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.2 Unknown words . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iii



Chapter 1

Introduction

This document provides a summary of the work I did during my internship at the
Department of Computer Science at the University of Otago. I was working in
the Computational Linguistics group and contributing to the Te Kaitito system - a
natural language system able to engage in dialogues with the user in English and
Māori. My project was to build a tool which allows the user to add new words to Te
Kaitito’s lexicon, prefrably without needing any detailed knowledge of linguistics.
The tool is titled Tauira which is Māori for both ’the student’ as ’the example’.
This is because Tauira has the ability to learn new words by using examples.

1.1 Overview

Chapter One will introduce the reader into the context of Tauira by elaborating
on the Te Kaitito project in general and its architecture in detail and specify the
requirements for Tauira. Chapter Two explores related works in a literature review.
Chapter Three presents and motivates the design of Tauira which and a discussion
of its implementation is given in Chapter Four. In Chapter Five the results of the
project are illustrated through example dialogues as well as benchmarks. Chapter
Six summerizes the project and explores future work to be done on Tauira. There
are two appendices: Appendix A describes the usage of Tauira for a grammar writer
and the Appendix B is a template for a user’s guide.

1.2 Te Kaitito project

The artificial intellegence group is one of the four main research groups at the De-
partment of Computer Science at the University of Otago, Dunedin New Zealand.

1



One of the main projects of the Computational Linguistics subdivision is the devel-
opment of an architecture for Māori and English language processing and genera-
tion. This project is known as Te Kaitito which Māori for the ’composer’ or ’the
improviser’.

Te reo Māori (lit: the Māori language) is the language spoken by the Polyne-
sian inhabitants (the Māori) who immigrated to New Zealand seven hundred years
before Abel Tasman’s discovery of New Zealand in 1642. When the English started
colonizing New Zealand at the beginning of the 19th century this initiated a lot of
conflict between the Māori and Pakeha (the Māori name for the European settlers)
until signing of the Treaty of Waitangi in 1840. The treaty not only gave Māori
possession of their land but established equal rights for Pakeha and Māori subjects
effectively making New Zealand (or Aotearoa in Māori) a biculteral and bilingual
culture.

By the 1970’s however, te reo Māori was on the brink of extinction as a result
of socetal practices such as school education which emphasised the importance of
English. In the same perioad a revival in Māori culture was called for by many
young Māori. This spurred the government to give the Māori language a greater
prominence in schools and the media (Knott et al., 2002; Harding et al. 2002).

Villa (2002) suggsets that computer technology has the possibility of filling
an important niche in minority language maintenance and teaching. So to assist its
survival and the assimilation of te reo Māori by Māori and non-Māori New Zealan-
ders this bilingual architecture is developed. Applications of this architecture will
be an on-line teaching program, an on-line translator and a dialog system.

Besides being of use for Māori language maintenance and teaching the project
also provides a platform for computer science students interested in computational
linguistics to advance their skills in this field. So in addition to the two staff mem-
bers working on the project, one as a writer for the bilingual grammar and one
for the development of the dialog systems and web interfaces, multiple computer
science students have done larger or smaller projects using this architecture.

The Human-Media Interaction or Parlevink group is part of the department
of Electrical Engineering, Mathematics and Computer Science, (EEMCS) at the
University of Twente, Enschede the Netherlands. Speech and Language technology
is one of the main topics covered in the group’s educational programme. A student
from the parlevink group would be able to put his or her theoretical knowledge of
computational linguistics to practical use on a project such as Te Kaitito, whilst the
project as a whole would benefit from any enhancements made.

2



1.3 Te Kaitito architecture

Te Kaitito is a bidirectional system: the same declarative modules (the grammar,
lexicon and morphological rules) are used for the analysis as generation of sen-
tences. Te Kaitito is also bilingual which means for every declarative module there
is an English and a Māori instance. The entire architecture is displayed in Figure
1.1.

resolved
sentence
DRS

Saliency list

stack DRS

Context DRS

Global DRS

text
planning
module

Grammars

English

Maori

Lexicons

English

Maori

Morphological rules

English

Maori

output
sentence

input
sentence

sentence
parser

dialogue 
engine

Knowledge graph

response
discourse
representation

content 
selection
module

set of 
fact
nodes

discourse
structure
tree

sentence
planner

discourse 
signals 
planner

referring
expression
planner

sentence
generatorMRS

MRS−to−DRS
converter

(generation of single−sentence responses)

LEGEND

Procedural module

Declarative module

created by the system
Declarative resource 

error 
message

(pathway for sentence translation application)

response 
sentence 
representationsentence

DRSs
MRSs

presupposition
resolution 
/disambiguation

Figure 1.1: Architecture of the Te Kaitito system

The declarative modules are used in the first and final step of generating a
responce based on an input sentence. The first step consists of parsing the sen-
tence using the parser from the LKB grammar development system (Copestake,
2002). One of the results of this parsing process is a semantic representation of the
sentence in a language called Minimal Recursion Semantics (MRS) (Copestake,
2001). MRS is also used to represent the output sentences semantics from which
the sentence generator will generate an output.

When the architecture serves as a translator the MRS resulting from the parse
is simply passed onto the sentence generator which will then generate the seman-
tics of the original sentence in both Māori and English. e.g. in the following dialog:

> The dog barks
ka auau te kurı̄
the dog barks

The architecture can however be configurd to do more complex tasks as ex-
plained earlier. For the dialog system the MRS is converted into a Discourse Rep-
resentation (DRS) (Kamp and Reyle, 1993). This DRS is presupposed for the
current context. The result presupposistion will create a new response for the user.
A detailed discussion of this part of the architecture can be found in Knott et al.

3



(2003). An example interaction with the dialogue system is given below. Note that
each sentence generated or parsed in this example could also be done so in Māori.

> A blue dog barked
Ok
> A red dog walked
Ok
> Which dog walked?
It was the red dog
> The dog ate the weasel
which dog ate the weasel ?
> The red dog
Ok

1.4 Linguistic Knowledge Building system

The Linguistic Knowledge Building (LKB) system was created for general lan-
guage processing and generation tasks using a typed feature structure grammars
such as Head-driven Phrase Structure Grammars (HPSG). The LKB system can be
seen as a development environment for a very high-level specialized programming
language. Typed feature structure grammars are a language based on one data
structure (the typed feature structure) and one operation (unification) (Copes-
take, 2002).

A feature structure is basically a set of features possilby given a name. Ev-
erything (grammar rules, start symbols, lexical entries) to define the grammar is
defined in a feature structure. An example of the definition of a lexical entry for a
grammar is:

man := noun &
[ ORTH.LIST.FIRST "man",

HEAD.AGR.GENDER masc
SEM.HOOK.KEYPRED < [ PRED man_rel ] >

].

Man is the identifier of this feature structure and the word type noun is a fea-
ture structure whose features are added to this feature structure. Other features
define the orthography, gender and semantics of this lexical entry. The largest
grammar that so far has been developed on the LKB system is the English Re-
source Grammar (ERG) by the LinGo group (Copestake and Flickinger, 2001).
For the larger grammars large test suites have been developed. A test suite is a set

4



of systematically constructed individual sentences designed to test the covarege of
the grammar. Characteristics of test suites are (Oepen et al., 1997):

• The sentence of test data are controlled, unlike those of e.g. corpora.

• Every specific gramatical phenomenon is covered systematically.

• Non-redudant representation (every phenomenon appears only once).

• Ill-formed sentences are included (and annotated as such).

• The annotation is coherent.

Large test suites have been created as part of the Test Suites for Natural Lan-
guage Processing (TSNLP) project (Oepen et al., 1997). These test suite are
stored in a database called itsdb (Oepen, 2001). The LKB is case insensitive and
ignores symbols such as ‘-’, ‘”, ‘?’ and ‘.’.

1.5 Tauira project goals

During any form of human-computer interaction through a dialogue system un-
known words are bound to show up. In order to correctly handle unknown words,
an extension of the dialogue system is required for Te Kaitito. This system also
serves a secondary goal: expanding the lexicon of Te Kaitito, which is currently
quite small. The extension (Tauira) should react to words that cannot be found in
the lexicon during interaction with te Kaitito.

There are many ways in which this extension could be made. The most simple
method would be to open up a text editing tool, to allow the user to add a new entry
to Te Kaitito’s lexicon file. But this requires to know details about how the system
is built up. The original idea of the current project was to build a tool that allows
the user to author new words in the context of a human-computer dialogue. So, In
stead of just giving a ”word-not-found” error a subdialogue is instantiated. This
dialogue should consist of various questions to which the answers of the user can
be used so all the required aspects of the word can be filled in. Aspects that need
to be filled a word are:

• Its word type.

• Its Māori or English translation.

• Its translation’s word type.

General Requirements of the system include:

5



• The user should not be required to have any knowledge of linguistics.

• The extension should be adaptable to the ever changing Māori and English
grammar of te Kaitito.

• These adaptations can be done by the grammar writer.

• The system should be integratable with the current dialogue system.

The system has the following presuppositions:

• The underlying grammar of the current dialogue system is sound and com-
plete in respect to its lexicon.

• For each possible grammatical word type there exists at least one lexical
entry

• Users of the system are familiar with both English and Māori.

6



Chapter 2

Related works

In this chapter relevant literature for the project is discussed. There are two basic
paradigms for word authoring which need to be adressed. Section 2.1 will discuss
the ’learning by instruction’ paradigm and Section 2.2 will discuss syntactic extrac-
tion from sentence context. Finally in Section 2.3 I will provide some background
in lexical semantics in sentence translation which is neccessary for authoring new
words in a bilingual context.

2.1 Learning by instruction

The suggestion that lexical items can be authored in a human-computer dialogue
system is not new. The idea is first proposed by Knight (1996) as the Learning
by Instruction paradigm. Knight proposes two dialogue based methods whereby
a naive user could add new words to a system’s lexicon:

The first approach is to ask a set of multiple choiche questions in which the
new word is placed in different grammatical contrasts and the user is asked about
their syntactic corectness or where the user is asked various conceptual questions
about the nature of the new word, as is illustrated in the following dialogue:

H: "John is hungry."
C: I don’t know the meaning of "hungry".

Is "very hungry" a reasonable phrase?
H: Yes
C: Is "hungry" a visually detectable property ?
H: No.
C: Does "hungry" refer to a capability (or lack of one) ?
H: No
C: Does "hungry" refer to a desire?

7



H: Yes.
C: Is it a desire to (a) do something, (b) own something,

(c) be something, (d) other?
H: (a).
C: A desire to do what ?
H: To eat.

The second approach is to let the user specify a phrase (the paraphrase) se-
manticly equivalent to the original phrase but using concepts the system is already
familiar with as in the following example:

H: "John is hungry."
C: I don’t know the meaning of "hungry"
H: I mean: "John wants to eat".
C: I understand.

Knight observes that although the multiple choice method might work well for
syntax, for semantics there are many features and cases and the lingistical diagnosic
is rather vague it would be impractical.

A major problem in the multiple choice method however is actually coming
up with these sentences automatically, since what Knight calls limited features and
cases make up to five hundred word types for a large-coverage grammar such as
the ERG. This is a problem my system will address.

The paraphrasing method is pursued further by Knight. Semantics of words are
represented in graphs, semantics of sentences can be created using graph unifica-
tion. With this representation the semantics of an unknown word can be extracted
using the semantics of a paraphrase. This is compared to solving an equation such
as hungry ∗ is+ John = John+want/eat, so hungry = want ∗ is/eat. Find-
ing the solution of semantic graphs is of course somewhat more complicated, but
is proven to be possible using Knight’s algorithm.

2.2 Syntactic processing of unknown words

2.2.1 Extracting information from sentence context

Erbach (1990) and Barg and Walther (1998) devised a method of processing un-
known words in unification grammars. Besides processing sentences with un-
known words an entry for the unknown word is created based on characteristics
of the sentence context. A human reader ignorant of the word ‘child’ can deduce
from the sentence ‘the child chased his mother’ that ‘child’ is a noun, that ‘child’ is
singular (ortherwise it would be ‘the child chase their mother’) and this particular
instance of ‘child’ is male.

8



Erbach (1990) presents an algorithm for processing of unknown words. For
an unknown word a new entry will be created of a type wich is considered open
class (these types will be refered to as open word types). The algorithm consists
of three steps:

1. Parse the sentence. Use the set of all open word types as the feature structure
for an unknown word.

2. Enrich the unknown word entry with information from the sentence context.

3. Refine the information from the previous step to create an appropriate entry.

Before Step 1 the unknown word is represented as a disjunction of all the open
word types. During the parsing parts of the disjunction are removed because they
are unable to unify with the rest of the sentence context. In Step 2 whatever remains
of the unknown word entry is enriched with information from the sentence context.
In Step 3 overspecified information is eliminated.

In the previous example ‘child’ initially is the disjunct of nouns, intransitive
verbs, transitive verbs and adjectives (given that these are the only open word
types). After Step 1 only the feature structure for the noun remains. After Step
2 ‘child’ is enriched with the information that its gender must be male and its num-
ber is singular. In step 3 the information on gender is removed and a new lexical
entry is added.

For step 3 filters need to be defined for each open word type. The feature struc-
ture of step 2 will be filtered and unified with the feature structure of a particular
word type. A filter in the example for nouns that only maintains the number and
removes the gender feature might look something like:

<lexentry val arg num> = <info val arg num>

Barg and Walther (1993) extend this algorithm so it can also handle:

• Selectional restrictions

• Semantic types

• Argument structure

Also in Barg and Walther’s vision of unknownness words are not necessarily
known or unknown but are revised constantly. Instead of using filters for spe-
cific words, the grammar writer must now fully declare which individual pieces
of information are open to revision. This is done by identifying generalizable or
specializable clauses like for gender in noun:

9



specializable( 1 ) :=
[

synsem|loc

[

cat|head noun

cont|ind|num 1

]]

Specializable information is information which like the plurality of a noun can-
not be overspecified in the context of a sentence. Generalizable information is in-
formation like the gender of a noun which can be overspecified within the context
of a sentence.

Fouvry (2003) adapted the technique described by Erbach and Barg and Walther
in an algorithm for the LKB system. In his paper he observes that:

• Longer sentences with unknown words can become unparsable .

• Sentences with multiple unknown words are unparsable.

• There are grammars in which lexical entries are defined without features
(like the ERG). In these grammars generating an unknown word entry is a
matter of selecting the right word type.

2.2.2 Extracting information from statistics

Barg and Walther (1998) constantly revise their lexical entries based on new infor-
mation. When e.g. a system is given the following sentences from different users:

The mother chases the cat
The mother held her child
The mother held her gun
The officer chases the cat
The officer held her child
The officer held his gun

The system can conclude that ‘mother’ is feminine and ‘officer’ is both femi-
nine and masculine. The drawback of this method is that for it to create a robust
lexicon a large number of input sentences need to be given.

Fouvry (2003) creates a solution using the final observation made in the pre-
vious section: the fact that there are grammars where lexical entries are defined
without features. In his setup selecting of an unknown word becomes word-type
selection opposed to feature structure creation. He further observes that the ERG
approach to features creates the disadvantage that the number of types is fairly
high (in his case 463). To help the selection process of the appropriate word-types

10



Fouvry (2003) integrates knowledge from a statistical Part of Speech (PoS) tagger
to calculate the probability of each type in this sentence. This method drastically
decreases the number of types.

2.3 Translation

A final piece of literature to introduce relates to formalisms for representing word
semantics in two different languages. Copestake and Sanfilippo (1993) describe
bilingual cross-links called tlinks, to be used to define relations between monolin-
gual lexical items. Through these tlinks different forms of translation equivalence
can be represented. The tlinks are defined bidirectionally. Simple-tlinks are appli-
cable when two lexical entries denote single place predicates and are straightfor-
wardly equivalent, without any transformation being necessary. E.g. ‘chocolade’
is the Dutch translation for the English ‘chocolate’.

A more complex tlink could be defined where it states that for the word ‘hu-
man’ the sex feature for source feature structure and target feature structure is
equal. Also restictions on the use where a word exists only in plural in one lan-
guage (e.g. the English ‘furniture’) while it does exits in both singular and plural
in the other language (e.g. the Spanish ‘mueble’ and ‘muebles’).

Translation within the current Te Kaitito architecture is realised by predicate
equivalence. E.g. ‘dog’ and ‘kurı̄’ both have the same predicate (dog rel). A
bit more complex translations are allowed for entries such as ‘kitten’ which has
the semantics cat rel and young rel so this could be translated to ‘punua’ with
young rel and ‘poti’ with cat rel. All these translations could be seen as simple-
tlinks.

11



Chapter 3

Design

This chapter describes and motivaties the design for Tauira. First a top-level overview
is given of the design (Section 3.1) then this design is motivated (Section 3.2).

3.1 Top-level

3.1.1 Introduction

Tauira operates in the context of a human-computer dialogue system. The system
will initiate once the user enters a sentence containing an unknown word. From the
sentence context a set of so called hypotheses for the unknown word is derived. A
hypothesis is a pair of a word type (e.g. n intr le) and morphological stem (e.g.
‘walk’). The set hypotheses are all the type-stem pairs which could be valid for the
unknown word in the sentence. This method is an improvement to that of Erbach
(1990), Barg and Walther (1998) and Fouvry (2003) in the respect that:

• No filters are required to specifiy lexical entries.

• Multiple unknown words making up one lexical entry can be resolved.

• Morphologically complex unknown words can be resolved.

The system will then try to enter a dialogue similar to Knight’s (1996) multiple
choice dialogues (Section 2.1). The goal of this dialogue is to iteratively reduce the
set of hypotheses until only one type-stem pair remains. A key innovations is that
the system generates the multiple choice alternatives automatically. It takes sen-
tences from the grammar’s test suite and tries to apply a hypothesis to this sentence
in order to create a phrase for the user to accept or decline.

12



Finally the system will require the user to provide a translation of the original
sentence the unknown word was uttered in. This is similar to the paraphrasing
method Knight (1996) proposes. The semantics for the translation will then be
devised on a simple-tlink level as described by Copestake and Sanfilippo (1993).

In summary the Tauira system combines and extends the dialogue strategies
proposed by Kight (1996) with the syntactic extraction by Erbach (1990), Barg
and Walther (1998) and Fouvry (2003).

3.1.2 Modifications to Te Kaitito

Figure 3.1 shows the modified architecture of the Te Kaititito system for Tauria.
The system is extended with two extra procedural modules: Tauira and the prepro-
cesser and two extra declarative resource: the user lexicon and the preprocessed
test suite. The user lexicon consists of the newly created (i.e. previously un-
known) words for the current user. Also an additional declarative resource is used:
test suites.

If no unknown words are found in a parse the MRS is fed through the rest of
the system as usual. If an unknown word is found in the sentence, the sentence is
passed to Tauira. Tauira will create an appropriate response for the user (questions
concerning the unknown word) and will intercept input sentences (which are the
answers to the previous questions) from the user. Once all unknown words are re-
solved and added to the user lexicon, the original sentence is passed to the sentence
parser and the normal dialogue continues.

Tauira makes use of the preprocessed test suite to generate its output sentences.
The preprocessed test suite is filled with test items by the preprocessor. The pre-
processor does this on the basis of test suites.

3.1.3 Preprocessing: trawling a test suite to look for example sen-
tences

In order to decrease the number of hypotheses the user will be queried using exam-
ple sentences. Ideally, for each open word type t in the grammar, we would like to
find a sentence in which a word of type t appears, and no other open word type is
possible in the same sentence context. If we can find such a sentence we can query
the user if the unknown word w would be grammatically appropriate in this type.
If the user accepts this sentence as a correct sentence the word w is of type t; if the
user declines this sentence every hypothesis containing t will be removed from hy-
potheses. Potentially very useful sets of sentences are test suites, the reasons why
are explained in Section 3.2.3. For efficiency purpose sentences are preprocessed
so they can be used directly by the system; this process is described in Section 4.2.

13



LEGEND

Procedural module

Declarative module

created by the system
Declarative resource 

sentence
input

sentence
input tauira

(tauira on)

Grammars

English

Test suites

English

Preprocessed
Test Suite

preprocessor

sentence
parser

sentence
generator

output
sentence

(no unknown words)
(tauira off)

(unknown words)
input sentence original sentence

(no unknown words) sentence
output

MRS

(unknown words)

Maori

Lexicons

English

Maori

English

Maori

User

Morphological rules

Maori
test suite sentences test items

Figure 3.1: Tauira within the architecture of the Te Kaitito system

Before this can be done it has to be decided which word types are considered open
(class), this is discussed in Section 4.1.

3.1.4 Algorithm overview

The algorithm of Tauira performs the following basic steps to add a new word.
These are motivated in Section 3.2 and elaborated in Chapter 4.

1. Locate unknown words in the sentence.

2. Create hypotheses for the unknown word based on the context of the sen-
tence.

3. Decrease hypotheses until only one remains.

4. Ask for a translation and create semantic relations.

5. Repeat steps 1 to 3 for the translation if the translation is also a new word.

6. Add the new items to the lexicon.

7. Process the original sentence.

14



3.2 Motivation

3.2.1 Locating unknown words

The first step of the algorithm is to identify which are the unknown lexical entries
in the sentence and to make sure one at a time is processed. If there is only one
unknown word in the sentence, this step is trivial. If there are multiple unknown
words there are two possibilities:

1. Multiple unknown words make up one lexical entry.

2. Multiple unknown words make up separate lexical entries.

Possibility 1 will occur a lot since proper names such as (‘Maarten van Scha-
gen’) and Māori nouns with the word part ‘te’ such as ‘te taha ki’ will always be
a large class of unknown lexical entries. In case there are multiple consecutive
unknown words the user is consulted whether these make up one lexical entry.

Fouvry (2003) observes that in his current setup for feature extraction multiple
unknown words in a sentence can almost never be treated due to the compounded
ambiguity. So sentences of possibility 2 cannot be treated. Tauira can however take
advantage of the fact that it can consult the user directly. The system will therefore
ask the user to devise a sentence using just one of the unknown lexical entries. For
each lexical entry the steps of the algortithm can be traversed iteratively given this
new sentence.

3.2.2 Creating hypotheses

The next step is to create hypotheses for the unknown lexical entry based on its
sentence context. As described earlier in Section 2.2 Erbach (1990) and later Barg
and Walther (1998) have devised a technique to extract a feature structure for an
unknown word based on the context of the sentence the word is contained. Choos-
ing to adapt this algorithm is a very logical choice: Erbach (1990) came up with a
method for processing sentences which contain unknown words, Barg and Walther
(1998) refined this method and related it to a Head-driven Phrase Structure Gram-
mar (HSPG) and Fouvry (2003) created an implementation of their method using
the LKB system. Tauira will now use the method for creating a provisional feature
structure to be refined by a dialogue. The method first proposed by Erbach (1990)
always possesed two major drawbacks:

• Filters have to be defined to ensure there is no overspecification.

• Lexical items still have to be refined even after filtering (underspecification).

15



As for the first drawback in the English Resource Grammar (ERG) as observed
by Fouvry (2003), there has been a move from defining a word type and its features
to defining a sub-word type using this feature. E.g. a lexical entry for a possessive
intransitive noun is not defined as an intransitive noun (n intr le) with a possessive
feature set to + but as a possessive intransitive noun (n intr poss le) which is its
own type and has the possessive feature set.

This methodology for defining word types effectively defines filters. A filter is
after all nothing else then a description of features that need to be set. When no
features need to be set for any type, no additional definition of filters is required.
The system will therefore just need to add a disjunction of all open word classes as
the unknown word entry and find out which unknown word type parses. The set of
hypotheses generated by the system will therefor consist of all possible entries.

Erbach, Barg and Walther and Fouvry avoid using morphology. The Tauira
system however will deal with some forms of morphology. The morphology the
system will be able to handle is the regular morphology based on the rules defined
by the grammar writer. These morphological rules define the inflection of words
based on affixes and suffixes. E.g. for the ERG there is a rule for plurality inflect-
ing ‘dog’ to ‘dogs’, ‘albatross’ to ‘albatrosses’ but not ‘analysis’ to ‘analyses’.
Irregular words such as this latter example must be defined individually. These
morphological rules are based on the original stem of a word. Possible stems for a
word are found by applying these morphological rules backwards. This is done in
the same manner as the sentence parser except for the fact that the sentence parser
checks whether or not morphological stems exist in the lexicon and Tauira does
not.

3.2.3 Dialogue based approaches for hypothesis reduction

The next step is reducing the number of hypotheses to one to create an unam-
biguous lexical entry. Barg and Walther (1998) create complete lexical entries
by constantly updating incomplete lexical entries. Fourvry (2003) uses a part of
speech tagger to calculate the probability of a certain unknown word. Statistical
approaches are not neccessary for our system since we have the opportunity to
consult the user about all uncertainities concerning the unknown word. Since we
would like to be able to not only parse but also generate the sentence containing
the unknown word (since Te Kaitito is a bidirectional system) we require Tauira to
come up with a complete lexical entry.

I will now consider a number of different dialogue-techniques so that their
advantages and disadvantages can be considered. In the final paragraph of this
section I will motivate the chosen approach for the dialogue system.

16



Dialogue generated corpora

Analogous to the statistical method of Barg and Walther (1998) in Section 2.2.2
one could let the user provide various examples of the usage of the word until all
required features are set. E.g. by the following dialogue:

H: The albatross chases the cat.
C: I don’t know the word "albatross".
C: Could you give me another use of the word "albatross".
H: The cat chases the albatross

Although this it is fairly easy for the user to come up with new examples, it is
difficult for the user to come up with all possible applications of the word within
the grammar without having a linguistic background. Also the system would have
to know if certain sentences are not allowed for a certain word. The fact that the
word ‘water’ is not personifiable can only be known by finding out a sentence like
‘The water who is afraid’ is incorrect.

Linguistic multiple choice questions

Inspired by Knight’s (2003) example a multiple choice test can decide the type for
the word:

H: The albatross chases the cat.
C: I don’t know the word "albatross".
The system knows it is a noun, based on the sentence context but does not know whether
or not it is a personified noun
C: Can albatross be personified ?
H: Yes.

This method however directly violates the requirement that users require no
prior knowledge of the system or linguistics. For this method to comply to this
requirement the questions need to explain a lot more about the meaning of a syn-
tactical property. It would however be impossible to generate these elaborate ques-
tions automatically. These would have to be described by a grammar writer with
the ability to explain his grammar in layman’s terms.

Syntactical synonyms multiple choice questions

Analogous to Knight’s use of paraphrasing the user could specify a word with the
same syntactical abilities as the unknown word.

17



H: The albatross chases the cat.
C: I don’t know the word "albatross".
C: Is "albatross" more like "food" or "tree" ?
H: Tree.

These syntactical synonyms could be generated automatically without that much
difficulty since they are already part of the lexicon. The drawback of this approach
would be that users might have difficulty relating their word to the syntactic syn-
onym without the knowledge of the grammar of the system. Letting the user choose
syntactical synonyms freely (without multiple choice options) might not be practi-
cal since the words the user would come up with might not be in the lexicon.

Example phrases multiple choice questions

A way to comply with the requirement that the user need not be a linguist nor fa-
miliar with the system would be for the system to come up with example phrases
for the user to accept or refuse.

H: The albatross chases the cat.
C: I don’t know the word "albatross".
C: Is "The albatross who barks." a grammatically correct
sentence?
H: Yes.

The challenge however is generating these sentences automatically. Generating
all possible sentences based on a grammar will provide a very large set of sentences
to take examples from of which some will be unusable due to overgeneration, so
hand made sentences would be preferable.

A potential source of example sentences is test suites. A test suite is applicable
for use in example sentences because (a) it contains simple sentences and (b) it
should provide an example for every phenomena described by the grammar (see
Section 1.4). Naturally we have to make some assumptions about the coverage
of the test suite: even using a very extended test suite there is still a change no
example sentence can be generated for a specific hypothesis. In fact, the ability of
the test suite to provide sentences which disambiguate between word types can be
seen as a very usefull evaluation criteria (see Section 4.2.2).

18



Conclusion

Tauira will at first generate an example sentence for a word-type, because this
appears to be the most user friendly of the given approaches. Preferably these
sentences will be asked in a multiple choice fashion. If no example phrase can be
generated the syntactical synonyms multiple questions approach is chosen since
this is failsafe given a complete lexicon (in respect to the grammar).

3.2.4 Translation feature extraction

The next step is to find out the semantics for the unknown-lexical entry through its
translation. Since translation was not the emphasis of the project we will adopt Te
Kaitito’s basic translation scheme and not consider more complicated translations
such as in Copestake and Sanfillipo (2003).

Single word translation

A possibility for translation is to let the user specify the translation of the unknown
word in a dialog such as:

H: How does "albatross" translate to Māori?
C: Toroa

There are however a few complications about this method. First of all it would
be difficult to find out what part of speech the translation is. Māori adjectives
can for example be translated as either verbs or adjectives in English. Of course
a mapping of one source word type to possible translated word types could be
derived from the lexicon to create a set of hypotheses for the unknown word.

Secondly this method does not allow space for more complex translations such
as translating the English ‘take this hammer’ to the Dutch ‘pak deze hamer aan’
for ‘take’/‘aanpakken’.

Sentence translation

Another method of getting the user to provide a translation is by letting the user
translate the entire sentence it uttered the original word in. This bears close resem-
blance to the paraphrasing method of Knight (2003), as in the following example:

H: How does "The albatross chases the cat" translate to
Māori?

19



C: Ka whai te toroa i te ngeru.

First of all based on this sentence it is easy to create a set of hypotheses since
this is one unknown word within a sentence the system should be able to parse.
I.e. hypotheses for the translated word can be generated analogues to as they were
generated for the source word.

Secondly this method does allow space for more complex translations since the
translation is user-defined on a sentence level.

Conclusion

For the implementation the sentence translation method is chosen, since this is
easy to integrate with the rest of the components and it gives way to more complex
translations.

20



Chapter 4

Implementation

In this chapter the preprocessing and algorithm steps identified in Sections 3.1.3
and 3.1.4 are worked out in detail. The system was implemented in (Allegro)
Commen Lisp as the original LKB system was implemented in this as well.

4.1 Setting open word types

Before any creation of test items can be done it needs to be decided which word
types are considered as open. This can be done either by hand or by some heuristic.
When writing a grammar for each new type added it can be decided whether or not
this word type should be considered open. Proper names could be considered as
one of the openest types while the determiner type should be considered closed.
For a non-grammar writer however in a grammar such as the ERG consisting of
over five hundred word types it can be quite difficult to decide which types are
open. For this purpose a simple heuristic was defined: the number of occurrences
in the lexicon. Table 4.1 illustrates the number of word types remaining relative to
the minimal number of words required for a word type for the ERG (the cut-off).

For Tauira we have decided to take 10 as the cut-off effectively reducing the
number open word types to 86. A global variable *unknown-word-types* is cre-
ated, consisting of a list of all these types.

4.2 Creating test sentences

4.2.1 Preprocessing algorithm

Test sentences to use to query the user are created based on sentences from the
test suite’s set of sentences. These can be extracted from the tsdb database for test

21



Cut-off Types
1 560
2 294
3 215
4 162
5 139
7 103

10 86
20 60
50 29

100 19
750 4

1000 2

Table 4.1: Cutt-off and remaining word types for the ERG

suites (Oepen, 2001). For each sentence in the test suite:

1. The sentence is parsed.

2. The word types and morphological rules for each word are extracted.

3. For each word type which is in *unknown-word-types* a new test sentence
is created with a ’blank’ position.

4. We invent a special nonexistent stem, spelled ‘UNIWORDE’. It has this
spelling because every existing morphological rule can be applied to it. This
stem is added to a temporary lexicon as each possible open word type. We
then replace ’blank’ with an appropriately inflected version of ‘UNIWORDE’
and parse this sentence.

5. Word types of ‘UNIWORDE’ that are used to create a parse of the sentence
from the previous step are included in a set of ambiguous types called all-
types.

6. Each test sentence (sentence) with its type (type), ambiguous types (all-
types) and morphological inflectional rule (morph-rule) are written to a file
as a test-item.

I will provide an example for a sentence from the MRS test suite of English
using the ERG as a grammar. The sentence is ‘The dog arrived barking’. Step 1
will result in one possible parse.

22



Step 2: The determiner ‘the’ is of type det the le, ‘dog’ is an intransitive noun
and ‘arrived’ and ‘barking’ are both unergative intransitive verbs. ‘The’ and ‘dog’
have not undergone morphological inflection (i.e. they have nil-morphology) while
‘arrived’ and ‘barking’ are inflected by the rules for verbs to be put in past and
present participle form respectively.

Word ‘The’ ‘dog’ ‘arrived’ ‘barking’
Type det the le n intr le v unerg le v unerg le
Morph-rule nil nil past verb infl rule prp verb infl rule

Step 3: All words except ‘the’ are of a type in *unknown-word-types*. The
following test sentences are created: ‘The blank arrived barking.’, ‘The dog blank
barking.’, ‘The dog arrived blank.’.

Step 4: Each sentence is reparsed using the word ‘UNIWORDE’: ‘The UNI-
WORDE arrived barking.’, ‘The dog UNIWORDED barking.’, ‘The dog arrived
UNIWORDING.’.

Step 5 en 6: After parsing the sentences from step 5 the following test-items
are created.

Sentence ‘The blank arrived barking.’
Type n intr le
Morph-rule nil
All-types {n intr le, n holiday le, n mass le, n mass count le,

n mass count ppof le, n ppof le, n day of month le,
n mass ppcomp le, n month le, n plur xmod le, n ppcomp le,
n plur le, n year le, n plur ppcomp le, n intr temp le,
n season pp le, n day of week le, n proper le}

Sentence ‘The dog blank barking.’
Type v unerg le
Morph-rule past verb infl rule
All-types {v unerg le, v np trans le, v np* trans le, v unacc le,

v to* trans le}
Sentence ‘The dog arrived blank.’
Type v unerg le
Morph-rule prp verb infl rule
All-types {v unerg le, v np* trans le, v unacc le}

‘The blank arrived barking’ is a very ambiguous sentence since the ’blank’ can
be replaced by 17 other types ranging from holidays to proper names. Naturally,
since all grammars overgenerate, it will not be possible for a human to place every
lexical item of every type in all-types into this test sentece and still end up with a

23



cohert sentence. In many cases the resulting sentence will be semanticly abnormal
e.g. ‘The easter weekend arrived barking’ In other cases it might even appear
syntactically abnormal. e.g.(‘The William arrived barking’). We will return to this
in Section 4.5 when these test sentences are actually used.

‘The dog blank barking’ and even more so ‘The dog arrived blank’ are far less
ambiguous.

4.2.2 Evaluation

After a test suite has been preprocessed to create a set of test items of the kind
just described the effectiveness of every test sentence as a sentence to use when
querying the user can be evaluated. For this a number of benchmarks are defined:

1. The number of test-items for a certain word type. (If a word type is not used
at least once, then it will be impossible to positively verify a hypotheses, if
the unknown word is of this type.)

2. The (number of) positively indistinguishable word types for a certain word
type. Calculated by taking the intersection of all all-types sets of all test
items for a certain word type.

E.g. If the only test-items for v unerg le are those created in the exam-
ple of Section 4.2.1 then asking these questions would still leave the types
{v unerg le, v np* trans le, v unacc le} indistinguishable from each other
and make up the set of positively indistinguishable types.

3. The (number of) negatively indistinguishable word types for a certain word
type. This is calculated for word-type wt1 by removing those word-types wt2
from the positively indistinguishable word types for wt1 that do not have wt1
in the set of positively indistinguishable word types of wt2.

E.g. If besides the two test items mentioned in the previous example, the test
suite would have the following test-item preprocessed based on the sentence
‘He interviewed them’.

Sentence ‘He blank them.’
Type v np* trans le
Morph-rule past verb infl rule
All-types {v np* trans le, v np trans le, v to* trans le}

Then quering the user with this test item would result in the elimination of
word type v np* trans le if the word type is v unerg le. Negatively undis-
tingishable types for v unerg le for a test suite consisting of the previously
mentioned three tests are therefore {v unerg le, v unacc le}.

24



We have preprocessed the MRS test suite consisting of 107 English test sen-
tences provided with the English Resource Grammar. A cut-off of 10 was chosen
to select the open word types. The resulting benchmarks are displayed in Table
4.2.

Since these results left a lot of indistinguishable types the CSLI test suite also
provided with the ERG was preprocessed. Since it consisted of 961 wellformed
sentences it was cut into 20 files of 50 sentences which were preprocessed individ-
ually. Of these 20 files only 6 were preprocessed successfully. In the other files
there were sentences too complex for the preprocessor to handle so it ran out of
memory. (Fouvry (2003) also observes this problem in his implementation of an
unknown word processing system for the ERG on the LKB system.) The resulting
test-items were added to those preprocessed based on the MRS and the resulting
benchmarks are shown in Table 4.3.

These benchmarks provide a very nice formal illustration of the shortcomings
of a test suite. In the MRS test suite for example there is no test sentence distin-
guishing transitive from intransitive verbs or distinguishing unergative intransitive
from unaccusative intransitive verbs. In fact these benchmarks are very useful to
help a grammar writer choose new sentences to add to the test suite. This is a merrit
for future works (see Section 6.2.2).

This concludes the preprocessing of the test suite. The remainder of this chap-
ter describes in detail how Tauira deals with unknown words when they arise in a
dialogue.

4.3 Locating unknown words

The LKB system, when appropriately patched, will return which words are un-
known for the current lexicon when a sentence is parsed by the LKB’s parser. If
there are unknown words Tauira will initiate a subdialoge. The first step in this
dialogue is to make sure there is one unknown lexical entry per sentence to be re-
solved in the rest of the algortihm. If consecutive words are unknown the user is
consulted whether or not these words make up one lexical item.

If there is more than one unknown lexical item the user will be requested to
make a sentence using just this unknown word for each unknown word except the
last unknown word (since by that time all other unknown words are known).

H: The yellow-eyed penguin chases the albatross.
C: I do not understand yellow-eyed, penguin and albatross.
Is yellow-eyed penguin one word ?
H: Yes.

25



Name (Type) Occ Tests Poss-
indistinguishable
Types

Neg-
indistinguishable
Types

Intransitive vp
post adverb
(adv int vp post le)

142 0

np* transitive verb
(v np* trans le)

196 22 {v np* trans le,
v np trans le}

{v np* trans le,
v np trans le}

Energusative In-
transitive verb
(v uner le)

215 71 {v unerg le,
v unacc le}

{v unerg le,
v unacc le}

Particle np verb
(v particle np le)

217 2 {v particle np le} {v particle np le}

Intransitive vp ad-
verb (adv int vp le)

363 0

np transitive verb
(v np trans le)

676 6 {v np trans le,
v np* trans le,
v to* trans le}

{v np trans le,
v np* trans le,
v to* trans le}

proper name
(n proper le)

837 66 {n proper le,
n intr le,
n mass count le,
n mass le,
n mass count ppof le,
n proper abb le,
n mass ppcomp le}

{n proper le,
n mass count le,
n mass le,
n mass count ppof le,
n proper abb le}

Intransitive noun
(n intr le)

983 69 {n intr le,
n ppcomp le,
n mass count le,
n mass count ppof le,
n ppof le}

{n intr le,
n ppcomp le,
n mass count le,
n mass count ppof le}

(Intransitive) pp of
noun (n ppof le)

1057 8 {n ppof le,
n mass count ppoff le,
n holiday le,
n ppcomp le,
n day of week le}

{n ppof le,
n mass count ppoff le,
n holiday le,
n ppcomp le,
n day of week le}

Intransitive adjective
(adj intrans le)

1223 8 {adj intrans le,
adj trans le}

{adj intrans le,
adj trans le}

Table 4.2: Benchmarks for MRS test suite

26



Name (Type) Occ Tests Poss-
indistinguishable
Types

Neg-
indistinguishable
Types

Intransitive vp
post adverb
(adv int vp post le)

142 3 {adv int vp post le,
adv le, adv vp le,
adv int vp le}

{adv int vp post le,
adv le, adv vp le}

np* transitive verb
(v np* trans le)

196 85 {v np* trans le} {v np* trans le}

Energusative In-
transitive verb
(v uner le)

215 156 {v unerg le,
v unacc le}

{v unerg le,
v unacc le}

Particle np verb
(v particle np le)

217 4 {v particle np le} {v particle np le}

Intransitive vp ad-
verb (adv int vp le)

363 14 {adv int vp le,
n ppof le,
n mass count le,
n mass le,
n mass ppcomp le,
n plur xmod le,
n ppcomp le,
adv vp le, adv le,
n day of week le,
n generic pro adv le,
n intr temp le}

{adv int vp le,
n mass count le,
n mass ppcomp le,
n plur xmod le,
adv vp le,
n generic pro adv le,
adv le,
n intr temp le}

np transitive verb
(v np trans le)

676 136 {v np trans le,
v np* trans le,
v to* trans le}

{v np trans le,
v to* trans le}

proper name
(n proper le)

837 366 {n proper le,
n intr le}

{n proper le}

Intransitive noun
(n intr le)

983 134 {n intr le,
n ppcomp le,
n mass count le,
n mass count ppof le,
n ppof le}

{n intr le,
n ppcomp le,
n mass count le,
n mass count ppof le}

(Intransitive) pp of
noun (n ppof le)

1057 100 {n ppof le,
n ppcomp le}

{n ppof le,
n ppcomp le}

Intransitive adjective
(adj intrans le)

1223 19 {adj intrans le,
adj trans le}

{adj intrans le,
adj trans le}

Table 4.3: benchmarks for MRS test stuite extended with 300 CSLI test sentences

27



C: Could you make a sentence with ’yellow-eyed penguin’ and
words I understand.
H: The yellow-eyed penguin barks.

The system can now resolve the unknown word ‘yellow-eyed penguin’ in the
sentence ‘the yellow-eyed penguin barks’ and ‘albatross’ in the ‘The yellow-eyed
penguin chases the albatross’.

4.4 Creating hypotheses

Once it is certain there is one unknown lexical entry in each sentence a set of
hypotheses for this unknown lexical entry can be created based on the sentence
context. As explained in Section 3.1.1 a hypothesis is a pair of a word type and
stem. Hypotheses are creating using a generate and test algorithm. The generation
space consists of each open word type and stem. Possible stems are created using
the morphological rules defined in the grammar. E.g. for the ERG ‘jogged’ would
have ‘jog’, ‘jogg’, ‘jogge’ or ‘jogged’ as possible stems, while ‘penguin’ would
just have ‘penguin’ as a possible stem. Testing is done by adding the different
hypotheses to the lexicon and selecting those that result in successful parses.

Suppose the only open word types are unergative intransitive verbs (v unerg le)
and proper names n proper le) and the user has entered the sentence ‘He is hawking
the cat’ with unknown word ‘hawking’. The generation space is now {(v unerg le,
‘hawk’), (v unerg le, ‘hawke’), (v unerg le, ‘hawking’), (n proper le, ‘hawk’), (n
proper le, ‘hawke’), (n proper le, ‘hawking’)}. Suppose the grammar would both
allow sentences such as ‘He is walking the cat’ and ‘He is Garfield the cat’. Af-
ter testing the generation space would then be reduced to: {(v unerg le, ‘hawk’),
(v unerg le, ‘hawke’), (n proper le, ‘hawking’)}

4.5 Eliminating hypotheses

Choosing a word type is done by consulting the user. If available an example
phrase based on one from the test suite is created, otherwise a list of syntactical
synonyms is provided. To accomplish this the following strategies are attempted in
chronological order.

4.5.1 Multiple choice example phrases strategy

This strategy is tried first but requires there is only one stem for each word type.

28



1. For the hypothesis with the highest occurrence in the lexicon the test is se-
lected where the intersection between hypotheses and the ambiguous types
(test.all-types) is the smallest.

2. For hypotheses that do not appear test.all-types of used test’s step 1 is re-
peated until no more adequate tests can be found.

3. For each test the morphological rule (test.morph-rule) is applied to the hy-
pothesised stem and the result is inserted into the test sentence (test.sentence).

The different tests will be asked as a multiple choice question of the form:

Which sentence is correct ?
1. applied sentence for test 1
2. applied sentence for test 2
3. None.

If only one test is found a question of the following form is asked:

Is ’applied sentence for test 1’ a correct sentence ?

If the user answers by picking one of the example phrases hypotheses is set to
those with types of the ambiguous types of that test item. If the user responds that
none of the sentences are correct all the original types of the test-sentences will be
removed. The ambiguous types are not removed as hypotheses since as explained
in Section 4.2 these may not make sense for the user although they will be parsed
by the grammar. (Recall the example ‘the William arrived barking’.)

Suppose the user enters ‘She walks’, where the word ‘walks’ is unknown; the
user will be left with the type-hypotheses {v unerg le, v np* trans le, v unacc le,
va modal neg le} meaning the word could be an intransitive verb (both unerga-
tive and unaccusative), a transitive verb or a negative modal expression (e.g. ‘she
needn’t’).

The first test to be selected is based on the test suite sentence ‘the dog arrived
and barked’ since ‘barked’ is an unergative intransitive verb (and v unerg le is
most frequent in the lexicon) and a word replacing ‘barked’ in this sentence can
by either an unergative or an unaccusative verb. If the user accepts this phrase the
unknown word could be either one of these types. If the user does not select this
sentence only v unerg le will be removed as a hypothesis since there is no way to
be sure whether or not it will make sense for a non accusative verb.

Since v unerg le and v unacc le are already used in an alternative the algorithm
will attempt to find a test for either v np* trans le or va modal neg le. The test

29



based on ‘He interviewed them’ has three different transitive verbs ({v np* trans le,
v np trans le, v to* trans le}) as ambiguous types but only one of these is a hy-
pothesis, so it is a good candidate. No test for va modal neg le can be found.
Based on these tests the following multiple choice question can be asked to the
user. (The corresponding remaining hypotheses types are shown in curly braces
for each answer).

Which sentence is correct?
1 The dog arrived and walked. {v unerg le, v unacc le}
2 He walked them. {v np* trans le}
3 None {v unacc le, va modal neg le}

4.5.2 Single choice example phrases strategy

This strategy is tried secondly if the multiple choice example phrases strategy does
not succeed. Stems are ordered with the shortest stem first (e.g. ‘bark’ before
‘barked’), not only because this is will out rule any ambiguity since morphological
rules always extend the stem. For example ‘I walked’ can be both accepted for the
stem ‘walked’ (present tense, e.g ‘I bobsled’) as ‘walk’ (past tense). But ‘I walk’
can only be accepted for the stem ‘walk’.

1. For the hypothesis with the highest occurrence in the lexicon the test is se-
lected where the intersection between the other hypotheses and the ambigu-
ous types test.all-types is the smallest.

2. The user is asked a yes-no question about the grammaticality of the sentence
of the test item applied to the shortest stem for its type. The shortest stem is
chosen from multiple stems because this will correctly filter out the different
morphological analyses. For example, asking wether or not the sentence ‘I
bobsled’ is correct for ‘bobsled’ can be answered affirmatively both when
interpreting this as the verb ‘bobsle’ in the past tense or the verb ‘bobsled’
in the present tense. When applying the shortest stem first the sentence ‘I
bobsle’ is asked to the user which can only be interpreted as the verb ‘bobsle’
in the present tense.

3. If the user accepts the sentence only hypotheses remain that a) have a type
in test.all-types (like the previous strategy) and b) have a stem which can
be inflected to the form as appeared in the sentence queried to the user (e.g.
both ‘chas’ and ‘chase’ can be inflected to ‘chased’ for the sentence ‘the
dog arrived and chased’) . If the user declines the sentence, hypotheses of

30



test.type and having a stem which can be inflected to the form as appeared in
the sentence queried to the user are removed.

For example let’s say that in stead of the phrase ‘She walks’ the user has entered
‘I walked’, where ‘walked’ is the unknown word. Possible hypotheses now are
{(v unerg le, ‘walk’), (v unerg le, ‘walke’), (v unerg le, ‘walked’), (v np* trans le,
‘walk’),(v np* trans le, ‘walke’), (v np* trans le, ‘walked’), (v unacc le, ‘walk’),
(v unacc le, ‘walke’), (v unacc le, ‘walked’), (va modal neg le, ‘walked’)} . Ev-
ery type has three different stems since the phrase can be in past as well as present
tense (with ‘walked’ being the past tense inflection of either the verb ‘walke’ or
‘walk’). This does not apply for va modal neg le since there is no inflection on
this type in this context (e.g. Only ‘I needn’t’ is possible for stem ‘needn’t’).

The same test (‘the dog arrived and barked’) is selected and consulted to the
user with the shortest stem for v unerg le.

Is ’the dog arrived and walked’ a correct sentence ?

If the user replies yes, ‘walked’ can be removed as possible stem since then
the sentence would read ‘the dog arrived and walkedded’. Hypotheses of other
types than v unerg le or v unacc le are removed. The resulting hypotheses then
are: {(v unerg le, ‘walk’), (v unerg le, ‘walke’), (v unacc le,‘walk’), (v unacc le,
‘walke’)} If the user replies ’no’, only (v unerg le, ‘walk’ and (v unerg le, ‘walke’)
are removed as possible hypotheses, since there is no way of knowing wether the
rejection of the sentence is due to the stem or the word type.

4.5.3 Multiple choice example words strategy

If the example phrases strategies fail because no applicable test items can be found
the user left to choose between examples from the lexicon for a specific word. The
only hypotheses remaining after this example are those corresponding to the exam-
ple types. For the previous example, if there would be no more example phrases
the system would ask examples for unergative and unaccusative intransitive verbs.:

Which of these words is most like your word ?
1. ’arise’, ’withdraw’, ’cook’
2. ’flop’, ’intervene’, ’linger’

31



4.5.4 Multiple choice stem selection strategy

If after the previous three strategies the stem still remains ambiguous, the user is
directly consulted about the stem. After this strategy there will certainly be only
one hypothesis remaining. For our example this would be:

What is the stem of ’walked’ ?
1. walk
2. walke

4.6 Translation request

After the authoring process for a word is complete a translation for the original
input sentence is requested from the user. Since this new sentence possesses only
new words due to the original new word the semantics of the translated word are
trivial. A the moment the algortihm allows three possiblities for translation:

• The word in translation and source is the same, e.g. for proper names.

• An existing word is in the translation for the source word.

• A new word (or set of consecutive words) is in the translation for the source
word.

If the latter is the case then based on this new sentence steps 1 to 3 from the
original algorithm (Section 3.1.4) are revisited for the translated word.

4.7 Finalization

After the lexical entries for both words are known they are given the semantic
predicate (derived from the orthography of the source word) and are added to the
lexicon. The addition of new words to the lexicon dynamicly was quite an under-
taking since the LKB system was designed with the thought that all words would
be loaded at the start of a session (either from a file or database).

The new lexical entries will also be re-indexed so the system is able to para-
phrase (for a bilingual grammar translate) the sentence. The original input sentence
can now be parsed by the original system (e.g. the dialogue or translation system)
and the original dialogue can now resume.

32



Chapter 5

Results

In this chapter the results of Tauira will be illustrated be means of a set of typical
examples. In Section 5.1 two examples for a unknown word with many hypotheses
will be given. In Section 5.2 an example which illustrates the morphological dis-
ambiguiation will be given. These examples were generated running Tauira on the
ERG using the preprocessed test suite described in Section 4.2.2 and Illustrated in
Table 4.3.

Section 5.3 illustrates how Tauira deals with multiple words and translation.
This example was generated running Tauira on Te Kaitito’s bilingual grammar us-
ing the test suite from Table 4.3 extended with test items preprocessed from a set
of Māori sentences. Te Kaitito uses the same English word types as the ERG.

For each example the remaining set of hypotheses and an identifier for each
question are shown. These are not visible to the user in normal systems operation.

5.1 High ambiguity example

These examples demonstrate how hypotheses are reduced for a very large set of
hypotheses. The sentence ‘my name is Maarten’ yields a large set of hypotheses
for unknown word ‘Maarten’ and trivially ‘my name is dutch’ yields the same set
of hypotheses but for the unknown word ‘dutch’.

5.1.1 Proper name
‘Maarten’ has no morphological inflection so only pairs with the stem ‘maarten’
are generated for the sentence ‘my name is maarten’. The multiple choice example
phrases strategy is used for Question Q1.1. Alternative 1 tests intransitive adjec-
tives (the most frequent word type), Alternative 2 tests for nouns allowing the ‘..
of ..’ coustruction. Because all intransitive noun tests also parse for the nouns of

33



alternative 2 as seen in Table 4.3, there will be no alternative generated within this
question for intransitive nouns. So alternative 3 is a sentence for the next probable
type, namely the proper name, which is the alternative user will select. Questions
Q1.2 and Q2.2 eliminate the hypotheses which also parse for alternative 3 using
the single choice example phrases strategy.

> my name is maarten

hypotheses = {(adj intrans le, ‘maarten’), (n ppof le, ‘maarten’),
(n intr le, ‘maarten’), (n proper le, ‘maarten’), (adv int vp le, ‘maarten’),
(adv int vp post le, ‘maarten’), (n mass count le, ‘maarten’), (n mass le,
‘maarten’), (adj bare unspecified card two le, ‘maarten’), (n mass count ppof le,
‘maarten’), (adv disc le, ‘maarten’), (adj trans le, ‘maarten’), (adj comp le,
‘maarten’), (n proper abb le, ‘maarten’), (n mass ppcomp le, ‘maarten’),
(adj superl prd le, ‘maarten’), (n year le, ‘maarten’), (n plur xmod le,
‘maarten’), (n ppcomp le, ‘maarten’), (n plur le, ‘maarten’), (adv vp post le,
‘maarten’), (n month le, ‘maarten’), (pp le, ‘maarten’), (n hour le, ‘maarten’),
(adj bare unspecified card one le, ‘maarten’), (n adv le, ‘maarten’),
(adv vp aux le, ‘maarten’), (adv vp le, ‘maarten’), (n day of week le,
‘maarten’), (n generic pro adv le, ‘maarten’), (adj pred intrans le, ‘maarten’),
(n approx hour le, ‘maarten’), (adv le, ‘maarten’), (n generic pro le, ‘maarten’),
(n plur ppcomp le, ‘maarten’), (n season pp le, ‘maarten’), (n intr temp le,
‘maarten’)}

Q1.1 I do not understand the word MAARTEN.
Which of these phrases illustrates the correct use of
MAARTEN ?
1. how maarten was abrams
2. the maartens of the projects are trustworthy
3. mr maarten browne is the manager
4. there are five maarten in the room aren t there
5. None
> 3

hypotheses = {(n intr le, ‘maarten’), (n proper le, ‘maarten’), (n mass count le,
‘maarten’), (n mass le, ‘maarten’)}

Q1.1 Is ’five of the seven maartens work for abrams’ a
correct sentence ?
> no

hypotheses = {(n proper le, ‘maarten’), (n mass count le, ‘maarten’), (n mass le,
‘maarten’)}

Q1.2 Is ’maarten knows that sara will sleep doesn t he’ a
correct sentence ?
> yes

34



hypotheses = {(n proper le, ‘maarten’)}

...

5.1.2 Adjective
For the sentence ‘my name is dutch’ the set of hypotheses and the first question
(Q1.4) is the same as Question Q1.1 except for the word spelling. The user will
now however select alternative 1. A lot of adjectives and adverbs however also
parse for this alternative, so the system comes up with another multiple choice
question (Q.1.5). As shown in Table 4.3 with the currently processed part of the
test suite no distiction between transitive and intransitive adjectives can be made.
Therefore Question Q.1.6 provides a number of example words to choose from.
The helpful ‘European’ example assists the user in its choice for alternative 1.

> my name is dutch

hypotheses = {(adj intrans le, ‘dutch’), (n ppof le, ‘dutch’), (n intr le, ‘dutch’),
(n proper le, ‘dutch’), (adv int vp le, ‘dutch’), (adv int vp post le, ‘dutch’),
(n mass count le, ‘dutch’), (n mass le, ‘dutch’), (adj bare unspecified card two le,
‘dutch’), (n mass count ppof le, ‘dutch’), (adv disc le, ‘dutch’), (adj trans le,
‘dutch’), (adj comp le, ‘dutch’), (n proper abb le, ‘dutch’), (n mass ppcomp le,
‘dutch’), (adj superl prd le, ‘dutch’), (n year le, ‘dutch’), (n plur xmod le, ‘dutch’),
(n ppcomp le, ‘dutch’), (n plur le, ‘dutch’), (adv vp post le, ‘dutch’), (n month le,
‘dutch’), (pp le, ‘dutch’), (n hour le, ‘dutch’), (adj bare unspecified card one le,
‘dutch’), (n adv le, ‘dutch’), (adv vp aux le, ‘dutch’), (adv vp le, ‘dutch’),
(n day of week le, ‘dutch’), (n generic pro adv le, ‘dutch’), (adj pred intrans le,
‘dutch’), (n approx hour le, ‘dutch’), (adv le, ‘dutch’), (n generic pro le, ‘dutch’),
(n plur ppcomp le, ‘dutch’), (n season pp le, ‘dutch’), (n intr temp le, ‘dutch’)}

I do not understand the word DUTCH.
Q1.4 Which of these phrases illustrates the correct use of
DUTCH ?
1. how dutch was abrams
2. the dutches of the projects are trustworthy
3. mr dutch browne is the manager
4. there are five dutch in the room aren t there
5. None
> 1

hypotheses = {(adj intrans le, ‘dutch’), (adv int vp le, ‘dutch’), (adv int vp post le,
‘dutch’), (adj bare unspecified card two le, ‘dutch’), (adj trans le, ‘dutch’),
(adj superl prd le, ‘dutch’), (n hour le, ‘dutch’), (adj bare unspecified card one le,
‘dutch’), (adv vp le, ‘dutch’), (adj pred intrans le, ‘dutch’), (adv le, ‘dutch’),
(n approx hour le, ‘dutch’)}

35



Q1.5 Which of these phrases illustrates the correct use of
DUTCH ?
1. abrams works for a dutch manager
2. how dutch does abrams interview a programmer
3. dutch hundred twenty dogs bark
4. None
> 1

hypotheses = {(adj intrans le, ‘dutch’), (adj trans le, ‘dutch’)}

Q1.6 Which of these words is most like your word ?
1. ’european’, ’stupid’, ’gusty’
2. ’uncertain’, ’invisible’, ’aware’
> 1

hypotheses = {(adj intrans le, ‘dutch’)}

...

5.2 Morphology example

The sentence ‘I danced’ generates three possible morphological stems: ‘danc’,
‘dance’ and ‘danced’. Within the sentence these morphological stems can be all
be linked to three verb types (two intransitive and one transitive verb). For the
negative modal verb type (va modal neg le, with stems such as ‘needn’t’) only the
orginal spelling is possible as a verb type.

Question Q2.1 is a test for transitive verbs. Since stems ‘danc’ and ‘dance’ are
both inflected to ‘danced’ accepting this sentence is therefore accepting these two
stems (and the word-types parsing for this sentence).

Question Q2.2 is just used for stem checking; in this case the shortest stem
‘danc’ is not the correct one, and refusing it will only remove the pair with the
type tested (v unerg le). Since there is no test distinguishing between unergative
and unaccusative verbs a list of syntactical synonyms is given in Question Q2.3.
Unlike Question Q1.6 this might be a bit harder to answer, though ‘dance’ is se-
mantically and syntactically close to ‘stand’.

> I danced

hypotheses = {(v unerg le, ‘danc’), (v unerg le, ‘dance’), (v unerg le, ‘danced’),
(v np* trans le, ‘danc’), (v np* trans le, ‘dance’), (v np* trans le, ‘danced’),
(v unacc le, ‘danc’), (v unacc le, ‘dance’), (v unacc le, ‘danced’), (va modal neg le,
‘danced’)}

36



Q2.1 I do not understand the word DANCED.
Is ’the dog arrived and danced’ a correct sentence ?
> yes

hypotheses = {(v unerg le, ‘danc’), (v unerg le, ‘dance’), (v unacc le, ‘danc’),
(v unacc le, ‘dance’)}

Q2.2 Is ’abrams dancs for browne’ a correct sentence ?
> no

hypotheses = {(v unerg le, ‘dance’), (v unacc le, ‘danc’), (v unacc le, ‘dance’)}

Q2.3 Which of these words is most like your word ?
1. ’stand’, ’orientate’, ’bay’
2. ’bust’, ’grow’, ’blow’
> 1

hypotheses = {(v unerg le, ‘dance’)}

...

5.3 Bilingual Multiple word example

The example in this section illustrates the use of multiple words and translation
of words. Since ‘yelloweyed penguin’ appears as a consecutive clause within ‘the
albatross chases the yelloweyed penguin’ the user is consulted in Question Q3.1
whether or not this makes up one lexical entry, which it does. Since this still
leaves two unknown words in the sentence the user is asked to make a sentence
with only the unknown word ‘albatross’. This generates a set of hypotheses which
are reduced in Question Q3.3 to Q3.5. It is interesting to mention that alternative
1 of Question Q.3.3 is incorrect because the ERG has a specific feature deciding
whether or not a noun can be compared to be ‘of’ something.

From Question Q3.6 the translation for ‘albatross’ is devised and based on
the sentence a set of hypotheses is created. This set is small because the number
of word types for the Māori grammar are small. In Question Q3.7 the number
of hypotheses are reduced, and both ‘albatross’ and its translation in Māori are
resolved.

Question Q3.8 to Q3.10 now resolves ‘Yelloweyed penguin’ which is treated as
one lexical entry and the only unknown word in the sentence ‘the albatross chases
the yelloweyed penguin’. In Question Q3.11 the translation of ‘yelloweyed pen-
guin’ is resolved and the original sentence can be translated.

> the albatross chases the yelloweyed penguin

37



Q3.1 I do not understand the words ALBATROSS, YELLOWEYED,
PENGUIN. Is YELLOWEYED PENGUIN one word ?
> yes
Q3.2 Could you provide me an example sentence with the
unknown word ’ALBATROSS’ using words I know ?
> the albatross eats

hypotheses = {(n ppof le, ‘albatross’), (n intr le, ‘albatross’), (n proper le,
‘albatross’), (n mass count le, ‘albatross’), (n mass le, ‘albatross’),
(n mass count ppof le, ‘albatross’), (n day of month le, ‘albatross’), (n holiday le,
‘albatross’), (n mass ppcomp le, ‘albatross’), (n year le, ‘albatross’), (n ppcomp le,
‘albatross’), (n month le, ‘albatross’), (n day of week le, ‘albatross’),
(n season pp le, ‘albatross’), (n intr temp le, ‘albatross’)}

Q3.3 Which of these phrases illustrates the correct use of
ALBATROSS ?
1. the albatrosses of the projects are trustworthy
2. mr albatross browne is the manager
3. browne was hired on january albatross 1984
4. None
> 4

hypotheses = {(n intr le, ‘albatross’), (n mass count le, ‘albatross’), (n mass le,
‘albatross’), (n mass count ppof le, ‘albatross’), (n mass ppcomp le, ‘albatross’),
(n holiday le, ‘albatross’), (n year le, ‘albatross’), (n ppcomp le, ‘albatross’),
(n month le, ‘albatross’), (n day of week le, ‘albatross’), (n season pp le, ‘alba-
tross’), (n intr temp le, ‘albatross’)}

Q3.4 Is ’he showed her an albatross’ a correct sentence ?
> yes

hypotheses = {(n intr le, ‘albatross’), (n mass count le, ‘albatross’),
(n mass count ppof le, ‘albatross’), (n ppcomp le, ‘albatross’)}

Q3.5 Which of these words is most like your word ?
1. ’sec’, ’counter narcotics’, ’paycheck’
2. ’school’, ’black’, ’distance’
3. ’delivery’, ’record’, ’treatment’
4. ’specification’, ’subscriber’, ’deviation’
> 1

hypotheses = {(n intr le, ‘albatross’)}

Q3.6 What is the translation of ’the albatross eats’ in
Māori.
> ka kai te toroa

hypotheses = {(m-noun-lxm, ‘toroa’), (m-aha-noun-lxm, ‘toroa’)}

38



Q3.7 Is ’kua pai te toroa’ a correct sentence ?
> yes

hypotheses = {(m-noun-lxm, ‘toroa’)}

hypotheses = {(n ppof le, ‘yelloweyed penguin’), (n intr le, ‘yelloweyed pen-
guin’), (n proper le, ‘yelloweyed penguin’), (n mass count le, ‘yelloweyed pen-
guin’), (n mass le, ‘yelloweyed penguin’), (n mass count ppof le, ‘yelloweyed pen-
guin’), (n day of month le, ‘yelloweyed penguin’), (n mass ppcomp le, ‘yelloweyed
penguin’), (n holiday le, ‘yelloweyed penguin’), (n year le, ‘yelloweyed pen-
guin’), (n plur xmod le, ‘yelloweyed penguin’), (n ppcomp le, ‘yelloweyed pen-
guin’), (n plur le, ‘yelloweyed penguin’), (n month le, ‘yelloweyed penguin’),
(n day of week le, ‘yelloweyed penguin’), (n plur ppcomp le, ‘yelloweyed penguin’),
(n season pp le, ‘yelloweyed penguin’), (n intr temp le, ‘yelloweyed penguin’)}

Q3.8 Which of these phrases illustrates the correct use of
YELLOWEYED PENGUIN ?
1. the yelloweyed penguins of the projects are trustworthy
2. mr yelloweyed penguin browne is the manager
3. browne was hired on january yelloweyed penguin 1984
4. there are five yelloweyed penguin in the room aren t
there
5. None
> 5

hypotheses = {(n intr le, ‘yelloweyed penguin’), (n mass count le, ‘yelloweyed pen-
guin’), (n mass le, ‘yelloweyed penguin’), (n mass count ppof le, ‘yelloweyed pen-
guin’), (n holiday le, ‘yelloweyed penguin’), (n mass ppcomp le, ‘yelloweyed pen-
guin’), (n year le, ‘yelloweyed penguin’), (n plur xmod le, ‘yelloweyed penguin’),
(n ppcomp le, ‘yelloweyed penguin’), (n plur le, ‘yelloweyed penguin’), (n month le,
‘yelloweyed penguin’), (n day of week le, ‘yelloweyed penguin’), (n season pp le,
‘yelloweyed penguin’), (n intr temp le, ‘yelloweyed penguin’)}

Q3.9 Is ’list yelloweyed penguins who have bookcases’ a
correct sentence ?
> yes

hypotheses = {(n intr le, ‘yelloweyed penguin’), (n mass count le, ‘yelloweyed pen-
guin’), (n mass count ppof le, ‘yelloweyed penguin’), (n ppcomp le, ‘yelloweyed
penguin’)}

Q3.10 Which of these words is most like your word ?
1. ’sec’, ’counter narcotics’, ’paycheck’
2. ’school’, ’black’, ’distance’
3. ’delivery’, ’record’, ’treatment’
4. ’specification’, ’subscriber’, ’deviation’
> 1

39



hypotheses = {(n intr le, ‘yelloweyed penguin’)}

Q3.11 What is the translation of ’the albatross chases the
yelloweyed penguin’ in Māori.
> ka whai te toroa i te hoiho

hypotheses = {(m-noun-lxm, ‘hoiho’)}

’the albatross chases the yelloweyed penguin’ translates to:
ka whāia te hoiho e te toroa
ka whai te toroa i te hoiho

40



Chapter 6

Summary and future works

The first part of this chapter summarizes the main limitations (Section 6.1) and the
various gains (Section 6.2) of the project.

The second part explores future works to be done to improve the system (Sec-
tion 6.3) and further expand its functionality (Section 6.4). Finally future applica-
tions of Tauira are discussed (Section 6.5).

6.1 Project limitations

The quality of Tauira’s natural language dialogue suffers from two major limita-
tions, explained in this Section. First of all the questions asked to the user rely on
the quality of the sentences of the original test suite (Section 6.1.1); secondly the
questions are ristricted by the grammar used (Section 6.1.2).

6.1.1 Test suites

In Section 1.4 it is mentioned that one of the characteristics of a test suite is that
every grammatical phenomenon is covered systematically. If we see word types
as grammatical phenomena then it can be seen from Table 4.2 that this character-
istic does not apply to the MRS test suite. The first benchmark for test suites, the
number of times a word type occurs in the of tests suite, rates 0 for 2 out of the
ten most frequent word types defined by the ERG. Of the ten most frequent word
types that are used in the MRS test suite only one is used such a way that it is indis-
tinguishable from any other word type (v particle np le thanks to the test sentence
‘Browne squeezed the cat in’).

The CSLI test suite is over nine times larger and should be able to cover more
word types. Because of the complexity (and not the multitude!) of the sentences

41



preproccessing becomes too complex. Fouvry (2003) mentions this in his paper
when he attempts unknown word analysis of long sentences. Table 4.3 does provide
encouraging results based on a total of 400 test sentences that were preprocessed.
Of the ten most frequent words there are two uniquely distinguishable and eight
are only indistinguishable from up to one other word type.

For a smaller grammar such as Te Kaitito’s Māori grammar the a small test
suite is already enough to distinguish between different types. Questions using
example sentences will also not show up a lot of the time within the dialogue since
the original set of hypotheses created is quite small.

6.1.2 Grammar

The usefulness of Tauira’s dialogue is dependent on the grammar used. Sometimes
the grammar is too generalized (overgeneration); the ERG for example does not
distinguish between male and female proper names which means the ERG will
accept the sentence ‘Mary knows that Sara will sleep doesn’t he ?’ . When the user
is asked whether or not the previous sentence is correct he or she should answer
affirmatively, against her or his natural intuition. In other instances the grammar is
too restrictive for a user (undergeneration). The ERG will allow the construction
‘The managers of the projects are trustworthy’ for ‘manager’ but not for ‘dog’.
This although searching for the phrase ‘dogs of war’ returns over 137.000 hits from
the Google internet search engine. So in order for ‘albatross’ to be of the same
lexical entry as ‘dog’ the phrase ‘the albatrosses of the project are trustworthy’
must be refused, which again can go against the user’s intuition.

Overgeneration of a grammar can be tested by randomly selecting words of the
same word-type as a word in a sentence and replacing this word with the origi-
nal word and see if this still leaves an acceptable sentence. For instance replacing
‘Bob’ with ‘Mary’ in ‘Bob knows that John will sleep doesn’t he ?’. Undergen-
eration of a grammar can be tested by placing a word of different word type then
the original wordtype in a sentence and see if this still leaves an acceptable sen-
tence for instance replacing ‘dog’ with ‘manager’ ‘The managers of the projects
are trustworthy’. The testing method for undergeneration could be restricted to
wordtypes differing only in a limited number of features from the original word
type (preventing verb types replacing noun types).

6.2 Project Gains

In this section the gains of the project are summarized: the functionality of the
LKB system has been extended (Section 6.2.1); Evaluation criteria for grammars

42



and test suites have been established (Section 6.2.2); Unknown word processing
techniques have been improved (Section 6.2.3) and a lexical acquisition tool that
operates within a (bilingual) dialogue has been created (Section 6.2.4).

6.2.1 LKB system

As described earlier the LKB system was not developed with dynamic addition of
words in mind. So in order to achieve this a number of new functions were written.
These functions could be used for numerous other applications besides Tauira, and
consits of:

• A function for creating a lexical entry based on spelling and word type.

• A function for saving a lexicon to a lexical file readable by the LKB and
grammar writers.

• A function to add new words to a lexicon.

Additional re-usable extensions of the LKB system include a function to set
the global variable for open word types (*unknown-word-types*) using a cut-off
and a function to store well-formed tsdb test sentences (Oepen, 2001) in files of a
specified size.

6.2.2 Evaluation criteria

Two evaluation criteria have emerged from the Tauira project for grammar writers
to evaluate their work. First of all the benchmarks of Section 4.2.2 can be used
to test the coverage of test suite sentences on the grammars word types. Secondly
the ability of non-linguist users to correctly handle the dialogues created by Tauira
(such as those in Chapter 5) can exemplify weak and strong points of a grammar
like those discussed in Section 6.1.2.

6.2.3 Processing of unknown words

Tauira extends the theory of Erbach (1990), Barg and Walther (1998) and Fouvry
(2003) in two ways. Firstly it simplifies the creation of a new lexical entry by
explicitly formulating a set of simple hypotheses, which can be eliminated one by
one, in stead of creating a disjunct feature structure which needs to be filtered.

Secondly, Tauira takes morphological information into acount in unknown word
processing. Using morphological stems as opposed to using word spellings allows
for a truly robust processing of unknown words not offered by any of the previous
works.

43



6.2.4 Lexical acquisition in a dialogue context

The lexical acquisition tool created in the course of this project conforms to the
project goals stated in Section 1.5. Because Tauira is a lexical acquisition tool
in the context of a dialogue more then one unknown word per sentence can be
resolved; this is something Erbach, Barg and Walther and Fouvry could not as
easily work around.

Within its dialogue context Tauira provides, given the limitations of Section
6.1, a simple natural language dialogue through which a non-linguist can author
new words. The questions asked in order to author the unknown words are gen-
erated automatically and therefore evolve together with the development of the
grammar and test suite. Even large test changes to the grammar such changing the
way a lexical entry is represented can be accounted for in Tauira (See Apppendix
A for the grammar writer’s guide).

The whole system also operates in and remains true to the bilingual structure
of Te Kaitito: for each word its translation must also be resolved and the entire
dialogue can be conducted by both Māori and Pakeha in their own language.

6.3 Improving usability

The current version of of Tauira could have some improvement for ease of use.
The question strategies used require an evaluation (Section 6.3.1); errors made by
the users could be taken into account (Section 6.3.2); statistics could reduce the
number of hypotheses generated (Section 6.3.3); example sentences could be more
carefully selected (Section 6.3.4); homonyms of equal word type are not consid-
ered (Section 6.3.4); the checks on sentence translation need improvement (Section
6.3.5) and the re-indexing process required for generation could be improved (Sec-
tion 6.3.6).

6.3.1 User evaluation

The actual quality of the dialogues of Tauira in human-computer interaction has
not been tested. To do this an independent user evaluation has to take place. This
evaluation could consist of a randomised controlled trail in which users would be
asked to enter sentences containing unknown words. The various groups could
be (a) users using the Tauira system; (b) Users using Tauira without the example
sentence stategies (Section 4.5.1 and 4.5.2); (c) users authoring words by selecting
the right type name and (d) the grammar writer. Results (number of correct types,
duration of the authoring process) could then be compared to find out how the
different groups match up to the grammar writer.

44



6.3.2 User errors

The current setup pays little attention to possible errors made by users. Some sim-
ple improvements could be made to give the user a chance to correct these mistakes
such as a spellchecker and undo/abort functionality. A spell checker could easily
check whether an unknown word is closely related to a existing word in the lexicon
and ask for feedback from the user as in the following dialogue.

> The dog braks
Did you mean ’The dog barks’ ?

When the user wishes to reconsider its last answer calling ‘undo’ could set
the system back to the previous step. Analogously ‘abort’ could abort the entire
subdialogue as if the original sentence had never been entered.

6.3.3 Statistics

The current design is completely symbolic. Fouvry (2003) notes that by using his
Part of Speech tagger that even when still considering highly unlikely odds (1 to
10.000) the PoS tagger is still able to make a significant reduction to the number
of words types. It would be worth to see if a PoS tagger would be able to decrease
the number of initial hypotheses. Of course one would have to find a tagged Māori
corpus to train the PoS tagger on.

6.3.4 Selecting example sentences

At the moment the only criteria on which test-items are selected is the number
of hypotheses they eliminate. To select the user friendliest test items a heuristic
could be calculated to select the least complex sentence. This heuristic could be
calculated by the preprocessor based on one or more of the following:

• The length of the sentence.

• The number of rule applications.

• The size of the feature structure.

• The degree of ambiguity of the sentence.

Also in itsdb one has the ability to define phonomenon categories such as noun
phrase agreement and link a phenomenon category to each test suite sentence. In
the TSNLP, MRS and CSLI test suites there is no category for word types. Defining

45



such a category and linking these to test suite sentences would make sure that
sentences of this category are used preferentially in Tauira’s questions.

Homonyms of equal word type

The first type of homonyms have equal part of speech like the Dutch ‘ezel’ trans-
lating both to ‘donkey’ as ‘easel’. Consider the following dialogue where Tauira is
working with a Dutch-English grammar and the word ‘easel’ is unknown but ‘ezel’
and ‘donkey’ are known.

> The easel was rather old
I do not understand the word ’EASEL’
...
What is the translation of ’The easel was rather old’ in Dutch?
> De ezel was nogal oud
’The easel was rather old’ paraphrases as:
de ezel was nogal oud
the easel was rather old
the donkey was rather old

In this previous example Tauira defines ‘donkey’ and ‘easel’ as synonyms in
stead of homonyms. The dialogue should therefore come up with some type of
question to resolve wether or not we are dealing with a hymonym or synonym of
the existing word.

...
> De ezel was nogal oud
Does ’EASEL’ mean the same as ’DONKEY’ and is it not a
different sense of ’EZEL’ ?

6.3.5 Translation

Currently relations between source and translation sentence are only checked be-
tween based on sets of predicates, not between the variables which appear as the
arguments of predicates. This means that ‘the dog chases the cat’ is considered
identical to ‘the cat chases the dog’. MRS (Copestake, 2001) is however able to
destinguish between these two sentences. To improve the translation checking pro-
cess the MRS structures must therefore be compared more thoroughly.

46



6.3.6 Generation

Before newly added words can be actually used by the sentence generator a process
called re-indexing is required. This re-indexing is (like most of the LKB system)
not designed for dynamically adding and removing semantic relations. The current
function removes all relations and indexes the relations from scratch. For speed
purposes a reindexing procedure for a case where one or two new words are added
should be implemented.

6.4 Expanding functionality

In this section phenomena that Tauira does not yet cope with are explored. These
are irregular morphology (Section 6.4.1), homonyms (Section 6.4.2) and advanced
forms of translation (Section 6.4.3).

6.4.1 Irregular morphology

Although the current setup deals with regular morphology, irregular morphology
has not yet been dealt with. The sentence ‘The sheep sleep’ will generate the
following hypotheses: {(n plur xmod le, ‘sheep’), (n plur ppcomp le, ‘sheep’),
(n plur le, ‘sheep’)} for words can only exist in plural such as ‘media’ (e.g. one
cannot say ‘the media chases the cat’). If one would take irregular morphology into
account extra hyptheses such as (n intr le, IRREG {(plur form, ‘sheep’ }) could be
created. Indicating this could be an intransitive noun with the plural form ‘sheep’
and an unknown singular form.

These hypotheses should probably end up at the back of the hypotheses list
since irregular morphlogy is not very likely, although in irregular morphology for
a word with a large occurence could be pretty likely, compared to regular morphol-
ogy for words with a small occurence. The challenge is of course to develop a
method to confirm or deny such hypotheses. One method could be asking ques-
tions such as:

Could you say ’the *blank* chases the cat’ for an inflection
of SHEEP?
> Yes
How would you say ’the *blank* chases the cat’ for SHEEP?
> the sheep chases the cat

Of course unknown words with irregular morphology could also occur in sen-
tences where there is no inflection (e.g. ‘a sheep eats’). This would mean that for

47



every word type an irrigular hypotheses must be generated as well. The confirma-
tion or refusal of these hypotheses could become even more complex.

6.4.2 Homonyms

Besides improvements made for dealing with homonyms of the same word type
(Section 6.3.4) the system could also be extended to be able to cope with different
types of homonyms. The current complications for two other types of homonyms
are shown in this section.

Homonyms of different word type

The phrase ‘This beach is both sandy and hot’ will not parse when lexical item
‘Sandy’ is only known as a proper name and not as an adjective. For these homonyms
of different word types there are no words marked as unknown word and Tauira’s
subdialogue will not be initiated.

Multiword homonyms

A third type of homonym Tauria currently does not deal with are homonyms which
are part of multiword expressions. For example if one mentions the word ‘sea lion’
which is unknown but ‘sea’ is known and ‘lion’ is not, it will be impossible to set
the right word type for ‘sea lion’ and link it to the Māori ‘kakerangi’.

6.4.3 Translation

Besides improving the current translation capabilities as described in Section 6.3.5,
the translation part of the algorithm could also be extended to handle more complex
translations, such as a case where multiple non-consecutive words make up the
translation of a single word.

Even improved translation features would go beyond the current capabilities of
the Māori-English grammar. As this grammar further develops it is however pos-
sile that more advanced translation features become availbable, such as allowing
features from the source word in context to be taken into account in the translated
word (Copestake and Sanfilippo, 1993).

6.5 Additional applications

The Tauira system could be applied to do tasks out of its original subdialogue
context. Two possible applications are an authoring tool (Section 6.5.1) and the

48



assimilation of the Ngata English-Māori dictionary (Section 6.5.2).

6.5.1 Authoring mode

Currently the only method of authoring words with Tauira is by entering an un-
known word within a sentence context. It would be possible to let words be au-
thored in a so-called authoring mode. In stead of generating hypotheses from the
sentence context hypotheses could be generated from specific commands. The
command ‘add noun penguin’ could loadup tauria using all possible noun hypothe-
ses (n * le) for that word or ‘add to dance’ would generate all possible verb hy-
potheses (v * le).

6.5.2 Ngata dictionary

The Ngata (1993) English-Māori dictionary distinguishes itself from other dictio-
naries by illustrating the use of Māori words within a sentence context rather that
just an English translation. For example the definition for the word ‘dog’ is il-
lustrated with the phrase ‘The child loved the dog.’ and its English translation ‘I
arohatia e te tamaiti te kurı̄’. Recently the entire dictionary has become available
on-line with the support of the ministry of education.

If one were able to select the sentence-pairs from the dictionary which the
Māori-English grammar is able to translate and sort the sentence-pairs in such a
manner that there is only one unknown word per sentence (i.e. the sentences with
one unknown word first). One could run the sentences through Tauira and compile
a list of question for a Māori and English speaker.

This Māori or English speaker could then structurally contribute to the lexicon
by answering the list of questions. This will provide a large lexical increase for Te
Kaitito.

49



Bibliography

Barg, P. and Walther, M. (1998). Processing unknown words in hpsg. In Proceed-
ings of the 36th Annual Meeting of the Association for Computational Linguis-
tics and 17th International Conference on Computational Linguistics, Montreal,
Quebec, Canada.

Copestake, A. (2001). An algebra for semantic construction in constraint-based
grammars. In Proceedings of the 39th Annual Meeting of the Association for
Computational Linguistics (ACL 2001), Toulouse, France.

Copestake, A. (2002). Implementing Typed Feature Structure Grammars. Centre
for the Study of Language and Information, Stanford, California, USA.

Copestake, A. and Flickinger, D. (2001). An open-source grammar development
environment and broad-coverage english grammar using HPSG. In Proceedings
of the Second conference on Language Resources and Evaluation (LREC-2000),
Athens, Greece.

Copestake, A. and Sanfilippo, A. (1993). Multilingual lexical representation. In
AAAI Spring Symposium on Building lexicons for machine translation, Stanford,
California, USA.

Erbach, G. (1990). Syntactic processing of unknown words. In P. Jorrand and
V. Sgurev, editors, Artificial Intelligence IV - methodology, systems,applications,
pages 371–382. North-Holland, Amsterdam, the Netherlands.

Fouvry, F. (2003). Lexicon acquisition with a large-coverage unification-based
grammar. In 10th Conference of the European Chapter of the Association for
Computational Linguistics, Research notes and demos, Budapest, Hungary.

Harding, P., Bain, C., and Bedford, N. (2002). Lonely Planet New Zealand. 11th
edition. Lonely Planet publications Pty ltd, Victoria, Australia.

50



Kamp, H. and Reyle, U. (1993). From discourse to logic. Kluwer Acedemic
Publishers, Dordrecht, the Netherlands.

Knight, K. (1996). Learning word meanings by instruction. In Proceedings of the
13th National Conference on Artificial Intelligence, Portland, Oregan, USA.

Knott, A., Bayard, I., de Jager, S., and Wright, N. (2002). An architecture for
bilingual and bidirectional nlp. In Proceedings of the 2nd Australasian Natural
Language Processing Workshop, Canberra, Australia.

Knott, A., Moorfield, J., Meaney, T., and Ng, L.-L. (2003). A human-computer
dialogue system for māori language learning. In Proceedings of the World Con-
ference on Educational Multimedia, Hypermedia and Telecommunications (ED-
MEDIA), Honolulu, Hawaii, USA.

Ngata, H. (1993). Ngata English-Māori Dictionary/Pukapuka Taki Kupu a Ngata.
Learning media ltd, Wellington, New Zealand.

Oepen, S. (2001). [incr tsdb()] — competence and performance laboratory.
User manual. Technical report, Computational Linguistics, Saarland University,
Saarbrücken, Germany.

Oepen, S., Netter, K., and Klein, J. (1997). TSNLP — Test Suites for Natural
Language Processing. In J. Nerbonne, editor, Linguistic Databases, pages 13 –
36. CSLI Publications, Stanford, Californa, USA.

Villa, D. (2002). Integrating technology into minority language preservation and
teaching efforts: An inside job. Language Learning & Technology, 6(2), 92–101.

51



Appendix A

Grammar writer’s guide

A.1 Introduction

This guide describes how the system known as Tauira can be used on a grammar
written for the LKB system. As explained in the Tauira report Tauira can create
benchmarks on which the grammar can be evaluated and provides a lexical author-
ing tool within the context of a dialogue.

This guide consits of three parts. Section A.2 describes how the script of the
grammar should be extended, Section A.3 describes how to operate the preproces-
sor and Section A.4 describes how to use Tauira as part of a dialogue system.

A.2 Extending grammar script

In order to run Tauira’s preprocessor and authoring tool some grammar specific
variables need to be set. We recommend you set these variables in a separate file
called unknowns.lisp in your script directory and adding the following line to
your grammar:

(lkb-load-lisp (this-directory) "unknowns.lisp")

An example of this file is (for a Māori-English grammar) is shown in Figure
A.1. The functions used and variables set are all located in the lkb-package. There-
fore add the following as the first line of your file:

(in-package :lkb)

You need to specify which types of your grammar are open class. Tauira uses
the LKB system’s standard global variable for this: lkb::*unknown-word-types*.

52



(in-package :lkb)

;; --- *unknown-word-types* ---

(set-unknown-word-types 10)

;; --- make-unknown-word-sense-unifications ---

(defun make-unknown-word-sense-unifications (word-string)
(when word-string
(let ((orth (split-into-words word-string)))

(append
(make-orth-fs orth)
(list

(make-unification
:lhs (create-path-from-feature-list

’(SEM HOOK KEYPRED LIST FIRST PRED))
:rhs (make-u-value :type

(format nil "˜{˜A˜ˆ_˜}_rel" orth)))
(make-unification
:lhs (create-path-from-feature-list

’(SEM HOOK KEYPRED LAST))
:rhs (create-path-from-feature-list

’(SEM HOOK KEYPRED LIST REST))))))))

(defun make-orth-fs (orth)
(let (rests-path orth-fs)
(loop for word in orth do
(pushnew (make-unification

:lhs (create-path-from-feature-list
(append ’(ORTH LIST) rests-path ’(FIRST)))

:rhs (make-u-value :type word))
list)

(push ’REST rests-path))
orth-fs))

;; --- translation variables ---

(setf *language-feature* ’LANG)
(setf *language-feature-values* ’(english maori))
(setf *predicate-path* ’(SEM HOOK KEYPRED LIST FIRST PRED))

(setf *index-for-generator-p* T)

Figure A.1: Example unknowns.lisp file

53



This variable must be set to a list of word types. Tauira includes the function
lkb::set-unknown-word-types with which lkb::*unknown-word-types* will be set to
all words types used in the lexicon at least n times. Add either one of the following
lines to your file to specify the open class word types:

(setf *unknown-word-types* ’list of open class word types)
(set-unknown-word-types minimal occurences)

In order for Tauira to create new lexical entries the form lexical entries within
your grammar must be described. Within the LKB system a feature structure is
represented as a list of lkb::unification structures. You must include a function
called lkb::make-unknown-word-sense-unifications which creates a feature struc-
ture in which the required features for a lexical entry (ussally just the semantics
and orthography) are set based on a word string. If your lexical entries are de-
scribed in the lexicon as:

word := word-type &
[
...
feature-path feature-value
...
].

Your lkb::make-unknown-word-sense-unifications will look something like:

(defun make-unknown-word-sense-unifications (word-string)
(list
...
(make-unification :lhs (create-path-from-feature-list
’(feature-path) :rhs feature-value)
...
))

Please note that setting the previous global variable and function will enable the
LKB system’s unknown word mechanism during normal parsing. This mechanism
of the LKB system’s sentence parser will generate entries of lkb::*unknown-word-
types* using lkb::make-unknown-word-sense-unifications.

If you want to use the bilingual capabilities of Tauira the variable lkb::*language-
feature* must be set. If set lkb::*language-feature-values* must be set to a poss-
bile languages for this grammar and lkb::*predicate-path* to a list representing the
path to the first predicate.

54



(setf *language-feature* language-feature)
(setf *language-feature-values* ’list of languages)
(setf *predicate-path* ’list of path to first predicate)

Finally the variable lkb::*index-for-generator-p* will define whether or not re-
indexing is for the LKB system’s generator is required for this grammar. By default
it is set to NIL (Lisp’s false value). If the new words added are also required to be
generated on the fly this variable must be set to T (representing true).

(setf *index-for-generator-p* T or NIL)

A.3 Preprocessing test suites

Tauira uses test suites to come up with questions for the user. You can describe your
test suite as a file with one sentence per line or you can extract test suites from the
itsdb database (Oepen, 2001). To extract sentences from the itsdb start up the itsdb
front-end and select the test suite you want to extract sentences from. Now load
the lisp file tauira/tsdb-util.lisp and run the function store-selected-tsdb
applied to a filename. You can enter an optional argument to specify the maximum
number of sentences per file. The second and further files with have a number
added to the filename.

(in-package :tsdb)
(store-selected-tsdb filename optional-sentences-max)

To run the preprocessor run the LKB, the Tauira files and your grammar with
the modified script file from your LKB/src directory. (Make sure your Tauira files
are in the LKB/src/tauira directory).

(load "general/loadup")
(load-system "mrs")
(load "tauira/loadup")
(read-script-file-aux "script file location")

To start the preprocessor switch to the lkb package and run the function lkb::precache3
with an input and output file.

(in-package :lkb)
(precache3 input-file output-file)

55



Note that this process might be quite slow (Tested on a pentium for a 100
sentences can take up to an hour to preprocess).

Section 4.2.2 of the Tauira report describes various benchmarks for test suites.
To create a file of these benchmarks for your preprocessed test suite files use
append-tests-from-file and write-tests-results. You can use append-tests-from-file
multiple times to add more files.

(in-package :lkb)
(append-tests-from-file input-file)
(write-tests-results output-file)

A.4 Running Tauira

To run Tauira first loadup the LKB, the Tauira files and your grammar as in the
previous section. Then load your preprocessed test suites sentences using the
lkb::append-tests-from-file function. For effeciency run the function lkb::set-word-
occ afterwards. The function (lkb::wrapper) (no arguments) provides an environ-
ment in which prompted sentences are parsed and paraphrased (leave the prompt
with ‘end’). If an unknown word is encountered Tauira is invoked.

During your session with Tauira you can change the language of Tauira’s di-
aloges. lkb::*lang* defines the current language for Tauira’s dialogue. lkb::*lang*
can be set at any time to any value, but there are currently only dialogues available
for English (english) and te reo Māori (maori). Extend the file dialogue.lisp
with sentences for your language if desired.

The lexical files created during a Tauira session are stored in the global vari-
able lkb::*user-lexicon*. You can store this lexicon to a file using the function
lkb::store-lex-database. You can reload this using the function lkb::load-lex-database.
Your session could proceed as follows:

(load "general/loadup")
(load-system "mrs")
(load "tauira/loadup")
(read-script-file-aux "script file location")
(in-package :lkb)
(append-tests-from-file input-file) (repeat for every file with test-items)
(set-word-type-occ)(optional, for efficiency)
(load-lex-database *user-lexicon* user-lexicon-filename) (optional)
(setf *lang* ’language)
(wrapper)
(store-lex-database *user-lexicon* user-lexicon-filename) (optional)

56



There are some aditional switches with which you can determine the behaviour
of Tauira. Unless mentioned otherwise the default setting of these switches is T
(true). You can set these switches as follows:

(setf switch T or NIL)

When lkb::*tauira-use-morph-p* is set Tauira will create different morpholog-
ical stems for an unknown word (e.g. ‘walk’, ‘walke’ and ‘walked’ for ‘walked’),
otherwise only the original unknown word’s spelling is used as a stem. When
lkb::*tauira-use-sentence-p* is set the number of hypotheses is reduced using in-
formation from the sentence context.

When lkb::*tauira-use-multiple-example-p* is set multiple choice example sen-
tences questions may be asked to the user. Analogues when lkb::*tauira-use-
single-example-p* is set single choice example sentence questions may be asked to
the user. When lkb::*tauira-use-word-example-p* is set the user will have to select
the word type for the unknown word out of example words for the remaining hy-
potheses’ word types (e.g. ‘dog’, ‘credit card’ and ‘apology’), otherwise the user
will have to select the word type based on the word type’s name (e.g. ‘n intr le’).

lkb:: *tauira-show-hypotheses-p* is the only switch that is NIL by default. If
set it will print the remaining hypotheses on the screen before a question is given
to the user.

57



Appendix B

User’s guide

B.1 Introduction

The following Section (B.2) serves as a template of what should be included in a
user’s guide of a dialogue system using Tauira. Before the user is able to use Tauira
he or she must be familiar with the limitations of the grammar. Thefore a user’s
guide for a system using the ERG grammar should for example include the fact
that the system does not destinguish between male and female proper names. This
shall be known as the grammar disclaimer.

B.2 Unknown words

The system you are about to use has only a limited vocabulary. Like humanbeings
the system can learn new words that are not yet in its vocabulary. When you men-
tion a new word to the system the system will require some assistance from you in
order to learn more about the word. These questions will be either multiple choice,
which you should answer with a number or single choice, in which case you should
reply ‘yes’ or ‘no’.

The system might ask you whether or not certain sentences are correct. These
sentences might not make any sense but the you should reply whether or not these
sentences are grammatically correct. Pay special attention to the spelling of the
word for single choice questions: if a word is not spelled correctly refuse it. The
system however cannot handle words that have irregular inflection.

insert your grammar disclaimer here.

58


