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Abstract

Weak and strong sorting classes are pattern-closed classes that are
also closed downwards under the weak and strong orders on permuta-
tions. They are studied using partial orders that capture both the sub-
permutation order and the weak or strong order. In both cases they
can be characterised by forbidden permutations in the appropriate or-
der. The connection with the corresponding forbidden permutations in
pattern-closed classes is explored. Enumerative results are found in both
cases.

1 Introduction

A permutation π is said to be a subpermutation of a permutation σ (or to be
involved in σ) if σ has a subsequence that is ordered in the same relative way
as π. For example 231 is a subpermutation of 35412 because of its subsequence
351 which has the same pattern as 231. We say that σ avoids π if π is not a
subpermutation of σ. The developing theory of permutation patterns is now a
well-established part of combinatorics (see, for example, [12]).

This theory was originally motivated by the study of the sortable permutations
associated with various computing devices (abstract data types such as stacks
and deques [8], token passing networks [3], or hardware switches [2]). All these
devices have the property that, if they are able to sort a sequence σ, then they
are able to sort any subsequence of σ.

This subsequence property (that subsequences of sortable sequences are them-
selves sortable) is a very natural one to postulate of a sorting device. It is
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exactly this property that guarantees that the set of sortable permutations is
closed under taking subpermutations. But there are other natural properties
that a sorting device might have. We are particularly interested in the follow-
ing two. Both of them reflect the idea that “more sorted” versions of sortable
sequences should themselves be sortable.

1. If s1s2 . . . sn is sortable and si > si+1 then s1s2 . . . si−1si+1si . . . sn is
sortable, and

2. If s1s2 . . . sn is sortable and si > sj where i < j then

s1s2 . . . si−1sjsi+1 . . . sj−1sisj+1 . . . sn

is sortable.

For the moment we call these the weak and strong exchange properties (the
second obviously implies the first). The weak exchange property would hold for
sorting devices that operated by exchanging adjacent out of order pairs while
the strong exchange property would hold if arbitrary out of order pairs could be
exchanged. Our paper is about the interaction between each of these properties
and the subsequence property.

We shall study this interaction using various (partial) orders on the set Ω of
all (finite) permutations. Since we shall be considering several partial orders on
Ω we shall write σ P τ when we mean that σ ≤ τ in the partial order P; this
avoids the confusion of the symbol “≤” being adorned by various subscripts. In
the same vein we write σ P τ to mean σ 6≤ τ in P.

If P is a partial order on Ω the lower ideals of P are those subsets X of Ω with
the property

β ∈ X and α P β =⇒ α ∈ X

Such a lower ideal can be studied through the set b(X) of minimal permutations
of Ω \X. Obviously b(X) determines X uniquely since

X = {β | α P β for all α ∈ b(X)}

In the classical study of permutation patterns we use the subpermutation order
that we denote by I (standing for involvement). The lower ideals of I are
generally the central objects of study and are called closed classes. If X is a
closed class then b(X) is called the basis of X. Indeed the most common way
of describing a closed class is by giving its basis (and therefore defining it by
avoided patterns). We write av(B) to denote the set of permutations which avoid
all the permutations of the set B. If a closed class is not given in this way then,
often, the first question is to determine the basis. A second question, perhaps
of even greater interest, is to enumerate the class; in other words, to determine
by formula, recurrence or generating function how many permutations it has of
each length.
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However, these questions can be posed for any partial order on Ω and much of
our paper is devoted to answering them for orders that capture the subsequence
property and the weak or strong exchange properties.

A closed class is called a weak sorting class if it has the weak exchange property
and a strong sorting class if it has the strong exchange property.

Our aim is to set up a framework within which these two notions can be investi-
gated and to exploit this framework by proving some initial results about them.
We shall begin by investigating the two natural analogues of the subpermuta-
tion order that are appropriate for these two concepts. In particular there are
natural notions of a basis for each type of sorting class; we shall explore how
the basis of a sorting class is related to the ordinary basis and use this to derive
enumerative results. In the remainder of this section we set up the machinery
for studying sorting classes and then survey the main results of Sections 2 and
3 on weak and strong sorting classes respectively.

The terms ‘weak’ and ‘strong’ have been chosen to recall two important or-
ders on the set of permutations of length n: the weak and strong orders. For
completeness we shall give their definitions below. In these definitions and else-
where in the paper we use Roman letters for the individual symbols within a
permutation and Greek letters for sequences of zero or more symbols.

The weak order W on the set of permutations of length n can be defined as the
transitive closure of the set of pairs

W0 = {(λrsµ, λsrµ) | r < s}

The strong order S on the set of permutations of length n can be defined as the
transitive closure of the set of pairs

S0 = {(λrµsν, λsµrν) | r < s}

The subpermutation order I is, of course, defined on the set of all permutations.
It is the transitive closure of the set of pairs

I0 = {(λµ, λrµ)}

where, as usual, λrµ means the result of inserting r in λµ with suitable renum-
bering of symbols larger than r.

Weak (respectively, strong) sorting classes are the lower ideals in the partial
order defined by the transitive closure of I ∪W (respectively I ∪ S) and so can
be studied using the same machinery that has been used for arbitrary closed
classes, adapted to the appropriate order.

We begin by giving a simple description of these transitive closures. In this
description we denote the relational composition of two partial orders by juxta-
position.
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Lemma 1 The transitive closure of I ∪W is IW while that of I ∪S is IS. In
fact WI = IW while SI is strictly included in IS.

Proof: Suppose that α I β W0 γ represents a pair (α, γ) of the relation IW0.
Let α = a1a2 . . . and let a′1a

′
2 . . . be the subsequence of β order isomorphic to

α. Let xy be the two adjacent symbols of β that become yx in γ. If none or
one of these is one of the a′i then α I γ. If both of them are among a′1a

′
2 . . .

then they must be a′i and a′i+1 for some i. Let β′ be the result of exchanging ai

and ai+1 in α; then we have α W β′ I γ. This proves that IW0 ⊆ WI and it
follows readily that IWt

0 ⊆ WI for all t and hence that IW ⊆ WI.

To prove the opposite inclusion suppose that α W0 β I0 γ represents a pair
(α, γ) of the relation W0I0. Then we have

α = θabφ

β = θbaφ

and γ is obtained from β by inserting an extra symbol x (with appropriate
renumbering of the symbols larger than x).

If x does not occur between b and a then we can consider γ to be obtained from
α by first inserting x and then swapping a and b; so, in this case, αI0Wγ. If x
occurs between b and a then, depending on the value of x, we define ξ as either
θxabφ, θaxbφ, θabxφ so that the three symbols a, b, x come in increasing order.
Then

θabφ I0 ξ W θbxaφ

and so, again, α I0W γ.

We have proved that W0I0 ⊆ I0W and it readily follows that WI0 ⊆ I0W, and
then that WI ⊆ IW. The transitive closure of I ∪W is, by definition,

∞⋃
i=0

(I ∪W)i

However, I and W are transitively closed and WI ⊆ IW, and so this expression
simplifies to IW.

Suppose now that α S0 β I γ represents a pair (α, γ) of the relation S0I. Put
α = λrµsν with r < s and β = λsµrν. Let λ′s′µ′r′ν′ denote the subsequence
of γ order isomorphic to β. Consider the permutation γ′ obtained from γ by
interchanging s′ and r′. Clearly α I γ′ S γ. This shows that S0I ⊆ IS. But
then it follows, as above, that SI ⊆ IS. However 321 I 1432 S 3412 yet there
exists no permutation θ with 321 S θ I 3412; therefore the inclusion is strict.

It follows as above that IS is the transitive closure of I ∪ S.

The orders IW and IS have fewer symmetries (2 and 4 respectively) than
the subpermutation order (which has 8). In the following elementary result, if
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ζ = z1, . . . , zn, ζ∗ denotes the ‘reverse complement’ of ζ

ζ∗ = n + 1− zn, n + 1− zn−1, . . . , n + 1− z1

Lemma 2 Let ξ, ζ be permutations. Then

1. ξ IW ζ ⇐⇒ ξ∗ IW ζ∗

2. ξ IS ζ ⇐⇒ ξ−1 IS ζ−1 ⇐⇒ ξ∗ IS ζ∗

We have already noted that every closed class X can be described by a forbidden
pattern set B as

av(B) = {σ | β I σ for all β ∈ B}
We can describe weak and strong sorting classes in a similar way using the
orders IW and IS. In other words, given a set B of permutations we define

av(B, IW) = {σ | β IW σ for all β ∈ B}
av(B, IS) = {σ | β IS σ for all β ∈ B}

which are weak and strong sorting classes respectively. Every weak and strong
sorting class X can be defined in this way taking for B that set of permutations
minimal with respect to IW or IS not belonging to X. If B is the minimal
avoided set then it is tempting to call it the basis of the class it defines. Un-
fortunately that leads to a terminological ambiguity since both av(B, IW) and
av(B, IS) are pattern closed classes and so have bases in the ordinary sense.
To avoid such confusion we shall use the terms weak basis and strong basis.
However, two significant questions now arise. If we have defined a weak sorting
class by its weak basis, what is its basis in the ordinary sense? Similarly for
strong sorting classes, what is the connection between the strong basis and the
ordinary basis?

In the next section, on weak sorting classes, we shall see that the first of these
questions has a relatively simple answer. In that section we also give a general
result about the weak sorting class defined by a basis that is the direct sum of
two sets. We go on to enumerate weak sorting classes whose weak basis is a
single permutation of length at most 4.

In the final section, on strong sorting classes, we shall see that the ordinary basis
is not easily found from the strong basis. Nevertheless we can define a process
that constructs the ordinary basis from the strong basis; and we prove that the
ordinary basis is finite if the strong basis is finite. We have used this process
as a first step in enumerating strong sorting classes defined by a single strong
basis element of length at most 4. We shall give a summary of these results and
some remarks on their proofs.

We also introduce a 2-parameter family of strong sorting classes denoted by
B(r, s). These classes are important because every (proper) strong sorting class
is contained in one (indeed infinitely many) of them. We shall show how the
B(r, s) can be enumerated and give a structure theorem that expresses B(r, s)
as a composition of very simple strong sorting classes.
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2 Weak sorting classes

Proposition 3 av(T, IW) = av(T,WI) = av(T ′) where T ′ is the set of per-
mutations

{σ | τ W σ for some τ ∈ T}
(the upward weak closure of T ).

Proof: The first equality is immediate from Lemma 1. To prove the second,
first suppose that σ 6∈ av(T,WI). Then, for some τ ∈ T , we have τ WI σ.
Hence there exists τ ′ ∈ T ′ with τ W τ ′ I σ. The final relation says that
σ 6∈ av(T ′).

Conversely, suppose that σ 6∈ av(T ′). Then, for some τ ′ ∈ T ′, we have τ ′ I σ.
By definition of T ′ there exists τ ∈ T with τ W τ ′. But then τ WI σ which
means that σ 6∈ av(T,WI).

Corollary 4 av(T ) is a weak sorting class if and only if every permutation in
the upward weak closure of T involves a permutation of T .

Proof: Let T ′ be the upward weak closure of T . Then, by the previous
proposition, av(T, IW) = av(T ′) and so av(T ) is a weak sorting class if and
only if av(T ) = av(T ′). The Corollary now follows.

Corollary 5 If a weak sorting class has a finite weak basis then its ordinary
basis is also finite.

Proof: Let T be the weak basis of a weak sorting class and let T ′ be its upward
weak closure. Obviously, T ′ is finite if T is finite. While T ′ may not be the
ordinary basis of av(T ′) (since it might not be an antichain) this ordinary basis
just consists of the minimal elements of T ′ and so is finite.

To state the next result we need to recall the notion of the direct sum of two sets
of permutations and some related terms. If α and β are permutations of lengths
m and n then α⊕ β is the permutation of length m + n whose first m symbols
are all smaller than the last n symbols, the first m symbols comprise a sequence
isomorphic to α, and the last n symbols comprise a sequence isomorphic to β.
We extend this notion to sets X and Y of permutations by defining

X ⊕ Y = {α⊕ β | α ∈ X, β ∈ Y }

We also recall that a permutation is said to be indecomposable if it cannot
be expressed as α ⊕ β. Every permutation has a unique expression in the
form α1 ⊕ · · · ⊕ αk where each αi is indecomposable, and the αi are called the
components of α. Closed classes whose basis elements are all indecomposable
are somewhat easier to handle than arbitrary ones. This is because they have
the property of being closed under direct sums and can be enumerated if their
indecomposables can be enumerated [4].
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Theorem 6 Let R,S be the weak bases of weak sorting classes A,B and let C
be the weak sorting class whose weak basis is T = R ⊕ S. Let (an), (bn), (cn)
be the enumeration sequences for A,B, C and let a(t), b(t), c(t) be the associated
exponential generating functions. Then

c(t) = (t− 1)a(t)b(t) + a(t) + b(t)

Proof: Let R′, S′, T ′ be the upward weak closures of R,S, T . By Proposition
3, we have A = av(R′), B = av(S′), and C = av(T ′). We can compute the
structure of the permutations of T ′ using the property that they are in the
upward weak closure of some ρ⊕ σ (ρ ∈ R, σ ∈ S). Such permutations must be
the union of two sequences ρ′, σ′ where

1. ρ′ < σ′

2. ρ′, σ′ are (order isomorphic to) permutations of R′, S′

Conversely, every such permutation is in the upward weak closure of some ρ⊕σ ∈
R⊕ S and so lies in T ′.

From this description we can determine the structure of permutations in C. We
describe them using a temporary notation: if π is a permutation then π‖[i···j]
denotes the subsequence of π whose values comprise the interval [i · · · j]. All
permutations in C of length n will belong to one of the following two types:

• Permutations belonging to A;

• Permutations π not in A which have the property that if k is the minimum
value such that π‖[1···k] 6∈ A then π‖[(k+1)···n] ∈ B.

Consider the collection of permutations not belonging to A but which have the
property that the permutation resulting from deletion of their maximum symbol
does lie in A. If we define ân to be the number of permutations of this type of
length n then it is easy to see that:

ân = nan−1 − an

since the first term on the right hand side counts the number of ways of adding
a new maximum to a permutation in A of length n − 1 while the second term
subtracts the number of ways to do this which still result in a permutation in
A.

The description of the permutations in C then shows that:

cn =
n∑

k=0

(
n

k

)
âkbn−k

and the theorem follows by comparison of series.
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So far as we know this is the first appearance of exponential generating functions
in pattern class enumeration. Notice from the form of the result that av(R ⊕
S, IW) and av(S ⊕R, IW) are equinumerous.

Proposition 3 shows that we can enumerate weak sorting classes using the var-
ious techniques that have been developed for ordinary closed classes. We shall
begin these enumerative studies by looking at classes with a single basis permu-
tation of length 3 or 4. The length 3 case is virtually trivial. By Lemma 2 the
only permutations that have to be considered are 123, 213, 231, 321 and we have

Proposition 7 The classes av(123, IW), av(132, IW), av(231, IW), av(321, IW)
are enumerated by, respectively

1. an = 0 for all n ≥ 3

2. n

3. 2n−1

4. the Catalan numbers

For length 4 there is considerably more to do but Theorem 6 handles many of
the cases. To within symmetry we have 16 permutations which, for discussion
purposes, we have grouped into 4 families:

(i) 1234

(ii) 2134, 1324, 2314, 3124, 3214, 2143

(iii) 4231, 3421, 4321

(iv) 2341, 2413, 3142, 2431, 3241, 3412

The single permutation of the first family defines a finite class. The permuta-
tions of the second family are all handled by applying Theorem 6 and this gives
the following enumerative formulae:

2134 1324 2314 3124 3214 2143
n(n− 1) n(n− 1) n2n−2 n2n−2

(
2n−2
n−1

)
n2n−1 − 2n + 2

The third family requires that we solve the enumeration problem for the closed
classes with bases {4231, 4321}, {3421, 4321}, {4321}. The first of these (se-
quence A053617 of [11]) has an enumeration scheme in the sense of [14], the
second gives the large Schröder numbers [9] and the third has been computed
in [7].

The permutations in the last family present a series of different challenges. The
easiest are 2341 and 3412. In these cases the classes are (in the notation of the
next section) B(3, 1) and B(2, 2), and Proposition 20 gives us the recurrence
relations an = 3an−1 and an = 4an−1− 2an−2 respectively. We treat the others
in a series of lemmas.
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Lemma 8 av(2413, IW) is enumerated by 1
4 (3n − 2n + 3).

Proof: The upward weak closure of 2413 is the set {2413, 4213, 2431, 4231, 4321}
but it is convenient instead to enumerate the class whose ordinary basis is
{3142, 3241, 4132, 4231, 4321} (the inverse class, which is not a weak sorting
class). These basis elements tell us that if we have two disjoint descents then
the latter lies entirely above the former; they also tell us that we can have at
most two immediately adjacent descents.

Now it follows that two disjoint descents must lie in different components and so
the indecomposables of the class begin with an increasing sequence, then have
at most two down steps and end with an increasing sequence. The number of
such having length n is n2n−3 if n ≥ 3. The ordinary generating function of the
indecomposables is therefore

g(t) = 1 + t + t2 +
∞∑

n=3

n2n−3tn

and the full generating function is 1
1−g(t) from which the result follows.

Lemma 9 av(3142, IW) is enumerated by 1
4 (3n − 2n + 3).

Proof: Let bn be the number of indecomposable permutations of length n
avoiding the 5 permutations 3142, 3412, 3421, 4312, 4321 of the upward weak
closure of 3142. We shall show that bn = 2bn−1 + 2n−3 from which follows
bn = n2n−3. Then the proof can be completed as in the previous lemma.

First note that, to avoid the permutations 3412, 3421, 4312, 4321, implies that
symbol 1 or symbol 2 must occur in the first two positions. Therefore we
can divide the indecomposable permutations into subsets (disjoint if n > 2) as
follows:

1. F1 = {π | π = 1 . . .}

2. F2 = {π | π = 2 . . .}

3. S1 = {π | π = t1 . . .}

4. S2 = {π | π = t2 . . .}

If n > 1 then, by the indecomposability, F1 is empty. Furthermore, if the
initial symbol 2 is removed from a permutation of F2 then the result remains
indecomposable. Moreover, any indecomposable permutation of the class can be
prefaced by a symbol 2 (incrementing the symbols larger than 2) and the result
is not only in the class but is indecomposable. This shows that |F2| = bn−1. A
similar argument proves that |S2| = bn−1.

9



1

n

Figure 1: Indecomposable permutations in av(2413, IW) and av(3142, IW)

Consider now a permutation t1 . . . ∈ S1. We shall prove that t = n. If not, let
s be the rightmost smaller symbol than t and write the permutation as t1αsβ.
The avoidance of 3142 shows that α has no symbols larger than t, and β, by
definition, has no symbols smaller than t. So β consists precisely of the set
{t + 1, . . . , n} in some order, contradicting indecomposability.

Hence S1 is the set of permutations n1 . . . in the class which is in 1−1 correspon-
dence with permutations of length n − 2 that avoid 3142, 3412, 3421, 312, 321.
These avoidance conditions amount to avoiding 312, 321 alone and so this set
has size 2n−3.

The equality of the enumerations in the last two lemmas appears to be no more
than a numerical coincidence. From the proofs of these lemmas it is not hard
to determine the structures of the indecomposable permutations in both cases
and we display these in Figure 1.

Lemma 10 For av(2431, IW) we have the enumeration formula
n∑

k=0

(
n

k

)
fn−k

where (fn) is Fine’s sequence A000957 in [11] (see also [6]).

Proof: We shall determine the structure of a permutation π ∈ D = av(2431, IW) =
av(2431, 4231, 4321). Consider any left to right maximal m of π, that is, any
symbol larger than all of its predecessors. Since π avoids 4231 and 4321, the
subsequence of those symbols that follow m in π and are also less than m avoids
231 and 321.

Moreover, if m′ < m is a right to left maximal preceding m in π then, because
π avoids 2431, all the symbols following m and less than m′ must occur before
any of the symbols following m and greater than m′ but less than m.
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B
1

Figure 2: Structure of a permutation in av(2431, IW)

Let the sequence of left to right maximals in π be m1, m2, . . . , mk, and let
Bi for 1 ≤ i ≤ k be the symbols of π to the right of mi and between mi and
mi−1 in value (take m0 = 0 conventionally). Since the m’s are the left to right
maximals, they, together with the sets Bi partition the symbols of π. Moreover,
the observation above shows that if i < j then all the symbols Bi must precede
all of the symbols Bj . Figure 2 illustrates these conditions.

Every permutation of this form belongs to D and we can construct them all as
follows. Choose an increasing sequence mi from among 1 through n. For each i,
let Bi be the set of values strictly between mi−1 and mi and choose a {231, 321}-
avoiding permutation βi of Bi. Now merge the sequences m1m2 · · ·mk and
β1β2 · · ·βk subject only to the condition that mi precedes βi for each i. Then
the resulting permutation belongs to D.

We say that mi is bound if Bi is not empty. Otherwise, mi is free. A permutation
in D is completely bound if all of its left to right maximals are bound. Consider
first the completely bound permutations in D. We associate to each of these a
word in the alphabet a,b,c as follows:

• Each left to right maximal is encoded by the letter c.

• The last symbol of each Bi is encoded by the letter b.

• All remaining symbols are encoded by the letter a.

We note that, read left to right, the number of c’s minus the number of b’s is
always non-negative, ends at 0, and that an a may not occur when the count is
0. All sequences meeting these criteria can occur, and the number of permuta-
tions of D having all left to right maximals bound, corresponding to a sequence
containing k a’s is just 2k (since each block of a’s between two b’s represents,
together with the symbol for its final b, a {231, 321}-avoiding permutation and

11



there are 2j−1 such of length j). So, we can obtain a one to one correspondence
between encodings and this subset of D if we allow the a symbols to be either
a1 or a2 arbitrarily (or by using a natural encoding of the corresponding B over
a two letter alphabet).

This gives a correspondence between the subset of D in which all left to right
maximals are bound, with Motzkin paths where the horizontal steps can have
either of 2 types, but may not occur on the axis, and these are enumerated by
Fine’s sequence [6, 11]. Let fn denote its nth symbol.

It remains only to insert the free left to right maximals. Now observe that if
we take an arbitrary π ∈ D and delete the free left to right maximals, what
remains is indeed a completely bound permutation. Moreover, if we take such
a permutation and nominate places in which left to right maximals are to be
inserted freely, then there is a unique way to do so. That is, in a permutation
belonging to D of length n we are free to choose the number of free maximals,
and their positions, and then the structure of the remaining bound permutation.
That is:

dn =
n∑

k=0

(
n

k

)
fn−k

as required.

Lemma 11 For av(3241, IW) we have the generating function

3− 13t + 2t2 + 5t
√

1− 4t−
√

1− 4t

2(1− 4t− t2)

Proof: The WILFPLUS package [13] is able to produce an enumeration scheme
for this class from which, in principle, one could obtain the stated generating
function. However, we have derived it using techniques developed in [1].

3 Strong sorting classes

For weak sorting classes Proposition 3, Corollary 4 and Corollary 5 describe
how the weak basis is related to the ordinary basis. The situation for strong
sorting classes is considerably more complex. For example, the direct analogue
of Corollary 4 is false since, for example, it would imply av(321, IS) = av(321);
however, 321 I 3214 S 3412 and therefore 3412 ∈ av(321)\av(321, IS). Despite
this we shall prove that a strong sorting class with a finite strong basis has a
finite ordinary basis and our proof will show how this ordinary basis may be
computed from the strong basis.

We begin these investigations by defining three types of operation on permuta-
tions:

Switch. Exchange two symbols of τ that are currently correctly ordered.
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Left. Move a symbol t of τ to the left and insert some new symbol smaller than
t in the original position of t (with appropriate renumbering of symbols).

Right. Move a symbol t of τ to the right and insert some new symbol larger
than t in the original position of t (also with appropriate renumbering of
symbols).

Suppose that T is some set of permutations. Then T is said to be complete if, for
any τ ∈ T , applying any of the types of operation switch, left, or right to τ results
in a permutation that contains some permutation in T as a subpermutation.

Proposition 12 T is complete if and only if av(T ) is a strong sorting class.

Proof: To begin with, assume that T is complete. By definition, av(T ) is
closed under taking subpermutations and so we must prove that it is also closed
downwards in the strong order; in other words, we must prove

σ ∈ av(T ) and π S σ =⇒ π ∈ av(T )

and it is clearly sufficient to prove this in the case that π and σ differ by an
exchange.

So let σ ∈ av(T ) and π S σ where π and σ differ by an exchange. For a
contradiction suppose that π contains a subsequence p1p2 . . . order isomorphic
to an element of T . Now σ and π differ only in that two symbols properly
ordered in π are in the other order within σ. If neither of these two swapped
symbols are among p1p2 . . . then σ also contains this subsequence, and this is
impossible. If both of the swapped symbols are among p1p2 . . . then σ contains a
subsequence obtainable from p1p2 . . . by swapping two symbols currently in the
right order. But a switch operation on an element of T results in a permutation
that involves an element of T , so this is also impossible.

If only one of the swapped symbols (p say) is among p1p2 . . . and the other sym-
bol is, say, q then consider the subsequence ξ of σ on the symbols p1, p2, . . . , q.
If, in π, q was to the left of p then we must have q < p. But that means that ξ
has been obtained from p1p2 . . . by a left operation. Similarly if, in π, q was to
the right of p then we must have q > p and ξ has been obtained from p1p2 . . .
by a right operation. In either case, the completeness property tells us that ξ
involves an element of T which is impossible.

For the converse, assume that av(T ) is a strong sorting class. Let τ be an
arbitrary element of T and suppose that τ∗ is the result of applying a switch,
left, or right operation to τ . Since strong sorting classes are lower ideals in the
order IS, τ∗ 6∈ av(T ). Hence τ∗ involves an element of T and therefore T is
complete.

Now suppose that X is a strong sorting class with strong basis R. Let c(R)
denote the ordinary basis of X. Our aim is to describe c(R) in terms of R. Let
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X̄ denote the complement of X. Then, by definition

X̄ = {θ | ρ IS θ for some ρ ∈ R}

Also, by definition, c(R) is the set of minimal permutations in X̄ (minimal with
respect to I). The following result shows that c(R) can be constructed from R
by using switch, left, and right operations.

Lemma 13 Let θ ∈ c(R). Then there exists a sequence of permutations

θ0, θ1, . . . , θk = θ

where θ0 ∈ R, each θi ∈ c(R), and each θi is obtained from θi−1 by a switch, left,
or right operation. Furthermore, in any sequence beginning at a permutation of
R and ending at θ where each term arises from the previous one by a switch,
left, or right operation, all permutations in the sequence are in c(R).

Proof: We shall prove the first part of the lemma by induction over X̄ with
respect to the order IS. If θ happens to be minimal under IS then, by definition,
θ ∈ R and the result is vacuously true. This establishes the base of the induction
and we now take θ to be non-minimal under IS. In that case there exists some
θ′ ∈ X̄ with θ′ IS θ where this relation between θ′ and θ is a covering relation.
Since θ is a minimal element for the order I we cannot have θ′ I θ and so
we have θ′ S θ; furthermore, θ can be obtained from θ′ by a switch operation
(exchanging the elements a and b say).

If θ′ ∈ c(R) then we can conclude the proof by induction; therefore assume
that θ′ 6∈ c(R). Then there is some permutation θ′′ ∈ X̄ with θ′′ I0 θ′; in
other words, θ′ has been obtained from θ′′ by inserting a new symbol c (with
appropriate renumbering). If c is neither a nor b then we can interchange the
switch of a with b, and the insertion of c, to obtain θ by first switching a and b
and then inserting c. However, that is impossible since θ is a minimal element
of X̄ under involvement.

It is now easy to see that, if c = a, then θ is formed from θ′′ by a left operation
while, if c = b, then θ is formed from θ′′ by a right operation.

If θ′′ ∈ c(R) then, again, we can conclude the proof by induction. Hence, for a
final contradiction, we shall assume that θ′′ 6∈ c(R). In that case there is some
θ′′′ ∈ X̄ with θ′′′ I0 θ′′ and θ′′ is the result of inserting some new symbol d into
θ′′′. If d is neither a nor b then we can obtain θ from θ′′′ by an appropriate left
or right operation followed by an insertion of d and, as before, this is impossible
by the minimality of θ.

Therefore {c, d} = {a, b} and now we can obtain θ from θ′′′ by inserting a and
b directly into their proper places within θ. Again this implies that θ is not
minimal and the proof of the first part is complete.

For the second part, suppose we have a sequence of permutations beginning at
a permutation of R and ending at θ each being generated from its predecessor
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by a switch, left, or right operation. Let φ be a permutation in this sequence
that is not minimal under involvement because it has some subpermutation
φ′ ∈ X̄. The switch, left, and right operations that transform φ into θ also
transform φ′ and preserve the involvement property. Ultimately, this contradicts
the minimality of θ.

This lemma indicates how c(R) can be computed from R using a breadth-
first search strategy. We begin from R itself and apply switch, left, and right
operations discarding any results that contain previously found permutations as
subpermutations; and we continue using any new permutations found. So long
as we take care to build up the permutations in order of length (which means
applying the operations to the smallest permutations first, and applying switch
operations before left and right operations) then no new permutation can be
involved in some previously found permutation; so only permutations of c(R)
will be generated. Once no new permutations can be generated we will have
found a complete set and, by Lemma 13, this will be c(R). Our next result
shows that this process terminates if R is finite.

Theorem 14 Let X be a strong sorting class with strong basis R and suppose
that R is finite. Then c(R) is also finite.

Proof: We shall be relying on Lemma 13 which proves that every permutation
θ ∈ c(R) can be constructed from some permutation in R by a sequence of
switch, left, and right operations. In the first part of the proof we shall show
that θ can be constructed by a sequence in which all the left operations precede
all the right operations and, in turn, all the right operations precede all the
switch operations.

In our explanations of how the order of the operations may be rearranged we
shall find it convenient to represent permutations π by their graph (the set of
points (x, π(x)) plotted in the (x, y)-plane). Using these diagrams the effect of
switch, left, and right are shown in Figure 3.

Suppose in the sequence of operations that has realised θ we have a switch
operation followed by a left operation. If the left operation was applied to
neither of the two elements that took part in the switch operation then it is
evident that the same effect can be achieved by a left operation followed by a
switch. However, if the left operation was applied to one of the two switched
elements, we must argue more carefully. Diagrammatically we have one of four
different cases as shown in Figure 4. Each of these cases can be modified as
shown in Figure 5 so that the same effect is obtained by a left operation followed
by a switch operation.

A similar argument shows that any switch operation followed by a right operation
may also be replaced by a right operation followed by a switch. Therefore the
sequence of operations may be assumed to have all the switch operations at the
end.

Now suppose that in the realisation of θ there is a right operation followed
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right

left

switch

Figure 3: The operations switch, left, and right

leftswitch

Figure 4: A switch operation followed by a left operation

16



switchleft

Figure 5: The same effect with left followed by switch

right left

Figure 6: right followed by left: different cases (two impossible)
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left right

Figure 7: The same effect with left followed by right

left left

Figure 8: Two left operations

by a left operation. If the two symbols generated by the right operation are
not affected by the left operation then these two operations can obviously be
interchanged. In the contrary case there are, again, four cases as shown in Figure
6. The second and fourth of these are impossible because their result is not a
minimal permutation: they each involve a permutation arising from a different
right operation on the initial configuration. The first and third can be achieved
by a left operation then a right operation; the intermediate configurations are
shown in Figure 7.

Now suppose that θ ∈ c(R). We take a sequence of left, right and switch oper-
ations that generate θ from some ρ ∈ R. By the results above we may assume
that all the left operations are applied first, followed by all the right operations,
and finally the switch operations. We can regard each left operation as one which
splits a point of the diagram into two, moves one of them to the left and the
other one down. If we have two left operations, the second of which splits one
of the points created by the first left (as in Figure 8) the result is not minimal
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since it involves a permutation formed by performing one left operation only.
On the other hand two left operations that are not so linked can be commuted.
Thus, no new point gets split by another left operation and so the number of left
operations cannot be more than the original number of points present. Hence
the series of left operations cannot increase the length by more than a factor of
2. The same is true of the right operations and so |θ| ≤ 4|ρ| which completes
the proof.

We turn now to the enumeration problem for strong sorting classes whose strong
basis is finite and give some sample results. Our general method is to first
determine the ordinary basis of the class by the process described above and
use our experience in closed class enumeration.

As an example of a fairly typical situation we note that

c({4231}) = {4231, 4231, 4321, 35142, 45312, 42513, 45132, 35412,

45213, 43512, 456123, 351624, 451623, 356124}

The next two results summarise the enumerations of all strong sorting classes
with a single strong basis permutation of length 3 or 4 (omitting trivial cases
or cases that follow from symmetry).

Proposition 15 For a single strong basis permutation of length 3

Basis permutation Ordinary basis Enumeration
312 {321, 312} 2n−1

321 {321, 3412} an = 3an−1 − an−2 for n ≥ 3

Proof: The ordinary basis can be confirmed using Proposition 12 and the
enumerations are well-known.

Proposition 16 For a single strong basis permutation of length 4

Name Basis permutation Enumeration
I 1234 0 for n ≥ 4
II 1243 6 for n ≥ 4
III 1324 4 for n ≥ 4
IV 1342 3× 2n−2 for n ≥ 3
V 1432 an = 3an−1 − an−2 for n ≥ 4
VI 2143 an = 4n− 6 for n ≥ 2
VII 2341 2× 3n−2 for n ≥ 2
VIII 2413 an = 3an−1 − 2an−2 + 2an−3 for n ≥ 4
IX 2431 an = 4an−1 − 3an−2 + 2an−3 for n ≥ 4
X 3412 an = 4an−1 − 2an−2 for n ≥ 3
XI 3421 (4n + 2)/3 for n ≥ 2
XII 4231 an = 4an−1 − 2an−2 + 4an−3 − an−5 for n ≥ 6
XIII 4321 an = 4an−1 + an−2 + an−3 − 4 for n ≥ 5
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Proof: We give a sketch of the proof of the last of these only. The form of the
other proofs is similar although the details vary considerably. First of all we use
the completion process to determine the basis of av(4321, IS). This turns out
to be

{4321, 45132, 45231, 35412, 53412, 45213, 43512, 45312, 456123, 451623, 356124}

Next we observe that the basis element 456123 shows that av(4321, IS) ⊆
B(3, 3) and this proves that any permutation of the class has a 1 or 2 or 3
in the first 3 places. Denote the number of permutations of length n in the class
by an. In the following case analysis we use the letter c to stand for any symbol
larger than 2, and the letter d for any symbol larger than 3.

The situation for the permutations that have 1 or 2 in their first or second
positions is summarised by

Type Enumeration Explanation
1α an−1 α can be arbitrary
2α an−1 α can be arbitrary
c1α an−1 − an−2 cα is arbitrary but cannot start with 2
c2α an−1 − an−2 cα is arbitrary but cannot start with 1

From now on we assume the first two places do not contain a 1 or a 2. The next
cases are those where 3 also does not occur in the first two positions but one of
1, 2, 3 is in the third position. Their forms are as follows

Type Enumeration Explanation
dd1α 2an−3 − 2 Discussed below
dd2α 0 Uses 4321, 45213 and 45231
dd3α 0 Uses 4321 and 45312

With symbol 3 in second place we have the cases:

Type Enumeration Explanation
d31α an−2 − an−3 By removing 1, in correspondence with the type c2α
d32α 0 Uses 4321
d3dα 0 Uses 43512 and 53412

With symbol 3 in first place we have the cases:

Type Enumeration Explanation
3d1α an−2 − an−3 By removing 1, in correspondence with the type c2α
3d2α an−2 − an−3 By removing 2, in correspondence with the type c2α
3ddα 2an−3 − 2 Discussed below

The explanations above are straightforward except for the two where we promised
further discussion. For the first of these (the type dd1α) we can prove (by a
quite lengthy case by case examination whose details we omit) that α starts
with 2. Let bn be the number of permutations of this type. By removing the
symbol 2 we obtain a correspondence with the type cc1α of length n − 1. The
latter sequences have one of the forms 3c1α (an−3 − an−4 of them), c31α (also
an−3−an−4 of them), or dd1α (bn−1 of them). Hence bn = bn−1+2(an−3−an−4).
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Iterating this recurrence leads to bn = b5+2an−3−2a2 and since b5 = a2 = 2 the
required result follows. The second case where further discussion was promised
is the 3ddα case. Here we can prove that the sequences are of the form 34dα
and then we argue in a similar way.

Adding together all these contributions we obtain an = 4an−1+an−2+an−3−4.

The tenor of the above results hints that the theory of strong sorting classes is
going to be more complex than that for weak sorting classes. However, in the
remainder of this section we give some compensatory results which go some way
to proving that it may actually be less complex.

Consider the following family of closed classes. The closed class B(r, s) is defined
by the r!s! (ordinary) basis permutations βα where |β| = r, |α| = s and every
symbol of β is greater than every symbol of α. It follows directly from the
definition that, for a permutation π of length n to be a member of B(r, s), there
must not exist subsets I, J ⊆ {1, . . . , n} such that I < J and π(I) > π(J). Two
other readily checked properties are

B(r, s)∗ = B(r, s)−1 = B(s, r)

As a first application of Proposition 12 we have

Lemma 17 B(r, s) is a strong sorting class. Indeed, if

θrs = s + 1, s + 2, . . . , s + r, 1, 2, . . . , s

then
B(r, s) = av(θrs, IS)

Proof: It is readily checked that the basis of B(r, s) is complete so the first
part follows from Proposition 12. For the second part we note that, as B(r, s) is
a strong sorting class not containing θrs (which is one of its basis permutations),
B(r, s) ⊆ av(θrs, IS). On the other hand every basis permutation β of B(r, s)
satisfies θrs S β and hence cannot be involved in any permutation of av(θrs, IS);
so av(θrs, IS) ⊆ B(r, s).

The importance of the strong sorting classes B(r, s) stems from

Proposition 18 Every proper strong sorting class is contained in some B(r, r).

Proof: Let X be a strong sorting class contained in no B(r, r). Then X
contains permutations of the form βα where β > α and |α| = |β| = r for all
values of r. But, if X contains say b1 . . . bra1 . . . ar with all bi > aj , then by
a series of exchanges of the form bi ↔ aj we can produce a permutation with
any rearrangement of a1 . . . ar in the first r positions. Thus X contains every
permutation of length r and so contains every permutation.
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This proposition indicates that the classes B(r, s) are going to be fundamental in
the understanding of strong sorting classes. Obviously, B(1, 1) consists only of
identity permutations. The first non-trivial cases are B(1, 2) and B(2, 1) whose
structure is given next. Subsequently, in Theorem 23, we shall give a complete
description of the classes B(r, s).

Lemma 19 B(1, 2) consists of permutations whose cycle structure is

(1, 2, . . . , k1)(k1 + 1, k1 + 2, . . . , k2)(k2 + 1 . . .) . . .

and B(2, 1) is the class of their inverses.

Proof: B(1, 2) is the class of {321, 312}-avoiding permutations whose structure
is well-known. The second statement follows from B(2, 1) = B(1, 2)−1.

The classes B(r, s) were also defined (somewhat differently) by Mansour and
Vainshtein [10] who enumerated them by generating functions. The following
result gives an elementary method of enumerating them.

Proposition 20 Let xn be the number of permutations of length n in B(r, s).
Then

xn = rsxn−1 − 2!
(

r

2

)(
s

2

)
xn−2 + 3!

(
r

3

)(
s

3

)
xn−3 − · · ·

Proof: Suppose we have a permutation of {1, 2, . . . , n} \ {t} where t is one of
{n, n−1, . . . , n− r +1} and that the permutation is in (i.e. order isomorphic to
a permutation of) B(r, s). If we insert the symbol t anywhere within the final s
symbols of this permutation we cannot introduce a subpermutation isomorphic
to a basis permutation of B(r, s), so the result is still in B(r, s).

Now consider the possible forms of a permutation of length n in B(r, s). Such a
permutation must have at least one of the r largest symbols somewhere within
its last s positions. The choice of the value of this symbol together with its po-
sitions, and the results of the previous paragraph, would appear to give rsxn−1

permutations in B(r, s) of length n. However, this overcounts the permutations
which have two or more of their r largest symbols in their final s positions. So
we seem to have rsxn − 2!

(
r
2

)(
s
2

)
xn−2 permutations. However, this undercounts

by 3!
(
r
3

)(
s
3

)
xn−3 the permutations with three or more of their r largest sym-

bols in their final s positions. Continuing by inclusion-exclusion we obtain the
formula.

In [2] it was observed that, for closed classes X ,Y, the set of permutation
products

X ◦ Y = {α ◦ β | α ∈ X , β ∈ Y}

was also a closed class. A similar result holds for strong sorting classes.

Proposition 21 If X and Y are strong sorting classes so also is X ◦ Y.
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Proof: A class Z is closed under the strong order if and only if for all ζ ∈ Z and
all i, j with i < j and iζ > jζ we have (using cycle notation for transpositions)

(i, j) ◦ ζ ∈ Z

Now let α ∈ X and β ∈ Y and put γ = α ◦ β. Suppose i < j and iγ > jγ . Then
(i, j) ◦ γ = (i, j) ◦ α ◦ β. Either iα > jα in which case (i, j) ◦ α ∈ X or iα < jα

in which case

(i, j) ◦ α ◦ β = α ◦ α−1 ◦ (i, j) ◦ α ◦ β = α ◦ (iα, jα) ◦ β

and (iα, jα) ◦ β ∈ Y since iαβ > jαβ .

Lemma 22 B(1, q) ⊇ B(1, 2)q−1 and B(p, 1) ⊇ B(2, 1)p−1.

Proof: If the first part were false there would be some basis element of B(1, q)
which was expressible as a product of q − 1 elements of B(1, 2). Such a basis
element has length q + 1 and maps 1 to q + 1 (i.e. as a sequence it begins with
q + 1). However each element of B(1, 2) maps symbols t either to t + 1 or to a
smaller symbol (Lemma 19) and so a product of q− 1 of them cannot map 1 to
q + 1. The second part follows by taking inverses.

Theorem 23
B(p, q) = B(2, 1)p−1 ◦ B(1, 2)q−1

and
B(p, q) ◦ B(r, s) = B(p + r − 1, q + s− 1)

Proof: We prove a series of results from which we then deduce the theorem.

A: (X ◦ Y )∗ = X∗ ◦ Y ∗.

If α, β have length n and ρ is the reverse identity permutation then

(α ◦ β)∗ = ρ ◦ α ◦ β ◦ ρ

= ρ ◦ α ◦ ρ ◦ ρ ◦ β ◦ ρ

= α∗ ◦ β∗

B: B(p, q) ⊇ B(p, 1) ◦ B(1, q)

If this is false there would exist a permutation π = αβ with α ∈ B(p, 1), β ∈
B(1, q) and sets I, J with I < J and π(I) > π(J). Then, as β(α(I)) > β(α(J))
we have

β(r) > β(s)

for all r ∈ α(I), s ∈ α(J). For each fixed r ∈ α(I), r < α(J) is impossible since
β ∈ B(1, q). Thus, for all r ∈ α(I), we have r > s0 where s0 is the minimal
value in α(J). But now, writing j = α−1(s0) we have I < j and α(I) > α(j)
contradicting that α ∈ B(p, 1).
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C: B(p, q) ⊆ B(2, 1) ◦ B(p− 1, q)

We say that a subsequence of length r + s is of type (r, s) if its initial r symbols
are all greater than the final s symbols. Let σ ∈ B(p, q). By definition σ has no
subsequences of type (p, q). A subsequence γ of σ is defined to be critical if

1. |γ| = p− 1, and

2. the set S(γ) of symbols that follow γ and are less than every symbol of γ
has size at least q.

The critical subsequences γ together with the q-symbol subsequences of S(γ)
comprise all the subsequences of σ of type (p− 1, q).

Notice that two distinct critical sequences γ1, γ2 cannot have the same last
symbol. For then γ1 ∪ γ2 would have size at least p and the minimal symbol of
this subsequence would be one of min(γ1) and min(γ2) and so this subsequence,
together with either S(γ1) or S(γ2) would contain a subsequence of type (p, q).
We can therefore order the critical sequences by the position in σ of their final
symbols.

Let γ be any critical sequence with final symbol g and let xr, xr−1, . . . , xq, . . . , x1

be the symbols of S(γ) in order of their occurrence in σ. There can be no sym-
bols of σ between g and xq except for xr, . . . , xq+1. For if there were such a
symbol it could not be smaller than min(γ) (or, by definition, it would be in
S(γ)) and, if it were larger than min(γ) then together with γ and xq, . . . , x1

we would have a subsequence of type (p, q). Notice now that if the segment
gxrxr−1 · · ·xq was replaced by xrxr−1 · · ·xqg then we would destroy all the
subsequences of type (p− 1, q) that stemmed from γ; moreover no further sub-
sequences of type (p − 1, q) would be introduced. This replacement can be
effected by pre-multiplication of σ by a cycle (i, i + 1, . . . , j) where i and j are
the initial and final positions of the segment gxrxr−1 · · ·xq.

Now, the next critical sequence γ′ (which ends after g) cannot have final symbol
one of xr, xr−1, . . . , xq. If it did then γ ∪ γ′ together with S(γ′) would contain
a subsequence of type (p, q). Therefore the next critical sequence has a final
symbol which occurs after xq. That shows that the subsequences of type (p−1, q)
that stem from γ′ can be destroyed by pre-multiplication by a similar cycle
disjoint from the one defined above.

Hence all the subsequences of type (p−1, q) can be destroyed by pre-multiplication
by a product of disjoint cycles of the form given above. But such a product is,
by Lemma 19, a permutation α ∈ B(1, 2). So there exists some α ∈ B(1, 2) for
which ασ ∈ B(p−1, q) and, as B(1, 2)−1 = B(1, 2) we have σ ∈ B(2, 1)◦B(p−1, q)
as required.

D: B(p, q) = B(p, 1) ◦ B(1, q) = B(2, 1)p−1 ◦ B(1, 2)q−1

By repeated application of C we have

B(p, q) ⊆ B(2, 1)p−1 ◦ B(1, q) ⊆ B(p, 1) ◦ B(1, q)
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(the second inclusion following from Lemma 22) and the result follows from B.

E: B(p, 1) ◦ B(1, q) = B(1, q) ◦ B(p, 1)

The left hand side is B(p, q) (by D) and the right hand side is

B(1, q) ◦ B(p, 1) = B(q, 1)∗ ◦ B(1, p)∗

= (B(q, 1) ◦ B(1, p))∗

= B(q, p)∗

= B(p, q)

We can now complete the proof since

B(p, q) ◦ B(r, s) = B(p, 1) ◦ B(1, q) ◦ B(r, 1) ◦ B(1, s)
= B(p, 1) ◦ B(r, 1) ◦ B(1, q) ◦ B(1, s)
= B(p + r − 1, 1) ◦ B(1, q + s− 1)
= B(p + r − 1, q + s− 1)

Finally we mention another respect in which strong sorting classes are more
tractable than weak sorting classes. It is no accident that the enumerations in
Propositions 15 and 16 were all rational since in [1] techniques are given to show
that every finitely based subclass of B(r, s) has a rational generating function.
Consequently, using Theorem 14 we have

Theorem 24 Every strong sorting class whose strong basis is finite has a ra-
tional generating function.

Acknowledgement We made extensive use of the GAP system [5] in deriving
some of the enumerative results.
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