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Playing cards with Hintikka

An introduction to dynamic epistemic logic∗

H.P. van Ditmarsch†, W. van der Hoek‡, B.P. Kooi§

1 Introduction

Imagine three players Anne, Bill, and Cath, each holding one card from a ‘stack’
of three (known) cards clubs, hearts, and spades, such that they only know
their own card but do not know which other card is held by which other player.
Assume that the actual deal is that Anne holds clubs, Bill holds hearts and
Cath holds spades. Now Anne announces that she does not have hearts. What
was known before this announcement, and how does this knowledge change as
a result of that action? Before, Cath did not know that Anne holds clubs, but
afterwards she knows that Anne holds clubs. This is because Cath can reason as
follows: “I have spades, so Anne must have clubs or hearts. If she says that she
does not have hearts, she must therefore have clubs.” Bill knows that Cath now
knows Anne’s card, even though he does not know himself what Anne’s card is.
Both before and after, players know which card they hold in their hands. Note
that the only change that appears to have taken place is epistemic change, and
that no factual change has taken place, such as cards changing hands. How do
we describe such an information update in an epistemic setting? We can imagine
various other actions that affect the knowledge of the players, for example, the
action where Anne shows her clubs card to Bill, in such a way that Cath sees
that Anne is doing that, but without seeing the actual card. How does that
affect the knowledge of the players about each other? After that action, Cath
still does not know whether Anne holds clubs or hearts. But Cath now knows
that Bill knows Anne’s card.

This contribution is a gentle introduction to so-called dynamic epistemic logics,
that can describe how agents change their knowledge and beliefs. We start

∗Section 5 is partly based on a chapter of [vDvdHK04], and Section 6 is partly based on a
section of [vDK04].
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‡Department of Computer Science, The University of Liverpool, Liverpool, United King-
dom, wiebe@csc.liv.ac.uk

§Department of Philosophy, University of Groningen, Groningen, the Netherlands,
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with a very concise introduction in epistemic logic, by the example of one,
two and finally three players holding cards; and, mainly for the purpose of
motivating the dynamics, we also very summarily introduce the concepts of
general and common knowledge. We then pay ample attention to the logic
of public announcements, wherein agents change their knowledge as the result
of, indeed, public announcements. One crucial topic in that setting is that
of unsuccessful updates: formulas that become false when announced. The
Moore-sentences that were already extensively discussed at the conception of
the area of epistemic logic in [Hin62] give rise to such unsuccessful updates.
After that, we present a few examples of more complex epistemic updates. Our
closing observations are on recent developments that link the ‘standard’ topic of
(theory) belief revision ([AGM85]) to the dynamic epistemic logics introduced
here.

2 One agent

We introduce epistemic logic by a simple example, even simpler than the one in
the introduction. Suppose there is only one player: Anne.

Anne draws one from a stack of three different cards clubs, hearts,
and spades. Suppose she draws the clubs card – but she does not
look at her card yet; and that one of the remaining cards is put back
into the stack holder, suppose that is the hearts card; and that the
remaining card is put (face down) on the table. That must therefore
be the spades card! Anne now looks at her card.

What does Anne know? We would like to able to evaluate system descrip-
tions such as:

• Anne holds the clubs card.

• Anne knows that she holds the clubs card.

• Anne does not know that the hearts card is on the table.

• Anne can imagine that the hearts card is on the table.

• Anne knows that the hearts card or the spades card is in the stack holder.

• Anne knows her own card.

• The card on the table is different from the card held by Anne.

• Anne knows that she holds one card.

Facts about the state of the world are in this case facts about card ownership.
We describe such facts by atoms such as Clubsa standing for ‘the clubs card is
held by Anne’, and similarly Clubsh for ‘the clubs card is in the stack holder,

2



♠♣♥

♥♣♠

♣♥♠ ♣♠♥

♠♥♣

♥♠♣

Figure 1: A pointed Kripke model, also known as epistemic state, that represents
Anne’s knowledge for the card deal where Anne holds clubs, hearts is in the stack
holder, and spades is on the table. The actual state is underlined.

and Clubst for ‘the clubs card is on the table’, etc. The standard propositional
connectives are ∧ for ‘and’, ∨ for ‘or’, ¬ for ‘negation’, → for ‘implication’, and
↔ for ‘equivalence’. A formula of the form Kϕ expresses that ‘Anne knows that
ϕ’, and a formula of the form K̂ϕ (K̂ is the dual of K) expresses that ‘Anne
can imagine that ϕ’. The informal descriptions above become

• Anne holds the clubs card: Clubsa

• Anne knows that she holds the clubs card: KClubsa

• Anne does not know that the hearts card is on the table: ¬KHeartst

• Anne can imagine that the hearts card is not on the table: K̂¬Heartst

• Anne knows that the hearts card or the spades card are in the stack holder:
K(Heartsh ∨ Spadesh)

• Anne knows her own card: KClubsa ∨KHeartsa ∨KSpadesa

• The card on the table is not held by Anne: (Clubst → ¬Clubsa)∧(Heartst →
¬Heartsa) ∧ (Spadest → ¬Spadesa)

• Anne knows that she holds one card: K((Clubsa → (¬Heartsa∧¬Spadesa))∧
(Heartsa → (¬Clubsa ∧ ¬Spadesa)) ∧ (Spadesa → (¬Heartsa ∧ ¬Clubsa)))

So far, so good. Now how are we going to interpret those formulas? The
operator K can be interpreted as a modal operator, of the ‘necessity’- or �-
type, on structures that are Kripke models. Formally, an epistemic state, or
information state, is a pointed relational structure consisting of a set of ‘states
of the world’, a binary relation of ‘accessibility’ between states, and a factual
description of the states – i.e., a valuation of facts on all states. In our example,
the states are card deals. The deal where Anne holds the clubs card, the hearts
card is in the stack holder and the spades card is on the table, we give the
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name ♣♥♠, etc. By identifying states with deals, we have implicitly specified
the evaluation of facts in the state with the name ♣♥♠. The binary relation
of accessibility between states expresses what the player knows about the facts.
For example, if deal ♣♥♠ is actually the case, Anne holds the clubs card, and in
that case she can imagine that not ♣♥♠ but ♣♠♥ is the case, wherein she also
holds the clubs card. We say that state ♣♠♥ is accessible from state ♣♥♠ for
Anne, or that (♣♥♠,♣♠♥) is in the accessibility relation. Also, she can imagine
the actual deal ♣♥♠ to be the case, so ♣♥♠ is ‘accessible from itself’: the pair
(♣♥♠,♣♥♠) must also be in the accessibility relation.

Continuing in this way, we get access as in Figure 1. This structure can
formally be described as a pointed Kripke model (Hexaa,♣♥♠) where the model
Hexaa = 〈S,R, V 〉 consists of a domain S, accessibility relation R and valuation
V such that

S = {♣♥♠,♣♠♥,♥♣♠,♥♠♣,♠♣♥,♠♥♣}
R = {(♣♥♠,♣♥♠), (♣♥♠,♣♠♥), (♣♠♥,♣♠♥), . . . }
V (Clubsa) = {♣♥♠,♣♠♥}
V (Heartsa) = {♥♣♠,♥♠♣}
. . .

The states where a given atom is true, are identified with a subset of the domain:
Clubsa – for ‘Anne holds the clubs card’ – is only true in states {♣♥♠,♣♠♥}, etc.
A standard modal language inductively defined by ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | �ϕ

can now interpreted on this structure – let’s stick to the familiar � for a little
while, before we write K for that. The crucial clause in the interpretation of
formulas is the one for the modal operator: M, s |= �ϕ if and only if for all s′,
if R(s, s′), then M, s′ |= ϕ. For M, s |= ϕ read ‘state s of model M satisfies
formula ϕ’, or ‘ϕ is true in state s of model M ’. For example, we can now
compute that in the epistemic state (Hexaa,♣♥♠) it is indeed true that Anne
knows that she holds the clubs card:

We have that Hexaa,♣♥♠ |= �Clubsa if and only if [ for all states s, if
R(♣♥♠, s) then Hexaa, s |= Clubsa ]. The last is implied by Hexaa,♣♥♠ |=
Clubsa and Hexaa,♣♠♥ |= Clubsa, as the only states that are accessible from
♣♥♠ are ♣♥♠ itself and ♣♠♥: we have R(♣♥♠,♣♥♠) and R(♣♥♠,♣♠♥). Finally,
Hexaa,♣♥♠ |= Clubsa because ♣♥♠ ∈ V (Clubsa) = {♣♥♠,♣♠♥}, and, similarly,
Hexaa,♣♠♥ |= Clubsa because ♣♠♥ ∈ V (Clubsa) = {♣♥♠,♣♠♥}. Done! From
now on, we will always write K for �.

It turns out that Anne’s accessibility relation is an equivalence relation. If one
assumes certain properties of knowledge, this is always the case. The properties
are that ‘what you know is true’, which is formalized by the schema Kϕ → ϕ;
that ‘you are aware of your knowledge’, which is formalized by the schema
Kϕ → KKϕ, and that ‘you are aware of your ignorance’, which is formalized
by the schema ¬Kϕ → K¬Kϕ. These properties may be disputed for various
reasons, for example, without the requirement that what you know is true, we
get a notion of belief instead of knowledge. For now, also for the sake of a simple
exposition, we will stick to the properties of knowledge and see where they get us.
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Figure 2: A simpler visualization for the epistemic state where Anne holds clubs,
hearts is in the stack holder, and spades is on the table. The actual state is
underlined.

Together, they enforce that in epistemic logic the accessibility relation is always
an equivalence relation. This is somewhat differently expressed, by saying that
what a player / agent cannot distinguish from one another induces a partition on
the set of states, i.e., a set of equivalence classes that cover the entire domain.
For equivalence relations, we write ∼ instead of R, and we write this ‘infix’,
i.e., we write ♣♥♠ ∼ ♣♠♥ instead of R(♣♥♠,♣♠♥). In the case of equivalence
relations a simpler visualization is sufficient: we only need to link visually the
states that are in the same class. If a state is not linked to others, it must be a
singleton equivalence class (reflexivity always holds). For (Hexaa,♣♥♠) we get
the visualization in Figure 2.

One might ask: why not restrict ourselves in the model to the two deals ♣♥♠

and ♣♠♥ only? The remaining deals are inaccessible anyway from the actual
deal! From an agent’s point of view this is arguably right, but from a modeller’s
point of view the six-point model is preferable: this model works regardless of
the actual deal.

The dual of ‘know’ is ‘can imagine that’: K̂ϕ := ¬K¬ϕ, so that ‘can
imagine that’ means ‘not knowing that not’. For example, ‘Anne can imagine
that the hearts card is not on the table’ is described by K̂¬Heartst which is true
in epistemic state (Hexaa,♣♥♠), because from deal ♣♥♠ Anne can access deal
♣♥♠ for which ¬Heartst is true, as the spades card is on the table in that deal.
There appears to be no generally accepted notation for ‘can imagine that’. The
‘hat’ in the notation K̂ϕ – the notation we will keep using – is reminiscent of
the diamond in ♦ϕ; alternatively one may find for that, in the literature, Mϕ

or kϕ.

3 More agents

Much formal dynamics can be presented based on the single-agent situation.
For example, the action of Anne picking up the card from the table that has
been dealt to her, is a significantly complex epistemic action. But a proper
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Figure 3: Anne and Bill both draw one from the cards clubs, hearts, and spades.
The remaining card is put (face down) on the table. Anne draws the clubs card
and Bill draws the hearts card.

and more interesting perspective is that of the multi-agent situation. This is,
because players may now have knowledge about each others’ knowledge, so that
for even a single fact the Kripke models representing that knowledge can become
arbitrarily complex. For a start, let’s move from one to two players in the three
cards situation:

Anne and Bill both draw one from the cards clubs, hearts, and spades.
The remaining card is put (face down) on the table. Suppose Anne
draws the clubs card and Bill draws the hearts card.

The epistemic operator K with corresponding access ∼, to describe Anne’s
knowledge, now has to be different from an epistemic operator and correspond-
ing access for Bill. The distinction can easily be made by labelling an operator,
and access, with the agent that it is knowledge and access for. If we take a
for Anne, and b for Bill, this results in equivalence relations ∼a and ∼b and
corresponding knowledge operators Ka and Kb. Bill’s access on the domain is
different from Anne’s: whereas Anne cannot tell deals ♣♥♠ and ♣♠♥ apart, Bill
instead cannot tell deals ♣♥♠ and ♠♥♣ apart, etc. The resulting model Hexaab

is visualized in Figure 3. We can now describe in the epistemic language that,
for example:

• Bill cannot imagine that Anne has the hearts card: ¬K̂bHeartsa

• Anne can imagine Bill to imagine that she has the hearts card: K̂aK̂bHeartsa

• Anne knows Bill to imagine that she has the clubs card: KaK̂bClubsa

The formula K̂aK̂bHeartsa is true in epistemic state (Hexaab,♣♥♠) – for-
mally, (Hexaab,♣♥♠) |= K̂aK̂bHeartsa. This can be shown as follows. We
have that ♣♥♠ ∼a ♣♠♥ and that ♣♠♥ ∼b ♥♠♣. In the last state, we have
(Hexaab,♥♠♣) |= Heartsa. From that and ♣♠♥ ∼b ♥♠♣ follows (Hexaab,♣♠♥) |=
K̂bHeartsa, and from that and ♣♥♠ ∼a ♣♠♥ follows (Hexaab,♣♥♠) |= K̂aK̂bHeartsa.
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Figure 4: The epistemic state (Hexa,♣♥♠) for the card deal where Anne holds
clubs, Bill holds hearts, and Cath holds spades.

For three cards and three agents, we get the model Hexa pictured in Figure 4,
and we can now describe in the epistemic language that:

• Anne knows that Bill knows that Cath knows her own card: KaKb(KcClubsc∨
KcHeartsc ∨KcSpadesc)

• Anne has the clubs card, but Anne can imagine that Bill can imagine
that Cath knows that Anne does not have the clubs card: Clubsa ∧
K̂aK̂bKc¬Clubsa

The structures we will use throughout this presentation can now be intro-
duced formally as follows:

Definition 1 (Epistemic structures)
An epistemic model M = 〈S,∼, V 〉 consists of a domain S of (factual) states (or
‘worlds’), accessibility ∼ : N → P(S × S), and a valuation V : P → P(S). For
s ∈ S, (M, s) is an epistemic state.

For ∼(n) we write ∼n and for V (p) we write Vp. So, access ∼ can be seen as
a set of equivalence relations ∼n, and V as a set of valuations Vp. Relative to a
set of agents N and a set of atoms P , the language of multiagent epistemic logic
is inductively defined by ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Knϕ. We need some further
extensions of the language, but all these will be interpreted on the structures
presented in Definition 1.

4 Common knowledge

The first extension of the language is with epistemic operators for groups of
agents, specifically: with common knowledge. As we aim to focus on dynamic
epistemics in this contribution, and not on dynamic epistemics, this will be
a lightning quick introduction in those concepts. For more information, see
[FHMV95, MvdH95].
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In the epistemic state (Hexa,♣♥♠) of Figure 4 both Anne and Bill know
that the deal of cards is not ♠♣♥: both Ka¬(Spadesa ∧ Clubsb ∧ Heartsc) and
Kb¬(Spadesa ∧ Clubsb ∧ Heartsc) are true. If a group of agents all individually
know that ϕ, we say that ϕ is general knowledge. The modal operator for
general knowledge of a group G is EG. For an arbitrary subset G ⊆ N of
the set of agents N , we define EGϕ :=

∧
n∈GKnϕ. So in this case we have

that Eab¬(Spadesa ∧ Clubsb ∧ Heartsc) – par abus de langage we write Eab

instead of E{a,b}. Now even though ϕ may be generally known, that does
not imply that agents know from each other that they know ϕ. For example,
KbKa¬(Spadesa ∧ Clubsb ∧ Heartsc) is false in (Hexa,♣♥♠): Bill can imagine
Anne to have the spades card instead of clubs. In that case, Anne can imagine
that the card deal is ♠♣♥. So K̂aK̂b(Spadesa ∧ Clubsb ∧ Heartsc) is true, and
therefore KbKa¬(Spadesa ∧ Clubsb ∧ Heartsc) is false. For other examples, one
can construct formulas that are true to some extent KaKbKcKaKaKbϕ but no
longer if one adds one more operator at the start, e.g., KbKaKbKcKaKaKbϕ

is false. A formula ϕ is common knowledge for a group G, notation CGϕ, if it
holds for arbitrary long stacks of individual knowledge operators (for individuals
in that group). If, for example, G = {a, b, c}, we get something (involving an
enumeration of all finite stacks of knowledge operators) like Cabcϕ := ϕ∧Kaϕ∧
Kbϕ∧Kcϕ∧KaKaϕ∧KaKbϕ∧KaKcϕ∧. . .KaKaKaϕ . . . . Alternatively, we may
see common knowledge as the conjunction of arbitrarily many applications of
general knowledge: CGϕ := ϕ ∧EGϕ ∧EGEGϕ∧ .... Such infinitary definitions
are frowned upon. Therefore common knowledge CG is added as a primitive
operator to the language, whereas general knowledge is typically defined (for
a finite set of agents) by the notational abbreviation above. Instead, common
knowledge is defined semantically, based on transitive closure relations of access
for the individual agents in the group. By way of validities involving common
knowledge, that are mentioned at the end of this section, any single conjunct
from the right side of the infinitary definition of common knowledge is then
entailed, and in this way we avoid having to define it in that infinitary way.

The semantics of common knowledge formulas is: CGϕ is true in an epistemic
state (M, s), if ϕ is true in any state sm that can be reached by a finite path of
linked states s ∼n1

s1 ∼n2
s2 ∼n3

· · · ∼nm
sm, with all of n1, ..., nm ∈ G (and

not necessarily all different). Mathematically, ‘reachability by a finite path’
is the same as ‘being in the transitive reflexive closure’. If we define ∼G as
(
⋃

n∈G)∗ – which is that reflexive transitive closure – then we interpret common
knowledge as

M, s |= CGϕ if and only if for all s′ : s ∼G s′ implies M, s′ |= ϕ

If all individual accessibility relations are equivalence relations, ∼G is also
an equivalence relation. Common knowledge for the entire group N of agents
is called public knowledge.

In the model Hexa, access for any subgroup of two players, or for all three, is
the entire model. For such groupsG, CGϕ is true in an epistemic state (Hexa, s′)
iff ϕ is valid on the model Hexa – a formula is valid on a model M , notation
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Anne: “I do not have hearts.”

Figure 5: On the left, the epistemic state (Hexa,♣♥♠) for the card deal where
Anne hold clubs, Bill holds hearts, and Cath holds spades. The actual deal
is underlined. On the right, the effect of Anne saying that she does not have
hearts.

M |= ϕ, if and only if for all states s in the domain of M : M, s |= ϕ. For
example, we have that:

• It is public knowledge that Anne knows her card:
Hexa |= Cabc(KaClubsa ∨KaHeartsa ∨KaSpadesa)

• Anne and Bill share the same knowledge as Bill and Cath:
Hexa |= Cabϕ→ Cbcϕ

Valid principles for common knowledge are CG(ϕ → ψ) → CGϕ → CGψ

(distribution of CG over →), and CGϕ → (ϕ ∧ EGCGϕ) (use of CG), and
CG(ϕ → EGϕ) → ϕ → CGϕ (induction). Some grasp of group concepts of
knowledge is important to understand the effects of public announcements, but
we will not pay more attention here to those concepts.

5 Public announcements

We now move on to the dynamics of knowledge. Suppose Anne says that she
does not have the hearts card. She then makes public to all three players that
all deals where Heartsa is true can be eliminated from consideration. This
results in a restriction of the model Hexa as visualized in Figure 5. The public
announcement “I do not have hearts” can be seen as an epistemic ‘program’
with ‘precondition’ ¬Heartsa, that is interpreted as a ‘state transformer’ of the
original epistemic state, exactly as a program in dynamic modal logic. Given
some program π, in dynamic logic [π]ψ means that after every execution of π
(state transformation induced by π), formula ψ holds. For announcements we
want something of the form [ϕ]ψ, meaning that after (every) announcement of
ϕ, formula ψ holds.

We appear to be moving away slightly from the standard paradigm of modal
logic. So far, the accessibility relations were between states in a given model
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underlying an epistemic state. But all of a sudden, we are confronted with an
accessibility relation between epistemic states as well: “I do not have hearts”
induces a(n) (epistemic) state transition such that the pair of epistemic states in
Figure 5 is in that relation. The epistemic states take the roles of the points or
worlds in a seemingly underspecified domain of ‘all possible epistemic states’. By
lifting accessibility between points in the original epistemic state to accessibility
between epistemic states, we can get the dynamic and epistemic accessibility
relations ‘on the same level’ again, and see this as an ‘ordinary structure’ on
which to interpret a perfectly ordinary multimodal logic. A crucial point is
that this ‘higher-order structure’ is induced by the initial epistemic state and
the actions that can be executed there, and not the other way round. So it’s
standard modal logic after all.

Anne’s announcement “I do not have hearts” is a simple epistemic action
in various respects. It is public, and therefore not private or even something
else. It is truthful, and not merely introspective or even weaker; in that sense it
describes change of knowledge only and not change of belief. It is deterministic,
i.e. a state transformer; other actions, of which we will see an example, are
non-deterministic.

The effect of the public announcement of ϕ is the restriction of the epistemic
state to all worlds where ϕ holds. So, ‘announce ϕ’ can indeed be seen as an
information state transformer, with a corresponding dynamic modal operator
[ϕ]. We now formally introduce the language with all the operators we have
seen so far.

Definition 2 (Logical language of public announcements)
Given are a set of agents N and a set of atoms P . Let p ∈ P , n ∈ N , and G ⊆ N

be arbitrary. The language of public announcements is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CGϕ | [ϕ]ψ

Definition 3 (Semantics)
Given is an epistemic model M = 〈S,∼, V 〉. We define:

M, s |= p : iff s ∈ Vp

M, s |= ¬ϕ : iff M, s 6|= ϕ

M, s |= ϕ ∧ ψ : iff M, s |= ϕ and M, s |= ψ

M, s |= Knϕ : iff for all t ∈ S : s ∼n t implies M, t |= ϕ

M, s |= CGϕ : iff for all t ∈ S : s ∼G t implies M, t |= ϕ

M, s |= [ϕ]ψ : iff M, s |= ϕ implies M |ϕ, s |= ψ

where M |ϕ := 〈S′,∼′, V ′〉 is defined as follows:

S′ := {s′ ∈ S | M, s′ |= ϕ}
∼′

n := ∼n ∩ (S′ × S′)
V ′

p := Vp ∩ S′

10



In other words: the model M |ϕ is the model M restricted to all the states where
ϕ holds, including access between states. The interpretation of the dual 〈ϕ〉 of
of [ϕ] will be obvious: M, s |= 〈ϕ〉ψ if and only if M, s |= ϕ and M |ϕ, s |= ψ.
Formula ϕ is valid on model M , notation M |= ϕ, if and only if for all states s
in the domain of M : M, s |= ϕ. Formula ϕ is valid, notation |= ϕ, if and only if
for all models M (of the class of models for the given parameters of N and P ):
M |= ϕ. A proof system for this logic originates with and is proved sound and
complete in [BMS98], with precursors (namely completeness results for the logic
with announcements but without common knowledge) in [Pla89] and [GG97].

After Anne’s announcement that she does not have hearts, Cath knows that
Anne has clubs (see Figure 5). We can verify this with a semantic computation
as follows:

In order to prove that Hexa,♣♥♠ |= [¬Heartsa]KcClubsa, we have to show
that Hexa,♣♥♠ |= ¬Heartsa implies Hexa|¬Heartsa,♣♥♠ |= KcClubsa. As
it is indeed the case that Hexa,♣♥♠ |= ¬Heartsa, it only remains to show
that Hexa|¬Heartsa,♣♥♠ |= KcClubsa. The set of states that is equivalent
to ♣♥♠ for Cath, is the singleton set {♣♥♠}. So it is sufficient to show that
Hexa|¬Heartsa,♣♥♠ |= Clubsa, which follows trivially from ♣♥♠ ∈ VClubsa

=

{♣♥♠,♣♠♥}.
The semantics of public announcement is actually slightly imprecise. Con-

sider what happens if in “M, s |= [ϕ]ψ if and only if M, s |= ϕ implies M |ϕ, s |=
ψ” the formula ϕ is false in M, s. In that case, M |ϕ, s |= ψ is undefined, because
s is now not part of the domain of the model M |ϕ. Apparently, we ‘informally’
use that an implication ‘antecedent implies consequent’ in the meta-language
is not just true when the antecedent is false or the consequent is true, in the
standard binary sense, where both antecedent and consequent are defined. But
we also use that the implication is true when the antecedent is false even when
the consequent is undefined. A more precise definition of the semantics of public
announcement, that does not have that informality, is: M, s |= [ϕ]ψ if and only
if for all (M ′, s′) such that (M, s)[[ϕ]](M ′, s′): (M ′, s′) |= ψ. In this definition,
(M, s)[[ϕ]](M ′, s′) holds if and only if M ′ = M |ϕ and s = s′. The general defini-
tion of the interpretation of epistemic actions, of which ‘announcement’ is just
an example, has a very similar form.

To give the reader a feel for what goes and what not in this logic, we give some
valid principles for this logic. In all cases we only give motivation and we refrain
from proofs.

If an announcement can be executed, there is only one way to do it:

〈ϕ〉ψ → [ϕ]ψ is valid

This is a simple consequence of the functionality of the state transition semantics
for the announcement. Of course, the converse [ϕ]ψ → 〈ϕ〉ψ does not hold. Take
ϕ = ψ = ⊥ (⊥ is ‘falsum’). We now have that [⊥]⊥ is valid (for trivial reasons)
but 〈⊥〉⊥ is, of course, always false, for the same trivial reason that no epistemic
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state satisfies ⊥! Related to the functionality and partiality of ‘announcement’
are that all of the following are equivalent:

• ϕ→ [ϕ]ψ

• ϕ→ 〈ϕ〉ψ

• [ϕ]ψ

A sequence of two announcements can always be replaced by a single, more
complex announcement. Instead of first saying ‘ϕ’ and then saying ‘ψ’ you may
as well have said for the first time ‘ϕ and after that ψ’. It is expressed in

[ϕ ∧ [ϕ]ψ]χ is equivalent to [ϕ][ψ]χ

This turns out to be a quite useful feature for analyzing announcements that are
made with specific intentions; or, more general, conversational implicatures à la
Grice. Those intentions tend to be postconditions ψ that supposedly hold after
the announcement. So the (truthful) announcement of ϕ with the intention of
achieving ψ corresponds to the announcement ϕ ∧ [ϕ]ψ.

For an example sequence of two announcements, consider the following an-
nouncement, supposedly made by some outsider that has full knowledge of the
epistemic state (Hexa,♣♥♠) (alternatively, such an agent can be modelled as a
player with the identity relation for access):

An outsider says: “The deal of cards is neither ♠♣♥ nor ♥♠♣.”

This is formalized as ¬(Spadesa ∧ Clubsb ∧ Heartsc) ∧ ¬(Heartsa ∧ Spadesb ∧
Clubsc). Abbreviate this announcement as one. See Figure 6 for the result of
the announcement of one. Observe that none of the three players Anne, Bill, and
Cath know the card deal as a result of this announcement! Now imagine that
the players know (publicly) that the outsider made the announcement one in
the happy knowledge of not revealing the deal of cards to anyone! For example,
he (or she) might have been boasting about his logical prowess and the players
might inadvertently have become aware of that. In other words, it becomes
known that the announcement one was made with the intention of keeping the
players ignorant of the card deal. Ignorance of the card deal (whatever the deal
may have been) can be described as some long formula that is a conjunction of
eighteen parts and that starts as ¬Ka(Clubsa∧Heartsb∧Spadesc)∧¬Kb(Clubsa∧
Heartsb∧Spadesc)∧¬Kc(Clubsa∧Heartsb∧Spadesc)∧. . . and that we abbreviate
as two. The formula two is false in all states (in the model resulting from the
announcement of one) that are a singleton equivalence class for at least one
player, and true anywhere else. So it’s only true in state ♣♥♠. For the result
of the announcement of two, see again Figure 6. Observe that in the epistemic
state resulting from two, all players now know the card deal! So in that epistemic
state two is false. Now what does it mean that the players have become aware
of the intention of the outsider? This means that although the outsider was
actually saying one, he was really meaning ‘one, and after that two’, or in other
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Figure 6: A sequence of two announcements can be replaced by a single an-
nouncement.

words he was saying [one]two. See again Figure 6. Unfortunately, we have that
Hexa,♣♥♠ |= [[one]two]¬two. So the outsider could have kept the card deal a
secret, but by intending to keep it a secret (s)he was, after all, actually revealing
that secret...

The relation of the announced formula to the pre- and postconditions of the an-
nouncement is not trivial. To start with, [ϕ]Knψ is not equivalent to Kn[ϕ]ψ.
This is a consequence of the fact that [ϕ] is a partial function. A simple coun-
terexample is the following: in (Hexa,♣♥♠) it is true that after ‘every’ an-
nouncement of ‘Anne holds hearts’, Cath knows that Anne holds clubs. This is
because that announcement cannot take place in that epistemic state. In other
words, we have

Hexa,♣♥♠ |= [Heartsa]KcClubsa

On the other hand, it is false that Cath knows that after the announcement of
Anne that she holds the hearts card (which she can imagine to take place), Cath
knows that Anne holds the clubs card. On the contrary: Cath then knows that
Anne holds the hearts card! So we have

Hexa,♣♥♠ 6|= Kc[Heartsa]Clubsa

If we make [ϕ]Knψ conditional to the executability of the announcement, an
equivalence indeed holds:

[ϕ]Knψ is equivalent to ϕ→ Kn[ϕ]ψ

The relation between announcement and knowledge can be formulated in various
ways. One or the other may appeal more to the intuitions of the reader. Often,
the ‘diamond’-versions of axioms correspond better to one’s intuitions than the
‘box’-versions. So it merely sharpens the modeller’s wits to realize that all of
the following validities express the same equivalence:
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Figure 7: A state transition illustrating what a and b commonly know before
and after announcement of p.

• [ϕ]Knψ ↔ (ϕ→ Kn[ϕ]ψ)

• 〈ϕ〉Knψ ↔ (ϕ ∧Kn(ϕ→ 〈ϕ〉ψ))

• 〈ϕ〉K̂nψ ↔ (ϕ ∧ K̂n〈ϕ〉ψ)

If we restrict ourselves to the logic of announcements without common knowl-
edge, every formula is logically equivalent to one in the logic without announce-
ments. But for the logic of announcements with common knowledge, this is
no longer the case [BMS98]. Apart from conceptual reasons, such as having
a natural specification language for dynamics, that, one might say, is the real
validation of this logical tool. Let us take a closer look at a principle relating
announcements and common knowledge.

The straightforward generalization of the principle [ϕ]Knψ ↔ (ϕ→ Kn[ϕ]ψ)
relating announcement and individual knowledge would be [ϕ]CNψ ↔ (ϕ →
CN [ϕ]ψ). This happens to be invalid. The following countermodel M demon-
strates this clearly.

Consider a model M for two agents a and b and two facts p and q. Its
domain is {11, 01, 10}, where 11 is the state where p and q are both true, 01
the state where p is false and q is true, and 10 the state where p is true and q

is false. Agent a cannot tell 11 and 01 apart, whereas b cannot tell 01 and 10
apart. So the partition for a on the domain is {11, 01}, {10} and the partition
for b on the domain is {11}, {01, 10}. See Figure 7.

Now consider the instance [p]Cabq ↔ (p → Cab[p]q) of this supposed prin-
ciple. The left side of the equivalence is true in state 11 of M , whereas the
right side is false in that state. We show that as follows. First, M, 11 |= [p]Cabq

is true in 11, because M, 11 |= p and M |p, 11 |= Cabq. For the result of the
announcement of p in (M, 11), see Figure 7. The model M |p consists of two
disconnected states; obviously, M |p, 11 |= Cabq, because M |p, 11 |= q and 11 is
now the only reachable state from 11.
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On the other hand, we have that M, 11 6|= p → Cab[p]q, because M, 11 |= p

but M, 11 6|= Cab[p]q. The last is because 11 ∼ab 10 (because 11 ∼a 01 and
01 ∼b 10), and M, 10 6|= [p]q. When evaluating q in M |p, we are now in the
other disconnected part of M |p, where q is false: M |q, 10 6|= q.

Fortunately there are also other ways to get common knowledge after an an-
nouncement. The general principle is: If χ→ [ϕ]ψ and χ∧ϕ→ ENχ are valid,
then χ→ [ϕ]CNψ is valid as well.

6 Unsuccessful updates

After announcing ϕ, ϕ may remain true but may also have become false! This
will not come as a surprise to those familiar with the so-called Moore-sentences,
that are already discussed in detail in the original presentation of epistemic logic
in [Hin62]. This states that you cannot know that some fact is true and that
you do not know that. In other words, K(p∧ ¬Kp) is inconsistent in epistemic
logic. This can easily been seen by the following argument: from K(p ∧ ¬Kp)
follows Kp∧K¬Kp, so follows Kp. But also, from Kp∧K¬Kp follows K¬Kp,
and from that, with ‘truthfulness’, follows ¬Kp. Together, Kp and ¬Kp are
inconsistent.

Within the setting of the logic of public announcements this can be re-
described as follows: after the truthful announcement (in some given epistemic
state) of (p∧¬Kp), this formula can no longer be true (in the resulting epistemic
state). In [Ger99] this sort of announcement was called an unsuccessful update:
you say something “because it’s true,” but unfortunately, that was not a very
successful thing to do, because now it’s false!

For a different example, consider the result of Anne announcing in the epis-
temic state (Hexa,♣♥♠): “I hold the clubs card and (at the time I am saying
this) Bill does not know that”. This is an announcement of Clubsa ∧¬KbClubsa

(or of, equivalently, Ka(Clubsa∧¬KbClubsa); note that mixing epistemic opera-
tors for different agents does not make it ‘Moore’). After this announcement, Bill
now knows that Anne holds the clubs card, so KbClubsa has become true, and
therefore ¬(Clubsa ∧ ¬KbClubsa) as well. The reader can simply check in Fig-
ure 8, that after this announcement the formula ¬(Clubsa ∧¬KbClubsa) indeed
holds, and therefore Hexa,♣♥♠ |= [Clubsa ∧¬KbClubsa]¬(Clubsa ∧¬KbClubsa).

We appear to be deceived by some intuitive, but incorrect, communicative ex-
pectations. If an agent truthfully announces ϕ to a group of agents, it appears
on first sight to be the case that (s)he ‘makes ϕ common knowledge’ that way:
in other words, if ϕ holds, then after announcing that, CNϕ holds. In other
words, ϕ → [ϕ]CNϕ appears to be valid. This expectation is unwarranted, be-
cause the truth of epistemic (non-propositional) parts of the formula may be
influenced by its announcement. On the other hand – it’s not that our intuition
is that stupid – sometimes the expectation is warranted after all: the formulas
that always become common knowledge after being announced, can be called
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Figure 8: Anne says to Bill: “(I hold clubs and) You don’t know that I hold
clubs.”

successful. What are the possibilities?

After announcing ϕ, ϕ sometimes remains true and sometimes becomes false,
and this depends both on the formula and on the epistemic state. Consider
an epistemic state for one atom p and two agents, Anne and Bill again, where
Anne knows the truth about p but Bill doesn’t. This epistemic state is formally
defined as (Letter, 1), where the model Letter has domain {0, 1}, where p is
true in state 1: Vp = {1}, and such that Anne can distinguish 1 from 0 but Bill
cannot, so access ∼a for a is the identity {(0, 0), (1, 1)} and access ∼b for b is the
universal relation {(0, 0), (1, 1), (0, 1), (1, 0)}. The model is called Letter because
it can be seen as the result of Bill seeing Anne read a letter which contains the
truth about p. If in this epistemic state Anne says, truthfully: “I know that p,”
then after this announcement of Kap it remains true that Kap:

Letter, 1 |= [Kap]Kap

This is, because in Letter the formula Kap is true in state 1 only, so that the
model Letter|Kap consists of the singleton state 1, with reflexive access for
a and b. It also becomes common knowledge that Anne knows p: we have
that Letter, 1 |= [Kap]CNKap; although in this particular case of a singleton
model, that is not very informative. We therefore also have Letter |= Kap →
[Kap]CNKap and Kap→ [Kap]CNKap is indeed valid.

But it is not always the case that announced formulas remain true. In the
given epistemic state (Letter, 1), Anne could on the other hand have said as well,
to Bill: “You don’t know that p.” The actual implicature in this case is “Fact
p is true and you don’t know that.” After this announcement of Ka(p∧¬Kbp),
that also only succeeds in state 1, Bill knows that p, therefore Ka(p ∧ ¬Kbp) is
now no longer true

Letter, 1 |= [Ka(p ∧ ¬Kbp)]¬Ka(p ∧ ¬Kbp)

and so it’s certainly not commonly known: Letter, 1 |= [Ka(p∧¬Kbp)]¬CNKa(p∧
¬Kbp). So Ka(p ∧ ¬Kbp) → [Ka(p ∧ ¬Kbp)]CNKa(p ∧ ¬Kbp) is definitely not
valid.
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Figure 9: A simple unsuccessful update: (p and) you don’t know that p. The
annoucement ‘I know that p’ – between brackets – induces the same state tran-
sition.

The epistemic state transition induced by this announcement is visualized
in Figure 9. The announcement of Kap induces the same state transition. In-
cidentally, like here, for a given state transition there is always a formula that
induces it and remains true, an interesting result by Van Benthem [vB02].

In this case, we not only have that Kap remains true after being announced
and that Ka(p ∧ ¬Kbp) becomes false, but also that [Kap]Kap is valid, and
[Ka(p ∧ ¬Kbp)]¬Ka(p ∧ ¬Kbp) is valid. In between these extremes of ‘always
successful’ and ‘always unsuccessful’ there are also formulas that sometimes re-
main true, and at other times – given other epistemic states – become false
after an announcement. A typical example is ‘not stepping forward’ in the
well-known Muddy Children problem [FHMV95]. The ‘announcement’ (implic-
itly, by not stepping forward) that none of the children know whether they are
muddy, remains true in all epistemic states for this problem except the last one,
in which it is an unsuccessful update: after that the muddy children know that
they are muddy, and step forward. The following terminology describes all those
nuances.

Definition 4 (Successful formula / Successful update)
A formula ϕ in the language of public announcements is successful if and only if
[ϕ]ϕ is valid. A formula is unsuccessful if and only if it is not successful. Given
an epistemic state (M, s), ϕ is a successful update in (M, s), if and only ifM, s |=
〈ϕ〉ϕ; and ϕ is an unsuccessful update in (M, s), if and only if M, s |= 〈ϕ〉¬ϕ.

In the definitions, the switch between the ‘box’ and the ‘diamond’ versions of the
announcement operator may puzzle the reader. In the definition of a successful
formula we need the ‘box’-form: 〈ϕ〉ϕ is invalid for all ϕ except ⊤ (⊤ stands
for ‘verum’, ‘truth’). But in the definition of a successful update we need the
‘diamond’-form: otherwise, whenever the announcement formula is false in an
epistemic state, [ϕ]¬ϕ would therefore be true, and we would be forced to call
that ϕ an unsuccessful update. That would not capture the intuititive meaning
of ‘unsuccessful update’, which is a property of an epistemic state transition. We
must therefore assume that the announcement formula can indeed be truthfully
announced. This explains the difference between the two definitions.

Announcements of (therefore true) successful formulas (the validity of [⊥]⊥
is considered a-typical) are always successful updates, but sometimes successful
updates are on formulas that are unsuccessful. The first will be obvious: if a
successful formula ϕ is true in an epistemic state (M, s), then 〈ϕ〉ϕ is also true
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Anne shows clubs to Bill

Figure 10: On the left, the Kripke model for three players each holding one card. On

the right, the effect of Anne showing her clubs card to Bill.

in that state, so it is also a successful update. The last is, because formulas
may be successful updates in one epistemic state, but unsuccessful updates in
another, and from the latter follows that they are unsuccessful formulas.

We can link our intuitions about ‘success’ to the definition of a successful for-
mula in a surprisingly elegant way: A formula [ϕ]ϕ is valid, if and only if [ϕ]CNϕ

is valid, if and only if ϕ→ [ϕ]CNϕ is valid. So the successful formulas ‘do what
we want them to do’: if true, they become common knowledge when announced.
What formulas are successful? An answer to this question is not obvious, be-
cause some inductive ways to construct the class of successful formulas fail: even
if ϕ and ψ are successful, ¬ϕ, ϕ∧ψ, or ϕ→ ψ may be unsuccessful. For exam-
ple, both p and ¬Kp are successful formulas, but, as we have seen, p ∧ ¬Kp is
not. A partial answer to that question and further information on unsuccessful
updates, including examples, can be found in [vDK04].

7 Epistemic actions

Some epistemic actions are more complex than public announcements, where
the effect of the action is always a restriction on the epistemic model. Let
us reconsider the epistemic state (Hexa,♣♥♠) for three players Anne, Bill and
Cath, each holding one of clubs, hearts, and spades; and wherein Anne holds
clubs, Bill holds hearts, and Cath holds spades. And consider again one of the
example actions in the introduction:

Anne shows (only) to Bill her clubs card. Cath cannot see the face
of the shown card, but notices that a card is being shown.

As always in this epistemic (and not doxastic) setting, it is assumed that it
is publicly known what the players can and cannot see or hear. Call this action
showclubs. The epistemic state transition induced by this action is visualized
in Figure 10. Unlike after public announcements, in the showclubs action we
cannot eliminate any state. Instead, all b-links between states have now been

18



severed: whatever the actual deal of cards, Bill will know that card deal and
cannot imagine any alternatives. Let us show the intuitive acceptability of the
resulting epistemic state. After the action showclubs, Anne can imagine that
Cath can imagine that Anne has clubs. That much is obvious, as Anne has
clubs anyway. But Anne can also imagine that Cath can imagine that Anne
has hearts, because Anne can imagine Cath to have spades, and so not to know
whether Anne has shown clubs or hearts; so it might have been hearts. It is even
the case that Anne can imagine that Cath can imagine that Anne has spades,
because Anne can imagine Cath not to have spades but hearts instead, in that
case Cath would not have known whether Anne has shown clubs or spades; so
it might have been spades. Note that, even though for Cath there are only
two ‘possible actions’ – showing clubs or showing hearts – none of the three
possible actions can apparently be eliminated ‘from public consideration’. The
descriptions of the action showclubs and of the other ‘possible actions’ where
Anne shows hearts or spades to Bill instead, should obviously be related: in
Figure 10, this merely means shifting the point from one state to another.

But it can become even more complex. Imagine the following action, rather
similar to the showclubs action:

Anne whispers into Bill’s ear that she does not have the spades card,
given a (public) request from Bill to whisper into his ear one of the
cards that she does not have.

This is the action whispernospades. Given that Anne has clubs, she could have
whispered “no hearts” or “no spades”. And whatever the actual card deal was,
she could always have chosen between two such options. We expect an epistemic
state to result that reflects that choice, and that therefore consists of 6×2 = 12
different states. It is visualized in Figure 11. The reader may ascertain that the
desirable postconditions of the action whispernospades indeed hold. For example,
given that Bill holds hearts, Bill will now have learnt from Anne what Anne’s
card is, and thus the entire deal of cards. So there should be no alternatives
for Bill in the actual state (the underlined state ♣♥♠ ‘at the back’ of the figure
– for convenience, different states for the same card deal have been given the
same name). But Cath does not know that Bill knows the card deal, as Cath
can imagine that Anne actually whispered “no hearts” instead. That would
have been something that Bill already knew, as he holds hearts himself – so
from that action he would not have learnt very much. Except that Cath could
then have imagined him to know the card deal... Note that in Figure 11 there
is also another state named ♣♥♠, ‘in the middle’ so to speak, that is accessible
for Cath from the state ♣♥♠ ‘at the back’, and that satisfies that Bill doesn’t
know that Anne has clubs. Etc.

From the point of view of dynamic epistemics, a public announcement is a simple
form of epistemic action: it results in a restriction of the domain. The showhearts

action results in a refinement of accessibility relations given the same domain.
The whispernospades action results in increased complexity of the underlying
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Figure 11: Anne whispers into Bill’s ear that she does not have the spades card,
given a (public) request from Bill to whisper into his ear one of the cards that
she does not have.

epistemic model, reflecting non-deterministic choice. To be able to model such
actions a generalization of the approach used in the public announcement logic
of [Pla89] was needed. Plaza’s work was more fully appreciated in the latter
half of the 1990s, when subsequent, partially independent, developments took
place. A stream of publications appeared around the year 2000 [GG97, Ger99,
LR99b, BMS98, Bal99, vD00, vB01, BM04, vD02, tC02, Koo03, vDvdHK03].
Gerbrandy was unfamiliar with the work of Plaza at the time of his seminal
publication [GG97]. It models the dynamics of introspective agents, and there-
fore in particular changes in belief (and, as a special case, knowledge). Its
basis is a different insight into dynamics, namely along the line of work in dy-
namic semantics by [Vel96]. The approach in [vD00, vD02, vDvdHK03] might
be called a relational action language, wherein epistemic states resulting from
computing the effects of actions to subgroups (such as ‘Anne and Bill’ in the
case of three cards) are used in the computations of the effects of the action
for larger groups that contain that smaller group, and finally, the effects of the
action for the public (such as ‘Anne, Bill, and Cath’). A different approach,
and a conceptually very appealing solution, is to see a semantic action as some
kind of Kripke model, an ‘action model’ so to speak, and action execution as
a restricted modal product (‘the next epistemic state’) of the current epistemic
state and the action model. This was first presented in [BMS98, Bal99] and its
semantics recently appeared in final version in [BM04].

A crucial concept in the [vDvdHK03] approach is the ‘learn’ operator. This is a
dynamic variant of the ‘common knowledge’ operator. Let’s see what it means,
by paraphrasing the action showclubs in a way that brings this action closer to
its description as an epistemic action.
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Anne and Bill learn that Anne holds clubs, whereas Anne, Bill and
Cath learn [ that either Anne and Bill learn that Anne holds clubs,
or that Anne and Bill learn that Anne holds hearts, or that Anne
and Bill learn that Anne holds spades ].

In other words: Anne, Bill and Cath learn that Anne and Bill learn which card
Anne holds, and, actually, Anne and Bill learn that Anne holds clubs. The
choice made from the three alternatives by subgroup {a, b} is known to them
only, and is hidden from c, who only knows what the three alternatives are. The
description of this action in the relational action approach is

Labc(!Lab?Clubsa ∪ Lab?Heartsa ∪ Lab?Spadesa)

In this description, ‘L’ stands for ‘learning’, the ‘!’ indicates which of the
three alternatives really happens, ‘∪’ stands for non-deterministic choice, and ‘?’
stands for ‘a test on’ (the truth of the formula following it). The whispernospades

action is described as

Labc(Lab?¬Clubsa ∪ Lab?¬Heartsa∪ !Lab?¬Spadesa)

Note that in this case the first option could not have been chosen, and that
instead the third option has been chosen. To explain this in reasonable detail,
or any of the other approaches, would carry way too far for this introduction.
For details see the references.

Some rather simple actions cannot be modelled in any of the current dynamic
epistemic approaches. For example, given that the action descriptions in all
mentioned approaches are entirely based on the properties of the current epis-
temic state, one cannot distinguish between different ways in which that current
state came about. Anne may only want to show a clubs card if some past ac-
tion of Bill involved showing a spades card. But the action descriptions cannot
distinguish between epistemic states that have the same (bisimilar) epistemic
description but different action histories! In view of modelling game strategies,
such expanded expressive power is of course essential. For another example,
given the scenario where Anne receives a letter and Bill sees her reading it, sup-
pose that the letter did not contain the truth about a single fact but contained
a natural number. So instead of one fact we have infinitely many facts. Before
she reads the letter, the epistemic model for that consists of infinitely many
points, with universal access for both Anne and Bill, no problem at all. It is
also clear what the model looks like after Anne reads the letter: Anne’s access
is now the identity, and Bill’s is still the universal relation. But the action de-
scribing that Anne reads the letter, which transforms the former into the latter,
has an infinitely long description, because there are infinitely many alternatives:
a problem.
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8 Belief, time, revision

This section presents different perspectives and other approaches. Instead of
knowledge change we may want to model belief change; knowledge change can
also be seen as emerging from the temporal progression of some epistemic state,
using temporal and epistemic operators instead; we can see knowledge change
as some kind of (deductively closed) theory change: a matter that has been
thoroughly investigated under the header of ‘belief revision’; and there are logics
that combine knowledge and belief, and degrees of belief, and probability, and
changes to some or all of those.

Belief We discussed knowledge change only and not belief change – with
‘knowledge as true belief’. This was just for expository purposes. Belief change
can be modelled in the same way. With the exception of the approach originat-
ing in Van Ditmarsch PhD. thesis [vD00], that so far only applies to knowledge,
all mentioned approaches for dynamic epistemics only assume arbitrary acces-
sibility relations. They therefore apply as well to structures that satisfy the
properties of belief. A typical sort of epistemic action that can only be mod-
elled in this setting is the private announcement to a subgroup only: Suppose
that in epistemic state (Hexa,♣♥♠), Anne shows Bill her clubs card, as before,
but now without Cath noticing anything at all. In the state resulting from that
action, Bill knows the card deal, as before, but Cath incorrectly believes that
Bill does not know that. Such private announcements to groups are the main
topic of Gerbrandy’s PhD. thesis [Ger99].

Time In temporal epistemic approaches we may express the information that
Bill knows that Anne holds clubs after she said that she does not have spades, as,
for example, XKbClubsa, orK1

b Clubsa. We then assume an underlying structure
of the corresponding epistemic state transitions, for example corresponding to
some such transitions in a run of an interpreted system. We cannot express the
content of the action in the temporal operator. In XKbClubsa, X is the (modal)
temporal ‘next’ operator, which is interpreted as follows ‘XKbClubsa is true in
the current state, if in the next state (as determined by the underlying structure)
KbClubsa is true. In K1

b Clubsa we do something similar, only that in this case
K1

b is the operator describing what Bill knows at point 1 in time. Temporal
epistemic logics have been fairly successful. Their computational properties
are well-known and proof tools have been developed. See for example, we give
just some arbitrary references here, [vdM98, DFW98, HvdMV03]. The main
difference with the dynamic epistemic approach is that the temporal epistemic
description takes as models systems consisting of many epistemic states together
with their whole (deterministic) history and future development. Instead, in
dynamic epistemics a single epistemic state – a point in that temporal structure
so to speak – is sufficient: its further development is induced by the description
of the action to be executed there. This may be seen as an advantage of the
dynamic epistemic approach. But there are also definite advantages to the
temporal epistemic approach. Consider again the Moore-sentences. After Anne
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announces to Bill: “(I hold clubs and) You do not know that I hold clubs,”
there is nothing inconsistent in the truth of K1

b (Clubsa ∧ ¬K0

b Clubs): at point
1 in time, Bill knows that Anne holds clubs and that at point 0 in time he did
not know that Anne holds clubs.

Belief revision In belief revision the emphasis is on theories of objective
(i.e., non-epistemic) beliefs that are changed due to expansions, contractions, or
revisions, typically from the point of view of a single agent. Let’s consider the
point of view of Bill in ‘three cards’. In this case his ‘beliefs’ are his justified true
beliefs: his knowledge. At the outset he knows that he holds hearts, but he does
not know the ownership of other cards. Therefore we may assume that Heartsb

is part of his set of current beliefs T . General descriptions are also part of that
theory T of current beliefs, for example rules expressing that a card can only be
held by a single player: exclusive disjunction of Spadesa, Spadesb, and Spadesc;
and sentences describing single card ownership: Heartsb → ¬Spadesb, . . . ; etc.
Suppose the new information is ‘Anne does not hold spades’. As Bill’s current
beliefs were consistent with both Spadesa and ¬Spadesa, the belief change taking
place here is an expansion and not a revision. The revised theory T +¬Spadesa

should contain the ‘new information’ ¬Spadesa, and we also expect Bill to be
able to derive Clubsa from that.

A general framework to describe such belief expansion in an epistemic set-
ting, and also contractions and revisions, is given in [Seg99b]. See also [Seg99a,
LR99a]. As far as the logical language is concerned, this follows more or less
the following pattern:

For the example just given, Bill’s beliefs ϕ are described by all Kbϕ that are
true in the current epistemic state. That Heartsb is part of his beliefs corresponds
to the truth of KbHeartsb. That both Clubsa and ¬Clubsa are absent from his
beliefs, corresponds to the truth of both ¬KbClubsa and ¬Kb¬Clubsa in the
current state of information, before Anne’s announcement. And that Clubsa is
believed by Bill after the announcement, is described by the truth of KbClubsa

in the resulting epistemic state. The expansion with ¬Spadesa corresponds to
Anne’s public announcement of ¬Spadesa, after which Kb¬Spadesa is indeed
true.

A major difference between belief revision and dynamic epistemics is that the
latter, and not the former, allows higher-order belief change. In ‘three cards’ we
have that from Anne’s announcement that she does not have spades, Cath does
not gain any factual knowledge, but learns that Bill now knows Anne’s card.
So the revision of Cath’s beliefs should involve adding a non-objective formula
KbClubsa∨KbHeartsa∨KbSpadesa, because in the new epistemic state it is true
that Kc(KbClubsa ∨ KbHeartsa ∨ KbSpadesa). This general issue of updating
‘non-objective’ formulas was neglected by classical belief revision theory, partly
because of complications in the form of ‘Moore’-problems. An expansion with
“(I hold clubs and) You do not know that I hold clubs,” can never be successful;
and ‘success’ happens to be a deeply entrenched postulate for acceptable theory
revision. It was unclear how the standard AGM postulates should be generalized
to include such cases.
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A second important difference between dynamic epistemics and belief revi-
sion concerns not expansion but actual ‘revision’ of (possibly wrong) beliefs, i.e.
updating with a formula that is inconsistent with prior beliefs. This is typi-
cally analyzed in depth by belief revision, but neglected by dynamic epistemics.
Recent advances in that have been made in [vDL03, Auc03], motivated to an
important extent by seminal work from Spohn [Spo88].

Suffices to give a simple example of where this comes in handy. Consider,
once again, but really for the last time now, the action showclubs wherein Anne
shows clubs to Bill only but with Cath noticing that. Now imagine that Cath
considers it more likely that Anne shows hearts than that Anne shows clubs.
And assume that Cath’s beliefs – as is common within a ‘belief revision’ setting
– are determined by the things she considers most normal / most likely. With
each agent we can associate a whole set of operators for all of belief, and differ-
ent degrees of belief, and knowledge, and interpret these on ‘doxastic epistemic’
models, that carry a set of accessibility relations per agent. In the resulting
state of information we can achieve that even though Bill knows that Anne
holds clubs – KbClubsa – Cath believes that Bill knows that Anne holds hearts
– BcKbHeartsa. Further actions, for example Anne putting her clubs card face
up on the table, then result in Cath retracting her belief in KbHeartsa and ‘ex-
panding’ her beliefs with KbClubsa instead, so we then end up with BcKbClubsa

again. For details, see [vD04, Auc03]. These approaches – they may incorpo-
rate infinitely many degrees of belief – also suggest overlap with achievements to
combine knowledge and probability [FH94] and the dynamics of that [Koo03].
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