
Department of Computer Science,
University of Otago

Technical Report OUCS-2005-02

A system for generating teaching initiatives in a

computer-aided language learning dialogue

Author:
Nanda Slabbers

Department of Computer Science, University of Twente, the
Netherlands

(Intern, Artificial Intelligence Group, Department of Computer Science,
University of Otago)

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.html

A system for generating teaching initiatives in a

computer-aided language learning dialogue

Nanda Slabbers

Department of Computer Science
University of Otago

New Zealand
nanda@cs.otago.ac.nz

Supervisor: Alistair Knott
alik@cs.otago.ac.nz

Department of Computer Science
University of Twente

The Netherlands
n.slabbers@student.utwente.nl

Supervisor: F. M. G. de Jong
f.m.g.dejong@ewi.utwente.nl

February, 2005

Abstract

This document describes an extension made to a dialogue-based CALL sys-
tem, to allow the system to take initiatives in the dialogue. The initiative
module is triggered when the user passes the initiative to the system during the
course of a dialogue. The system will then generate a set of “possible initiatives”
and decide which one is best based on a number of criteria.

The initiative module supports two different goals. The first one is the formal
goal of generating an initiative which is appropriate in the context. Further-
more the dialogue system is used for second language learning and therefore the
module also supports the substantive goal of teaching the student a number of
syntactic constructions.

Contents

1 Literature 4
1.1 Te Kaitito . 4

1.1.1 Te Kaitito system . 4
1.1.2 Architecture . 5
1.1.3 MRS and DRS . 5

1.2 Second language learning and teaching 9
1.3 Dialogue based teaching systems 9

1.3.1 Levels of initiative taking 11
1.3.2 CIRCSIM-Tutor . 11
1.3.3 AutoTutor . 11
1.3.4 LISTEN . 13

1.4 Project goals . 14

2 Design of the initiative generation algorithm 15
2.1 Overview of the algorithm . 15
2.2 Authoring characters . 15
2.3 Steps of the algorithm . 17

2.3.1 Finding the topics . 18
2.3.2 Generating possible initiatives 18
2.3.3 Choosing the best alternative 19
2.3.4 Adding necessary discourse markers 20
2.3.5 Processing initiative and user response 21

3 Implementation 22
3.1 Finding the topics . 22

3.1.1 Finding the topics in one sentence 23
3.1.2 Combining the topics lists of two sentences 23
3.1.3 Example of execution of the algorithm 24

3.2 Generating initiatives . 24
3.2.1 Generating genuine questions 25
3.2.2 Generating assertions . 25
3.2.3 Generating teaching questions 26
3.2.4 An example of the generated initiatives 28

3.3 Choosing the best alternative . 28

1

3.3.1 Scoring the initiatives based on the criteria 30
3.3.2 Scaling all scores . 34
3.3.3 Combining the scaled scores 34
3.3.4 Selecting the kind of initiative 35
3.3.5 Improving the efficiency 38

3.4 Adding necessary discourse markers 40
3.4.1 Adding the word ‘also’ . 40
3.4.2 Adding a remark before a teaching question 41

3.5 Processing initiative and user response 41
3.6 ‘Lesson over’ test . 43
3.7 Values of the parameters . 44

4 Results 45
4.1 Example character . 45

4.1.1 Student who takes no initiatives 46
4.1.2 Student who takes initiatives 49

4.2 Example teacher character . 53

5 Summary and possible extensions 56
5.1 Summary . 56
5.2 Changes to Te Kaitito and the grammar 57

5.2.1 Person, animal, place and animate features 57
5.2.2 Extending referring expression generation code 57

5.3 Additions to the Initiative Module 58
5.3.1 Adding cause to the grammar 58
5.3.2 Multi-speaker dialogues 59
5.3.3 Criterion based on ‘naturalness’ of the sentence 59

5.4 Suggestions for new projects . 59
5.4.1 Extending the discourse markers algorithm 59
5.4.2 Handling student’s grammatical errors 60
5.4.3 Modelling the student’s grammatical knowledge 60
5.4.4 Multi-speaker dialogues using agent technology 60

A Propositions and common ground 64

B Parameters 66
B.1 Parameters to calculate the separate scores 66
B.2 Weight parameters . 69
B.3 Remaining parameters . 69
B.4 Parameter values table . 70

2

Introduction

Learning a second language requires much time and practice. People who decide
to learn the second language in a classroom will follow many lessons in class. In
such a classroom students often learn grammar and vocabulary, but to encourage
the student to actually use the language a more focussed interaction is often
needed, where the student talks individually to a single teacher or tutor.

Dialogue is a useful environment for second language learning for a number of
different reasons. First of all, teachers’ questions give immediate feedback about
student comprehension, because the teacher can use the student’s response to
detect difficulties. Furthermore learning a language by means of a dialogue
forces the student to produce language instead of just processing the language.
Finally students and teachers can both shape the learning process; not only the
teacher can decide what to teach, but also the student can ask questions.

An automated human-computer dialogue system can stimulate the learner
to produce the language and can therefore improve the students’ learning pro-
cess. Building such a dialogue system requires modelling the teacher’s behavior
and his questioning behavior in particular. This is a challenging task because
teachers have to make innumerable choices which often depend quite subtly on
the current context.

The CALL (Computer-Aided Language Learning) system which is described
in this report is part of the Te Kaitito system, a bilingual dialogue system
for the English and Māori languages. The CALL system is meant for people
who are learning Māori (the indigenous language of New Zealand) as a second
language. In the dialogue system the user can enter facts and ask questions. The
system will respond with a simple ‘ok’ message if the user enters a fact which
it successfully interprets, and will try to answer the question if the user enters
a question. In this way the user always has the initiative himself, but he can
also decide to pass the initiative to the system. He can do so by simply pressing
the Enter key without entering other input. At that point the initiative module
is called which will generate an initiative from scratch. This report describes
what happens when the system generates an initiative.

The plan of this report is as follows. First some related literature is dealt
with in Chapter 1. Then the design of the module is described in Chapter 2.
Chapter 3 is on the implementation of the different steps of the algorithm. In
Chapter 4 the results are presented using some example dialogues. Chapter 5
concludes with a summary and some suggestions for future extensions.

3

Chapter 1

Literature

Creating initiatives in a language teaching environment is a rather new field
of inquiry. Therefore there is not much literature on exactly this subject, but
there are some related subjects with relevant literature which will be described
in this chapter.

In section 1.1 we will look at the Te Kaitito system, the system in which
the initiative module is embedded. This will contain a general description of
the system, an overview of the architecture and an explanation of some relevant
topics used by the system. In section 1.2 second language learning and in
particular second language teaching are dealt with. Section 1.3 describes some
existing teaching systems, some of which are dialogue-based, others involving
language teaching. Finally, using this literature a somewhat more detailed goal
description is given in section 1.4.

1.1 Te Kaitito

1.1.1 Te Kaitito system

Te Kaitito is a bilingual system for the English and Māori language, see (Knott
et al., 2002), (Knott et al., 2003) and (Vlugter et al., 2004). The system consists
of two main components: a sentence-to-sentence translator and a dialogue sys-
tem. The translator simply translates sentences from one of the languages to the
other language. The system is bidirectional which means that every sentence
that can be parsed can also be generated, in either one of the languages. In
the dialogue system the user can have a conversation with the system in either
English or Māori. In this dialogue system the meanings of the user’s utterances
are stored by the system and are used to answer the user’s questions.

The system has a number of different functions. First of all the system is
used as a platform for developing computational models of syntax, semantics
and discourse, and particularly as a training ground for students working in
these areas. Secondly, the system contains some useful natural language ap-
plications, such as the aforementioned translator, a natural language front-end

4

for a database and a language-teaching tool. Finally, given that the number of
people who can speak Māori fluently is decreasing, building applications which
use the Māori language can increase the number of people interested in the
language.

1.1.2 Architecture

In figure 1.1 the architecture of the Te Kaitito system is displayed.

resolved
sentence
DRS

Saliency list

stack DRS

Context DRS

Global DRS

text
planning
module

Grammars

English

Maori

Lexicons

English

Maori

Morphological rules

English

Maori

output
sentence

input
sentence

sentence
parser

dialogue
engine

Knowledge graph

response
discourse
representation

content
selection
module

set of
fact
nodes

discourse
structure
tree

sentence
planner

discourse
signals
planner

referring
expression
planner

sentence
generatorMRS

MRS−to−DRS
converter

(generation of single−sentence responses)

LEGEND

Procedural module

Declarative module

created by the system
Declarative resource

error
message

(pathway for sentence translation application)

response
sentence
representationsentence

DRSs
MRSs

presupposition
resolution
/disambiguation

Figure 1.1: Te Kaitito architecture

When the student enters a sentence the parser generates a set of possible
syntactic structures each with a semantic representation of the sentence. The
parser used is the LKB system (Copestake and Flickinger, 2002) which works
with HPSG-like grammars. Te Kaitito currently supports two grammars: the
English Resource Grammar or ERG (A and Flickinger, 2000) and the Maori-
English grammar or MEG (Bayard et al., 2002). The parser generates ‘flat’
semantic structures in Minimal Recursion Semantics (MRS) form (Copestake
et al., 1999) which are turned into Discourse Representation Structures (DRSs)
(Kamp and Reyle, 1993). The relevant aspects of MRS and DRS are described
in the next section. The DRSs are then passed to the disambiguation module
which disambiguates the sentence (i.e. finds referents for the anaphora and
other referring expressions). Next the input’s dialogue act is determined (e.g.
question, assertion etc) and then the dialogue manager updates the dialogue
context and decides how to respond to the user input. This process generates
a response in the same MRS form as the user’s input. Finally the sentence
generator transforms this MRS into a sentence in natural language.

1.1.3 MRS and DRS

The first two parts of this section describe MRSs and DRSs. The last subsection
describes the common ground and the structures used by Te Kaitito’s dialogue
manager.

5

Minimal Recursion Semantics

When the student enters a sentence the parser generates semantic representa-
tions in MRS form (Copestake et al., 1999). MRS is a meta-level language
describing semantic structures using a flat structure.

Until recently, most parsers generated either trees or propositions in first or-
der logic, but for various reasons many modern parsers generate underspecified
semantic representations. What is left unspecified is the scope of the quantifiers
in the semantic representation. For instance, the sentence “Every man loves
a woman” has two possible interpretations, one in which ‘every’ outscopes ‘a’
(so that each man can love a different woman), and one in which ‘a’ outscopes
‘every’ (so that each man loves the same woman). In MRS underspecified repre-
sentations are provided by representing a proposition as a simple set of relations
which are not allowed to be embedded. This can be done by giving every re-
lation in the tree a handle and using these handles to refer to the relations.
Scopal relations will have handles as arguments which show the order in which
the branches of the tree are to be built. An example of a sentence with scopal
relations is “Every big white horse is old”. The MRS form of the sentence is
{h0 : every(x, h1, h2), h1 : big(x), h1 : white(x), h1 : horse(x), h2 : old(x)}.
One of these relations (e.g. h0 : every(x, h1, h2)) is called an elementary predi-
cation and each elementary predication refers to one lexeme (an individual entry
in the lexicon).

Using these handles sentences can be left underspecified. For example the
ambiguous sentence “Every dog chases some white cat” has the following two
MRSs:

• The reading some(y, white(y)∧ cat(y), every(x, dog(x), chase(x, y))) re-
sults in the MRS: {h1 : every(x, h3, h4), h3 : dog(x), h7 : white(y), h7 :
cat(y), h5 : some(y, h7, h1), h4 : chase(x, y)}

• The reading every(x, dog(x), some(y, white(y)∧ cat(y), chase(x, y))) re-
sults in the MRS: {h1 : every(x, h3, h5), h3 : dog(x), h7 : white(y), h7 :
cat(y), h5 : some(y, h7, h4), h4 : chase(x, y)}

The only difference between these MRSs is in the handles for the body
arguments of the quantifiers. Therefore it is possible to represent both MRSs
as one single MRS by representing which parts of the trees are constant and
composing some constraints on how to combine those parts. The MRS which
represents both MRSs looks like this: {h1 : every(x, h3, hA), h3 : dog(x), h7 :
white(y), h7 : cat(y), h5 : some(y, h7, hB), h4 : chase(x, y)} The only two
solutions which result in a correct tree are the ones created by replacing hA by
h5 and hB by h4 or by replacing hA by h4 and hB by h5.

In the aforementioned MRSs the elements like h1 : every(x, h3, h4) are called
elementary predications. An EP contains the following components:

• a handle which is the label of the EP

• a relation

6

• a list of zero or more ordinary variable arguments of the relation

• a list of zero or more handles corresponding to scopal arguments of the
relation

This is written as handle : relation(arg1, . . . , argn, scarg1, . . . , scargn) like the
example given before.

An MRS structure is then a tuple 〈T, L, C〉 where T is a handle, L is a bag of
EPs and C is a bag of handle constraints. An example of an MRS is 〈h0, {h1 :
every(x, h3, h4), h3 : dog(x), h7 : white(y), h7 : cat(y), h5 : some(y, h7, h1), h4 :
chase(x, y)}, {}〉. In this example the bag of handle constraints is empty because
there is exactly one possible reading. If an MRS is used like the one with the
handles hA and hB the bag contains the constraints on how to link those handles
to other handles in the MRS. It goes too much into detail to describe the handle
constraints, but it is all described in (Copestake et al., 1999).

In order to understand everything in this report it is necessary to be familiar
with the following terminology. An elementary predication is called a relation,
the relation’s name is called the predicate and all of the arguments are called
referents. There are different types of referents of which the most important
ones are the following:

• e-vars refer to so-called ‘events’, treating them as objects. Every propo-
sition has a ‘main’ event which is referred to by an event variable of this
kind.

• x-vars refer to entities like dogs, people, houses etc.

• h-vars refer to handles and are used to represent the scopal relationships
between the different relations.

Furthermore every relation has a handle which shows where the relation is to be
embedded in the corresponding tree structure. Associated relations (relations
which belong to the same node in the tree) have the same handle. In the sentence
“The green dog barked” the relations ‘green’ and ‘dog’ belong to the same node
and therefore they have the same handle.

Discourse Representation Structures

After generating an MRS it is transformed into a DRS (Kamp and Reyle, 1993).
A DRS is a structure with the following two fields:

• a list of referents: the entities which have been introduced into the context

• a list of conditions: the relations which are known to hold of these refer-
ents.

Each of the referents in the ‘referents’ field represents a unique entity; if
there are several dogs in the current context each of the dogs has a different
referent.

DRSs can be drawn as split boxes with the referents at the top and the
conditions below. An example for the sentence “A dog barked” is the following:

7

x9
barked(e4, x9)
dog(x9)

This sentence contains the indefinite determiner ‘a’ which means that a new
entity is introduced. However, sentences often contain entities which are already
in the context. For example, the sentence “The dog barked” presupposes there
is a dog in the current discourse context. This presupposition can also be
represented as a DRS. A sentence consists then of a single assertion DRS and
a set of presupposition DRSs. The assertion DRS is represented as the one in
the previous example and the presupposition DRSs are represented as dashed
boxes. The previous example has no presuppositions and therefore the DRS
consists of a single assertion DRS and an empty set of presupposition DRSs.
The sentence “The dog barked” does have a presupposition DRS and the whole
sentence is represented as:

x9 x9

barked(e4, x9) dog(e4, x9)

Common ground and update structures

Finally the DRS is stored in the common ground which contains all facts uttered
in the dialogue. The common ground is represented by one large DRS, also
containing a list of referents and a list of conditions. The referents are all
entities ever mentioned by the user or the system and the conditions contain
the other information that could be derived from the utterances in the dialogue.
The common ground can be seen as the union of all DRSs corresponding to
these utterances. When the user asks a question the system will look at the
common ground and will try to answer the question using the relations stored
there. In appendix A an example of a common ground is given containing the
two sentences “A dog chased a cat” and “The cat was afraid”.

The dialogue manager which updates the dialogue context does not use
MRSs or DRSs, but uses updates instead. These are similar structures, but they
include somewhat more information. An update structure consists of the fol-
lowing elements: the act of the update (e.g. assertion or question), the speaker,
the addressee, the message and a list of bindings for each of the referents used in
the MRS. The message can be either a proposition or a question. A proposition
structure is similar to a DRS structure: the nucleus is the asserted part of the
assertion and the presups are the presuppositions of the assertion. A question
looks like a proposition except that it has a (possibly empty) set of parameters.
Examples of a number of propositions and a question are given in appendix A.
In these examples you can see that an entity using the determiner ‘a’ is stored
in the nucleus and an entity using the determiner ‘the’ is stored in a presup.

8

1.2 Second language learning and teaching

There are many different ways to learn a second language. First of all language
learning can be done naturally, via ‘immersion’, for example by moving to a
country where the target language is spoken. In this way the learner is exposed
to the language most of the day. Another way is following lessons in a classroom
setting which can be subdivided into traditional instructional settings and com-
municative instructional settings. The traditional instructional setting is used
at most schools and the teacher focuses mainly on grammar and vocabulary. In
this setting the focus is on the language itself, rather than on the information
which is carried by the language. The goal of the learners is most often passing
an exam instead of using the language in everyday life. In the communica-
tive instructional setting the learners also follow lessons, but those lessons focus
more on interaction, conversation and language use than on learning about the
language. The goal of the learners in this setting is to get things done using the
second language rather than accuracy.

There are many differences between the two ways of teaching a second lan-
guage which are described by (Lightbown and Spada, 1993). The most im-
portant difference is that the traditional way focuses on language and its form
and the communicative setting focuses on meaning. Another difference is the
teacher’s questioning behavior which is described by (Shomoossi, 2004). She
studied the effect of teachers’ questioning behavior in a traditional instructional
setting. First of all she distinguishes between display questions and referential
questions. Display questions are questions to check if the student understands
everything that has been said in the classroom. This kind of questions is seldom
used in a normal conversation, but can be very useful when learning a second
language. Referential questions are questions whose answers are not already
known to the teacher.

The most important results of her study in the traditional instructional set-
ting were the following. First of all, almost 82% of all questions were display
questions and only 18% were referential questions. Furthermore referential ques-
tions elicited long answers (up to five minutes) compared to display questions
which could often be answered in only a few seconds. This does not apply to
all referential questions, so she reaches the conclusion that “most, not all, refer-
ential questions create more interaction in the classroom than display questions
do”. In a communicative instructional setting the results would be completely
different. In such a setting there would be many more referential questions and
less display questions, which has been confirmed by (Lightbown and Spada,
1993).

1.3 Dialogue based teaching systems

There are many existing dialogue-based teaching systems. The SCHOLAR sys-
tem is often considered to be the first intelligent tutoring system (Carbonell,
1970). The system was intended for learning South American geography in the

9

form of a dialogue. The system did not try to create a coherent dialogue; its
main goal was to assist the student while he was learning the geography.

Some other systems include CIRCSIM-Tutor, AutoTutor and LISTEN which
will be described in this section, but first the different kinds of initiative taking
that systems can support are explained.

1.3.1 Levels of initiative taking

In a dialogue-based teaching system there is a conversation between a user and
the system. Guinn distinguishes between four different levels of initiative taking
(Guinn, 1996). First of all there are simple question answering systems in which
one agent is in control and the other agent is just answering the questions. The
agent who is in control can be either the user in an information system or the
system itself, for example in a booking system used in a theatre. There are also
systems which allow some kind of mixed-initiative but in which the user can
take the initiative only at limited places. Finally there are systems which allow
a complete mixed-initiative, so systems in which the system and the user can
both take the initiative when they like to do so.

1.3.2 CIRCSIM-Tutor

The CIRCSIM-Tutor system (Freedman, 1997) teaches medical students on the
baroreceptor reflex using natural language. It is a mixed-initiative dialogue
system which means that the system and the user can both ask questions.
Before a lesson starts the student tries to solve a problem by filling in a table
with predictions of changes in a number of physiological variables. During the
lesson the system has a dialogue with the student to correct his mistakes. In
this dialogue the system makes sure that every initiative it takes is coherent
with the rest of the conversation.

If the student answers a question, the answer is classified into one of four
different types: correct answer, wrong answer, physiological near-miss (a step
toward the correct answer) and linguistic near-miss (linguistically close but not
exact answer). Depending on the correctness of the answer the system chooses
its next initiative.

If the student makes an assertion there are two possibilities: the student adds
new information or the student changes the topic. In order to avoid a sudden
topic change by the user the system makes sure that every turn ends with an
explicit request. Finally Freedman notes that completely unrestricted student
initiatives can be too complex to handle. Therefore she came up with a way to
reduce the unwanted student initiatives which consists of asking short-answer
questions instead of open-ended questions.

10

1.3.3 AutoTutor

AutoTutor1 (Graesser et al., 2001) is an animated web-based intelligent tutoring
system which can help students studying by having a conversation in natural
language about a particular subject. At the moment AutoTutor can assist
students who take an introductory course into computer science or students
who have to learn Newtonian physics. AutoTutor can however be adapted to
support different subjects.

The system works by having a conversation with the student and tries to
create a coherent dialogue. If the system has to change the topic the system
first presents a discourse marker like “Alright, let’s go on” and before asking
the actual question it presents a context to introduce this question.

If the student answers a question only partly correctly, the system will not
tell the correct answer immediately, but will instead initiate a multi-turn con-
versation to extract more information from the student. Thus, the system tries
to get the student to do the talking and tries to find out what the student
knows himself, instead of just telling the information. The system encourages
the student to talk more by using sentences like “What else?”. If the student
doesn’t know what to say the system will try to help him by using one of the
following dialogue moves: hints, prompts and assertions. Hints are questions
used to lead the student into the right direction. Prompts are sentences with a
word left out that the student is supposed to fill in. Finally assertions directly
tell the correct information.

AutoTutor gives the student three different kinds of feedback: backchannel
feedback, pedagogical feedback and corrective feedback. Backchannel feedback
is the feedback that the system gives when the student is entering new input,
e.g. nodding. Pedagogical feedback consists of different intonations and facial
expressions based on the correctness of the student’s input (e.g. saying “okay”
at a moderate nod rate when the answer is only partly correct or saying “okay”
with a fast head nod when the answer is completely right). Finally corrective
feedback is feedback that has to repair bugs and misconceptions that students
make.

The system mainly asks questions itself, but it also supports some kind
of mixed-initiative. In order to support this the system classifies the stu-
dent’s input into different categories: assertions, wh-questions, yes-no ques-
tions, metacognitive comment (e.g. “I don’t understand”), metacommunicative
act (e.g. “Could you repeat that?”) and short response. The system makes
sure that the dialogue move taken by the system corresponds to the student’s
previous input.

Finally AutoTutor has curriculum scripts for 36 different topics. Associated
with each topic are a set of expectations, a set of hints and a set of possible
misconceptions and their corrections. The descriptions are English descriptions
and can easily be created by a lesson planner. The ultimate goal of the system
is to make it very easy to add new subjects and extend the system’s domain
knowledge.

1see also http://www.autotutor.org

11

1.3.4 LISTEN

The LISTEN2 (Literacy Innovation that Speech Technology ENables) project
(Mostow et al., 2004) is a system to measure a student’s reading comprehension
and vocabulary. The system consists of an automated Reading Tutor that dis-
plays stories on a screen and listens to children read aloud. The system analyses
a text and generates questions about the text automatically. The system gen-
erates two different kinds of questions, one of which is used to estimate reading
comprehension and the other is used to estimate the student’s vocabulary.

The questions used to measure reading comprehension are fill-in questions:
one word in a sentence is left out and the student has to decide which word
should be filled in. It is often too hard to guess a word just from its context,
so the questions are multiple-choice. This means that the system not only has
to decide which words to leave out, but the system also has to generate the
alternative answers (called distractors) itself.

The system distinguishes four different word categories:

• sight words: the most frequent words

• easy words: words which appear often, but not as often as the sight words

• hard words: words which don’t appear often, so all words except the sight
words and the easy words

• defined words: words explicitly annotated for the particular story

While generating the questions it is made sure that the target word and the
distractors are in the same category.

The question’s difficulty depends on a number of different aspects. First of all
the difficulty depends on the category in which the target word and distractors
appear. It also depends on the text difficulty, because harder texts contain
more complex sentences and harder words. The third aspect is part of speech,
because questions with a number of answers which have the same part of speech
are more difficult than questions with answers with different parts of speech.

The reading comprehension is determined by looking at the number of cor-
rect answers and by deciding if the question was an easy or a difficult question.
An example question is “Why bother about ... ?” – food / winter / dying /
passed. In this example the meanings of the different words are easy, but only
one word can be ruled out based on its part of speech. Three possibilities remain
and the only way to find the correct answer is by looking at the context.

The LISTEN system also generates vocabulary questions to test students’
comprehension of individual words in a story. These questions are also multiple-
choice and consist of a description of a particular word and four options. An
example question is “Which word means heavy flows of water?” – eider-down
/ bedstead / torrents / scarcely. The distractors are chosen from the same
story and the comprehension is determined in the same way as the reading
comprehension.

2see also http://www-2.cs.cmu.edu/~listen/

12

1.4 Project goals

In the previous section a number of existing computer-aided teaching systems
have been described. CIRCSIM-Tutor and AutoTutor are dialogue systems
which use full natural language processing to communicate with the student.
The systems focus on completely different subjects (the baroreceptor reflex and
computer science or Newtonian physics respectively), but both systems try to
create a coherent dialogue. The LISTEN system on the other hand does not
have a dialogue with the student like the other systems, but is used for language
learning.

In this project I want to combine these things; the goal is to use a dialogue
system that can assist people learning a second language. In this context, lan-
guage is not only the medium of instruction, but also the topic being taught.
There are some specific benefits that arise from this situation. The student’s
utterances have to be parsed to find out the meaning as part of the normal
operation of the dialogue system. As a side-effect of parsing, the system gathers
information about which syntactic rules and words the student knows, which
make a useful contribution to modelling the student’s knowledge of the topic
being taught.

Within the context of a language-learning dialogue, my focus will be on
developing a module that generates useful teaching initiatives. The initiatives
have to fulfill two functions. The first is linguistic; the initiatives have to be
on topic. Therefore an additional project goal is to find the possible topics
that a new initiative can be about. The second is goal-based; the initiatives
have to further the system’s educational agenda and help the student learn the
language.

13

Chapter 2

Design of the initiative
generation algorithm

In this chapter the design of the initiative module is described. In the first
section the overview of the algorithm is given. In section 2.2 is described how
the system has been modified in order to deal with new tasks like generating
assertions and genuine questions. Finally section 2.3 describes the different steps
of the algorithm in more detail.

2.1 Overview of the algorithm

When the student is having a normal conversation with the system the initiative
module is completely ignored. The student’s input is parsed in the normal way
and the system also responds in the normal way. When the user decides to pass
the initiative to the system and presses the Enter key without other input, the
initiative module is invoked.

The overview of the algorithm looks like the following:

1. Find the possible topics

2. Generate a list with possible initiatives

3. Choose the best alternative

4. Add necessary discourse markers

5. Process the initiative and the user’s response

2.2 Authoring characters

In order to generate assertions and genuine questions we need to create a ‘char-
acter’ for the system to adopt during its dialogue. A character knows various

14

things (which it can tell the user), and is curious about various things (about
which it can ask the user questions). The characters have an initial private
knowledge base which contains information that the character can use to create
assertions. This information includes personal details like their names and their
ages, as well as simple facts like “The grass is green”. A knowledge base looks
exactly the same as a common ground, but is private to each character.

Furthermore the characters contain a set of rules to create genuine questions.
Those rules are stored in a way which looks mostly like this:

• if the topic is a dog, ask for its name

• if the topic is a dog, ask for its color

• if the topic is a person, ask for his name

• is the topic is a person, ask where he’s from

• etc.

Those rules can be applied to entities the user starts talking about. For example
the first one of the rules can be used when the user enters the sentence “I have
a dog”.

Finally each character also has a list of targeted syntactic rules. The system
is meant to assist people who want to learn a second language and therefore
the characters can be seen as lessons. The character corresponding to the first
lesson will only have a very limited knowledge base, e.g. he only knows how
to say his name and how to ask how someone else is. The next character will
have more knowledge and will have somewhat more complicated questions; the
next character will have even more knowledge and so on. The lessons follow
the structure of the course book “Te whanake 1: Te kākano” (see (Moorfield,
1988)) which means that new syntactic constructions are learnt in every lesson.
In order to measure the student’s comprehension the system has to test if the
student knows all the targeted syntactic constructions. In order to achieve this
a list is kept which contains the set of syntactic rules targeted in a particular
lesson together with values representing the extent to which they have been
assimilated by the student. Every time the system or the user uses one of the
rules the corresponding value will be updated. A more detailed description of
the syntactic rules and updating of the values is given in section 3.5.

The lessons are mainly based on the book, but it is still important that
someone who knows about second language learning authors the lessons, for
example a second language teacher. Most second language teachers have lim-
ited knowledge about using computers and writing computer programs, so it is
important that the authors can build the characters using natural language. In
order to do this Te Kaitito has two different modes: the student mode and the
authoring mode. In student mode the student just follows a lesson by having a
dialogue with the system. In authoring mode the author can create the different
characters.

15

In authoring mode the author uses the same dialogue system as the student
does in student mode, but the way the input is processed is somewhat different
and there are some additional functions. The remainder of this section describes
how the different elements of the characters are created.

The knowledge base is created by storing the author’s sentences in the exact
same way as a student’s input is stored in the common ground. When the stu-
dent starts a lesson the character’s common ground is copied to the character’s
knowledge base and the common ground is reset to empty. In this way the
character has an initial private knowledge base from which to create assertions
and the common ground is empty which means that nothing has been said yet
in the current dialogue.

If the author wants to add rules to generate genuine questions he can simply
enter a sentence like: “rule: what is a dog’s name?”. The first word ‘rule’ is
used to tell the system that the question following the colon is not a question
which has to be answered, but that it is a question that needs to be stored in
the list of question generation rules. The system recognizes that the question is
about a dog and stores the question with the corresponding topic in the list of
rules to generate genuine questions.

Finally the list of targeted syntactic rules is created automatically. Every
time the author enters a sentence the sentence is parsed. After parsing the
sentence the system checks which syntactic rules were used. When the author is
authoring the first lesson the system simply stores all rules in the list of syntactic
rules, because at that time the student has to learn all of those rules. When the
author is authoring a later lesson the system should not only determine which
rules are used, but it should also check which of those rules are new. Rules
which are used in earlier lessons don’t have to be added again, assuming the
student will follow the lessons in the correct order and will only move on to
the next lesson when he has finished the last one successfully. Right now the
system simply stores all rules in the list of target rules, because we are only
implementing the very first lesson, but comparing the rules with earlier lessons
would be a useful addition.

Because the list of syntactic rules is created automatically the author doesn’t
have to worry about the names of the different rules, but he does have to make
sure that the sentences he enters contain the correct syntactic structures. Learn-
ing a second language in a classroom setting occurs in a step-by-step way; in
the first lesson only a few rules are used, in the next lesson some new rules are
added etc. The author thus has to make sure that the lessons are built in a way
that satisfies this condition.

2.3 Steps of the algorithm

In this section each of the different steps of the algorithm from section 2.1 is
described in more detail.

16

2.3.1 Finding the topics

When two people are having a conversation there always is a topic. This topic
can change over time, but at any given time there will always be a main topic.
In order to make sure that the constructed dialogue is coherent the system’s
initiative should be on topic, at least if possible.

In the past many detailed algorithms for finding the topic have been de-
signed. One of the best known algorithms is the Centering algorithm by Grosz
(Grosz et al., 1995). Another example is the complicated algorithm by Nakata
which uses several other methods like k-nearest neigbor and topics clustering
(Nakata et al., 2002). The main problem of these algorithms is that they are
too complex for a three-month project like this. Another problem is that most
of the existing algorithms return only one topic. For this project returning only
one topic is not sufficient, because it is obviously better when the initiative has
more than one topic in common with the list of possible topics than when the
initiative only has the best topic in common. Therefore a new algorithm for
finding a list of possible topics has to be designed.

This algorithm is based on the Centering algorithm by Grosz (see (Grosz
et al., 1995) and (Jurafsky and Martin, 2000)). In the Centering algorithm every
sentence has a backward looking center and several forward looking centers. The
backward looking center represents the entity currently being focused on after
the sentence is interpreted. The forward looking centers form an ordered list
containing the entities mentioned in the sentence, in other words the entities
which can serve as the backward looking center of the following sentence. The
forward looking centers are ordered based on their grammatical role in the
sentence.

The Centering algorithm was originally designed for normal texts instead
of dialogues. The main difference between dialogues and other texts is that
the sentences in dialogues are normally much shorter. Furthermore every word
usually appears only once in the sentence so it is hard to apply a statistical
method (Nakata et al., 2002).

The algorithm that is used in this project orders the words in the sentence on
grammatical position in the following order: event - subject - object - indirect
object. Event represents the focus of the whole sentence; this can be an action
verb like ‘chase’ in the sentence “The dog chased the cat”, but it can also be
an adjective like ‘afraid’ in the sentence “The cat was afraid”. The algorithm
returns an ordered list of possible topics in a sentence, with the first element
being the best topic. Such a list is created for the last two sentences and
afterwards the two lists are combined as will be described in Section 3.1.2.

2.3.2 Generating possible initiatives

There are three different kinds of initiatives which will be generated: genuine
questions, assertions and teaching questions.

Genuine questions are equal to the referential questions used by (Lightbown
and Spada, 1993), so these are questions whose answers are not yet known to

17

the system. The questions are questions about one main topic like a dog, a
house or a person. The questions are generated using the question generation
rules stored for each character. Before adding the question to the list of possible
initiatives it has to be checked that the answer is not yet in the common ground.

Assertions are just facts uttered by the system. They are created by com-
bining some relations stored in the character’s private knowledge base. Again it
has to be checked that the fact being asserted is not yet in the common ground.

Teaching questions, or display questions (Lightbown and Spada, 1993), are
questions whose answers are known to the system. They are used to check if
the student understands everything that has been said so far. The questions
can be generated by constructing a proposition from the relations stored in the
common ground and turning that proposition into a question.

2.3.3 Choosing the best alternative

After the possible initiatives have been generated the system has to decide which
initiative is best. This decision is based on the following criteria:

1. Focus: is the initiative ‘on topic’?

It is important that the constructed dialogue is coherent, so every initia-
tive taken by the system should be on one of the current topics, at least if
possible. The focus criterion consists of a number of different characteris-
tics to measure how much the initiative on topic is. These characteristics
will be described in section 3.3.1.

2. Order of acquisition: in which order are the question generation rules
entered?

Assuming that the question generation rules are ordered in the most logical
way, initiatives based on rules that were entered first are probably better
than questions based on rules entered later.

3. Semantics: does answering the question require reasoning?

Some teaching questions are more difficult than other questions. For ex-
ample open-ended questions are often more difficult than multiple-choice
questions and questions which involve related entities are also more diffi-
cult. In some contexts easy questions might be preferred; in others harder
questions. This criterion makes sure that the different teaching questions
can be evaluated in relation to their difficulty.

4. Strategy: does the initiative make a good initiative possible later?

Assertions about topics the system knows much about are useful initia-
tives, because they ensure that there will be other useful initiatives later
in the conversation. The strategy criterion makes sure that those kinds of
assertions are preferred to other assertions.

18

5. Balance: are the different kinds of initiatives balanced?

It is best if the system generates the different kinds of initiatives in a
balanced way. This means that the system should not generate too many
initiatives of the same kind in a row. The criterion makes sure that ini-
tiatives of the kind which hasn’t been used for a long time are more likely
to be chosen than initiatives of the other kinds.

6. Syntax: does the initiative contain (or elicit) a targeted syntactic con-
struction?

Because the system is used to assist people learning a second language
some syntactic rules are preferred to other rules, depending on the lesson
the student is following. The syntax criterion makes sure that initiatives
which contain or elicit particular syntactic constructions are preferred to
initiatives which don’t contain or elicit such constructions.

The first five of these criteria contribute to the goal at utterance level. They
make sure that the chosen initiative is appropriate in the context and that the
initiative scores high in at least one of the other criteria. The last criterion is
used to pursue the global goal; to teach the student different syntactic rules in
such a way that the student can use the rules himself.

The possible initiatives get scores for some of the criteria and afterwards a
‘total score’ is calculated by applying a function to combine the different scores.
Finally the initiative with the highest total score will be chosen.

2.3.4 Adding necessary discourse markers

Using discourse markers can be very helpful in a dialogue-based teaching envi-
ronment. This is studied by Kim for the CIRCSIM-Tutor project (Kim et al.,
2000). However, the main goal of the initiative module is not to add these
discourse markers, so we will only add the discourse marker ‘also’.

The system will add the discourse marker in two different cases. The first
one applies when there is only one word different. This word can be of any word
type (a verb, a noun etc) under the condition that the different words are of the
same type. The following examples will therefore include the word ‘also’:

• Verb: The dog barked → The dog also ran

• Noun: The dog ran → The cat also ran

• Adjective: The dog is afraid → The dog is also sad

The second situation in which the word ‘also’ is added applies when the words
are exactly the same, but when two arguments are swapped. These arguments
can be any two of the arguments as the following examples show:

19

• John introduced Pete to Bill → John also introduced Bill to Pete

• John introduced Pete to Bill → Pete also introduced John to Bill

• John introduced Pete to Bill → Bill also introduced Pete to Bill

These three examples all require the word ‘also’ while the sentence “Pete intro-
duced Bill to John” doesn’t need the word ‘also’.

In order to find out if one of these situations occurs, so to find out if the
word ‘also’ should be added to the chosen initiative, an algorithm is used which
will be described in more detail in section 3.4.1.

Apart from adding the discourse marker ‘also’ every teaching question is pre-
ceded by a sentence like “Let me make sure that you remember:”. This is done
to make sure that the user knows whether the question is a teaching question or
a genuine question. For example if the student says “The dog jumped” and the
system generates the question “Did the dog also bark?”, it could be unclear if
the question is a teaching question or a genuine question. To make sure that the
student knows which kind of question is asked the clarification sentence is used.
This is somewhat similar to the way Autotutor presents a context to introduce
a question.

2.3.5 Processing initiative and user response

The system can generate three different kinds of initiatives. Each of these kinds
is processed in a different way which is described in this section.

Genuine questions are used to get new information from the user. Therefore
the user’s next input will be the answer to the question. Currently, this answer
is simply interpreted as a new assertion and the answer is stored in the common
ground as if it were a new assertion.

Assertions are just facts from the knowledge base, so they have to be copied
to the common ground after the assertion is made. Assertions don’t necessarily
evoke a reaction by the user, so the user’s next input is seen as a normal input
and the dialogue continues normally.

Finally teaching questions are based on the common ground, so they do not
change the common ground. The question does however require an answer, so
the next input by the user is seen as the answer to the teaching question and
has to be checked. If the answer is correct the system responds with a ‘correct’
message and the dialogue is continued in the normal way. If the answer is
incorrect the system will repeat the question to give the student a second chance.

20

Chapter 3

Implementation

In this chapter the implementation of the initiative module is described. Sec-
tions 3.1 to section 3.5 describe the different steps of the algorithm given in
section 2.1. The generation of the different initiatives can be seen as building
a large AI-style state-space tree. Comparing the different possibilities in order
to choose the best one can then be seen as searching the tree. If the character
played by the system has a large knowledge base and many question generation
rules, this can result in a very large tree. Therefore pruning is necessary which
is described as part of choosing the best initiative. In the first description of
generating the possible initiatives pruning will be completely ignored for clarity.

Section 3.6 is about how to decide if the student has learnt the rules in
the lesson well enough, so about how to decide when to stop the lesson. In the
algorithm many parameters are used. In the following sections these parameters
are only given a name, but in section 3.7 some notes are given on assigning values
to these parameters.

During the implementation I will use the ERG (A and Flickinger, 2000),
rather than the MEG, so the system will function as a tool for teaching English,
rather than Māori. However, the implementation should be portable to the
MEG without many changes.

3.1 Finding the topics

As mentioned in section 1.1.3 one single entity is represented by a unique ref-
erent. Every entity also has a predicate which shows the kind of entity. For
example dog(x9) is a different entity than dog(x12), but they have the same
predicate ‘dog’ because they both refer to dogs.

To compare different entities it is best if the referents are the same, because
then the system is talking about the exact same entity. On the other hand it
is not enough only to look at the referents, because it is still better to have the
predicate in common than having nothing in common. For example if a student
is talking about a dog and the system doesn’t know anything about that dog

21

in particular, but does know something about another dog then the initiative
containing the new dog might be a good initiative. Therefore the list of possible
topics will contain referents as well as predicates. The referents will be stored in
the list before the predicates to make sure that the list is completely ordered -
the first element is most likely the best topic and the last element is least likely
the best topic.

The algorithm used in this project looks at the previous two sentences, but
if necessary the algorithm can easily be extended to include more sentences.

3.1.1 Finding the topics in one sentence

Appendix A shows some examples of sentences represented as propositions in the
system. The second example is “The dog chased the cat” and the third example
is “The cat was afraid”. As you can see in the figure the most important word
in the first one is ‘chased’ and the most important word in the second one is
‘afraid’. These words are the most important words, because their first argument
is an e-var, referring to the main event of the proposition, and they are stored
in the nucleus. The relations have arguments as explained in section 1.1.3. The
x-vars refer to the entities and each x-var refers to one of the presups of the
proposition. The first of the x-arguments is always the subject, so this can
be used to order the list of possible topics by grammatical position (as in the
Centering algorithm by Grosz).

The algorithm to find an ordered list of topics in one sentence looks like the
following:

1. take the predicate(s) in the nucleus
2. add the arguments

while adding the arguments:
add the corresponding predicates

The results of this algorithm for the two example sentences are (chase x9
dog x12 cat) and (afraid x12 cat).

The algorithm only takes the main predicates from the sentence; in other
words the algorithm takes only one predicate per presup. If the sentence was
“The green dog barked”, the word ‘green’ is skipped because otherwise all ini-
tiatives on green entities would seem good initiatives. An example of this is the
sentence “The pen contains green ink” which is obviously not a good initiative.
Every relation includes the part of speech in its name; e.g. the name of the
relation which represents a dog is ‘dog n rel’ and the name of the relation which
represents green is ‘green j rel’. This name can be used to make sure that nouns
are always added and that an adjective is only added when it is the main event
of the proposition.

3.1.2 Combining the topics lists of two sentences

As mentioned in section 2.3.1 the list of possible topics is based on the last two
sentences, so an algorithm has been designed to combine two lists of topics. The
result of this algorithm is the union of the two lists, with all topics which appear

22

in both lists moved to the front. In this way the final list is completely ordered
by relevance - the first element is most likely the best topic and the last element
is least likely the best topic.

The algorithm for combining the two lists looks like this:

1. Find the topics of the previous sentence
2. Find the topics of the sentence before the previous sentence
3. Assign the result of step 2 to possible-topics
4. Loop through the elements in the topics-previous-sentence

list and do the following:
if the element is a member of possible-topics:

add the element to a temporary variable (tmp1)
and remove the element from possible-topics

else:
add the element to a second temporary variable (tmp2)

5. Append the tmp1, tmp2 and possible-topics and store the
result in possible-topics

Before executing step 5 of the algorithm tmp1 contains the topics which ap-
pear in both lists in the same order as they appeared in the previous sentence.
tmp2 contains the topics which appear in the previous sentence, but don’t ap-
pear in the sentence before. Possible-topics contains the topics which appear in
the second last sentence but not in the last sentence. By appending those lists
the desired result is obtained.

3.1.3 Example of execution of the algorithm

In this example the same sentences are used as in the examples before: “The
dog chased the cat” followed by “The cat was afraid”. The topics lists of the
sentences are (chase x9 dog x12 cat) and (afraid x12 cat). Execution of the
algorithm for combining those lists results in the following:

1. (afraid x12 cat)
2. (chase x9 dog x12 cat)
3. possible-topics = (chase x9 dog x12 cat)
4. tmp1 tmp2 possible-topics

nil (afraid) (chase x9 dog x12 cat)
(x12) (afraid) (chase x9 dog cat)
(x12 cat) (afraid) (chase x9 dog)

5. possible-topics = (x12 cat afraid chase x9 dog)

The result of the algorithm (x12 cat afraid chase x9 dog) means that the
referent x12 is probably the best topic and that the predicate ‘dog’ is least likely
the best topic.

3.2 Generating initiatives

In the following subsections the generation of the different kinds of initiatives is
described. In these sections it is assumed that all initiatives are generated. In
fact only a number of initiatives is generated and in section 3.3.4 is described
how is decided which initiatives are generated.

23

3.2.1 Generating genuine questions

As described in section 2.2 every character has a set of question generation
rules. These rules are represented by a structure which contains a topic and
an MRS. The topic is the predicate which the question is about and the MRS
is the actual question. An algorithm is used to find out about which predicate
the question is and this predicate is stored as the topic of the question. If a
genuine question has to be generated the referring expression of the predicate is
replaced by the referring expression of the new entity. An example of this is the
question generation rule “What is a dog’s name?” with the topic ‘dog’. If there
is a green dog in the context, the question “What is the green dog’s name?” is
generated.

There is also a special predicate “person” which can be replaced by any kind
of person. In the current system it is not possible to find out that a man is a
particular kind of person, but once this is added to the system, it can be very
useful.

The algorithm for generating all possible genuine questions loops through
the referents in the list of possible topics, creates a referring expression for
each of the referents and applies all possible question generation rules to each
referent. Only referents in the list of possible topics are taken to make sure
that the genuine question is on topic. Before adding the question to the list
of possible initiatives it has to be checked that the answer to the question is
not in the common ground yet. The current Te Kaitito system cannot answer
the question “What is the dog’s color?” when the sentence “The dog is green”
or the sentence “The dog’s color is green” is stored in the common ground.
Currently a list is kept for each genuine question containing the referents which
the question has already been applied to. If the system is not able to answer
the question this list can be used to find out if the question has already been
asked. This way all genuine questions are asked only once for each referent.

Furthermore only questions about referents entered by the user are gener-
ated. This is done to avoid questions like “What is the dog’s name” if the
dog was entered by the system, because the user would probably not know the
answer.

3.2.2 Generating assertions

Assertions are generated based on the character’s knowledge base. At the start
of this project the characters only had a common ground. In order to distinguish
between facts known only to the system and facts known to both the system
and the student, a private knowledge base had to be added to the different
characters. Appendix A shows an example common ground containing the two
sentences “The dog chased the cat” and “The cat was afraid”. A knowledge
base containing those two sentences would look exactly the same.

To generate an assertion from an unordered and possibly large set of rela-
tions we first need to find a set of relations which correspond to an utterable
proposition. To do this, one can take a relation whose first argument is an e-var

24

(representing the main event of the proposition) and create a nucleus containing
this relation. Some propositions have two main events with the same handle, so
it has to be checked if there is another relation which has the same top handle.
If that is the case both relations are turned into a nucleus, otherwise only one
relation is turned into a nucleus.

When we have selected a proposition to create, we have to decide how to
refer to the entities it contains. The referring expressions originally used by
the author when populating the knowledge base may no longer be suitable, as
referring expressions depend heavily on the context in which they are uttered.
Te Kaitito already had a referring expression generation module. However,
this had to be modified for the situation where an utterance contained entities
which the user had not encountered before, because in that case the referring
expression had to be created based on the relations stored in the knowledge
base rather than the common ground. Consequently, it is made sure that an
assertion about a new referent uses the determiner ‘a’ and an assertion about an
already known referent uses the determiner ‘the’. This can be done by checking
if the referent appears only in the knowledge base or both in the knowledge
base and in the common ground. When the referring expression contains the
determiner ‘a’ a new referent is introduced. In that case the generated referring
expression is added to the nucleus of the proposition to make sure that the new
relations are stored in the common ground. On the other hand, if the referring
expression contains the determiner ‘the’ the assertion presupposes the entity is
already in the context and therefore the referring expression will be stored as a
presup of the proposition.

Furthermore, it is assumed that the objects which the system knows about
do not overlap with those which the user knows about. Consequently, we ensure
that the system never makes an assertion about a referent entered by the user.
The system can however make different assertions about the same entity, but
only if that entity was entered by the system itself.

One final thing to note is that the algorithm finds all possible adjectives
associated with a referent. If the system wants to say something about a dog
and it knows that the dog is green it will add this information. This is done to
decrease the chance that there are two different referents with the same predicate
which are not distinguishable, for example two different dogs without further
information. If there are two indistinguishable entities the system might create
confusing teaching questions, so adding the adjectives minimizes the chance that
this occurs.

3.2.3 Generating teaching questions

Teaching questions are created using the relations in the common ground. First
the relations are turned into all possible propositions in the exact same way as
the assertions are generated. After generating these propositions, the system
generates all possible questions about each proposition.

There are two different kinds of questions: wh-questions and yes/no-questions.
Wh-questions are questions which contain one of the words which, what, who

25

or where. Officially questions which contain the word ‘how’ or the word ‘why’
are also wh-questions, but the current system doesn’t support sentences which
use these words, so we will only look at questions which contain one of the first
four words. Yes/no-questions are questions whose answer is simply ‘yes’ or ‘no’.
They can be seen as questions which ask whether the propositional part of the
question is either true or false. Wh-questions do therefore have a parameter
(e.g. “which dog” or “what”), but yes/no-questions don’t.

Because the propositions are based on the common ground, all arguments
of the main event are already in the context, so the referring expressions for the
arguments appear in the presups of the proposition. In order to generate all
wh-questions the algorithm loops through these presups and turns them into a
parameter one at a time. In this way the proposition “The dog chased the cat”
will be turned into the questions “What chased the cat?” and “The dog chased
what?”. If there is more than one entity with a particular predicate which can be
distinguished a “which-X” question is generated instead of a “what” question.
For example if there is only one dog the question “What chased the cat?” is
created, but if there is more than one dog the question “Which dog chased the
cat?” is generated.

Yes-questions are created by simply turning the proposition into a question
without any parameters. An example is “Did the dog chase the cat?”.

No-questions are harder to generate, because they are not literally stored
in the common ground. The current system doesn’t have a way to find out if
an entity is an animate object or not. For example the sentence “The garden
who was happy barked” is simply parsed and stored in the common ground.
Instead every referent has a gender feature which is set for dogs and cats, but
is not for objects like gardens. Therefore the algorithm uses this to determine
if the referent is an animate object or not. The algorithm first checks if the
subject of the sentence is an ‘animate’ object and if that’s the case the referring
expression corresponding to the subject is replaced by the referring expressions
corresponding to all other ‘animate’ objects in the list of possible topics. The
referents are only replaced by referents which are on topic, because otherwise too
many no-questions are generated. Furthermore the referents for the student and
the system are never replaced by any other referents, because this can result in
rather strange initiatives. Finally, referents are never replaced by any referents
which appear somewhere else in the initiative, because this also creates strange
initiatives. An example of this is the no-question “Did the cat chase the cat?”
after entering the sentence “The dog chased the cat”.

Finally a list is kept which contains the teaching questions which have al-
ready been asked. This list contains (e-var, parameter)-pairs; the e-var is the
event variable representing the proposition’s main event and the parameter is
the number of the parameter if the question is a wh-question, and the string
“yes” or “no” if the question is a yes/no-question. Before the generated question
is added to the list of possible initiatives it is checked if the question has not
been asked yet. This is done to prevent the system from generating the same
question repeatedly. This way a proposition is turned into all possible questions,
but all questions are asked only once. For example, the proposition “The dog

26

chased the cat” will be turned into the following questions: “What chased the
cat?”, “The dog chased what?”, “Did the dog chase the cat?” and “Did the
man chase the cat?” if there is a ‘man’ in the list of possible topics. For each
of these questions only one sentence in natural language will be generated.

3.2.4 An example of the generated initiatives

In the previous subsections has been described how the different kinds of ini-
tiatives are generated. As already mentioned the generation of the possible
initiatives is like building an AI-style state-space tree. Figure 3.1 shows an ex-
ample of the generated initiatives using only a simple character. The character
has question generation rules to create the following genuine questions:

• What is a dog’s name’?

• What is a dog’s color?

• What is a cat’s name?

Furthermore the character’s knowledge base contains relations to create the
following assertions:

• I have a green dog

• The green dog is happy

The lesson has already been started and the user has entered the following
two sentences:

• A dog chased a cat

• The cat was afraid

When the initiative module is called at this moment the search tree in fig-
ure 3.1 is generated. This situation is one of the simplest situations which can
occur and the search tree is already rather large. Imagine how large the tree
will be when the character has much more knowledge and the dialogue has been
going on for some time! In section 3.3.5 is described how the efficiency of the
algorithm can be improved.

3.3 Choosing the best alternative

In order to choose the best initiative all possible initiatives will get scores for
some of the criteria in section 2.3.3. Some of the scores are assigned during the
generation step of the algorithm, but for clarity all scores are described in this
section. After assigning the scores they have to be scaled and combined which
will be described at the end of this section. In this section many parameters are
introduced, but for the moment we will only use their names. To make clear
which parameters are used their names start and end with an asterisk and in
section 3.7 the real values are given.

27

Figure 3.1: Example of a generated tree containing the possible initiatives

28

3.3.1 Scoring the initiatives based on the criteria

In this section is described how the scores for each criterion are determined.
Between brackets is shown which kinds of initiatives the corresponding score is
applied to.

Focus (assertions)

The focus score is calculated based on a number of different things. First of all
the similarity with the list of possible topics is calculated. In order to do this
the topics of the initiative are determined; this is also an ordered list like the
topics list of a single sentence.

The similarity between the two lists is calculated by first ranking the possible
topics list in the following way:

• The first element will get a score of *focus-start-score*

• The second element will get a score of *focus-start-score* - 1

• . . .

• The *focus-start-score*-th element and all later elements will get a score
of 1

To find the similarity score the ranked list of possible topics is looped and
the values of the elements that appear in the list of initiative topics are added.
As mentioned earlier the list of initiative topics contains referents as well as
predicates. However, if the referent appears both in the initiative and in the
possible topics list, the corresponding predicate automatically appears in both
lists as well. If the initiative would get a score for both, the score would be too
high. Therefore it is made sure that the predicate is skipped if the corresponding
referent is already in the list of possible topics. In that way the initiative will
only get a score for the referent if both the referent and the predicate are in the
list of possible topics.

Some additional scores are assigned in the following cases:

• *focus-subject-score* points are added if the initiative’s subject is in the
list of possible topics.

This is done to make sure that initiatives which contain one of the topics
as subject are preferred to initiatives which contain the same topic but as
a direct or indirect object.

• *focus-speaker-score* points are added if one of the speakers is in the
initiative and the speaker does not appear in the list of possible topics.

This is done because the speakers should always be in the list of possible
topics, because they are always in focus. This score is only added when the
speaker does not appear in the list of possible topics, because otherwise
points will be assigned twice.

29

• *focus-also-score* points are added if the word ‘also’ has to be added.
This is done because in this case the initiative is almost the same as the
last sentence. The algorithm for ‘also’ only looks at the last utterance and
not the previous two sentences, so an initiative which contains the word
‘also’ is even better.
In section 3.4.1 is described how is decided whether the word ‘also’ has to
be added.

Order of acquisition (genuine questions)

This criterion assumes that all question generation rules are entered in the most
natural order. In this case the different questions can be ranked as was done
with the list of possible topics:

• The question that was entered first gets a score of *order-score*

• The question that was entered second gets a score of *order-score* - 1

• . . .

• The question that was entered *order-score*-th and all later questions get
a score of 1

Genuine questions don’t get a focus score, because some elements of the focus
score are not applicable to genuine questions. However, the focus criterion is
important for genuine questions, so the focus criterion is implemented as part
of the order score. In the following cases some additional points are assigned:

• *order-new-entity-score* points are added if the entity is a new entity.
This is done to prefer questions about new entities to questions about
entities which have already been on topic for a while.

• *order-subject-score* are added if the question is about the subject of the
previous sentence.
This is somewhat similar to *focus-subject-score*, because this way ques-
tions about the subject are preferred to questions about the object. For
example, if the user enters the sentence “The dog chased the cat” questions
about the dog are preferred to questions about the cat.

• *order-no-speaker-score* points are added if the question is not about the
student.
This contradicts with the *focus-speaker-score*, so this is one of the rea-
sons that the normal focus score is not applicable to genuine questions.
This criterion makes sure that questions about explicitly mentioned topics
are preferred to questions about the student, even if the student is in the
list of topics. This is done because questions about the student are always
good initiatives, even if the student is not in the list of possible topics.
Questions about other topics can only be asked when they are on topic
and therefore it is better to prefer these questions.

30

Strategy (assertions)

The strategy criterion assigns scores based on how good the initiative is with
respect to possible initiatives later in the dialogue. How good the initiative is,
is based on two different criteria.

The first of these criteria is the number of conditions in the knowledge base
which contain one or more of the referents. If this number is high this means
that the system can probably make another assertion about the same referent
later.

In order to assign a score based on this criterion first the referents of the
initiative are determined and are ranked in the following way:

• The first referent gets a score of *strategy-nr-refs-score*

• The second referent gets a score of *strategy-nr-refs-score* - 1

• . . .

• The *strategy-nr-refs-score*-th referent and all later referents get a score
of 1

Then for each of the referents the number of conditions in the knowledge
base is determined which contain this referent. Finally the weighted sum of
these conditions is taken.

The second criterion is the number of possible genuine questions about the
used predicates. At first sight this criterion seems useless, because it means that
assertions about which genuine questions can be asked are preferred to assertions
about which no genuine questions can be asked. However, while generating the
genuine questions it is checked that the referent is introduced by the student
and not by the system, but extra scores are assigned for the following reason. If
the system introduces a new predicate the chance is rather big that the student
tells something about a similar entity and therefore the genuine questions can
be applied to that entity. For example if the system generates the assertion “I
have a dog” and the student also has a dog, he will probably tell so. The system
can respond with questions about that new dog afterwards.

Calculation of this part of the strategy score is done in the same way as
the score for the genuine questions. First the predicates in the initiative are
determined and ranked in the same way as the referents. Then for each predicate
the number of possible genuine questions is determined and finally the weighted
sum is taken.

Semantics (teaching questions)

The semantics criterion assigns scores based on the difficulty of the question and
on the balance between the different teaching questions. First of all *semantics-
wh-score* points are assigned to wh-questions, *semantics-yes-score* points are
assigned to yes-questions and *semantics-no-score* points are assigned to no-
questions. These scores represent the preference between the different kinds of

31

teaching questions. If a high value is chosen for the *semantics-wh-score* it
means that wh-questions will be more likely to be chosen. This is a good idea,
first of all because wh-questions are more difficult than yes/no questions, and
secondly, because wh-questions stimulate producing of the language because
they require a full sentence answer. Furthermore it is useful to assign a high
value to *semantics-no-score* because only no-questions which are on topic are
generated, so it is good to prefer no-questions if there are any.

Furthermore the complexity of the used referring expression is calculated,
in other words the number of necessary adjectives. If the referring expression
contains adjectives it means that there is more than one entity with the same
predicate and therefore it will be harder to answer the question correctly. The
number of necessary adjectives is determined and this result is multiplied by
semantics-complexity-score.

Finally it is checked if the referring expression used in the initiative is dif-
ferent from the referring expression used when entering the sentence. If the re-
ferring expressions are different *semantics-different-score* points are assigned
because again it is harder to answer the question correctly. It is also possi-
ble to help prompt these kind of questions. The current referring expression
generation algorithm takes a list containing adjectives that cannot be used in
the referring expression. This way it can be checked if there exists a referring
expression that uses no adjectives originally used. If there is such a referring
expression that one can be used instead of the original one and a more difficult
question has been generated. This is not done in the current algorithm, but it
can be included quite easily.

Two additional scores are assigned to make sure that the teaching ques-
tions are asked in a somewhat balanced way. The first score is *semantics-new-
question-score* which is assigned to questions about propositions which have
never been turned into a question before.

Finally *semantics-balanced-score* points are assigned to teaching questions
of a particular kind if the previous two teaching questions were of a different
kind. This means that yes/no-questions get *semantics-balanced-score* points
if the previous two questions were wh-questions and the other way around.

Syntax (all)

The syntax score is calculated by determining which target rules are used in
the initiative and taking the sum of the corresponding values. In order to
determine which rules are used the actual sentences in natural language have
to be generated. Each sentence structure is then traversed and all rules used in
the sentence are determined. Next the algorithm loops through all target rules
and takes the sum of the values of the rules that are used in the initiative. The
values of the target rules will be updated after every initiative which will be
described in section 3.5.

In order to calculate the syntax score an MRS is turned into all possible
sentences in natural language. However, some of these sentences sound rather
strange, e.g. the sentence “From Holland yours truly also is” instead of the

32

sentence “I am also from Holland”. In section 5.3.3 is described that there
is some work ongoing to prefer certain sentences to others. For the moment
sentences which contain rules which are not used when authoring the lesson will
get a really low syntax score. This way initiatives which contain the construction
“yours truly” are not likely to be chosen. Once the code for preferring certain
sentences to others is finished the updating of the syntax scores can be done in
the normal way again.

In section 2.3.3 also the balance criterion is described. This criterion is
not implemented as a score like the other criteria, but is part of the initiative
selection algorithm which is described in section 3.3.4.

While generating the possible initiatives initiative-item-structures are used.
They contain the initiative in update form and scores for some of the aforemen-
tioned criteria. When the syntax score is calculated those initiative-items are
transformed into initiative-sentence-items which contain the initiative in update
form, the same scores as the initiative-items plus a syntax score, and the actual
sentence in natural language. This means that different initiative-sentence-items
can correspond to the same initiative-item.

3.3.2 Scaling all scores

In the previous step of the algorithm all scores have been assigned, but before
they can be combined they have to be scaled. There are different possibilities
to do this, but the easiest way is to scale them linearly. The algorithm simply
finds the maximum value of each of the different criteria and then divides all
scores related to that criterion by this value and multiplies by 100. This way
all scores are scaled between 0 and 100.

3.3.3 Combining the scaled scores

After all scores have been scaled, the scores have to be combined which can be
done in many different ways. One way is to take the weighted sum of the separate
scores. It is an easy way to implement, but it requires much consideration
about assigning useful values to the weight parameters, especially in this project
because there are already many parameters for assigning single scores.

Another way is to build a simple elimination algorithm by looking at the
different scores independently. In that case you have to decide boundary values
for each of the criteria and if an initiative has one of its scores below that
boundary value the initiative is ruled out. This is also an easy way to implement,
but again it might be hard to come up with good boundary values and there is
a chance that either all initiatives are ruled out which means that there would
be no good option, or that the algorithm returns several initiatives which have
to be compared afterwards using a different algorithm.

One final way to combine the different scores is to make a detailed if-then-
else elimination algorithm which does look at all scores, but in an incremental
way. The algorithm could for example look at the focus score first and decide

33

to throw away all initiatives with a focus score below some boundary value.
Then the algorithm would look at another criterion (e.g. the balance score) and
decide which initiatives can be eliminated based on both the focus score and the
balance score. This is actually some kind of combination of the other two ways.
One of the problems with this algorithm is that some kinds of initiatives always
have a score of zero for a particular criterion. Furthermore this algorithm still
needs a way to combine the different scores just as the first algorithm, so it is
probably more complicated than necessary.

The main problem with the previous ways to combine the different scores, is
that it is hard to compare the different kinds of initiatives. For example, using
the scores in section 3.3 it is possible to compare the different genuine questions
and decide which genuine question is best, but it is rather difficult to compare
a genuine question to an assertion. Therefore it was preferable to find a better
way to combine the different scores. Instead of generating all possible initiatives
first and then try to combine the separate scores, the initiatives are evaluated
while they are generated. An advantage of this is that less initiatives have to
be generated which makes the algorithm perform more efficiently. Furthermore
the selection algorithm makes sure that different kinds of initiatives never have
to be compared, only initiatives of the same kind. This means that only two or
three different scores have to be combined (instead of six) and therefore only a
few weight parameters have to be used at the same time which makes it much
easier to try different values. In the following section the initiative selection
algorithm is described.

3.3.4 Selecting the kind of initiative

In order to decide which initiative is best the initiatives are generated in an
incremental way. This means that first a number of initiatives is generated and
then it is checked if there are initiatives which are good enough. If there are
such initiatives the remaining initiatives don’t have to be generated anymore.
If there are no initiatives which are good enough the next number of initiatives
is generated.

The algorithm first generates the assertions and classifies these into the fol-
lowing three categories:

• Assertions which contain ‘also’

This category includes the assertions which contain the word ‘also’. These
assertions are the best ones because they only look at the very last sentence
instead of the previous two sentences.

• Assertions about a topic in the previous sentence

This category includes the assertions about a topic explicitly mentioned
in the very last sentence. These assertions are definitely good ones, but
not as good as the the assertions which contain the word ‘also’.

34

• Remaining assertions

This category includes all remaining assertions, so it includes assertions
about the system, assertions about a new topic and assertions about an
old topic not used in the previous sentence.

The ‘also’ assertions are the best initiatives and therefore these assertions
will be chosen if there are any. In that case no genuine questions or teaching
questions have to be generated. If there are no assertions which include the
word ‘also’ the genuine questions are generated next. These are classified into
the following two categories:

• Genuine questions about a topic in the previous sentence

This category includes the genuine questions about a topic explicitly men-
tioned in the very last sentence. These are the best genuine questions that
are possible.

• Remaining genuine questions

This category includes the remaining genuine questions, so it includes the
genuine questions about the topics mentioned in the second last sentence
and the genuine questions about the user.

The genuine questions about topics mentioned some time ago, but not men-
tioned in one of the previous two sentences are not generated. If they would be
generated it could be unclear to which referent they referred. The only way to
generate those questions is to get the referent back into focus, which happens
automatically if the system generates a teaching question about that referent.

If there are genuine questions in the first category, those questions are very
good and will therefore be chosen. In that case no teaching questions have to
be generated because it is absolutely sure that the genuine questions are good
initiatives to take. If the user starts talking about a dog for example and the
character played by the system knows questions about dogs it is definitely the
best time to ask them. It is in fact even necessary because it would be rather
strange if the system asked them at a later time.

If there are no genuine questions about an explicitly mentioned topic, the
algorithm checks if there are assertions about a topic mentioned in the last
sentence. If there are any, these assertions are chosen and still no teaching
questions have to be generated.

If at this moment no assertions or genuine questions have been found yet
three possibilities remain: choosing one of the remaining assertions, choosing
one of the remaining genuine questions or creating the teaching questions. This
decision is based on the balance criterion. Three variables are kept which repre-
sent the number of system initiatives between the last initiative of a particular
kind and the current initiative. For example if the last initiative was a teaching
question the variable representing the balance criterion for teaching questions
has a value of 1; if the last assertion was seven initiatives ago the variable
representing this has the value 7.

35

The kind of initiative which was used longest ago (the variable with the
highest value) is chosen if there are any initiatives of that kind and if the last
three initiatives were teaching questions. This last condition is used to make
sure that the system does not generate all genuine questions and assertions first
and end with all teaching questions.

The algorithm in this section actually orders the different kinds of initiatives
in the following way:

• assertions which contain ‘also’

• genuine questions about an explicitly mentioned topic

• assertions about an explicitly mentioned topic

• remaining initiatives, combined with balance criterion

The algorithm loops through these categories in this order and once it finds
initiatives in a category the algorithm returns these. Furthermore it is made sure
that during the beginning of the dialogue genuine questions about the student
are preferred to assertions about the system. This is firstly done to get more
information from the student, but it is also more polite.

The result of this algorithm is that the beginning of the dialogue consists
mainly of genuine questions and assertions and the end of the dialogue con-
sists mainly of teaching questions. The condition that at least three teaching
questions have to be asked before the system creates a genuine question about
the student or an assertion about the system makes sure that the initiatives
are mixed somewhat better, but still most teaching questions are asked at the
end of the dialogue. However, this is not a disadvantage, because this way the
common ground is populated during the beginning of the dialogue and the end
of the dialogue is used to check if the student really understands everything.

The algorithm looks like the following:

1. generate assertions and classify them:
a. assertions which contain ’also’
b. assertions about a topic in the previous sentence
c. remaining assertions

2. if there are assertions in category a:
choose them and skip the other steps of the algorithm

3. generate genuine questions and classify them:
a. questions about a topic in the previous sentence
b. remaining questions

4. if there are genuine questions in category a:
choose them and skip the other steps of the algorithm

5. if there are assertions in category b:
choose them and skip the rest of the algorithm

6. choose the kind of initiative based on the balance criterion:
if the last three initiatives were teaching questions:

if there are any assertions and assertions have
the highest balance score:

36

choose them
else if there are any genuine questions and genuine

questions have the highest balance score:
choose them

else generate the teaching questions
else generate the teaching questions

3.3.5 Improving the efficiency

Figure 3.1 showed an example of a generated tree for only a simple character
and a dialogue which had just started. In this section is described how this tree
can be pruned like an ordinary AI search tree. As you can see in the figure the
search tree consists of three different levels and there is a way to prune each of
these levels.

Pruning the different kinds of initiatives (level 1)

The algorithm described in the previous section that selects the initiatives to
be generated can be compared to pruning the different kinds of initiatives. If
an algorithm like ‘weighted sum’ would have been used all initiatives had to
be generated, so using an algorithm that chooses the kind of initiative first is
definitely a good way to prune the search tree. The pruning is different from the
kinds of pruning described in the following two subsections, because this kind of
pruning is obligatory; it is part of the algorithm for choosing the best alternative.
The other ways of pruning are optional; they only make the algorithm perform
more efficiently.

Pruning the number of teaching questions (level 2)

If there are no genuine questions or assertions about one of the main topics all
possible teaching questions will be generated. The number of teaching questions
is usually much higher than the number of genuine questions or the number of
assertions. Therefore it would be useful if the number of teaching questions
could be reduced.

This can be done by eliminating the teaching questions that have a semantics
score of zero. Wh-questions and no-questions always have a semantics score
and questions which contain difficult referring expressions also have a semantics
score, so only the simplest yes-questions are ruled out. The questions with a
semantics score of zero, but which include the word ‘also’ are included however,
because these can be interesting yes/no-questions. An example of this is the
following: if the user enters the sentence “The dog jumped”, a good teaching
question would be “Did the dog also bark?”, assuming there is an entity which
barked, otherwise the question cannot be generated.

Furthermore the questions which have the same list of topics as the last
initiative are eliminated. This is firstly done to prevent the system from ask-
ing different questions which were created using the same proposition in a row.
These questions often have the same answer, so it is better if another question
is asked in between. An additional advantage is that the last sentence entered

37

by the user is not turned into a teaching question immediately. This is a use-
ful addition because turning the last sentence into a teaching question would
generate questions which are too easy to answer.

Finally as already described in section 3.2.3 only the no-questions which are
on topic are generated which rules out a large number of no-questions. Further-
more using the list with already asked teaching questions only teaching ques-
tions which haven’t been asked yet are generated which can also be compared
to pruning.

Pruning the number of initiatives to apply the syntax score (level 3)

The final way to prune the search tree is to apply the syntax score only to the
initiatives which score high in the other criteria. In order to achieve this the
initiatives in the second level are ordered by their total score and only the top
four are passed to the next level. Finally the one with the highest total score
(including the syntax score) is chosen as the best initiative. If all four initiatives
have a syntax score of zero the initiatives are not useful anymore because the
rules used in these initiatives have already been learnt. In that case the next
group of four initiatives from the second level is passed to the final level. This
continues until an initiative is found whose syntax score is higher than zero or
until all initiatives have been examined to see if their syntax score is higher than
zero.

Results of pruning the search tree

In this section the results of pruning the search tree shown in figure 3.1 is
demonstrated.

The first kind of pruning (pruning the different kinds of initiatives) is al-
ways applied, because it is part of the algorithm that chooses the best initia-
tive. Therefore first the assertions are generated which results in creating the
initiatives 4 and 5. Both assertions do not contain the word ‘also’, so the gen-
uine questions are generated next. This results in creating the three genuine
questions named 1, 2 and 3. Next it is checked if one of these genuine questions
is about one of the predicates used in the last sentence (“The cat was afraid”).
It turns out that the first question is about one of the main topics and there-
fore this question is passed to the next level to assign a syntax score. The other
questions and the assertions are thrown away and the teaching questions are not
even generated. This results in generating five initiatives instead of eleven and
generating only two sentences instead of generating 28 sentences if an algorithm
like weighted sum was used which is obviously a big progress.

In the following is assumed that there are no genuine questions and no
assertions about one of the main topics which means that the teaching questions
have to be generated.

If pruning the teaching questions is turned off six different teaching questions
are generated. If pruning the teaching questions is switched on however only
the wh-questions, the no-questions and the questions which contain ‘also’ are

38

generated. Furthermore the question “What was afraid” is thrown away because
that question has the same topics list as the previous sentence and is therefore
assumed to be too easy. This results in generating only three different teaching
questions (the questions named 6, 7 and 11).

Finally depending on which kinds of pruning are applied a number of initia-
tives is passed to the next level to calculate the syntax scores. Because pruning
the different kinds of initiatives is always applied only the genuine question
“What is the cat’s name?” is passed to the final level. The syntax score is
calculated for both generated sentences and the one with the highest score is
chosen. This kind of pruning does not affect the result in this example, but we
will assume that the algorithm chose to create a teaching question to demon-
strate the results of this kind of pruning. If pruning the teaching questions is
turned off there are six possible teaching questions. The teaching questions are
ordered to their semantics score and the top four are passed to the final level
(initiatives 6, 7, 8 and 11). For these initiatives the syntax score is determined
and a new total score is calculated. Next the initiatives are ordered to their
total score and the one with the highest total score is chosen. If all four of
the initiatives have a syntax score of zero the next four initiatives are passed
to the next level. In this case there are only two remaining teaching questions
(initiatives 9 and 10) and their syntax scores are calculated. The one with the
highest total score is chosen and if both teaching questions have a syntax score
of zero there are no useful initiatives anymore.

The example in this section shows that applying different kinds of pruning
can result in much more efficient generation of initiatives.

3.4 Adding necessary discourse markers

There are many different discourse markers, some of which are obligatory and
some of which are only desirable. Adding discourse markers can be an extensive
task if you want to do it correctly. Because this was not the main goal of the
project it is decided only to add the most necessary discourse markers.

3.4.1 Adding the word ‘also’

As explained in section 2.3.4 the word ‘also’ is sometimes obligatory, so to find
out if this is the case the chosen initiative has to be checked once more. From
the examples given in that section it appears that there are exactly two cases in
which the word is needed. In order to find out if one of those cases applies the
algorithm first checks if the main events of the propositions (the first elements
of the topics lists) have the same arity. This can be done by checking if the
length of the topics list of the previous sentence and the length of the topics list
of the initiative are the same. Furthermore it has to be checked if the events
are of the same kind, e.g. both verbs or both adjectives. The topics lists (ran
x9 dog) and (green x9 dog) for example are almost the same, but it would be

39

inappropriate to add the word also to the corresponding sentences “The dog
ran” and “The dog is green”.

If the list of initiative topics satisfies both conditions the algorithm counts
the number of differences between the topics of the previous sentence and the
topics of the initiative. If this difference is exactly one, the sentences are almost
the same and the word ‘also’ is needed. If the number of differences is two and
the difference is a swap of arguments the word ‘also’ is needed too. Examples
of these cases were given in section 2.3.4.

The word ‘also’ can appear at different places in the sentence, so the string
“also” cannot simply be added to the beginning or the end of the sentence.
Instead the predicate ‘also’ has to be added to the nucleus of the MRS of the
initiative. The algorithm can then rely on the sentence generator which makes
sure that the word will be put at the correct place in the sentence.

3.4.2 Adding a remark before a teaching question

To make sure that the student always knows whether a question is a teaching
question or a genuine question, every teaching question is preceded by one of
the following strings:

• Let me make sure you remember:

• Let me check if you remember:

• Let’s check if you remember:

• Let’s see if you remember:

This sentence is not added to the MRS, but is simply concatenated to the
beginning of the sentence of the teaching question.

3.5 Processing initiative and user response

The system can generate three different kinds of initiatives. Depending on the
kind of initiative the dialogue continues differently. The easiest case is when
the system generates an assertion. In that case the assertion is simply stored
in the common ground and the dialogue continues normally. We assume for the
moment that the user will always understand the assertion and will not ask any
clarification questions.

If the system generates a genuine question or a teaching question the user’s
next input is the answer to the question. Therefore it first needs to be checked
whether the last initiative was a question before the user’s input can be pro-
cessed. An answer to a question can be a whole sentence or a simple ‘yes’ or
‘no’ input.

40

Therefore the following four cases can occur:

1. The question is a yes/no genuine question

If the answer is ‘yes’ the propositional part of the genuine question is
stored in the common ground and the system responds with ‘ok’.

If the answer is ‘no’ the genuine question doesn’t have to be stored, so
the system only generates an ‘ok’ message. Eventually it would be useful
to store the negation of the question proposition, but Te Kaitito doesn’t
handle negation at present.

2. The question is a wh genuine question

In this case the user’s answer is a whole sentence and the sentence is
parsed in the normal way and stored in the common ground. The system
responds with ‘ok’.

3. The question is a yes/no teaching question

First the system finds the correct answer and compares this answer to the
user’s input. If the answer is correct the system responds with ‘correct’;
if the answer is incorrect the system responds with ‘incorrect’. Because
the teaching question was based on the common ground nothing has to be
added to the common ground.

4. The question is a wh teaching question

In this case the user’s answer is a whole sentence. The system finds all
possible answers and compares those to the user’s answer. If the answer
is one of the possible answers the system responds with ‘correct’ and the
dialogue continues normally. If the answer is incorrect the system repeats
the question to give the student a second chance and if necessary even
a third chance. If the student still doesn’t know the correct answer the
system will respond with an ‘incorrect’ message containing the correct
answer.

Processing the chosen initiative also involves updating the values of the
target syntactic rules. If the initiative is an assertion we cannot know for sure if
the student understands the assertion correctly, so the values are not changed.

If the last initiative was a teaching question the updating of the values
depends on the correctness of the answer. If the answer is correct the values
of all used rules are reduced. If on the other hand the answer is incorrect, it
is clear that the student doesn’t know the rules yet, so the values of the used
rules have to be increased. In the current system reducing the values consists
of decreasing the value by one point. Another possible way is to divide the
values by some number which means that the scores are updated exponentially.
That way the initiatives which contain syntactic rules that have never been
used are preferred more strongly to the other initiatives. Increasing the values
is achieved by adding one point to the current value, but this can also be done

41

exponentially. Alternatively, a higher value than one can be chosen to make
sure that initiatives containing those rules are preferred even more.

If the last initiative is a genuine question it is not possible to find out if the
answer is correct, so it is simply assumed that the answer is correct. The values
of the rules used in the question are reduced and if the question is a wh-question
also the values of the rules used in the answer are reduced.

The updating of the values of the different target rules represents the actual
language teaching. The student’s difficulties are diagnosed and the system will
try to teach the student the difficult rules. Presumably, a real teacher will try to
let the student practice these rules in a different context. Currently, the system
only tries to find initiatives which contain some of these rules, but this is an
area which can be very much elaborated in future work which is described in
section 5.4.3.

3.6 ‘Lesson over’ test

At the beginning of the lesson the dialogue contains a set of target rules which
has been constructed by a lesson author. The values of those rules are initialized
at *target-start-value* and during the dialogue the values of those rules are
updated as explained in the previous section. As long as the student keeps
taking initiatives there is no need to stop the lesson, but if the student gives the
initiative to the system, the system can decide that the lesson is over. There
are three different situations in which the system decides to end the lesson.

The first situation occurs when the values of all target rules are zero. If
a rule has been used in the correct way for enough times the value will finally
reach zero. If all values are zero it means that all rules have been learnt properly
and the lesson is over. Then the student can move on to the next lesson to learn
new rules.

Another situation in which the lesson is stopped occurs when the system
cannot generate any useful initiatives anymore. This happens when all initia-
tives have a syntax score of zero, but when there are some rules which have a
value higher than zero. In that case not all rules have been learnt properly, but
the system can’t help the student anymore.

The final situation in which the system decides to stop the lesson occurs
when the value of one of the rules is higher than a particular boundary value.
Every time a rule is used incorrectly the value of that rule is increased. The
system will try to choose more initiatives which use this rule, but this does not
necessarily mean that the student will understand the rule this time. If the
student fails to understand a particular rule for many times in a row the value
will increase very quickly. In this case the system decides to stop the lesson and
tells the student that it is better to go back to the previous lesson or to find
help from his teacher.

42

3.7 Values of the parameters

In this chapter many parameters have been used without giving the actual
chosen values. This has been done because the parameters are easy to adjust,
so if the reader likes he can try his own values. In this section we will however
give a table with the values we used. In appendix B a description of each of the
parameters and a motivation for the choice of its value are given.

Parameter Value
focus-start-score 5
focus-subject-score 7
focus-speaker-score 7
focus-also-score 10
order-start-score 3
order-new-entity-score 1
order-subject-score 1
order-no-speaker-score 1
strategy-nr-preds-score 2
strategy-nr-refs-score 2
semantics-wh-score 1
semantics-yes-score 1
semantics-no-score 3
semantics-different-score 1
semantics-adjectives-score 1
semantics-new-question-score 1
semantics-balanced-score 2
syntax-start-score 7

43

Chapter 4

Results

In this chapter the results of the initiative module are presented using some
example dialogues. In section 4.1 two examples are given, one showing a dialogue
in which the student takes no initiatives and one in which the student does take
initiatives himself sometimes. In section 4.2 another example is given to show
that the system works well with different characters.

4.1 Example character

In this section two examples are given using the same character. The example
described in section 4.1.1 shows a dialogue in which the student never takes any
initiatives and the example in section 4.1.2 shows the results if the student takes
some initiatives himself.

The character used in this section has question generation rules to create
the following genuine questions (entered in the same order):

• How are you?

• What is your name?

• Where are you from?

• What is a dog’s name?

Furthermore the character can make the following assertions:

• I am John

• I am fine

• I am from Holland

• I have a green dog

• The green dog chased a cat

• The green dog was happy

44

4.1.1 Student who takes no initiatives

The following example shows the dialogue in which the user never takes any
initiatives. The example in the next section is somewhat better, but this exam-
ple is used to show how the algorithm that chooses the kind of initiative works.
The utterances which are underlined are utterances taken by the system. In the
text is referred to these initiatives using the numbers shown between brackets.

> >
how are you (1) Let’s see if you remember:
> i am fine did john chase the cat (14)
okay > no
> correct
i am also fine (2) >
> Let’s check if you remember:
what is your name (3) what chased the cat (15)
> my name is ann > the dog chased the cat
okay correct
> >
Let me check if you remember: Let’s see if you remember:
who is fine (4) was the dog being happy (16)
> i am fine > yes
correct correct
> >
from where are you (5) Let’s check if you remember:
> i am from holland am i being from holland (17)
okay > yes
> correct
holland i am from also (6) >
> Let’s see if you remember:
a green dog i have (7) from what are you (18)
> > i am from holland
a cat the dog chased (8) correct
> >
the dog was happy (9) Let me check if you remember:
> i do have what (19)
Let’s see if you remember: > you have the dog
what did the dog chase (10) correct
> the dog chased the cat >
correct Let me make sure you remember:
> are you being fine (20)
Let me check if you remember: > yes
was the cat being happy (11) correct
> no >
correct Let me make sure you remember:
> from what am i (21)
Let me make sure you remember: > you are from holland
who does have the dog (12) correct
> you have the dog >
correct There are no useful initiatives anymore
> > bye
i am john (13) bye

The first step of the algorithm generates the possible assertions. Nothing
has been said yet which means that the list of possible topics is empty, so there
are no assertions which contain the word ‘also’. The next step is to generate the
genuine questions. For the same reason there are no genuine questions about a
topic explicitly mentioned in the previous sentence, but there are three genuine
questions about the student. Because it is still the beginning of the dialogue
these genuine questions are selected. Their order score and syntax score are
determined and the one with the highest score is chosen.

45

The system generates the following output before each initiative if the print-
ing parameters are set to t:

BEFORE-SCALING-AND-SORTING
"ORD MRS"
" 3 you are how"
" 2 your name is what"
" 1 where are you from"

AFTER-SCALING-AND-SORTING
"ORD MRS"
"100 you are how"
" 67 your name is what"
" 33 where are you from"

INITIATIVE-SENTENCES
"ORD SYN TOT SENTENCE"
"100 78 178 how are you"
" 67 100 167 what is your name"
" 33 78 111 from where are you"
"100 3 103 you are how"
" 33 56 89 where are you from"
" 67 3 70 your name is what"
" 33 3 36 you are from where"
" 33 3 36 you are being from where"

how are you

The first table shows the possible initiatives and their unscaled order scores.
The sentences printed in the table are actually MRSs, but for clarity one of
the sentences corresponding to the MRSs is printed. The second table shows
the same initiatives, but then with scaled scores and ordered by their scores.
The final table shows the sentences that can be generated for each of the MRSs
together with their order scores, their syntax scores and their total scores. The
initiative sentences are ordered by their total score and finally the first one is
chosen; in this case the genuine question “How are you?”.

Next the user responds with “I am fine” and the algorithm for finding the
best initiative is started again. In this case there is an assertion which includes
the word ‘also’ and therefore this assertion is chosen without generating the
genuine questions or the teaching questions.

The next initiative is a genuine question about the user, because there are
no assertions which contain the word ‘also’ and it is still the beginning of the
dialogue, so questions about the student are assumed to be good initiatives.
The system asks for the student’s name and the student answers that her name
is Ann.

In the next situation (initiative 4) there are no assertions which contain ‘also’
and no genuine questions or assertions about one of the main topics. At this
point the balance criterion is used to decide that the next initiative should be a
teaching question. Therefore the teaching questions are generated which results
in the following output:

BEFORE-SCALING-AND-SORTING
"SEM MRS"
" 2 am i fine"

46

" 2 who is being fine"
" 2 are you fine"
" 2 who is being fine"

AFTER-SCALING-AND-SORTING
"SEM MRS"
"100 am i fine"
"100 who is being fine"
"100 are you fine"
"100 who is being fine"

INITIATIVE-SENTENCES
"SEM SYN TOT SENTENCE"
"100 100 200 who is fine"
"100 100 200 who is fine"
"100 80 180 are you being fine"
"100 73 173 are you fine"
"100 73 173 am i being fine"
"100 67 167 am i fine"
"100 7 107 who is being fine"
"100 7 107 who is being fine"

Let me check if you remember:
who is fine

In this case all teaching questions have the same semantics score, so the
choice completely depends on the syntax score. The question “Who is fine”
is chosen and the user responds with “I am fine”. If the student would have
answered “You are fine” the answer would also be correct, because both the
student and the system are fine.

At this moment the student is in the list of possible topics and therefore
there is a genuine question about one of the main topics and this question is
chosen. The system asks from where the student is and the student tells that
she’s from Holland. Initiative 6 is an assertion which contains the word ‘also’
and can therefore be chosen immediately.

At that moment the system is in the list of possible topics and there are two
possible assertions. The result looks like this:

BEFORE-SCALING-AND-SORTING
"STR FOC MRS"
" 12 9 john i am"
" 17 9 a green dog i have"

AFTER-SCALING-AND-SORTING
"STR FOC MRS"
"100 100 a green dog i have"
" 71 100 john i am"

INITIATIVE-SENTENCES
"STR FOC SYN TOT SENTENCE"
"100 100 100 300 a green dog i have"
"100 100 76 276 i have a green dog"
"100 100 5 205 yours truly has a green dog"
"100 100 5 205 a green dog yours truly has"
" 71 100 33 204 i am john"
" 71 100 5 176 yours truly is john"
" 71 100 5 176 john yours truly is"
" 71 100 5 176 john i am"

a green dog i have

47

Assertions also have a focus score, so the scores in the last table are from
left to right the strategy score, the focus score, the syntax score and the total
score. The MRS for “I have a green dog” has a higher strategy score, because
there are more relations with ‘dog’ in the knowledge base than relations with
‘John’. Furthermore there is a genuine question about a dog, so an additional
two points are assigned to the strategy score of that assertion. The focus scores
for both assertions are the same, so the result depends on the combination of
the strategy score and the syntax score which is shown in the third table of the
result.

Next the green dog is on topic and the assertions “The dog chased a cat” and
“The dog was happy” are generated, because they are about a topic mentioned
in the previous sentence.

At this time all genuine questions have been asked and there is only one
assertion left. This assertion is about the system and will only be made once
three teaching questions have been generated or the system is in the list of
possible topics. In this case both conditions are satisfied at the same time:
after the next three initiatives three teaching questions have been asked and the
system is on topic. Therefore the next initiative (initiative 13) is the assertion
about the system and it tells his name is John.

Right now all assertions have been made and all genuine questions have been
asked, so the only thing the system can do is asking teaching questions. The
result of this is shown in the dialogue at the beginning of this section, but further
explanation is omitted. In the next section an example is given in which the
user does take initiatives once in a while and in that example more attention is
paid to the teaching questions.

4.1.2 Student who takes initiatives

The following example shows the dialogue in which the user also takes initiatives.
The same character is used as in the previous example, but as can be seen the
results are different because the user’s inputs influence the execution of the
algorithm. The beginning of the dialogue is similar to the one in the previous
section and will be described only roughly.

48

> >
how are you (1) Let’s see if you remember:
> i am fine who does have the green dog (10)
okay > you have the green dog
> how are you correct
i am being fine >
i am fine a cat the green dog chased (11)
> >
what is your name (2) the green dog was being happy (12)
> my name is ann > the red dog was sad
okay okay
> who are you >
john i am Let me check if you remember: (13)
i am john was the red dog also being happy
john yours truly is > no
yours truly is john correct
> >
a green dog i have (3) Let’s see if you remember:
> i have a red dog what chased the cat (14)
okay > the green dog chased the cat
> correct
what is the red dog ’s name (4) >
> the red dog’s name is mary Let me make sure you remember:
okay was the cat being sad (15)
> > no
Let’s see if you remember: correct
who does have the red dog (5) >
> i have the red dog Let me check if you remember:
correct i do have what (16)
> > you have the green dog
from where are you (6) correct
> i am from holland >
okay Let me make sure you remember:
> what did the green dog chase (17)
holland i am from also (7) > the green dog chased the cat
> correct
Let me make sure you remember: >
are you also from holland (8) Let me check if you remember:
> yes from what are you (18)
correct > i am from holland
> correct
Let’s check if you remember: (9) >
is yours truly also being from holland The lesson is over
> yes > bye
correct bye

The first initiative is “How are you?” for the same reasons as in the previous
example. The student answers and asks how the character played by the system
is. The system answers and generates the next genuine question. Next the
student asks for the system’s name and the system answers. At this point the
system is in the list of possible topics and the assertions “I am from Holland”
and “I have a green dog” are the possible assertions. Based on the strategy
criterion (as in the previous example) the algorithm chooses the assertion “I
have a green dog”.

At this point the student takes an initiative and tells that she has a red
dog. Then the red dog is in the list of possible topics and the system can ask
a genuine question about an explicitly mentioned topic (“What is the red dog’s
name?”). The originally entered question was “What is a dog’s name?” and
you can see that the referring expression used for “a dog” is correctly replaced
by the referring expression “the red dog”.

49

The student answers the question and at that moment there are no assertions
which contain the word ‘also’ and no genuine questions or assertions about one
of the main topics. The balance criterion makes sure that the next initiative
will be a teaching question. The possible teaching questions are generated which
results in the following:

BEFORE-SCALING-AND-SORTING
"SEM MRS"
" 3 do you have the red dog"
" 3 who does have the red dog"
" 3 you have what"
" 3 do i have the green dog"
" 3 who does have the green dog"
" 3 i have what"
" 2 am i fine"
" 2 who is being fine"
" 2 are you fine"
" 2 who is being fine"

AFTER-SCALING-AND-SORTING
"SEM MRS"
"100 do you have the red dog"
"100 who does have the red dog"
"100 you have what"
"100 do i have the green dog"
"100 who does have the green dog"
"100 i have what"
" 67 am i fine"
" 67 who is being fine"
" 67 are you fine"
" 67 who is being fine"

INITIATIVE-SENTENCES
"SEM SYN TOT SENTENCE"
"100 100 200 who does have the red dog"
"100 56 156 do i have the green dog"
"100 56 156 do you have the red dog"
"100 33 133 what do you have"
"100 11 111 you do have what"
"100 11 111 you have what"
"100 11 111 who has the red dog"

Let’s see if you remember:
who does have the red dog

At this point no no-questions can be generated, because the referents for
‘I’ and ‘you’ are never replaced by other referents. Furthermore no teaching
questions have been asked yet, so the semantics scores are very similar; they all
have one point because the question has not been asked yet and one point if it
is a yes-question or a wh-question (in this case all of the generated questions).
Finally the questions which contain one of the dogs get one extra point based on
the used referring expressions, because they are somewhat more difficult than
the other questions. The scores are scaled and ordered and only the top four
are passed to the final level to calculate the syntax scores. It turns out that the
question “Who does have the red dog” has a much higher syntax score than the
other questions and therefore this question is chosen.

At that moment the student is back in focus and there is still one genuine
question left about the student. The system selects this question (“Where are

50

you from”) and the student answers. Next, there is an assertion which contains
the word ‘also’ and this assertion is chosen.

The next two teaching questions may look somewhat easy, but they are
chosen because they have a high syntax score. The questions score lower in the
semantics score than the questions which contain one of the dogs, but because
their syntax scores are much higher they are chosen. It should be noted that
initiative 9 looks rather strange at first sight, but there are some ways to correct
this which will be described in section 5.3.3. For the moment it is best to read
the sentence as if it were “Am I also from Holland?”.

After the next three teaching questions the green dog is in the list of possible
topics again and the system can make the last two assertions about the green
dog: “The green dog chased a cat” and “The green dog was happy”.

Next, the user takes an initiative and tells that the red dog is sad. At that
point there are three ‘animate’ objects in the context (the green dog, the red
dog and the cat), so from this point on also no-questions can be asked. The
next initiative is a teaching question and the following output is generated:

BEFORE-SCALING-AND-SORTING
"SEM MRS"
" 5 was the green dog being sad also"
" 5 was the red dog being happy also"
" 3 was the green dog happy"
" 3 what was being happy"
" 5 did the red dog chase the cat"
" 3 did the green dog chase the cat"
" 3 what did chase the cat"
" 3 what did the green dog chase"
" 1 who is being from holland"
" 1 what is yours truly from"
" 1 who is being from holland"
" 1 what are you from"
" 2 do you have the red dog"
" 2 you have what"
" 2 do i have the green dog"
" 2 i have what"
" 2 am i fine"
" 2 who is being fine"
" 2 are you fine"
" 2 who is being fine"

AFTER-SCALING-AND-SORTING
"SEM MRS"
"100 was the green dog being sad also"
"100 was the red dog being happy also"
"100 did the red dog chase the cat"
" 60 was the green dog happy"
" 60 what was being happy"
" 60 did the green dog chase the cat"
" 60 what did chase the cat"
" 60 what did the green dog chase"
" 40 do you have the red dog"
" 40 you have what"
" 40 do i have the green dog"
" 40 i have what"
" 40 am i fine"
" 40 who is being fine"
" 40 are you fine"
" 40 who is being fine"
" 20 who is being from holland"
" 20 what is yours truly from"

51

" 20 who is being from holland"
" 20 what are you from"

INITIATIVE-SENTENCES
"SEM SYN TOT SENTENCE"
"100 100 200 was the red dog also being happy"
"100 100 200 was the red dog also being happy"
"100 100 200 was the red dog happy also"
"100 100 200 was the red dog being happy also"
"100 100 200 was the green dog also being sad"
"100 100 200 was the green dog also being sad"
"100 100 200 was the green dog sad also"
"100 100 200 was the green dog being sad also"
" 60 100 160 was the green dog being happy"
"100 50 150 did the red dog chase the cat"
"100 0 100 was the red dog also happy"
"100 0 100 was the green dog also sad"
" 60 0 60 was the green dog happy"

Let’s see if you remember:
was the red dog also being happy

No-questions have a higher semantics score to prefer them to other questions.
In this way the no-question with the highest syntax score is often chosen. The
next initiative is also a teaching question and because the previous two teaching
questions were yes/no-questions, the wh-questions get one extra point. The
result is “What chased the cat?”. After this question another no-question can be
generated (“Was the cat sad?”) and that no-question is chosen. The remainder
of the dialogue consists of a number of other teaching questions to make sure
that all syntactic constructions are learnt.

4.2 Example teacher character

In this section an example dialogue in given using a different character. In this
example not every initiative taken by the system will be explained as in the
previous examples, but the most important choices are clarified.

The character in this example has the following genuine questions, entered
in the same order:

• Which language do you speak?

• Do you speak Spanish?

• Do you speak English?

Furthermore the character can make the following assertions:

• I am an English teacher

• I speak English

• I speak Spanish

• John is my student

52

• John likes me

• Mary is my mother

• Mary speaks German

The current referring expression algorithm in the Te Kaitito system does not
support substructures which means that assertions with the word ‘my’ cannot
be made. Instead the assertions “John is a student” and “Mary is a mother”
will be generated. Once the substructures are added the dialogue will be better
which will be described in section 5.2.2.

An example dialogue with this character is the following:

> what does mary speak
which language do you speak > mary speaks german
> i speak dutch correct
okay >
> Let me make sure you remember:
do you speak spanish does mary like me
> no > no
ok correct
> >
do you speak english Let’s see if you remember:
> yes do you speak dutch
okay > yes
> correct
i also speak english >
> Let’s check if you remember:
i also speak spanish what do i speak
> > you speak spanish
i am an english teacher correct
> >
john likes me Let me check if you remember:
> do i also speak english
john is a student > yes
> correct
Let’s see if you remember: >
who does like me Let me make sure you remember:
> john likes you do i also speak spanish
correct > yes
> correct
Let me make sure you remember: >
what do i speak Let’s check if you remember:
> you speak english john does like whom
correct > john likes you
> correct
Let’s check if you remember: >
do you also speak english Let me make sure you remember:
> yes you speak what
correct > i speak dutch
> correct
mary speaks german >
> There are no useful initiative anymore
mary is a mother > bye
> bye
Let me make sure you remember:

The first thing that looks strange in this dialogue is that the system first
generates the initiative “John likes me” and then the initiative “John is a stu-
dent”. The initiatives are generated in this order because the system is in the
list of possible topics and the system appears in the initiative “John likes me”,
which means that the initiative “John likes me” is about one of the main topics

53

and the initiative “John is a student” is not on topic at all. Once the algo-
rithm for generating referring expressions has been extended that it will also
support substructures, the initiative “John is my student” will also be on topic.
Therefore the chance is rather big that this initiative will be preferred to the
other one, but this cannot be checked until the referring expression algorithm
has been modified.

For the same reason the initiative “Mary is a mother” will be changed to
“Mary is my mother” which sounds much better. The order of the initiatives
“Mary speaks German” and “Mary is my mother” may change once the correct
referring expressions are used, but this will not affect the rest of the dialogue.

As can be seen in the examples in this chapter the system can generate co-
herent dialogues; all initiatives are appropriate in the context. The beginning of
the dialogue is used to populate the common ground and the end of the dialogue
consists mainly of teaching questions to check if the student understands every-
thing that has been said and knows all syntactic constructions targeted in the
lesson. Furthermore, the teaching questions are a good mixture of wh-questions
and yes/no-questions and the questions loop through all different propositions.

54

Chapter 5

Summary and possible
extensions

As the examples in the previous chapter show, it is possible to create some
good dialogues, but there are also situations in which the system creates rather
strange initiatives. Some of these situations are due to the Te Kaitito system
and the grammar currently used, but others have different reasons. There are
however things to make the system perform better which will be described in
this chapter.

First a summary of the whole project is given in section 5.1. Then the
possible extensions are described which can be subdivided into three different
kinds of extentions. First of all section 5.2 describes a number of small changes
in or extensions to the Te Kaitito system and the grammar which will make the
initiative module work better. Furthermore there are some possible extensions
to the initiative module itself which will be described in section 5.3. Finally
some suggestions for completely new but somehow related projects are given in
section 5.4.

5.1 Summary

In the past many computer-aided teaching systems have been developed. Some
of these systems are dialogue-based, which means that the student has a dialogue
with the system using natural language. These systems can focus on a wide
range of subjects, for example computer science or physics. There are also
teaching systems which focus on language teaching in particular, but most of
these systems are not dialogue-based. In this report a module has been described
which combines these two things: it generates teaching initiatives in a computer-
aided language learning dialogue.

In order to generate an initiative different characters are used. Each char-
acter has a number of structures with which it can create genuine questions,
assertions and teaching questions. After some possible initiatives have been

55

generated the system decides which one is best based on a number of criteria.
Using these criteria the system pursues two goals: it tries to create a coherent
dialogue and it tries to teach the student a number of syntactic constructions.

The examples in the previous chapter firstly show that the system creates
reasonably coherent dialogues. Furthermore it is made sure that all initiatives
taken by the system contribute to the goal of teaching the student a number of
syntactic constructions. This means that every initiative contains certain rules
to check if the student knows the corresponding syntactic constructions. At the
end of the example dialogues the student has learnt all rules properly and the
lesson is ended.

5.2 Changes to Te Kaitito and the grammar

In this section some small changes to the system or to the grammar will be
described. These changes don’t require changes in the code for the initiative
module, but will just make the initiative module work better.

5.2.1 Person, animal, place and animate features

First of all it would be useful if the system would know which predicates are
people. Right now the person who authors the new lessons has to enter questions
for each kind of person (e.g. “What is a man’s name?”, “What is a girl’s
name?” etc.) which takes a long time and which is probably against the author’s
intuition. It would be much better if the author could just enter the question
“What is a person’s name?” and that the system could find out that a man is
a particular kind of person.

It could also be useful if a similar feature would exist for animals. Even
though it is not necessary, the system might perform better if it would support
this. There is a number of questions which applies to all animals (e.g. “What
is the animal’s color?” “What is the animal’s size?” etc).

A third addition which is similar to the last two additions is that it would be
useful if the system could tell whether a predicate is a place or not. The current
system turns the sentence “John is born in Amsterdam” into the question “What
is John born in?” instead of the better question “Where is John born?”. If the
system could distinguish between these cases the generated initiatives would
sound more naturally to the user.

A final addition is adding an animate feature. As described in section 3.2.3
it is not possible to find out whether an entity is an animate object or not. If
there are person and animal features this feature is not necessary anymore, but
otherwise it could be used to create interesting no-questions.

5.2.2 Extending referring expression generation code

A somewhat more complicated change would be to extend the code for referring
expressions. Right now the code only includes the necessary adjectives, but it

56

does not support substructures. The following dialogue could happen using the
current system:

S: My mother is happy
S: Your mother is sad
S: Who is happy
Tk: The mother is happy

The system cannot distinguish both mothers just by adding some adjectives,
because there are no adjectives associated with the mothers. Instead the words
‘my’ and ‘your’ are stored as substructures for the word ‘mother’. Because the
code for creating referring expressions simply ignores substructures the system
is not able to answer this question properly. A consequence of this is that some
sentences are turned into questions which look rather strange at first sight.
An example is the sentence “The dog’s color is green” which is turned into
the questions “What is the color?” and “What is green?”. These questions
are generated because ‘color’ is the subject of the sentence and ‘dog’ should
actually be in its substructure but is ignored. This problem is rather difficult
to solve without changing the code for referring expressions and has therefore
been ignored.

5.3 Additions to the Initiative Module

In this section some other additions to the current system and the grammar will
be described which will make the system function better. These additions do
however also require changes in the initiative module and are therefore described
in a separate section.

5.3.1 Adding cause to the grammar

First of all the currently used grammar doesn’t support reasons, explanations
and other complicated structures. If the grammar however would support those
structures the initiative module could also generate questions like “Why?” and
“How?”. At first sight that doesn’t seem necessary, but the following example
shows why the system will create better questions when they are supported:
If the student enters the sentence “The man is angry”, the current system
generates a genuine question like “What is the man’s name?”. It would be
much better if the system would come up with a question like “Why is the
man angry?”, because the main event of the sentence is not ‘man’ but ‘angry’.
Extending the initiative module in order to support genuine questions like the
ones mentioned before is very easy. It just requires one extra rule which makes
it possible to enter a question like “If the main event is an action verb, ask
why”. Adding this extension however requires changing the grammar in such a
way that it supports more complicated sentences which will be difficult but also
very useful.

57

5.3.2 Multi-speaker dialogues

At the moment there is some work ongoing to make the Te Kaitito system a
multi-speaker dialogue system. In this way the student could talk to different
characters at the same time. If the Te Kaitito system would support multi-
speaker dialogues the initiative module could be run for each of the characters.
Each character returns his or her best initiative and afterwards these initiatives
have to be compared. An additional criterion might be needed to make sure
that the different speakers speak in a balanced way. Adding the multi-speaker
function to the initiative module in this way is rather easy, but there are other
ways to incorporate the multi-speaker function into the initiative module which
will be described in section 5.4.4.

5.3.3 Criterion based on ‘naturalness’ of the sentence

Finally it would be very useful if the system would support one more criterion.
To generate the actual sentence in natural language every MRS is turned into all
possible sentences. At the moment the code is being written to decide which of
those sentences is the most natural one. For example the MRS for the sentence
“John is from Holland” can be turned into the following four sentences:

• John is from Holland

• John is being from Holland

• From Holland john is

• Holland John is from

The sentence “I am born in Amsterdam” can even be turned into 22 different
sentences, including the sentences containing the form “Yours truly” instead
of “I”. Obviously some sentences are used more frequently than others and
therefore it would be a good idea to assign higher scores to sentences which are
more natural than sentences which contain rare structures. When the code for
ranking the sentences will be finished the criterion can be added and a score
can be assigned at the same time as the syntax score is assigned.

5.4 Suggestions for new projects

During the design phase of a project new ideas for all different kinds of projects
pop up. In this last section some suggestions for related projects are given.

5.4.1 Extending the discourse markers algorithm

The initiative module described in this report includes an algorithm to decide
whether it is necessary to add the word ‘also’. There are however many more
discourse markers, some of which are also necessary and some of which are

58

only desirable. Examples are discourse markers like ‘but’, ‘however’ and ‘by
the way’. Much research has been done into discourse markers which can be
useful for a project like this. In the current system discourse markers like ‘but’
and ‘however’ cannot be supported, because the grammar doesn’t support those
complex sentences. If the grammar however would support this kind of sentences
adding discourse markers can be an interesting follow-up project.

5.4.2 Handling student’s grammatical errors

Another possible project is to make a module to handle student’s grammatical
errors. If the system generates a question and the student makes an error trying
to answer the question, the answer cannot be parsed and is therefore incorrect.
It would be an improvement if another module would pop up and focus on
the error made. This can be done by starting a subdialogue to correct the
grammatical error and afterwards the system can return to the normal dialogue
to check if the (grammatically correct) sentence was the correct answer to the
question.

People who are just starting to learn a second language always make many
mistakes. Research has shown that it is better not to correct all errors the very
first time, because students can feel offended which can reduce the learning
process. An additional project of handling the student’s grammatical errors
could focus on deciding when to correct a student’s mistake.

5.4.3 Modelling the student’s grammatical knowledge

The CALL-system is used to assist people learning a second language. The
initiative module detects the student’s difficulties and focusses on these diffi-
culties. It does so by simply preferring the initiatives which contain syntactic
rules that the student does not know yet. However, if the student doesn’t know
a particular rule and the system uses the rule again, this does not necessarily
mean that the student will understand the rule this time. Therefore it would
be useful if the system could use the rules in different contexts. If the student
understands the rule in the new context, the system could check if the student
really learnt the rule by checking if the student understands the rule in the old
context.

Furthermore the student’s grammatical knowledge is measured using the
syntactic constructions used in the utterances. There may be additional ways
to measure this knowledge which can be combined to get a better model of the
student’s knowledge.

5.4.4 Multi-speaker dialogues using agent technology

In the previous section some notes are given on how the initiative module can
be used in a multi-speaker environment. There are however different ways to
support this. The first one was described in section 5.3.2, but a more interesting
one is to include agent technology. Using this technology the different speakers

59

can communicate with each other and cooperate to construct a better dialogue.
The different characters can for example talk to each other and combine their
private knowledge bases to extend the strategy criterion. Doing this they can
decide if one of the characters can make an assertion which makes an assertion
of the other character a good initiative.

60

Bibliography

A and Flickinger, D. (2000), On building a more efficient grammar by exploiting
types, in ‘Natural Language Engineering’, pp. 15–28.

Bayard, I., Knott, A. and Moorfield, J. (2002), Syntax and semantics for sen-
tence processing in english and māori, in ‘Proceedings of the 2nd Australasian
Natural Language Processing Workshop’, Canberra Australia, pp. 33–40.

Carbonell, J. R. (1970), AI in CAI: An Artificial Intelligence Approach to
Computer-assisted Instruction.

Copestake, A. and Flickinger, D. (2002), An open-source grammar development
environment and broad-coverage english grammar using hpsg, in ‘Proceedings
of LREC 2000’, Athens, Greece.

Copestake, A., Flickinger, D. and Sag, A. (1999), Minimal recursion semantics:
An introduction, CSLI, Stanford University.

Freedman, R. (1997), Degrees of mixed-initiative interaction in an intelligent
tutoring system, Department of CSAM, Chicago.

Graesser, A., VanLehn, K., Rose, C., Jordan, P. and Harter, D. (2001), Intel-
ligent tutoring systems with conversational dialogue, University of Memphis
and University of Pittsburgh.

Grosz, B. J., Joshi, A. K. and Weinstein, S. (1995), ‘Centering: A framework
for modeling the local coherence of discourse’, Computational Linguistics
21(2), 203–225.

Guinn, C. I. (1996), Mechanisms for mixed-initiative human-computer collabo-
rative discourse, Department of Computer Science, Duke University, Durham.

Jurafsky, D. and Martin, J. H. (2000), Speech and Language Processing - An
Introduction to Natural Language Processing, Computational Linguistics and
Speech Recognition, Prentice Hall. University of Colorado.

Kamp, H. and Reyle, U. (1993), From Discourse to Logic, Kluwer Academic
Publishers, Dordrecht, The Netherlands.

61

Kim, J. H., Glass, M., Freedman, R. and Evens, M. E. (2000), Learning the use
of discourse markers in tutorial dialogue for an intelligent tutoring system,
Department of Computer Science, Illinois Institute of Technology, Chicago.

Knott, A., Bayard, I., de Jager, S. and Wright, N. (2002), An architecture
for bilingual and bidirectional nlp, in ‘Proceedings of the 2nd Australasian
Natural Language Processing Workshop (ANLP 2002)’.

Knott, A., Moorfield, J., Meaney, T. and Ng, L. (2003), A human-computer dia-
logue system for mori language learning, in ‘Proceedings of the World Confer-
ence on Educational Multimedia, Hypermedia and Telecommunications (ED-
MEDIA)’, Hawäı.

Lightbown, P. M. and Spada, N. (1993), How Languages are Learned, Oxford
University Press, chapter 5 Observing second language teaching, pp. 91–101.

Moorfield, J. (1988), Te whanake 1: Te kākano, Addison Wesley Longman New
Zealand, Auckland.

Mostow, J., Beck, J., Bey, J., Cuneo, A., Sison, J., Tobin, B. and Valeri, J.
(2004), Using automated questions to assess reading comprehension, vocab-
ulary and effects of tutorial interventions, Project LISTEN, Carnegie Mellon
University, Pittsburgh.

Nakata, T., Ikeda, T., Ando, S. and Okumura, A. (2002), Topic detection based
on dialogue history, Multimedia Research Laboratories, NEC Corporation,
Japan.

Shomoossi, N. (2004), The effect of teacher’s questioning behavior on efl class-
room interaction: A classroom research study, Tehran University, Iran.

Vlugter, P., Knott, A. and Weatherall, V. (2004), A human-machine dialogue
system for CALL, in ‘Proceedings of InSTIL/ICALL 2004: NLP and speech
technologies in Advanced Language Learning Systems’, Venice, pp. 215–218.

62

Appendix A

Propositions and common
ground

The following is an example proposition of the sentence “A dog chased a cat”:

#S(PROPOSITION
:NUCLEUS h5:e4:{ h11:"_chase_v_rel"(e4,x7,x12)

h13:_a_q_rel(x12,h15,h14)
h6:_a_q_rel(x7,h9,h8)
h16:"_cat_n_rel"(x12)
h10:"_dog_n_rel"(x7) }

:PRESUPS NIL))

This is an example proposition of the sentence “The dog chased the cat”.
You can see that the presuppositions are stored in the presups instead of the
top-nucleus.

#S(PROPOSITION
:NUCLEUS h5:e4:{ h11:"_chase_v_rel"(e4,x9,x12) }
:PRESUPS (#S(PRESUP

:NUCLEUS h13:x12:{ h13:_the_q_rel(x12,h15,h14)
h16:"_cat_n_rel"(x12) }

:PRESUPS NIL)
#S(PRESUP

:NUCLEUS h6:x9:{ h6:_the_q_rel(x9,h8,h7)
h10:"_dog_n_rel"(x9) }

:PRESUPS NIL))))

This is an example proposition of the sentence “The cat was afraid”:

#S(PROPOSITION
:NUCLEUS h19:e18:{ h25:"_afraid_j_rel"(e18,x23) }
:PRESUPS (#S(PRESUP

:NUCLEUS h20:x23:{ h20:_the_q_rel(x23,h22,h21)
h24:"_cat_n_rel"(x23) }

:PRESUPS NIL))))

63

The following is an example of the question “What chased the cat?”. You can
see that one of the presups in the original proposition is turned into a parameter
and the rest of the proposition is the same.

#S(QUESTION
:PARAMS (#S(PARAM

:NUCLEUS h8:x7:{ h8:which_q_rel(x7,h9,h10) h6:thing_rel(x7) }
:PRESUPS NIL))

:PROP #S(PROPOSITION
:NUCLEUS h11:e4:{ h12:"_chase_v_rel"(e4,x7,x13) }
:PRESUPS (#S(PRESUP

:NUCLEUS h14:x13:{ h14:_the_q_rel(x13,h16,h15)
h17:"_cat_n_rel"(x13) }

:PRESUPS NIL)))))

The common ground containing the two propositions “The dog chased the
cat” and “The cat was afraid” is stored in the following way:

#S(DRS
:REFERENTS (x9 x12 x1 x0)
:CONDITIONS (h2:named_rel(x0,te kaitito)

h11:_chase_v_rel(e4,x9,x12)
h16:_cat_n_rel(x12)
h10:_dog_n_rel(x9)
h25:_afraid_j_rel(e18,x12)))

The common ground can also be represented as a split box in the way DRSs are
normally represented:

x9 x12 x1 x0
name(x0, “te kaitito”)
chase(e4, x9, x12)
cat(x12)
dog(x9)
afraid(e18, x12)

64

Appendix B

Parameters

In this appendix all parameters used in the algorithms are described and their
values are given. The parameters can be subdivided into three different kinds
of parameters which will be described in the following subsections.

B.1 Parameters to calculate the separate scores

The first parameters are the parameters necessary to calculate the separate
scores which include the following:

focus-start-score

The elements in the list of possible topics are ranked to calculate the
similarity between the list of possible topics and the topics of a possible
initiative. The first element has a score of *focus-start-score* and the
following elements have a score of one lower.

If there are assertions which include the word ‘also’ they are chosen for
sure, so this score is mostly applied to assertions which belong to one of
the other assertion categories. A value of 5 has been chosen, because a
higher value would result in less influence of the other elements of the
focus score. A lower value than five on the other hand will result in less
difference between the first and the last element in the list and that is also
not the intention.

focus-subject-score

This score is added to the focus score if the subject of the initiative is in
the list of possible initiative, so if the subject is on focus. A value of 7 has
been chosen because it is much better if the subject appears in the list, but
it is for example less important than adding the word ‘also’. Furthermore
part of the score has already been assigned when calculating the similarity
score.

65

focus-speaker-score

This score is added when one of the speakers is mentioned in the initiative.
This is done because the speakers are always on focus and should therefore
always be in the list with possible topics. A value of 7 has been chosen
for the same reason as the focus-subject-score.

focus-also-score

This score is assigned when the word ‘also’ can be added to the initia-
tive which means that the initiative and the previous utterance are very
similar. Such an initiative will already have a high similarity score, but
because the similarity score looks at the previous two sentences and the
‘also’ score looks only at the very last sentence this score is really impor-
tant. Therefore a value of 10 has been chosen.

order-start-score

This score represents the value that is assigned to the question genera-
tion rule on a particular topic that has been entered first. Presumably,
there won’t be many questions about the same topic and if there are many
questions they are probably not ordered in a very strict way. The crite-
rion is just meant to prefer the very first question to the later questions.
Therefore only a score of 3 has been chosen.

order-new-entity-score

This score is used to prefer questions about new entities. The order scores
are all quite low, so a value of only 1 has been chosen.

order-subject-score

This score makes sure that questions about the subject of the previous
sentence are more likely to be chosen than other questions. For the same
reason as the previous score a value of 1 has been chosen.

order-no-speaker-score

This score applies to genuine questions which are about entities that are
not the student and also a value of 1 has been chosen. The last three
scores represent the focus score for genuine questions, so by choosing a
value of 1 for all of them the focus score simply consists of counting the
number of conditions that the question satisfies.

strategy-nr-preds-score

This parameter represents the number of predicates that is looked at when
calculating the number of genuine questions which are about the topics
in the initiative. Only n-preds are looked at and in most cases there are
only one or two predicates in a sentence, so a value of 2 has been chosen.
There are some verbs that have three arguments (e.g. ‘give’) or even four
(e.g. ‘exchange’), so if the entities used in sentences like these also have
to be used the value of the parameter should be increased. A value of 2

66

has been chosen because in this way the subject is strongly preferred to
the object.

strategy-nr-refs-score

This parameter represents the number of referents that is looked at when
calculating the number of facts in the knowledge base which contain one of
the referents. The value for this parameter is 2 for the exact same reasons
as the value of the *strategy-nr-preds-score*.

semantics-wh-score

This score is assigned if the teaching question is a wh-question instead of
a yes/no question. A value of 1 has been chosen to make sure that these
questions and the wh-questions are mixed in a balanced way.

semantics-yes-score

This score is assigned if the teaching question is a yes-question. A value
of 1 has been chosen to make sure that the wh-questions and the yes/no-
questions are mixed in a balanced way.

semantics-no-score

This score is assigned if the teaching question is a no-question. Only
no-questions which are on topic are generated, so often there are no no-
questions at all. A value of 3 has been chosen to make sure that a no-
question has a big chance to be chosen if there is one.

semantics-different-score

This score is assigned if the teaching question uses a referring expression
which is different from the one used when introducing the corresponding
entity. A question will be harder if the referring expressions are different
and therefore a score of 2 has been chosen.

semantics-adjectives-score

Another aspect of the semantics score is the complexity of the used refer-
ring expression which is expressed by the number of adjectives necessary in
the referring expression. First the number of adjectives is determined and
that number is multiplied by the *semantics-adjectives-score*. A value
of 1 has been chosen which means that it has the same effect when the
referring expression has two adjectives as when the referring expressions
are different.

semantics-new-question-score

This score is added if the proposition corresponding to the question has
never been turned into a question before. A value of 1 has been assigned
to make sure that these questions are preferred only a little bit.

67

semantics-balanced-score

This score is assigned to questions of a particular kind if the previous two
teaching questions were of the other kind. This means that wh-questions
get this score if the previous two questions were yes/no-questions and the
other way around. A value of 2 has been chosen, because this way the
preferred kind is chosen quite often.

syntax-start-score

This score represents the initial values of the target syntactic rules. Ev-
erytime a rule is used correctly the values are decreased by one. A value
of 4 is chosen because this means that a rule has to be used correctly for
four times before its value reaches zero. If the value of this parameter will
be higher the lessons will take somewhat longer.

B.2 Weight parameters

After a number of initiatives have been selected and their syntax scores have
been calculated the different scores have to be combined to get a total score.
Genuine questions have an order score and a syntax score, assertions have a
strategy score, a focus score and a syntax score and teaching questions have
a semantics score and a syntax score. This means that always only two or
three scores have to be combined and therefore the total score is determined
by taking the weighted sum of the separate scores. It is implemented using
the parameters *order-weight*, *strategy-weight*, *focus-weight*, *semantics-
weight* and *syntax-weight*. Currently, all parameters have a value of 1 which
means that all criteria are just as important. Some other values have been
tried, but the results were similar or worse, but because the weights have been
implemented as parameters the values can be changed.

B.3 Remaining parameters

The final group of parameters consists of parameters which can be changed to
improve the efficiency and parameters which are used for user friendliness. Some
of these parameters have boolean values instead of numerical values.

pruning-teaching

If this parameter is set to t the teaching questions will be pruned. This
parameter was set to nil during the testing phase, but in the final system
the parameter is set to t.

pruning-syntax

This parameter shows whether pruning the number of initiatives for which
the syntax score is calculated has to be applied or not. Like the other
pruning parameter this parameter was set to nil while testing and will be
set to t during actual use.

68

nr-syntax

If *pruning-syntax* is set to t only the initiatives with the highest total
scores are passed to the next level to calculate the syntax score. This
parameter represents the number of initiatives which will be passed to this
next level at a time. Right now the value 4 is used because in most cases
this will result in an acceptable response time. If the value is much higher
the response time will not differ much from the result without applying
this kind of pruning. If the value is lower the chance is rather large that
an initiative with a really high syntax score is not chosen because it scores
somewhat lower in the other criteria.

syntax-fail-score

If one of the values of the target syntactic rules is higher than *syntax-
fail-score* the system decides to stop the lesson, because the student has
made too many mistakes. The value of 8 has been chosen, because this
means that the student has made at least four mistakes without using the
rule only once.

minimum-nr-tqs

This parameter represents the number of teaching questions that is asked
before a genuine question about the student or an assertion about the sys-
tem will be chosen. Right now the value 3 is used, because this way some
teaching questions are asked first and therefore the kinds of initiatives in
the final result will be more balanced.

print-topics

If this parameter is set to t the list with possible topics is printed. This is
not done in the final system, but can be useful when testing.

print-initiatives

If this parameter is set to t a list with possible initiatives and a table with
the corresponding scores is printed. This is not used in the final system,
but is very useful when deciding which values are best.

print-initiative-sentences

This parameter is the same as *print-initiatives* except that it prints the
possible initiative sentences. The parameter is also set to nil in the final
system.

B.4 Parameter values table

In the following table the different parameters and the corresponding values
used in the final system are given.

69

Parameter Value
focus-start-score 5
focus-subject-score 7
focus-speaker-score 7
focus-also-score 10
order-start-score 3
order-new-entity-score 1
order-subject-score 1
order-no-speaker-score 1
strategy-nr-preds-score 2
strategy-nr-refs-score 2
semantics-wh-score 1
semantics-yes-score 1
semantics-no-score 3
semantics-different-score 1
semantics-adjectives-score 1
semantics-new-question-score 1
semantics-balanced-score 2
syntax-start-score 7
order-weight 1
semantics-weight 1
strategy-weight 1
focus-weight 1
syntax-weight 1
pruning-teaching t
pruning-syntax t
nr-syntax 4
syntax-fail-score 8
minimum-nr-tqs 3
print-topics nil
print-initiatives nil
print-initiative-sentences nil

70

