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Bounds For The Growth Rate Of Meander Numbers

M. H. Albert and M. S. Paterson

Abstract. We provide improvements on the best currently known upper and lower bounds for
the exponential growth rate of meanders. The method of proof for the upper bounds is to extend
the Goulden-Jackson cluster method.

Limites au taux de croissance des nombres de méandres

Nous fournissons des améliorations aux meilleures bornes supérieures et inférieures actuellement
connues pour le taux de croissance exponentiel des méandres. La méthode de preuve des bornes
supérieures nécessite une extension de la méthode des “grappes” due à Goulden et Jackson.

1. Introduction

A meander of order n is a self-avoiding closed curve crossing a given line in the plane at 2n
places, [LZ93]. Two meanders are equivalent if one can be transformed into the other by smooth
deformations of the plane, which leave the line fixed (as a set). A number of authors have addressed
the problem of exact and asymptotic enumeration of the number Mn of meanders of order n (see for
instance [FE02, Jen00] and references therein). It is widely believed that an asymptotic formula

Mn ≈ CMnnα

applies, and some effort has been devoted to estimating the parameters M and α ([DF00, DFGG00,
DFGJ00, JG00]). Broadly, these methods have relied on extrapolation from exact values of Mn,
currently known for n ≤ 24 (see [JG00]). A careful estimate, using differential approximants based
on these values, yields [JG00] the approximate value

M � 12.26287.

A presumed correspondence with certain field theories has yielded the amazing conjecture [DFGG00]
that:

α =
√

29(
√

29 +
√

5)/12 = 3.42013288 . . . .

Our, less ambitious, aim will be to provide rigorous upper and lower bounds on the exponential
growth rate of Mn.

Consider the generating function:

M(t) =
∞∑

n=0

Mnt2n.
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Figure 1. The meander URULDD.

It is easy to verify that Ma+b ≥ MaMb and so it is certainly the case that M := limn→∞ M
1/n
n

exists, and is the square of the reciprocal of the radius of convergence of this series. We will prove:

Theorem 1.1. The following inequalities hold:

11.380 ≤ M ≤ 12.901.

These bounds improve (on both sides) the best previous bounds due to Richard Stanley (M >
10.0) [1995, private communication] and Jim Reeds and Larry Shepp (M ≤ 13.002) [1999, unpub-
lished].

Our basic methodology is to represent meanders as a language over an alphabet consisting of
four symbols. The bounds are then obtained by producing suitable sublanguages and superlanguages
for which the growth rates can be computed explicitly. In principle our bounds could be improved
by more detailed construction of these languages, and we include some indication in the final section
of how much further progress might be possible by such means.

2. Definitions and notation

We begin by providing a combinatorial description of meanders which allows us to identify them
with a language over a four letter alphabet. This interpretation is similar to the description of
meanders by means of “configurations” in [Jen00].

Set the orientation of the line which the meander crosses as vertical. We allow a meander to
evolve as we move upwards along the line. Each step in this evolution is marked by a place where the
meander crosses the line, and we allow these crossings to be of four types: U where a new segment
of the meander is created, D where two previous segments are merged into one (or as a final step
the meander is completed), and R or L where a segment crosses the line from left to right, or right
to left respectively. Figure 1 illustrates this encoding of meanders.

The meander language, M, is the set of words in these four letters that represent meanders. It
is immediately clear that distinct words in the meander language represent distinct meanders, and
only slightly less clear that every meander is represented by a single word in the meander language.

We digress briefly to recapitulate some standard notation and terminology concerning words
and languages. A word is simply a finite sequence of symbols from some alphabet Σ. This sequence
may be empty, and the empty word is denoted ε. The set of all words over Σ is denoted Σ∗ and
can be identified with the free monoid over Σ by considering juxtaposition as the monoid operation.
So, a word v is said to be a factor of a word w if w = xvy for some words x and y. If we can
take x = ε then we say that v is a prefix of w while if we can take y = ε then we say that v is a
suffix of w. A language over Σ is simply a subset of Σ∗. The ()∗ notation is extended to languages,
or even words, so that X∗ simply means the language which consists of all possible juxtapositions
(including the empty one) of elements of X . The length of a word w, that is, the number of symbols
in the sequence w, is denoted |w|. Hence Mn, the number of meanders with 2n crossings is simply
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Figure 2. URDL has no effect on the environment

the number of words in M of length 2n (since each symbol in a meander word accounts for a single
crossing).

In our interpretation of meanders it makes sense to speak of the environment that exists as we
scan prefixes of a word. This environment is simply the collection of segments in their appropriate
order on either side of the line. Further, we adopt the convention that when two segments are
merged, the newly merged segment is identified in the environment with the older of the two (in a
meander the only time we will merge two segments of the same age is at the final D).

Sometimes it is useful to imagine that we have available an extended environment consisting
initially of an infinite family of labelled and completely unmatched segments on either side of the
line. This allows the effect of any word to be interpreted within this environment. For our purposes,
words whose only effect is to shift some segments from one side of the line to the other are partic-
ularly significant. In Figure 2 we illustrate how the factor URDL has no effect on the surrounding
environment. In particular this means that if w = uv is a meander, and if the environment following
u contains a segment to the left of the line, then uURDLv is also a meander. On the other hand,
it is also clear that no meander (aside from UD) can have UD as a factor, and so neither can it
have UURDLD as a factor. From observations of the former kind we obtain sublanguages of M
by building up words which must be meanders. From observations of the latter kind we obtain
superlanguages of M by requiring words to avoid certain factors.

Throughout the remaining sections we identify languages over U , D, R, L with their generating
function in the power series ring over U , D, R, L. Generally we work in this context to obtain
relationships between (the generating functions of) various languages, and then specialize to a single
variable t when we wish to obtain numerical estimates.

3. Shifts and lower bounds

Consider a state of the extended meander environment, such as might be achieved after executing
some prefix p of a meander word. There are now various continuations which will have the same
effect on the environment as Rk would for some k. Trivially any sequence of R’s and L’s which
has k more R’s than L’s is such a continuation. However, it is also the case that URD has the
same effect on the environment as R, and UURRDD has the same effect as RR. Furthermore these
constructions can be recursively combined and therefore:

U(UURRDD)LD

has the same effect as URRLD, hence as URD and finally as R.

Definition 3.1. A shift is a word whose effect on the extended meander environment is the
same as that of Rk or Lk for some non-negative integer k. The displacement of a shift is k in the
former case, and −k in the latter. A jump is a shift having no proper shift prefix1. A shift whose

1We apologize to the sensitive reader for using “shift” both as a noun and an adjective



4 M. H. ALBERT AND M. S. PATERSON

Figure 3. URUL3DRD is a jump of displacement −1.

only proper shift factors are in R∗ or L∗ is called primitive.

The simplest jumps are R and L. Next simplest are URD and ULD. A rather more complicated
example is shown in Figure 3.

Every shift can be uniquely factored as a concatenation of jumps. In turn, every jump is
created from some (uniquely determined ) primitive shift by substitution of shifts for the blocks
of R’s and L’s within the primitive shift. For example UUURRDDLD is created from URD by
substituting UURRDD L (a shift of displacement 1 formed from a jump of displacement 2, and one
of displacement −1) for R.

If J is the language of all jumps and S the language of all shifts, then of course

(3.1) S = J ∗ =
1

1 − J .

Introducing a new indexing variable x which commutes with the symbols of the language, and letting
Ji (or Si) be the language of jumps (or shifts) of displacement i, we have slightly more generally
that: ∞∑

i=−∞
Six

i =
1

1 − ∑∞
i=−∞ Jixi

.

Suppose that J is some primitive jump. Then the set of all jumps with primitive form J is
obtained by replacing each (possibly null) block of L’s or R’s between consecutive occurrences of U
or D by Sk where k is the displacement of the block. Denote the result of this replacement by JS .
Then Ji is the sum over primitive jumps J of displacement i of the terms JS .

Let si(t) be the generating function obtained from Si by replacing all of U , D, L, and R by t.
Since

t2is0 < tisi < s0

all of the functions si have the same radius of convergence.

Proposition 3.2. The radius of convergence of s0 is not greater than that for the meander
language.

Proof. The result follows from the observation that M(t) ≤ t2s0, since every meander is of
the form USD where S is a shift of displacement 0. �

It seems clear that among all the shift words of length 2n only a vanishingly small proportion
contain a prefix with a difference of at least n3/4 between the numbers of R’s and L’s (here n3/4

is an arbitrary value – larger than
√

n, by correspondence with a 1-dimensional drunkard’s walk).
Any such shift could then be built into a meander of 2n(1 + o(1)) crossings. This would establish
that the shift language and the meander language have the same radius of convergence. The proof
of this result is too involved to present here, but will appear in the full paper.
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For our immediate computational purposes though it is superfluous as our shifts will be built
up recursively from a set of primitive shifts whose excursions to the left or the right are of bounded
size. Since we work with a symmetric (in R and L) set of shifts, the argument above then applies
correctly to this situation. This observation is explained further at the end of subsection 6.1.

4. The cluster method

The cluster method is a method of enumerating words with a given finite set of forbidden factors.
It was introduced in this form in [GJ79] and is also discussed in [GJ83]. Extensions of the cluster
method are given in [NZ99] to handle certain cases where the forbidden set of factors is infinite.
We need to supply a similar extension in an even more general setting.

Let Σ be an alphabet, and B a subset of Σ+ (the non-empty words over Σ). We are concerned
with the language consisting of those words which have no factor from B, the B-factor-free words,
that is the complement in Σ∗ of Σ∗BΣ∗. If b is a factor of c and b does not occur as a factor of
some word w, then of course neither does c. So, for any B, the B-factor-free words are the same
as the B′-factor-free words, where B′ consists of the minimal elements of B in the factor ordering.
Therefore we assume throughout that no word b ∈ B is a proper factor of any other word in B.

Define the set of overlaps, Ov(B) to be the collection of all triples (b, w, c) such that b, c ∈ B,
w ∈ Σ+, such that b �= c and for some bl and cr, b = blw and c = wcr . Note that, owing to the
assumption above, neither bl nor cr can be the empty word. The system of equations:

(4.1) vb = b −
∑ {

blvc : (b, w, c) ∈ Ov(B), b = blw
}

for b ∈ B
has a unique solution in the power series ring Q[[Σ]].

The following theorem generalises (to the case of infinite B and non-commuting variables) a
specialisation (to the case of forbidding all occurrences of B rather than determining the type of the
occurrences of B in a word) of Theorem 2.86 in [GJ83], often called the Goulden-Jackson cluster
method. In [Zei02] an informal treatment of an equivalent method can also be found. A full
generalisation of the original theorem could be obtained by adding tagging variables yb (commuting
with each other and with Σ) to the system (4.1), but the version below is adequate for our purposes.

Theorem 4.1. The generating function over Q[[Σ]] of Σ∗ \ Σ∗BΣ∗ is:
(

1 − Σ +
∑

b∈B
vb

)−1

where {vb : b ∈ B} are defined by (4.1).

Proof. The proof of this theorem can be read off from the proof of the theorem cited above.
However, at least in this form, it is really simply a restatement of the principle of inclusion/exclusion.
Define a B-marking of a word w in Σ∗ to be a specific identification of certain factors of w which
belong to B (not necessarily any or all such factors). If we assign the value (−1)kw to each B-marking
of w in which k factors from B are marked then the sum over all the B markings of a word w will be
0 if w contains a B-factor, and w if it does not. By considering the expression above as a geometric
series it is easy to see that the coefficient of w is exactly this sum over B-markings of w, and hence
the expression represents the generating function of B-factor-free words. �

As remarked in [Zei02], in the case of infinite structureless B this does not give an equation for
the generating function in any usual sense. However, in our application below, the language B will
carry sufficient structure that we can make effective use of Theorem 4.1.

Note that if we turn to the ordinary generating function for the language of B-factor-free words,
then its radius of convergence is the smallest positive root of the equation:

1 − |Σ|t +
∑

b∈B
vb(t)
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where we also have:

vb(t) = t|b| −
∑ {

t|b
l|vc(t) : (b, w, c) ∈ Ov(B), b = blw

}
for b ∈ B.

Remark 4.2. In general it is not the case that the system of linear equations defined above
has the required property to allow an iterative solution after specializing to a single variable, even
if the value chosen for the variable lies inside the radius of convergence of the series which form its
solution in Q[[t]]. This fails, for example, in the case B = {aaa, aba} over the alphabet {a, b}.

5. Submeanders and upper bounds

We now apply the results of the preceding section in order to obtain upper bounds on the
exponential growth rate of the meander language M. Ideally, the language of forbidden words
which we would like to consider consists of all words which define some closed loop, or submeander.
That is, a word is forbidden if it is of the form U · · ·D where the final symbol closes off the pair
of segments created by the initial one. Let B be the language of such words. If an element of B
occurs as a proper factor of a word m then m �∈ M. It is clear though that the growth rates for the
languages of B-factor-free words and proper B-factor-free words are the same, so we do not need to
worry about that distinction. Henceforth we fix the alphabet Σ = {U, D, R, L}.

The shortest word in B is UD. However, this single word is really a representative of a much
wider family of forbidden words. Among these are URLD, and UURDLD. Generally if S is any shift
of displacement 0, then USD is a forbidden word. It is worth noting that there is no requirement
that the words in B be balanced with respect to U and D. For example, the word URULLD is in
B, since the final D forms a submeander with the original U , and so if this word occurs as a factor
of some longer word w then w cannot represent a meander.

There is an equivalence relation defined on words by taking the transitive closure of the relation
obtained by allowing the replacement of a shift, by any other shift of the same displacement. Each
equivalence class of this relation contains a representative with the property that any maximal shift
factor lies in L∗ or R∗. Let us call these representatives the standard representatives of their classes.
Note also that B is closed under this equivalence relation.

Lemma 5.1. Let a word w be given. Its standard representative is obtained by replacing the
maximal shift factors of w by blocks of L’s or R’s of the same displacement.

Proof. This follows immediately from the observation that two shift factors of w cannot overlap
unless their overlap is also a shift. This is because a proper suffix of a shift which is not a shift
and begins with U contains more D’s than U ’s, and no prefix of a shift word has this property.
Since shifts are closed under concatentation, the maximal shift factors of w are disjoint and properly
separated, and so the standard representative is obtained in the manner described. �

Using this result we obtain:

Proposition 5.2. Let b, c ∈ B have an overlap w. Then the standard representatives of b and
c also have an overlap, which is the image of w under the replacement described in Lemma 5.1.

Proof. The word w has the form UuD. Moreover in b the terminal D closes the segments
formed by the initial U of b so, interpreted in isolation, it does not close any segment created within
u and so cannot be part of any shift factor of w. The same idea applies to the observation that the
initial U of c is matched by its final D and so shows that the original U of w can also not be part of
any shift factor of w. So the shift factors of b and c which occur within w, occur within u. Therefore
the reduction of Lemma 5.1 affects w in the same way in both b and c. �

Let Brep be the sublanguage of B consisting of the standard representatives of the elements of B.
For any word w let w̄ be the generating function of its equivalence class. Now consider a modification
of the system of equations (4.1)
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(5.1) xb = b̄ −
∑{

b̄lxc : (b, w, c) ∈ Ov(Brep), b = blw
}

for b ∈ Brep.

Then, it follows directly from Proposition 5.2 that:
∑

b∈B
vb =

∑

b∈Brep

xb

(where vb is defined by the system of equations (4.1)).
Thus we may use the latter form in computations arising from Theorem 4.1. For instance, we

could use a finite subset of the original language B, and also place some restrictions on the shift
words used in constructing w̄ from w.

For example, take as forbidden language B0, the single forbidden word UD, and its expansions
USD where S ∈ {R, L}∗ has displacement 0. Then the generating function for B0-factor-free words
is:

1
1 − 4t + t2√

1−4t2

.

The radius of convergence of this generating function is the smallest positive solution of

65t4 − 32t3 − 12t2 + 8t − 1 = 0

whose approximate value is 0.272054. Since B0 represents a subset of the actual words forbidden to
appear as factors in a meander word, this gives an upper bound of 13.5111 on M .

In the next section we will describe in greater detail how these results can be used to provide
bounds for M in situations where we cannot analytically solve the equations for the radius of
convergence.

6. Computational methodology

In this section we give an overview of the computational methods used to evaluate lower and
upper bounds on M .

6.1. Lower bounds. In computing lower bounds on the exponential growth rate for the mean-
der generating function, we attempt to construct a generating function based on a subset of the set
of shifts, built up from a subset of the primitive jumps. Generally, we make use of all the primitive
jumps containing at most some preset number of symbols. These are constructed by simulating the
extended meander environment and carrying out a depth-first search. The only extra information
which must be maintained is a record of the new segments present when each U occurs. This must
then be compared to the D which eliminates the segment created by the U in order to ensure that
the only shift factors are in L∗ and R∗.

The results quoted below are for primitive jumps containing a maximum of 24 symbols. There
are 875,938 such primitive jumps with non-negative displacement. On the other hand, there are
only 25,264 of length at most 20, and only the following 13 of length at most 10:

URD, UURRDD, UULLDRRD, UURRDLLD, ULLURRDD,
URRULLDD, UUURRRDDD, ULURRRDLD, ULUURRDRDD,
URRULLDRRD, UURURRDDLD, UULURRRDDD, UUURRRDLDD.

The basic computational scheme employed is a simple iterative one. We establish at the outset
an arbitrary bound on the number of jumps which will be concatenated to form a shift (in practice
50 is more than adequate). Then we take an existing set of jumps and compute a new set of shifts
by concatenating them in this way. These new shifts are in turn substituted into our supply of
primitive jumps in order to compute a new set of jumps and so on.

All of this is handled numerically by passing at the outset to generating functions in a single
variable t (which replaces each of the letters of the meander alphabet). For a fixed real value of t we
can then carry out the computation described above. If the value of t lies outside of the radius of
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convergence of the generating function then the iteration will diverge. It is easy to establish strict
divergence criteria for this iteration. For example, the RHS of the equation defining s0 dominates the
one which would define an ordinary one-dimensional drunkard’s walk, that is, 1+t2s2

0. In particular,
if ever s0 > 1/t2 then each successive iteration must increase s0 by at least 1, and hence divergence
is established. We can make use of a loose convergence criterion (no divergence through some fixed
number of iterations), since lower bounds on M are determined by upper bounds on the radius of
convergence of the generating function. Then a simple binary search on t allows us to determine
rigorous upper bounds on the radius of convergence for s0(t).

Using jumps of length up to 24, we obtain an upper bound for the radius of convergence of s0(t)
of 0.296431. This translates to a lower bound of 11.38 on M .

Given that our supply of primitive jumps is finite, there is a bound on the displacement of
each jump. Using this it is possible to compute exact values for shifts made up of arbitrarily many
such jumps using standard techniques from the enumeration of drunkard’s walks. In practice this
scheme suffers from a number of drawbacks. First, it is computationally much more expensive and
complex than the simple iteration. Second, the results obtained are not significantly better than
those obtained by simple iteration since the dominant terms for shifts will in any case be composed
of relatively few jumps. Finally, allowing arbitrarily many jumps per shift would require verification
that almost all such shifts still remain within the meander context. Since our primitive shifts are of
bounded displacement, we can guarantee that the excursions away from the original centre of the
meander context are “not large” except in a vanishing proportion of cases, and so almost all of the
words which we (implicitly) enumerate through the recursive scheme are legitimate.

6.2. Upper bounds. In producing upper bounds for the growth rate of meander numbers we
begin from a set B of standard representatives of words creating a submeander. Again, the most
straightforward approach is simply to list all such words up to some predefined length. Doing this
again involves a depth-first search in the extended meander environment. This time we must check
that the final D joins the segments formed by the initial U , that no earlier D creates a sub-meander,
and that no jumps occur as subwords other than L and R. All these tests are easily implemented
within the meander environment.

After passing to a single variable t we use equation (5.1) in order to compute the quantities xb.
Rather than solving this large (but relatively sparse) system exactly we may use a simple iterative
scheme since it is easily checked that for values of t in the range we are interested in there are no
eigenvalues of the matrix representing the summations on the RHS of this equation whose modulus
is greater than or equal to 1. Convergence is therefore guaranteed, with error bounds decreasing
by a constant factor on each iteration. Having computed the values xb, all that is necessary is to
evaluate the sign of

1 − 4t +
∑

b∈B
xb(t)

in order to determine whether t lies above or below the radius of convergence (below if the sign is
positive, above if it is negative). Again a simple binary search can now be used to estimate the radius
of convergence, and hence an upper bound on the exponential growth of the meander numbers.

Using the 20509 words of length 16 which are standard representatives of words creating a
submeander for B produces an estimate of 0.2784 for the radius of convergence of B-factor-free
words, and hence an upper bound of 12.901 on M .

7. Summary and conclusions

Obviously the methods which we have applied could be extended to obtain better bounds through
more extensive computation using longer words as primitive jumps, or as the standard representatives
of submeander words. Some indication of how far this might or might not progress is shown in
Table 1.
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Lower bounds Upper bounds
10 10.749 6 13.171
12 10.928 8 13.086
14 11.023 10 13.018
16 11.114 12 12.970
18 11.188 14 12.931
20 11.249 16 12.901
22 11.301
24 11.380

Table 1. Lower and upper bounds on M based on maximum length of jumps, and submeanders.

A simple extrapolation based on this data suggests a limiting lower bound of approximately
11.6, and an upper bound of approximately 12.8. However, the final lower bound which we have
computed (from jumps up to length 24) represents a better than expected improvement on the
previous value. Put another way, there are more jumps of length 24 than one would expect based
on simple extrapolation of previous values. So, it may be that better improvements on the lower
bound are possible.
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